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\S 1. Deflnitions

In this note, we would like to discuss the theory of actions and coactions of mea-

sured groupoids on von Neumann algebras, which has beeh developed recently in author’s

dissertation at UCLA. Before we explain what we mean by actions and coactions of mea-

sured groupoids, we think that it is better to mention the history of groupoid actions on

von Neumann algebras briefly. A notion of an action of a measured groupoid on a von

Neumann algebra first appeared in the work of Jones and Takesaki [J&T]. It appeared

throught the classification of compact abelian group actions on semifinite injective factors.

Their situation is the following: Starting from an action $\beta$ of a compact abelian group $G$

on a semifinite injective factor $\mathcal{R}$, they needed to analyze the dual structure $\mathcal{M}=\mathcal{R}\cross\rho G$ .

For this purpose, they considered the central decomposition of $\mathcal{M}$ and then got an action

of some measured groupoid associated with the dual action $\hat{\beta}$ . In this case, von Neumann

algebras appearing in the fibers in the central decomposition are all isomorphic. Hence

they defined an action of a measured groupoid $\mathcal{G}$ by a Borel homomorphism $\alpha$ of $\mathcal{G}$ into
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the group of all automorphisms of one von Neumann algebra. Then, using this definition,

Masuda defined a crossed product of an action of a measured groupoid on a von Neumann

algebra. However, he did not discuss coactions of measured groupoids at all and, therefore,

he could not show any duality. Now we observe that, in general, when we consider the

central decomposition of a von Neumann algebra, we do not necessarily get isomorphic

algebras in the fibers. This observation suggests that, in the definition of an action of a

measured groupoid, we should allow ourselves to have non-isomorphic algebras if we would

like to work in the right framework. We should also keep in mind that a groupoid is a

small category with inverses. With these observation in mind, we state the definition of a

groupoid action. In what follows, a measured groupoid is a second countable locally com-

pact topological groupoid $\mathcal{G}$ that admits a faithful proper transverse function $\{\lambda^{x}\}_{x\in X}$

(X is the unit space of $\mathcal{G}$ ) and a semifinite transverse measure $\Lambda$ with a module $\delta$ . Let

$\Lambda_{\lambda}$ (or, simply $\mu$ ) denote the quasi-invariant measure on $X$ corresponding to $\{\lambda^{x}\}$ and

$\Lambda.$ Let$\cdot$

$\nu$ be the measure on $\mathcal{G}$ obtained by integrating $\{\lambda^{x}\}$ with respect to $\mu$ . We

borrow notations related to groupoids, such as $s$ ( $=the$ source map), $r$ ( $=the$ range map),

$\mathcal{G}^{x}$ and so on, from [Ra].

Deflnition 1 (Action,s). An action of $\mathcal{G}$ is a functor $\mathcal{F}$ from $\mathcal{G}$ into the subcategory

of von Neumann algebras whose arrows are $*$-isomorphisms, such that, with $\mathcal{M}(x)=$

$\mathcal{F}(x)(x\in X)$ and $\alpha_{\gamma}=\mathcal{F}(\gamma)(\gamma\in \mathcal{G})$ , we have the following conditions on them:

(i) the family $\{\mathcal{M}(x), L^{2}(\mathcal{M}(x))\}_{x\in X}$ forms a measurable field of von Neumann al-

gebras over (X, $\mu$), where $L^{2}(\mathcal{M}(x))$ is the canonical $L^{2}$ -space of $M(x)$ in the sense of

Kosaki [K].
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(ii) an algebraic groupoid representation $\gamma\in \mathcal{G}rightarrow u(\gamma)$ over $\{L^{2}(\mathcal{M}(x))\}_{x\in X}$ is mea-

surable, where $u(\gamma)$ is the unique unitary from $L^{2}(\mathcal{M}(s(\gamma)))$ onto $L^{2}(\mathcal{M}(r(\gamma)))$ which

implements the $*$-isomorphism $\alpha_{\gamma}$ . (See [R] for the definition of a groupoid representa-

tion).

