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ON CONCEPT LATTICE APPROXIMATION

L\’EONARD KWUIDA

ABSTRACT. In these notes we motivate the need of approximating concept
lattices by lattices of small size or by lattices of nicer structure. We also proeent
some approachs towards an approximation $th\infty ry$ for concept lattices. The
main goal is to support Formal Concept Analysis (FCA) technics in Knowledge
Discovery and Knowledge Management.

1. FCA AND KNOWLEDGE DISCOVERY

1.1. Information systems, $context_{8}$ and concepts. The elementary way to
encode information is to describe, by means of arelation that $\epsilon ome$ objects have
some properties. This sets up abinary relation Ibetween the set $G$ of objects
and the set $M$ of properties. The triple $(G, M, I)$ is called aformal context.
$(g, m)\in I$ reads “ the object $g$ has the propeny $m’$ ;we also write $g$ I $m$ . Figure 1
(taken from [GS]) shows us the members of the Star Alliance and their flying
destinations. Some interesting patterns are formed by $obj\propto t8$ sharing the same
properties. In Knowl\’ege discovery, many techniques are based on the $formali_{\mathbb{Z}}ation$

of such patterns, namely that of concept. Aformal concept of acontext $(G,M,I)$

is apair $(A, B)$ such that $B$ is exactly the set of all properties shared by the
objects in $A$ (denoted by $A^{I}$ or $A’$ ), and $A$ is the set of all objects that have
all the properties in $B$ (denoted by $B^{I}$ or $B’$). We called $A$ the extent of the
concept $(A,B)$ and $B$ the intent of the concept $(A,B)$ . The concept hierarA
states that aconcept is more general if its edent is $la\eta er$ or equivalently if its
intent is smaller. Formally, $A\subseteq C\Leftrightarrow:(A, B)\leq(C, D)$ $:\Leftrightarrow B\supseteq D.$ This
defines an order relation on the set $\mathfrak{B}(G, M, I)$ of all concepts of $(G, M, I)$ . The
structure of $t1_{1}is$ poset is more richer. We call aposet $(L, \leq)$ lattice if $m\bm{i}\{x,y\}$

and $\max\{x, y\}^{1}$ exist for any pair $\{x, y\}\subseteq L$ . Aposet $(L, \leq)$ is acomplete lattice
if $\min Z$ and $\max Z$ (also denot\’e $by\wedge Z$ and $Zr\infty p.$ ) exist for every subset $Z$

of L. Equivalently, alattice is an algebra $(L, \wedge, \vee)$ of type $(2, 2)$ such that $\wedge$

and $\vee are$ idempotent, commutative, $as8ociative$ and $satis6^{r}$ the absorption laws;

$x\wedge(x\vee y)=x$ and $x\vee(x\wedge y)=x$ . It holds: $x \wedge y=\min\{x,y\},$ $x \vee y=\max\{x,y\}$

and $x\wedge y=x\Leftrightarrow x\leq y\Leftrightarrow x\vee y=y$ .
Theorem 1.1. [Wi82] $(\mathfrak{B}(G, M, I), \leq)\dot{j}\theta$ acomplete lattice, in which infimum and
$\theta upremum$ aoe given by

$k\in K\wedge(A_{k}, B_{k})=(\cap A_{k},$ $(\cup B_{k})’’)$ ; $k\in Kv(A_{k}, B_{k})=((_{k\in K}\cup A_{k})_{k\in K}’’\cap B_{k})$ .

$\mathfrak{B}(G, M, I)$ is called the concept lattice of the context $(G, M, I)$ . For $g\in G$

and $m\in M$ we set 9’ $:=\{g\}’$ and $m’:=\{m\}’$ . We define some special building
block concepts: $\gamma g$ $:=(g”,g’)$ (object concept) and $\mu m$ $:=(m’, m”)$ (attribute

The author was supported by the grant of Professor Hajime Machida for a stay in Japan at
Hitotsubashi University, Kunitachi, Tokyo, Japan during which this paper was praeented at the
LA Symposium held in January 2&30 at Kyoto Unlversity, Japan.

$\iota_{\min\{x,y\}}$ (also denoted by $x\wedge y$) is the greatest element below $x$ and $y$ . $\max\{x,y\}$ (also
denoted by $xVy$) is the smallest element above $x$ and $y$ .

