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ON CONCEPT LATTICE APPROXIMATION

LEONARD KWUIDA

ABSTRACT. In these notes we motivate the need of approximating concept
lattices by lattices of small size or by lattices of nicer structure. We also present
some approachs towards an approximation theory for concept lattices. The
main goal is to support Formal Concept Analysis (FCA) technics in Knowledge
Discovery and Knowledge Management.

1. FCA AND KNOWLEDGE DISCOVERY

1.1. Information systems, contexts and concepts. The elementary way to
encode information is to describe, by means of a relation that some objects have
some properties. This sets up a binary relation I between the set G of objects
and the set M of properties. The triple (G, M,I) is called & formal context.
(g9,m) € I reads "the object g has the property m”; we also write gIm. Figure 1
(taken from [GS]) shows us the members of the Star Alliance and their flying
destinations. Some interesting patterns are formed by objects sharing the same
properties. In Knowledge discovery, many techniques are based on the formalization
of such patterns, namely that of concept. A formal concept of a context (G, M, I)
is a pair (4,B) such that B is exactly the set of all properties shared by the
objects in A (denoted by A’ or A’), and A is the set of all objects that have
all the properties in B (denoted by B or B’). We called A the extent of the
concept (A, B) and B the intent of the concept (4, B). The concept hierarchy
states that a concept is more general if its extent is larger or equivalently if its
intent is smaller. Formally, A C C <= : (A,B) < (C,D) : <= B 2 D. This
defines an order relation on the set B(G, M, I) of all concepts of (G, M,I). The
structure of this poset is more richer. We call a poset (L, <) lattice if min{z, y}
and max{z,y}* exist for any pair {z,y} C L. A poset (L, <) is a complete lattice
if minZ and maxZ (also denoted by AZ and \/Z resp.) exist for every subset Z
of L. Equivalently, a lattice is an algebra (L, A, V) of type (2,2) such that A
and V are idempotent, commutative, associative and satisfy the absorption laws:
zA(xzVy)=zandzV(rAy) =z. It holds: z Ay = min{z,y}, zVy = max{z,y}
andzAy=2 & <y < zVy=y.

Theorem 1.1. [Wi82] (B(G, M, I), <) is a complete lattice, in which infimum and
supremum are given by '

n n
N (Ax, Bx) = (n Ak, (U Bk) ); V (Ak, By) = ((U Ak) . Bk)-
keK ke K keK kek kEK kek

B(G, M, I) is called the concept lattice of the context (G,M,I). For g € G
and m € M we set g’ := {g}’ and m’ := {m}. We define some special building
block concepts: vg := (9",g’') (object concept) and um := (m’,m") (attribute

The author was supported by the grant of Professor Hajime Machida for a stay in Japan at
Hitotsubashi University, Kunitachi, Tokyo, Japan during which this paper was presented at the
LA Symposium held in January 28-30 at Kyoto University, Japan.

Ymin{z,y} (also denoted by z A y) is the greatest element below z and y. max{z,y} (also
denoted by z V y) is the smallest element above = and y.
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Air New Zealand x x X
All Nippon Airways X X X
Ansett Australia X
The Austrian Airlines Group X X X X X X
British Midland X
Lufthansa X X X X X X X X
Mexicana X X X X X
Scandinavian Airlines X X X x X
Singapore Airlines ) X X X X X X
Thai Airways International X X X X X
United Airlines X X X X X X X
VARIG : X X X X X X

FIGURE 1. A formal context about the destinations of Star Al-
liance members

concept). For any concept (4, B) € B(G, M,I) we have \/{yg | g € A} = (4,B) =
A{um | m € B}. Thus {vg | g € G} is \/-dense and {um | m € M} is A-dense in
B(G, M,I). Conversely each complete lattice is (a copy of) a concept lattice of a
certain context. In fact,

Theorem 1.2. [Wi82] a complete lattice L is isomorphic to a concept lattice of a
context (G, M,1) iff there are mapsa: G — L and B: M — L such that o(G) is
V-dense in L, B(M) is A\-dense in L and gIm <= a(g) < B(m).