Before we proceed to the definition of a coaction of a measured groupoid, we would like

to say a few words on the above mentioned Masuda’s work. The reason why Masuda failed

to discuss coactions of measured groupoids can be summerized in the follwing way. In the

case of group actions, the existence of the dual coaction (see [N&T] for its definition) on a

crossed product by an action is essentially due to the Hopf-algebraic structure of a group

algebra. However, to author’s knowledge, no substitute for group algebras that admits a

“Hopf-algebra-like” structure suitable for the groupoid setting has been dicovered in the

case of groupoid actions. For the substitute, we look at the von Neumann algebra $\mathcal{R}(\mathcal{G})$

obtained from every measured groupoid $(\mathcal{G}, \{\lambda^{x}\}, \Lambda, \delta)$ by P. Hahn’s method, which

we $caU$ the groupoid von Neumann algebra. To show that every groupoid von Neumann

algebra possesses a Hopf-algebra-like structure, we need to recall some fundamental facts on

the relative tensor product of Hilbert spaces over von Neumann algebras due to Sauvageot

[S1], [S2].

Let $?t_{1}$ and $?t_{2}$ be (separable) Hilbert spaces. We assume that these spaces are Z-

modules, where $Z$ is an abelian von Neumann algbera (with a separable predual). Let us

fix a faithful normal semifinte trace $\mu$ on Z. We say that a vector $\xi\in \mathcal{H}_{1}$ is $\mu$-bounded

if there exists a bounded operator $R^{\mu}(\xi)$ from $\mathcal{H}_{\mu}$ into $\mathcal{H}_{1}$ such that

$R^{\mu}(\xi)\eta_{\mu}(x)=x\xi$
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for any $x\in N_{\mu}$ . Here $N_{\mu}$ is an ideal of $Z$ consisting of elements $x$ with $\mu(x^{*}x)<\infty$ .

Let $D(H_{1}, \mu)$ denote the set of all $\mu$-bounded vectors in $\mathcal{H}_{1}$ . Then the formula

$(\xi_{1}\otimes\eta_{1}|\xi_{2}\otimes\eta_{2})=(R^{\mu}(\xi_{2})^{*}R^{\mu}(\xi_{2})\eta_{1}|\eta_{2})$

defines a sesquilinear form on the algebraic tensor product $D(H_{1},\mu)\otimes H_{2}$ . We denote

by $\mathcal{H}_{1}\otimes_{\mu}\mathcal{H}_{2}$ the Hilbert space obtained by completing $D(\mathcal{H}_{1}, \mu)\otimes \mathcal{H}_{2}$ modulo the set

of vectors of length $0$ , and call it the relative tensor product of Z-modules $Tt_{1}$ and $H_{2}$

over $Z$ with respect to $\mu$ . Now let us consider the following situation. Suppose that

we have two von Neumann algebras $\{\mathcal{M}_{1}, \mathcal{H}_{1}\}$ and $\{\mathcal{M}_{2}, H_{2}\}$ . We assume that $Z$

is imbedded faithfully into both $M_{1}$ and $\mathcal{M}_{2}$ . Namely, those algeras are Z-modules.

Consequently, Hilbert spaces $H_{1}$ and $\mathcal{H}_{2}$ are also Z-modules. Thus we may form the

relative tensor product $\mathcal{H}_{1}\otimes_{\mu}\mathcal{H}_{2}$ over $Z$ . Under this situation, there is a von Neumann

algebra $\mathcal{M}_{1}*z\mathcal{M}_{2}$ , called the fiber product of $\mathcal{M}_{1}$ and $\mathcal{M}_{2}$ , on the Hilbert space $H_{1}\otimes_{\mu}H_{2}$