数理解析研究所講究録
第 1599巻 2008年 42-49 42



L\’EONARD KWUIDA

FIGURE 1. A formal context about the destinations of Star Al-
lianoe members

concept). For any concept $(A, B)\in \mathfrak{B}(G, M, I)$ we have $\{\gamma g|g\in A\}=(A, B)=$
$\wedge\{\mu m|m\in B\}$ . Thus $\{\gamma g|g\in G\}$ is $\vee$-dense and $\{\mu m|m\in M\}is\wedge$-dense in
$\mathfrak{B}(G, M,I)$ . Conversely each complete lattice is (a copy of) a concept lattice of a
certain context. In fact,

Theorem 1.2. [Wi82] a complete lattice $L$ is isomorphic to a concept lattice of a
context $(G,M,I)$ iff there are maps $\alpha$ : $Garrow L$ and $\beta$ : $Marrow L$ such that $\alpha(G)$ is
$\vee$-dense in $L,$ $\beta(M)is\wedge$-dense in $L$ and $gIm\approx\alpha(g)\leq\beta(m)$ .
Theorem 1.1 and Theorem 1.2 form the basic $th\infty rem$ of Formal Concept $Analy\dot{\Re}s$ .
The Mathematical foundations have been documented in a monograph by Bernhard
Ganter and Rudolf Wille [GW99].

1.2. Concept lattices and their diagrams. Finite concept lattices can be rep.
resented by labeled Hasse diagrams. Each node represent a concept. The label $g$

is written underneath of $\gamma g$ and $m$ above $\mu m$ . The extent of a concept represented
by a node $a$ is given by all labels in $G$ ffom $a$ downwards, and the intent by all
labels in $Mkom$ $a$ upwards. Figure 2 presents the diagram of the concept lattioe
of the context of Figure 1. Diagrams are valuable tools for visualization of data2.
However drawing a good diagram is a big challenge. Quite often, the size of the
lattice is large and its structure complex. Thus we need took to “approximate” by
reducing the size or by making the structure nicer.
1.3. Galois connections and closure operators.
Deflnition 1.1. On a poset $(P, \leq)$ a closure operator is a map $c:Parrow P$ that
satisfies $x\leq c(y)\Leftrightarrow c(x)\leq c(y)$ and a kernel operator a map $k:Parrow P$ that
satisfies $k(x)\leq y\Leftrightarrow k(x)\leq k(y)$ .

2Fbr example we can read on Figure 2 that $\epsilon ach$ member of the Star Alliance who flies to US
and Europe also flies to $A\epsilon ia$ Pacific, or that $each$ member who flies to Mexico and Asia Pacific
also flies to Latin America, $US$, Canada and Europa
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ON CONCEPT LATTICE APPROXIMATION

FIGURE 2. Concept lattice of the context of Figure 1

We often write $cx,$ $kx,$ $cP$ and $kP$ for $c(x),$ $k(x),$ $c(P)$ and $k(P)$ respectively. A map
$c$ is a closure operator iff $x\leq cx$ , $ccx=cx$ and $x\leq y\Rightarrow cx\leq cy$ . Dually, a map
$k$ is a kernel operator iff $x\geq kx$ , $kkx=kx$ and $x\leq y\Rightarrow kx\leq ky$ . The maps
$A\mapsto A’’$ and $Brightarrow B”$ are a closure operator on $(\mathcal{P}(G), \subseteq)$ and a kernel operator
on $(\mathcal{P}(M), \supseteq)$ respectively. They arise naturally from a Galois connection.
Deflnition 1.2. A Galois connection between $(P, \leq)$ and $(Q, \leq)$ is a pair $(\alpha, \beta)$

of maps $\alpha:Parrow Q$ and $\beta:Qarrow P$ such that $x\leq\beta(y)\Leftrightarrow y\leq\alpha(x)$ .
The operations $Arightarrow A’$ and $B\mapsto B’$ form a Galois connectlon between $\mathcal{P}(G)$ and
$\mathcal{P}(M)$ . $A\mapsto A’’$ and $B\mapsto B’’$ are the corresponding closure operators.