Theorem 1.1 and Theorem 1.2 form the basic theorem of Formal Concept Analysis.
The Mathematical foundations have been documented in a monograph by Bernhard
Ganter and Rudolf Wille [GW99).

1.2. Concept lattices and their diagrams. Finite concept lattices can be rep-
resented by labeled Hasse diagrams. Each node represent a concept. The label g
is written underneath of yg and m above um. The extent of a concept represented
by a node a is given by all labels in G from a downwards, and the intent by all
labels in M from a upwards. Figure 2 presents the diagram of the concept lattice
of the context of Figure 1. Diagrams are valuable tools for visualization of data?.
However drawing a good diagram is a big challenge. Quite often, the size of the
lattice is large and its structure complex. Thus we need tools to “approximate” by
reducing the size or by making the structure nicer.

1.3. Galois connections and closure operators.

Definition 1.1. On a poset (P, <) a closure operator is a map ¢ : P — P that
satisfies z < ¢(y) <= c(z) < ¢(y) and a kernel operator a map k : P — P that
satisfies k(z) <y <= k(z) < k(y).

2For example we can read on Figure 2 that each member of the Star Alliance who flies to US
and Europe also flies to Asia Pacific, or that each member who flies to Mezico and Asia Pacific
also flies to Latin America, US, Canada and Europe.
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Asia Pacific

FEurope
British Midland

Ansett Australia Latin America

All Nippon Airways
Air New Zealand

Middle East

US Canada

Mexicana
Thai Airways International
Singapore Airlines
The Austrian Ajrlines
roup

Scandinavian Airlines
Lufthansa

FiGURE 2. Concept lattice of the context of Figure 1

We often write cz, kz, cP and kP for ¢(x), k(x), ¢(P) and k(P) respectively. A map
¢ is a closure operator iff < ¢z, ccx = cx and < y = ¢z < cy. Dually, a map
k is a kernel operator iff ¢ > kz, kkx = kxr and <y = kz < ky. The maps
A A" and B — B” are a closure operator on (P(G),C) and a kernel operator
on (P(M), D) respectively. They arise naturally from a Galois connection.

Definition 1.2. A Galois connection between (P, <) and (Q, <) is a pair (a, )
of maps a: P — Q and 3: Q@ — P such that z < B(y) < y < a(z).

The operations A — A’ and B — B’ form a Galois connection between P(G) and
P(M). A— A” and B — B" are the corresponding closure operators.

(i) If (o, B) is a Galois connection then a o 8 and 8 o « are closure operators.
(ii) If c is a closure operator on P, then ¢ and its inclusion map 8 : cP — P
form a Galois connection between (P, <) and (cP, >) with foc=c.

1.4. Concept lattices and implications. A closure system on a set M is set
of subsets of M, closed under intersection. The set of extents (resp. intents) of
(G, M, I) is a closure system on G (resp. M). Each complete lattice is (a copy of)
a closure system, and vice-versa.

Definition 1.3. Let M be a set of properties or attributes. An implication
between attributes in M is a pair (A, B), denoted by A — B. A is the premise and
B the conclusion of A — B. An implication A — B holds in a context (G, M, I)
if every object having all the attributes in A also has all the attributes in B. A
subset T" of M respects A — B if A ¢_ T or B C T?; we say that T is a model
of A — B and write T = A — B. T respects a set £ of implications if T' respects
every implication in £. An implication A — B holds in a family 7 ifevery T € T
respects A — B.