[S1]. Moreover, assume that both $\mathcal{M}_{1}$ and $\mathcal{M}_{2}$ admit normal representations, say $\pi_{1}$

and $\pi_{2}$ , on Hilbert spaces $\mathcal{K}_{1}$ and $\mathcal{K}_{2}$ respectively. Through these representations, $\mathcal{K}:s$

become $\mathcal{Z}$-modules. So we get $\mathcal{K}_{1}\otimes_{\mu}\mathcal{K}_{2}$ . Then we have a theorem due to Sauvageot [S2]

which says that there exists a (unique) representation $\pi_{1}*z\pi_{2}$ of $\mathcal{M}_{1}*z\mathcal{M}_{2}$ on $\mathcal{K}_{1}\otimes_{\mu}\mathcal{K}_{2}$

satisfying some condition. These are the facts we need in order to show a Hopf-algebra-like

structure of a groupoid von Neumann algebra.

Let $(\mathcal{G}, \{\lambda^{x}\}, \Lambda,\delta)$ be a measured groupoid as before. From now on, $Z$ denotes the

abelian von Neumann algebra $L^{\infty}(X,\mu)$ . This commutative algebra is faithfully imbedded

into the groupoid von Neumann algbera $\mathcal{R}(\mathcal{G})$ via a mapping $h\in Zrightarrow M(hor)\in \mathcal{R}(\mathcal{G})$ ,

where $M(f)$ stands for the multiplication by an essentially bounded measurable function

$+$
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$f$ . As a consequence, both $\mathcal{R}(\mathcal{G})$ and $L^{2}(\mathcal{G}, \nu)$ become Z-modules. So we may consider

a fiber product von Neumann algebra $\mathcal{R}(\mathcal{G})*z\mathcal{R}(\mathcal{G})$ on a relative tensor product space

$L^{2}(\mathcal{G}, \nu)\otimes_{\mu}L^{2}(\mathcal{G}, \nu)$ . Then we have the following interesting theorem:

Theorem 2. There exists a normal $*$ -isomorphism $\Gamma$ of $\mathcal{R}(\mathcal{G})$ into $\mathcal{R}(\mathcal{G})*z\mathcal{R}(\mathcal{G})$

which satisfies the identity:

$(\Gamma*z\iota)0\Gamma=(\iota*z\Gamma)0\Gamma$,

where $\iota$ indicates the identity morphism of $\mathcal{R}(\mathcal{G})$ .

It should be pointed out that the above identity is reminiscent of the coassociativity

of a coproduct in the theory of Hopf algebra. We will make use of this morphism $\Gamma$ to

define a coaction of a measured groupoid on a von Neumann algebra.

Deflnition 3 (Coactions). Let $\{\mathcal{N}, \mathcal{K}\}$ be a von Neumann algebra. Suppose that

$N$ is a Z-module. Namely, $Z=L^{\infty}(X, \mu)$ is faithfully imbedded into $N$ . Note that, in

this case, rc also becomes a Z-module through the imbedding. Under this situation, a

coaction of $\mathcal{G}$ on $\mathcal{N}$ is a $*$-isomorphism $\delta$ of $\mathcal{N}$ into the fiber product $\mathcal{N}*z\mathcal{R}(\mathcal{G})$ on the

Hilbert space $\mathcal{K}\otimes_{\mu}L^{2}(\mathcal{G}, \nu)$ satisfying

$(\delta*z\iota)0\delta=(\iota*z\Gamma)0\delta$,

where $\Gamma$ is the morphism appeared in the previous theorem.

It is obvious that these definitions 1 and 3 really generalize conventional definitions of

group actions and group coactions. We should remark here that the notions of conjugacy
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and cocycle conjugacy of two actions (or conjugacy of two coactions) can be naturally

introduced in this framework.

\S 2. Crossed products by actions and coactions

In the previous section, we introduce the concepts of an action and coaction of a

measured groupoid which are considered as a natural generalization of what one finds in

the group case. This section is concerned with a brief description of construction of a

crossed product and the dual coaction or the dual action from a given action or coaction,

respectively, of a measured groupoid.