(i) If $(\alpha, \beta)$ is a Galois connection then $\alpha 0\beta$ and $\beta\circ\alpha$ are closure operators.
(ii) If $c$ is a closure operator on $P$ , then $c$ and its inclusion map $\beta$ : $cParrow P$

form a Galois connection between $(P, \leq)$ and $(cP, \geq)$ with $\beta oc=c$ .
1.4. Concept lattlces and implications. A closure system on a set $M$ is set
of subsets of $M$ , closed under intersection. The set of extents (resp. lntents) of
$(G, M, I)$ is a closure system on $G$ (resp. $M$). Each complete lattice is (a copy of)
a closure system, and vice-versa.
Deflnition 1.3. Let $M$ be a set of properties or attributes. An implication
between attributes in $M$ is a pair $(A, B),$ denoted by $Aarrow B.$ $A$ is the premise and
$B$ the conclusion of $Aarrow B$ . An implication $Aarrow B$ holds in a context $(G, M,I)$
if every object having all the attributes in $A$ also has all the attributes in $B$ . A
subset $T$ of $M$ respects $Aarrow B$ if $A\not\in T$ or $B\subseteq T^{3}$ ; we say that $T$ is a model
of $Aarrow B$ and write $T\models Aarrow B$ . $T$ respects a set $\mathcal{L}$ of implications if $T$ respects
every implication in $\mathcal{L}$ . An implication $Aarrow B$ holds in a family $\mathcal{T}$ if every $T\in \mathcal{T}$

respects $Aarrow B$ .
Implications can be read off from the lattice diagram. The rule is given by:
$B\subseteq A’’$ iff $(G, M, I)\models Aarrow Biff\wedge\{\mu a|a\in A\}\leq\mu m$ for all $m\in B$ . For
example {Mexico, Asia $Pacific$ } $arrow$ {Latin America, US, Canada, Europe}
can be read from the lattice in Figure 2. If $\mathcal{L}$ is a set of implications in $M$ , then
$Mod\mathcal{L}$ $:=\{T\subseteq M|T\models \mathcal{L}\}$ is a closure system on $M$ . The corresponding closure
operator, denoted by $X\mapsto \mathcal{L}(X)$ , is obtained by setting $X^{\mathcal{L}^{0}}$ $:=X$ ,

$X^{\mathcal{L}^{\prime\cdot+1}}$

$;=X^{\mathcal{L}}’\cup\cup\{B|Aarrow B\in \mathcal{L}, A\subseteq X^{\mathcal{L}}’\}$ and $\mathcal{L}(X)$

$;= \bigcup_{n\geq 0}X^{\mathcal{L}}’$
.

$3_{This}$ is equivalent to $A\subseteq T\Rightarrow$ $B\subseteq T$ , and can be interpreted as the conclusion $B$ is
“valid “ in $T$ whenever the premise $A$ is valu“ in $T$ .
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01 : $Caribbeanarrow Latin$ America, US;
4

02 : $Mexicoarrow 5$ Latin America, US;
03 : $Africaarrow Europe$ , Asia Pacific, US;

04 ; Middle $E^{5}astarrow Europe$ , Canada, Asia Pacific, US;

05 : Asia Pacific,4
$USarrow 10$ Europe;

06 : $Canadaarrow US$ ;
07 : Europe, 6US $arrow A8ia$ Pacific;

08 : Europe, $AsiaPacificl0arrow$ US;

09 : Europe, Canada, Asia $p_{acific}^{0}$ Africa US $arrow$ Middle East;
3

10 : Latin $Americaarrow US$ ;
11 : Latin America, 7Mexico, Caribbean, $USarrow 3$ Canada;

12 : Latin America, Canada, US $arrow Mexico$ :
13 : Latin America, Europe, $Asi^{4}a$ Pacific, Africa, Caribbean, US $arrow 0$

Canada, Middle East, Mexico.

FIGURE 3. Duquenne-Guigues implication basis of Star Alliance.
To each arrow, we attach the number of object supporting this
implication.