Implications can be read off from the lattice diagram. The rule is given by:
B C A" iff (G,M,I) = A— Biff A{pa | a € A} < um for all m € B. For
example {Mexico, Asia Pacific} — {Latin America, US, Canada, Europe}
can be read from the lattice in Figure 2. If £ is a set of implications in M, then
ModL := {T'C M | T = L} is a closure system on M. The corresponding closure
operator, denoted by X — L£(X), is obtained by setting X<° := X,
X = X" U {B|A— B eL,AC X"} and £(X) = | X°".
n20

3This is equivalent to A C T => B C T, and can be interpreted as the conclusion B is
"valid” in T whenever the premise A is "valid” in T.
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01 : Caribbean " Latin America, US;

02 : Mexico ? Latin America, US;

03 : Africa r Europe, Asia Pacific, US;

04 : Middle East :v Europe, Canada, Asia Pacific, US;

05 : Asia Pacific, US —1—(—)+ Europe;

06 : Canada . Us;

07 : Europe, US Ty Asia Pacific;

08 : Europe, Asia Pacific 1—0» Us;

09 : Europe, Canada, Asia Pacific, Africa US ? Middle East;

10 : Latin America - Us;

11 : Latin America, Mexico, Caribbean, US ? Canada;

12 : Latin America, Canada, US 7 Mexico;

13 : Latin America, Europe, Asia Pacific, Africa, Caribbean, US ry
Canada, Middle East, Mexico.

FIGURE 3. Duquenne-Guigues implication basis of Star Alliance.
To each arrow, we attach the number of ob_]ect supporting this
implication.

If £ is the set of all implications of (G, M, I) then Mod[ is the set of all concept
intents of (G, M, I). Quite often, the implication list is long* and contains trivial
implications. So it is desirable to get a minimal list of implications that hold in a
context (G, M, I) and that generate all implications valid in (G, M, I).

Definition 1.4. An implication A — B follows from a set £ of implications in
M if each subset of M respecting £ also respects A —» B. We write L+ A — B.
L is closed if every implication following from £ is in £. £ is non redundant if
no implication in £ follows from other implications of £. A set £ of implications
of (G, M, I) is complete if every implication that holds in (G, M, I) follows from
L. A set £ of implications of (G, M, I) is sound if every implication of £ holds in
(G,M,I). An implication basis of (G, M,I) is a set L that is sound, complete
and non redundant.

A set £ of implications is closed iff for all X, Y, ZW C M, X - X e L, XY €L
implies XUZ »Y eL,and X -Y e L,YUZ->We Limply XUZ->WeL
(Armstrong rules). In addition L - A — B iff B C L£(A). For finite contexts
implication bases can be computed. Jean Louis Guigues and Vincent Duquenne
shown that there is a natural choice [GD86). Figure 3 gives the Guigues-Duquenne
implication basis of the context in Figure 1, with the number of objects really
supporting them5.

2. APPROXIMATION

The need of an approximation theory for concept lattices is motivated by many
reasons: given a context K, its concept lattice can be of huge size and have a complex
structure; its implications list can long even if restricted only to an implication
basis and contains some non “relevant” implications; we might not get some rules,
although they are relevant (just because few exceptions violate them). Therefore
the approximation problem can be formulated as follow:

Given a concept lattice L, can we replace L with a lattice [, that is nicer

42M » 9M g the set of possible implications in M.

5No object supports implication #13; no member flies to Africa and Caribbean.
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and easy to handle without loosing meaningful information? How can we
reduce the number of concepts without loosing meaningful information?
How can we express that two lattices carry almost the same information?
Three approaches suggest themselves: approximate a given lattice by a lattice of
smaller size (using clusters) such that meaningful information are preserved; relax
definitions of concepts or implications to get some similar patterns; or approximate a
given lattice by some lattices from a well-known and easy to handle class of lattices.

2.1. Approximation via closure and kernel operators.

Lemma 2.1. Let ¢ be a closure operator and k a kernel operator on (P, <).
(i) If (P, <) is a (complete) lattice then c(cz Vcy) = c(x Vy), and c(cx Acy) =
cx Ay, for allz,y € P, and (cP, <) is a (complete) lattice.
(i) If (P, <) is a (complete) lattice then k(kz Aky) = k(zAy), and k(kzVky) =
kz V ky, for all z,y € P, and (kP, <) is a (complete) lattice.

Lemma 2.1 states that closure and kernel operators are valuable tools for lattice
approximation. They keep lattice sizes smaller. However the structure is not always
easy to handle. How can we define interesting closure operators?