Let $(\mathcal{G}, \{\lambda^{x}\}, \Lambda, \delta)$ be a measured groupoid as before. Suppose that we are given a

action $(\mathcal{G}, \{M(x)\}, \{\alpha_{\gamma}\})$ of $\mathcal{G}$ . We keep all the notations introduced in the preceeding

section. Now we briefly describe the construction of a crossed product algebra from the

action. Let $\mathcal{H}(x)$ be the canonical $L^{2}$ -space of the von Neumann algebra $\mathcal{M}(x)$ and $u(\gamma)$

be, as before, the canonical implementation of the $*$ -isomorphism $\alpha_{\gamma}$ . Thus $u(\gamma)$ is a

unitary from $\mathcal{H}(s(\gamma))$ onto $\mathcal{H}(r(\gamma))$ . By definition, $\{\mathcal{M}(x), \mathcal{H}(x)\}_{x\in X}$ is a measurable

field of von Neumann algebras over (X, p). Let $\{\mathcal{M},T\ell\}$ be the von Neumann algebra

obtained as the direct integral of the above field. Namely

$\mathcal{M}=\int_{X}^{\oplus}M(x)d\mu(x)$ , $H= \int_{X}^{\oplus}\mathcal{H}(x)d\mu(x)$ .

For each $x\in X$ , we set $\hat{\mathcal{H}}(x)=\mathcal{H}(x)\otimes L^{2}(\mathcal{G}^{x}, \lambda^{x})$ . Next we define a subspace $\hat{\mathcal{M}}(\gamma)$ of

$\mathcal{L}(7\hat{i}(s(\gamma)), \mathcal{H}(r(\gamma)))$ by

$\hat{M}(\gamma)=\{au(\gamma)\otimes\lambda(\gamma) : a\in \mathcal{M}(r(\gamma))\}$ ,

$G$
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where $\lambda(\gamma)$ is the left regular representation of $\mathcal{G}$ on the Hilbert bundle $\{L^{2}(\mathcal{G}^{x}, \lambda^{x})\}_{x\in X}$

over (X, $\mu$). Since $\{\hat{\mathcal{H}}(x)\}_{x\in X}$ is a measurable field of Hilbert spaces over (X, $\mu$), we may

form its direct integral:

$\int_{X}^{\oplus}\hat{\mathcal{H}}(x)d\mu(x)=\int_{X}^{\oplus}\mathcal{H}(x)\otimes L^{2}(\mathcal{G}^{x}, \lambda^{x})d\mu(x)$,

which is equal to the relative tensor product $\mathcal{H}\otimes_{\mu \mathcal{Z}}L^{2}(\mathcal{G}, \nu)$ . Note that we can identify

$?t\otimes_{\mu \mathcal{Z}}L^{2}(\mathcal{G}, \nu)$ with the set of $aU$ functions $\eta$ from $\mathcal{G}$ into $\prod_{x\in X}\mathcal{H}(x)$ such that (i) $\eta(\gamma)\in$

$\mathcal{H}(r(\gamma)),$ $(\gamma\in \mathcal{G})$ . (ii) a function $x \in Xrightarrow\int f_{m,x}(\gamma)(\xi_{n,x}|\eta(\gamma))d\lambda^{x}(\gamma)$ is measurable

for any $m,$ $n\in N$ , where $\{\xi_{n}\}_{n\geq 1}$ and $\{f_{m}\}_{m\geq 1}$ are fundamental sequences of measurable

fields $\{\mathcal{H}(x)\}$ and $\{L^{2}(\mathcal{G}^{x}, \lambda^{x})\}$ , respectively. (iii) $\int||\eta(\gamma)||^{2}d\nu(\gamma)<\infty$ . The norm of such

a function $\eta$ is defined by $|| \eta||=(\int||\eta(\gamma)||^{2}d\nu(\gamma))^{1/2}$