If $\mathcal{L}$ is the set of all implications of $(G, M,I)$ then $Mod\mathcal{L}$ is the set of all concept
intents of $(G, M, I)$ . Quite often, the implication list is long4 and contains trivial
implications. So it is desirable to get a minimal list of implications that hold in a
context $(G, M, I)$ and that generate all implications valid in $(G, M, I)$ .
Deflnition 1.4. An implication $Aarrow B$ follows ffom a set $\mathcal{L}$ of implications in
$M$ if each subset of $M$ respecting $\mathcal{L}$ also respects $Aarrow B$ . We write $\mathcal{L}\vdash Aarrow B$ .
$\mathcal{L}$ is closed if every implication following from $\mathcal{L}$ is in $\mathcal{L}$ . $\mathcal{L}$ is non redundant if
no implication in $\mathcal{L}$ follows from other implications of $\mathcal{L}$ . A set $\mathcal{L}$ of implications
of $(G, M, I)$ is complete if every implication that holds in $(G, M, I)$ follows from
$\mathcal{L}$ . A set $\mathcal{L}$ of implications of $(G, M, I)$ is sound if every implication of $\mathcal{L}$ holds in
$(G, M, I)$ . An implication basis of $(G, M, I)$ is a set $\mathcal{L}$ that is sound, complete
and non redundant.
A set $\mathcal{L}$ of implications is closed iff for all $X,Y,$ $Z,$ $W\subseteq M,$ $Xarrow X\in \mathcal{L},$ $Xarrow Y\in \mathcal{L}$

implies $X\cup Zarrow Y\in \mathcal{L}$ , and $Xarrow Y\in \mathcal{L},$ $Y\cup Zarrow W\in \mathcal{L}$ imply $X\cup Zarrow W\in \mathcal{L}$

(Armstrong rules). In addition $\mathcal{L}\vdash Aarrow B$ iff $B\subseteq \mathcal{L}(A)$ . For finite contexts
implication bases can be computed. Jean Louis Guigues and Vincent Duquenne
shown that there is a natural choice [GD86]. Figure 3 gives the Guigues-Duquenne
implication basis of the context in Figure 1, with the number of objects really
supporting them5.

2. APPROXIMATION
The need of an approximation theory for concept lattices is motivated by many

reasons: given a context $K$ , its concept lattice can be of huge size and have a complex
structure; its implications list can long even if restricted only to an implication
basis and contains some non “relevant” implications; we might not get some rules,
although they are relevant (just because few exceptions violate them). Therefore
the approximation problem can be formulated as follow:
Given a concept lattice $L$ , can we replace $L$ with a lattice $\tilde{L}$ , that is nicer

$4_{2^{Al}}x2^{AI}$ is the set of possible implications in $M$ .
$6_{No}$ object $support_{8}$ implication #13; no member flies to Akica and Caribbean.
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and easy to handle without loosing meaningful information? How can we
reduce the number of concepts without loosin$g$ meaningful information?
How can we express that two lattices carry almost the same information?
Three approaches suggest themselves: approximate a given lattice by a lattice of
smaller size (using clusters) such that meaningful information are preserved; relax
definitions of concepts or implications to get some similar pattems; or approximate a
given lattice by some lattices from a well-known and easy to handle class of lattices.

2.1. Approximation via closure and kernel operators.

Lemma 2.1. Let $c$ be a closure operator and $k$ a kemel opemtor on $(P, \leq)$ .
(i) If $(P, \leq)$ is a (complete) lattice then $c(cx\vee cy)=c(x\vee y)$ , and $c(a\wedge cy)=$

$cx$ A $cy$ , for atl $x,$ $y\in P$ , and $(cP, \leq)$ is a (complete) lattice.
(ii) If $(P, \leq)$ is a (complete) lattice then $k(kx\wedge ky)=k(x\wedge y)$ , and $k(kx\vee ky)=$

$kxVky$ , for all $x,y\in P$ , and $(kP, \leq)$ is a (complete) lattioe.

Lemma 2.1 states that closure and kernel operators are valuable tools for lattice
approximation. They keep lattice sizes smaller. However the structure is not always
easy to handle. How can we define interesting closure operators?