2.2. Approximation via association rules.

Definition 2.1. A data mining context is a finite context (G, M,I). The el-
ements of M are called items and its subsets itemsets. Closed itemsets are
intents. An association rule is a pair (B;, B) of itemsets, denoted by B; — Bs.
Let minsupp, minconf € [0,1], B an itemset and r := B; — B a rule. The
support and confidence are defined by:

|B’| _ 1(B1U By)'|

supp(B) := Té—l’ supp(r) := .—_|G|— and conf(r) := supp(B; UBZ).

supp(B1)
B is frequent if supp(B) > minsupp. If conf(r) = 1, r is called an exact rule.

Here we are interested in frequent itemsets and associations between them. For a
rule A — B, conf(A — B) also denoted by pa(B) or p(B|A) is the probability of
B given A. The goal is to extract those that are frequent and have a confidence
greater than the minconf. The Luxenburger basis [Lu91] of the partial implications
of Star Alliance with minsupp = 30% and minconf = 90% is given by Figure 4
below. We get three new rules: #11, #12 and #13. The implications #09, #11
and #13 of Fig. 3 are not rule anymore, since their support is less than 90%.

2.3. Approximation via pseudocomplementation. L denotes a finite lattice.
The pseudocomplement of x € L (if it exists) is an element z* such that z Ay =
0 <= y < z". L is pseudocomplemented if z* exists for every = € L; in this case
z + z* is a unary operation on L, with (V¢ x Tk)* = Arex Ti- Moreoverc: z —
z** is a closure operator on L such that cL is a Boolean lattice®, called skeleton.
For concept lattices the Boolean structure depicts a total independence between
(reduced) attributes, meaning that each possible combination is an intent. The
structure is also easy to handle. Let £ be a finite closure system on G with A — A”
the corresponding closure operator. For simplicity we assume @” = @ and g" =
h" = g=nh. We set Gnin := {g € G| g"” = {g}}, the labels of atomic concepts.
Then € is pseudocomplemented iff all g, g € Gpin have pseudocomplements. To

6A Boolean lattice is distributive (xA(yVz)=(xAy)V(zAz2)) and complemented lattice
zVz*=1and z Azx=0).
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100%

Latin America, Canada, US 4 — 4 Mexico
Latin America 7 100%, 7 US

Europe, Asia Pacific 10 -1—9—%-» 10 US
Europe, US 10 2%, 10 Asia Pacific

Canada 6 12%, 6 ys
Asia Pacific, US 10 100%, 10 Europe

Middle East 4 M4 Europe, Canada, Asia Pacific, US

Africa 5 2%%, 5 Europe, Asia Pacific, US

Mexico 5 ~2°%, 5 Latin America, US

Carribean 4 %%, 4 Latin America, US

us 11 2%, 10 Europe, Asia Pacific

Asia Pacific 11 2%, 10 Europe, US

Europe 11 A%, 10 Asia Pacific, US

FIGURE 4. Luxenburger basis of Star Alliance. Each arrow carries
the confidence of the described rule (above), the number of object
satisfying its premises (left) and the number of object satisfying
its conclusion (right).

express the pseudocomplementation we use a projection s and its inverse [-] defined

by:
8(A) := U 9" N Gmin and [4] := {g € G | s(g) C s(A)} with s(g) := s({g})-

geEA

Lemma 2.2. [GKO5] The operator || defines a closure operator on G. An element
A € £ has a pseudocomplement iff [Gmin \ A] € €. £ is a pseudocomplemented
closure system iff [Gmin \ {a}] € € with for all a € Guyn.

Thus if £ is not pseudocomplemented, then [Gmin \ {a}] ¢ £ for some a € Gmin.
We collect these [Gmin \ {a}]s and generate a new closure system.

Theorem 2.3. [Kw06] Let € be a closure system on G. The closure system £ gen-
erated by £ U {[Gumin \ {a}] | @ € Gmin} is pseudocomplemented. Meets and eristing
pseudocomplements in £ are preserved in €. € is the coarsest pseudocomplemented
refinement of €. -

Corollary 2.4. [Kw06] Each (finite) concept lattice L can be \-embedded into a
smallest pseudocomplemented concept lattice L.