We let $S( \mathcal{G}, \prod_{\gamma\in \mathcal{G}}\hat{M}(\gamma))$ denote the set of all sections $A$ from $\mathcal{G}$ into $\prod_{\gamma\in \mathcal{G}}\hat{M}(\gamma)$

with the following properties:

(1) If A is of the form $A(\gamma)=a(\gamma)u(\gamma)\otimes\lambda(\gamma)$ $(a(\gamma)\in \mathcal{M}(r(\gamma)))$, then a function

$\gamma\in \mathcal{G}rightarrow<a(\gamma),$ $\omega_{r(\gamma)}>is$ measurable for any $\omega=\int_{X}^{\oplus}\omega_{x}d\mu(x)\in M_{*}=\int_{X}^{\oplus}M(x)_{*}d\mu(x)$.

(2) The quantity $\Vert A\Vert_{H}=\max\{\Vert\lambda(||A(\cdot)||)\Vert_{\infty}, \Vert\lambda(\Vert A\#(\cdot)\Vert)||_{\infty}\}$ is bounded, where

$A^{t}(\gamma)=\delta(\gamma)^{-1}A(\gamma^{-1})^{*}$ .

We will write $S(M)=S( \mathcal{G}, \prod_{\gamma\in \mathcal{G}}\hat{\mathcal{M}}(\gamma))$ for short, if there is no danger of confusion.

$S(M)$ becomes a vector space under pointwise addtion and scalor multiplication. We can

further equip $S(M)$ with a #-algerba structure. Its product $*and$. involution $\#$ are given

by
$(A*B)( \gamma)=\int A(\gamma_{1})B(\gamma_{1}^{-1}\gamma)d\lambda^{r(\gamma)}(\gamma_{1})$ $(A, B\in S(\mathcal{M}))$ ,

$A\#(\gamma)=\delta(\gamma)^{-1}A(\gamma^{-1})^{*}$ .
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Next we shall define a $\#-*$-preserving representation of the algebra $S(M)$ on a Hilbert

space $T\ell\otimes_{\mu \mathcal{Z}}L^{2}(\mathcal{G}, \nu)$ . It will be obtained by “integrating” each section in $S(M)$ .

Let $A$ be in $S(\mathcal{M})$ and $\xi,\eta\in Tt\otimes_{\mu \mathcal{Z}}L^{2}(\mathcal{G}, \nu)$ . We may regard $\xi,\eta$ as functions on $\mathcal{G}$

as we observed before. The equation

$( \Phi(A)\xi|\eta)=\int\int(a(\gamma_{1})u(\gamma_{1})\xi(\gamma_{1}^{-1}\gamma)|\eta(\gamma))d\lambda^{r(\gamma)}(\gamma_{1})d\nu(\gamma)$

defines a bounded operator $\Phi(A)$ on $\mathcal{H}\otimes_{\mu \mathcal{Z}}L^{2}(\mathcal{G}, \nu)$ , where $A$ has the form $A(\gamma)=$

$a(\gamma)u(\gamma)\otimes\lambda(\gamma)$ , $a(\gamma)\in \mathcal{M}(r(\gamma))$ for any $\gamma\in \mathcal{G}$ . It turns out that $\Phi$ is a nonde-

generate norm decreasing $*$-representation of the algebra $S(\mathcal{M})$ on $?\hat{t}=\mathcal{H}\otimes_{\mu Z}L^{2}(\mathcal{G}, \nu)$ .

The crossed product algebra of the action is by definition the weak closure of the nonde-

generate $*$-algebra $\Phi(S(\mathcal{M}))$ and is denoted by $\mathcal{M}X_{\alpha}\mathcal{G}$ . It is shown in [Y] that there

exists a coaction $\hat{\alpha}$ of the groupoid on this new algebra which is called the dual coaction

of the original action. Since the space is very limitted, we will not go into the details here.

The author refers readers to [Y] for the detailed construction of the dual coaction.

Next we move on to the construction of a crossed product from a groupoid coaction.