2.2. Approximatlon via associatlon rules.

Deflnition 2.1. A data mlning context is a finite context $(G, M, I)$ . The el-
ements of $M$ are called items and its subsets itemsets. Closed itemsets are
intents. An assoclation rule is a palr $(B_{1}, B_{2})$ of itemsets, denoted by $B_{1}arrow B_{2}$ .
Let minsupp, minconf $\in[0,1],$ $B$ an itemset and $r$ $:=B_{1}arrow B_{2}$ a rule. The
support and confidence are defined by:

$suw(B)$ $;= \frac{|B’|}{|G|},$ $s upp(r):=\frac{|(B_{1}\cup B_{2})’|}{|G|}$ and conf $(r):= \frac{su_{1}\varphi(B_{1}\cup B_{2})}{suw(B_{1})}$.
$B$ is frequent if $suw(B)\geq minsug\varphi$ . If $\omega nf(r)=1,$ $r$ is called an exact rule.

Here we are interested in frequent itemsets and associations between them. For a
rule $Aarrow B,$ $\omega nf(Aarrow B)$ also denoted by $p_{A}(B)$ or $p(B|A)$ is the probability of
$B$ given $A$ . The goal is to extract those that are frequent and have a confidence
greater than the minconf. The Luxenburger basis [Lu91] of the partial implications
of Star Alliance with minsuw $=30\%$ and minconf $=90\%$ is given by Figure 4
below. We get three new rules: #11, #12 and #13. The implications #09, #11
and #13 of Fig. 3 are not rule anymore, since their support is less than 90%.

2.3. Approximation via pseudocomplementation. $L$ denotes a finite lattice.
The pseudocomplement of $x\in L$ (if it exists) is an element $x^{*}\epsilon uch$ that $x\wedge y=$

$0\Leftrightarrow y\leq x$ . $L$ is pseudocomplemented if $x^{*}$ exists for every $x\in L$ ; in this $ca8e$
$xrightarrow x^{*}$ is a unary operation on $L$ , with $(_{k\in K}x_{k})= \bigwedge_{k\in K}x_{k}^{*}$ . Moreover $c:xrightarrow$

$x^{**}$ is a closure operator on $L$ such that $cL$ is a Boolean lattice6, called skeleton.
For concept lattices the Boolean structure depicts a total independence between
(reduced) attributes, meaning that each possible combination is an intent. The
structure is also easy to handle. Let $\mathcal{E}$ be a finite closure system on $G$ with $A\mapsto A’’$

the corresponding closure operator. For simplicity we assume $\emptyset’’=\emptyset$ and $g”=$
$h”\Rightarrow g=h$ . We set $G_{\min}$ $:=\{g\in G|g’’=\{g\}\}$ , the labels of atomic concepts.
Then $\mathcal{E}$ is pseudocomplemented iff all $g”,$ $g\in G_{m\ln}$ have Pseudocomplements. To

$\epsilon_{A}$ Boolean lattice is distributive ($x$ A $(y\vee z)=(x$ A y) V $(x$ A $z)$ ) and complemented lattice
$x\vee x^{*}=1$ and $x$ A $x*=0$).
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01 : Latin America, Canada, US $4arrow 4100\%$ Mexico
02 : Latin America $7arrow^{100\%}7$ US
03 : Europe, Asia Pacific $10arrow 10100\%$ US
04 : Europe, US $10arrow^{100V_{v}}10$ Asia Pacific

100%05 : Canada $6arrow 6$ US
100%06 : Asia Pacific, US $10arrow 10$ Europe

07 : Middle East $4arrow 4100\%$ Europe, Canada, Asia Pacific, US
100%08 : Africa $5arrow 5$ Europe, Asia Pacific, US

09 : Mexico 5–100% 5 Latin America, US
10 : Carribean 4–100% 4 Latin America, US
11 : US $11arrow 1091\%$ Europe, Asia Pacific
i2 : Asia Pacific $11arrow 1091\%$ Europe, US
13 : Europe $11arrow 1091\%$ Asia Paciflc, US

FIGURE 4. Luxenburger basis of Star Alliance. Each arrow carries
the confidence of the described rule (above), the number of object
satisfying its premises (left) and the number of object satisfying
its conclusion (right).

express the pseudocomplementation we use a projection $s$ and its inverse $[\cdot]$ defined
by:

$s(A)$
$:= \bigcup_{g\in A}g’’\cap G_{\min}$

and $[A]$ $:=\{g\in G|s(g)\subseteq s(A)\}$ with $s(g):=s(\{g\})$ .