The process described in Theorem 2.3 can be performed on the context level. We
should first check, by means of arrow-relations, whether a given context has a
pseudocomplemented concept lattice. The arrow-relations are defined by:

g/ m:4=> m¢g and g’ C A’ implies m € k’,
g/ m:<> g¢m' and m’' g n' implies g € n/,
g/ m:<> g,/ m and g / m,for g,h € G and m,n € M.

The contextual arrow characterization of pseudocomplementation is given by:

Theorem 2.5 ([GKO05]). The concept lattice of a finite context (G, M, I) is pseu-
docomplemented iff the following condition holds for all g € G:

Ifg/ nforaling¢g andg / m then

tfh/ mtheng' =h', and ifg /' n thenn' =m'.
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Now set £ := Ext(G,M,I), the closure system of extents. For a € Gmin, if
[Gmin \ {a}] € € then there is my, € M such that m} = [Gmm \ {a}] ((GKO05]).
Therefore generating a new closure system with [Gmin \ {a}], @ € Gmin is equivalent
to adding new attributes m, in the context whenever [Gmix, \ {a}] is not an extent.
These attributes have exactly (Gmin \ {a}] as extent. Theorem 2.3 says that the so
obtained lattice is pseudocomplemented and has (B(G, M, I), A) as subsemilattice.

The arrow configuration described in Theorem 2.5 is displayed in Figure 5. The

{ma, I a € Gm]n}

, Gmin # \/ X

X

FIGURE 5. Arrow configuration in the context of atomic pseudo-
complemented concept lattices.

subcontext (Gmin, {Mq | @ € Gnin}) is a copy of (Gmin, Gmin, #), With exactly
one double arrow in each row and column and crosses elsewhere. The rows of
the atoms Gmin contain no empty cells (arrowless non-incidences) and no upward
arrows except for the double arrows mentioned. The columns corresponding to the
attributes {m, | @ € Gmin} have no other downward arrows. What Theorem 2.5
expresses is that the configuration displayed in Figure 5 is characteristic for p-
algebras.

In practice what one has to do is to first enter the arrow relations and check if one

can obtain the configuration of Figure 5. If this is not the case one should add new .

attributes m, for the atoms a whose inverse images are not extents and compute
the new concept lattice.

3. WHAT NEXT?

Investigations should be carried out to compare the implication theory. of the
pcs-completion with that of the initial lattice. This approach should be compared
with other, namely the alpha Galois lattices, fault-tolerance patterns, association
rules. In a series of papers, V. Ventos and co-authors ([VPS, VST, VS05]) discussed
the use of partitions on the set of objects and introduced the so called alpha Ga-
lois lattices. More precisely, given a context (G, M, I) and a € [0,1], a subset S
of G is called an a-model of T C M (denoted by S =, T) if %ﬂ > a. For a
partition 7 on G, we write g =7 T to mean that (g}, F=o T, where [g]. denotes the
class of g w.r.t. m. This defines a relation IT C G x M by gIZim : < g = {m}.
For || = |G| and a = g we have (G,M,I) = (G, M,I}). Unfortunately the
size of B(G, M, I7) is not always smaller as announced. A small example can be
found in [MK]. In [PBO5] the authors proposed a generalization of concepts to
fault-tolerant patterns. In fact concepts are maximal rectangle full of crosses. A
fault-tolerant pattern can be interpreted as a concept with some crosses miss-
ing. In [Du96] and [Wh96] the authors considered taking the statistics in account to
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handle exceptions. As already mentioned closure and kernel operators are approx-
imation means for concept lattices. In [KS08] we gave a correspondence between
closure/kernel operators and lower/upper modular valuations. This provides an-
other mean to approximate concept lattices, and will be of great use in bringing
together the quantitative and qualitative methods. A general framework for lattice
approximation is an urgent need, and will strengthen the use of FCA in huge data.
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