So we begin with a coaction $(\mathcal{G}, N, \delta, \mathcal{K})$ of $\mathcal{G}$ . Recall that $\delta$ is $a^{*}$-isomorphism of $\mathcal{N}$

into the fiber product $N*z\mathcal{R}(\mathcal{G})$ on $\mathcal{K}\otimes_{\mu}L^{2}(\mathcal{G}, \nu)$ satisfying the identity: $(\delta*z\iota)0\delta=$

$(\iota*z\Gamma)0\delta$ . We form a new von Neumann algebra on this Hilbert space $\mathcal{K}\otimes_{\mu}L^{2}(\mathcal{G}, \nu)$ ,

generated by $\delta(N)$ and $C\otimes_{\mathcal{Z}}L^{\infty}(\mathcal{G}, \nu)$ . We denote it by $N\cross s\mathcal{G}$ and call it the crossed

product algebra of Al by the coaction $\delta$ . Note that, on $\mathcal{K}\otimes_{\mu}L^{2}(\mathcal{G}, \nu)$ , there is an algebra

$\{1 \otimes_{\mathcal{Z}}M(hos) : h\in L^{\infty}(\mathcal{G}, \nu)\}$ which is a von Neumann subalgebra of $C\otimes_{\mathcal{Z}}L^{\infty}(\mathcal{G}, \nu)$.

Hence $\{1 \otimes_{\mathcal{Z}}M(hos) : h\in L^{\infty}(\mathcal{G}, \nu)\}$ is contained in the crossed product $\mathcal{N}\cross s\mathcal{G}$.

Moreover, since $Z_{S}\subseteq \mathcal{R}(\mathcal{G})’$ , we have that $1\otimes_{\mathcal{Z}}M(hos)\in C\otimes z\mathcal{R}(\mathcal{G})’\subseteq N’\otimes z\mathcal{R}(\mathcal{G})’$

8
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$=(\mathcal{N}*z\mathcal{R}(\mathcal{G}))’$ . Form this together with the fact that $\delta(N)\subseteq \mathcal{N}*z\mathcal{R}(\mathcal{G})$ , it follows

that the algebra $\{1 \otimes_{Z}M(hos) : h\in Z\}$ is contained in the center $Z(NX_{\delta}\mathcal{G})$ of the

crossed product algebra $\mathcal{N}\cross s\mathcal{G}$. Thus, $Z=L^{\infty}(\mathcal{G}, \nu)$ can be regarded as a subalge-

bra of $Z(NX_{\delta}\mathcal{G})$ . We set $\mathcal{M}=\mathcal{N}X_{\delta}\mathcal{G}$ and $H=\mathcal{K}\otimes_{\mu}L^{2}(\mathcal{G}, \nu)$ . We then consider a

decomposition of $\{\mathcal{M}, \mathcal{H}\}$ relative to $Z$ :

$\mathcal{M}=\int_{X}^{\oplus}\mathcal{M}(x)d\mu(x)$, $\mathcal{H}=\int_{X}^{\oplus}H(x)d\mu(x)$ .

We only assert without any proof that we can equip the measurable field $\{M(x), ?t(x)\}$

with a structure of an action of $\mathcal{G}$ . The dual action $\hat{\delta}_{\gamma}$ is, roughly speaking, given by the

adjoint of the “right regular representation of the measured groupoid $\mathcal{G}’$ .

\S 3. Duality

Now that, as we saw in the last section, we have a systematic way of associating a

dual object with a given groupoid action or coaction, It is quite natural at this stage that,

having these machineries in hand, one should ask himself whether a Takesaki duality type

theorem holds in this groupoid setting. The answer is “Yes”. We do have duality for

actions and coactions of measured groupoids on von Neumann algebras. First we state the

duality for groupoid actions.

Theorem 4 (Duality for actions). Suppose that $(\mathcal{G}, \{\mathcal{M}(x)\}_{x\in X}, \{\alpha_{\gamma}\}_{\gamma\in \mathcal{G}})$ is

an action of $\mathcal{G}$ . Then the bidual action of the original one is conjugate to the action

$(\mathcal{G}, \{\mathcal{M}(x)\otimes-\mathcal{L}(L^{2}(\mathcal{G}_{x}, \lambda_{x}’))\}_{x\in X}, \{\alpha_{\gamma}\otimes Ad\rho(\gamma)\}_{\gamma\in \mathcal{G}})$, where $\lambda_{x}’$ is the Borel measure

on $\mathcal{G}_{x}$ defined by the formula $\lambda_{x}’(f)=\int f(\gamma^{-1})\delta(\gamma)d\lambda^{x}(\gamma)$ for any Borel function $f$

on $\mathcal{G}_{x}$ , and $\mathcal{L}(H)$ stands for the algbera of all bounded operators on a Hilbert space $H$ .

$q$



122

Finally, $\rho(\gamma)$ is the unitary from $L^{2}(\mathcal{G}_{x}, \lambda_{x}’)$ onto $L^{2}(\mathcal{G}_{y}, \lambda_{y}’)$ $(\gamma : xrightarrow y)$ given by

$\{\rho(\gamma)\xi\}(\gamma_{1})=\delta(\gamma)^{1/2}\xi(\gamma_{1}\gamma)$ .

As a special case of this theorem, we obtain Nalcagami-Takesaki duality for actions of

second countable locally compact groups on von Neumann algebras.

Now we tum our attention to duality for a $co$action of a measured groupoid. As we

saw in the previous paragraph, duality holds good for a general measured groupoid in

the case of an action. However, to prove duality for a coaction, we need to put a certain

condition on it in order to have much control on the given coaction. The condition we will

impose is called “integrability”. Under this assumption, we can show the duality.

To define integrability of a coaction of a measured groupoid $\mathcal{G}$ , we consider the fol-

lowing situation. Let $\{?i(x)=?t\}_{x\in X}$ be a constant field of Hilbert spaces over $X$ .

Suppose that we are given a family of $\{\mathcal{N}(\gamma)\}_{\gamma\in \mathcal{G}}$ of weakly closed subspaces of $\mathcal{L}(\mathcal{H})$

such that (1) $\mathcal{N}(\gamma_{1})\mathcal{N}(\gamma_{2})\subseteq \mathcal{N}(\gamma_{1}\gamma_{2})$ whenever $(\gamma_{1}, \gamma_{2})\in \mathcal{G}^{(2)},$ (2) $N(\gamma)^{*}=\mathcal{N}(\gamma^{-1})$ for

any $\gamma\in \mathcal{G}$ . Note that, because of (1) and (2), each $\mathcal{N}(x)(x\in X)$ is a von Neumann

algebra on $\mathcal{H}(x)=\mathcal{H}$ . It should be remarked that this family of subspaces is reminiscent

of a Banach $*$-algebraic bundle over a locally compact group in the sense of Fell (see [F]

for the details). By “integrating” a suitable “section” of this bundle $\{\mathcal{N}(\gamma)\}_{\gamma\in \mathcal{G}}$ over $\mathcal{G}$ ,

we obtain a bounded operator on an appropriate Hilbert space $\mathcal{K}$ , which turns out to be

a Z-module. Let Al‘ be the von Neumann algebra consisting of operators obtained by

integrating all possible such sections of the bundle. It can be shown that there exists a

coaction $\delta$ of $\mathcal{G}$ on the algebra $N$. Thus every bundle (or fanily) of subspaces over $\mathcal{G}$

with the above property gives rise to a coaction of $\mathcal{G}$ on a von Neumann algebra. We say

$l0$



123

that a coaction of a measured groupoid $\mathcal{G}$ on a von Neumann algebra is integrable if it

arises from a bundle of subspaces of the above type. Now we are in a position to state

duality for a coaction of a measured groupoid.

Theorem 5 (Duality for integrable coactions). Let $(\mathcal{G}, \{N, \mathcal{K}\}, \delta)$ be an inte-

gmble coaction of a measured groupoid $\mathcal{G}$ . Then the bidual coaction of the original one is

conjugate to a coaction $(\mathcal{G}, \{N*z\mathcal{L}(L^{2}(\mathcal{G}, \nu)), \mathcal{K}\otimes_{\mu}L^{2}(\mathcal{G}, \nu)\}_{f}\overline{\delta})_{2}$ where $\overline{\delta}$ is a coaction

determined by $\delta$ .

Remark 6. In the definition of integrabilty of a coaction, we may replace the condi-

tion there by a weaker one that $\{\mathcal{H}(x)\}_{x\in X}$ is constant only on each equivalence class on

$X$ , that is, $\mathcal{H}(x)=\mathcal{H}(y)$ whenever $x\sim y$ . Even if we relax the condition in this way, the

above theorem still holds.

\S 4. Examples

In this section, we give several interesting examples of actions and coaction.

Example 1. Let $\mathcal{G}$ be as before. For each $x\in X$ , we set $M(x)=C(=the$ set

of complex numbers). For each $\gamma\in \mathcal{G}$ , we let $\alpha_{\gamma}:C(s(\gamma))rightarrow C(r(\gamma))$ be the identity

morphism. One can easily check that $(\mathcal{G}, \{\mathcal{M}(x)\}_{x\in X}, \{\alpha_{\gamma}\}_{\gamma\in \mathcal{G}})$ is an action of $\mathcal{G}$ . The

crossed product algebra of the action turns out to be the groupoid von Neumann algebra

$\mathcal{R}(\mathcal{G})$ . The dual coaction is the coproduct $\Gamma$ of $\mathcal{R}(\mathcal{G})$ appeared in Theorem 2.

Example 2. By Theorem 2, the system $(\mathcal{G}, \{\mathcal{R}(\mathcal{G}), L^{2}(\mathcal{G}, \nu)\}, \Gamma)$ forms a coaction

of $\mathcal{G}$ . From the duality theorem for actions of $\mathcal{G}$ , together with the preceding example, it

11
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follows that ( $\mathcal{G},$ $\{\mathcal{L}(L^{2}(\mathcal{G}_{x},$ $\lambda_{x}’))\}_{x\in X}$ , {Ad $\rho(\gamma)\}_{\gamma\in \mathcal{G}}$) is the dual system of the coaction in

question.

Example 3. The following example is essentiaUy due to A. Connes [C1] and T. Ma-

suda [M]. We will just describe the situation briefly and not bother to go into the details.

Let $(K, R, F_{t})$ be an ergodic (measure-preserving) smooth flow on a compact manifold $K$

with a probability measure. Then, by using an Anosov flow and a geodesic flow on a com-

pact Riemann surface of constant negative sectional curvature, we can construct a locaUy

compact (separable) measured groupoid $\mathcal{G}$ and its action $(\mathcal{G}, \{\mathcal{M}(x)\}_{x\in X}, \{\alpha_{\gamma}\}_{\gamma\in \mathcal{G}})$ in

such a way that the crossed product algbera of this action is an injective factor of type III,

and that its smooth flow of weight is isomorphic to the given system $(K, R,\grave{F}_{t})$ . Thus, by

using our machinery, we can systematicaUy construct an injective factor of type III whose

smooth flow of weight is a prescribed (ergodic) flow.

\S 5. Concluding remark

In writing this note, the author found that the assumption that $\mathcal{G}$ is a second count-

able locally compact topological groupoid is not essential for our argument. We only need

$\mathcal{G}$ to be a groupoid with a standard Borel structure with respect to which $aU$ relevant maps

and sets are Borel. With this new assumption, we are able to furnish a lot of interesting

examples of groupoid actions. Those examples and a further investigation of groupoid

actions and coactions will be published elsewhere in the near future.
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