Lemma 2.2. [GK05] The operator $[\cdot]$ defines a dosure operator on G. An element
$A\in \mathcal{E}$ has a pseudocomplement iff $[G_{\min}\backslash A]\in \mathcal{E}$ . $\mathcal{E}$ is a $pseudo\dot{c}omplemented$

closure system iff $[G_{\iota nin}\backslash \{a\}]\in \mathcal{E}$ unth for all $a\in G_{m\ln}$ .
Thus if $\mathcal{E}$ is not pseudocomplemented, then $[G_{\min}\backslash \{a\}]\not\in \mathcal{E}$ for some $a\in G_{mIn}$ .
We collect these $[G_{\min}\backslash \{a\}]s$ and generate a new closure system.

Theorem 2.3. [Kw06] Let $\mathcal{E}$ be a closure system on G. The closure system $\tilde{\mathcal{E}}$ gen-
erated by $\mathcal{E}\cup\{[G_{\min}\backslash \{a\}]|a\in G_{\min}\}$ is pseudocomplemented. Meets and visting
pseudocomplements in $\mathcal{E}$ are preserved in S. $\tilde{\mathcal{E}}$ is the coarsest pseudocomplemented
refinement $of\mathcal{E}$ .
Corollary 2.4. [Kw06] Each (finite) concept lattice $L$ can $be\wedge$-embedded into a
smallest pseudocomplemented concept lattice $\tilde{L}$ .
The process described in Theorem 2.3 can be performed on the context level. We
should flrst check, by means of arrow-relations, whether a given context has a
pseudocomplemented concept lattice. The arrow-relations are defined by:

$g_{z}/m;\Leftrightarrow m\not\in g’$ and $g’\subsetneq h’$ implies $m\in h’$ ,
$g\nearrow m:\Leftrightarrow g\not\in m’$ and $m’\subsetneq n’$ implies $g\in n’$ ,
$g\swarrow m:\Leftrightarrow g\nearrow m$ and $g\nearrow m$ , for $g,$ $h\in G$ and $m,$ $n\in M$ .

The contextual arrow characterization of pseudocomplementation $i_{8}$ given by:
Theorem 2.5 ([GK05]). The concept lattice of a finite context $(G,M,I)$ is pseu.
docomplemented iff the following condition holds for all $g\in G$ :
If $g_{u}/n$ for all $n\not\in g’$ and $g\nearrow m$ then

if $h/m$ then $g’=h’$ , and if $g\nearrow n$ then $n’=m’$.
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Now set $\mathcal{E}$ $:=Ext(G, M, I)$ , the closure system of extents. For $a\in G_{\min}$ , if
$[G_{\min}\backslash \{a\}]\in \mathcal{E}$ then there is $m_{a}\in M$ such that $m\text{\’{a}}=[G_{m\ln}\backslash \{a\}]$ ([GK05]).
Therefore generating a new closure system with $[G_{m\ln}\backslash \{a\}],$ $a\in G_{n\backslash in}$ is equivalent
to adding new attributes $m_{a}$ in the context whenever $[G_{\min}\backslash \{a\}]$ is not an extent.
These attributes have exactly $[G_{\min}\backslash \{a\}]$ as extent. Theorem 2.3 says that the so
obtained lattice is pseudocomplemented and has $(\mathfrak{B}(G, M, I), \wedge)$ as subsemilattice.

The arrow configuration described in Theorem 2.5 is displayed in Figure 5. The

$\{m_{a}|a\in G_{mIn}\}$

$G_{\min}$

FIGURE 5. Arrow configuration in the context of atomic pseudo-
complemented concept lattices.

subcontext $(G_{\min}, \{m_{a}|a\in G_{mIn}\})$ is a copy of $(G_{m\ln}, G_{\min}, \neq)$ , with exactly
one double arrow in each row and column and crosses elsewhere. The rows of
the atoms $G_{\min}$ contain no empty cells (arrowless non-incidences) and no upward
arrows except for the double arrows mentioned. The columns $\infty rresponding$ to the
attributes $\{m_{a}|a\in G_{\min}\}$ have no other downward arrows. What Theorem 2.5
expresses is that the configuration displayed in Figure 5 is characteristic for p-
algebras.
In practice what one has to do is to first enter the arrow relations and check if one
can obtain the configuration of Figure 5. If this is not the case one should add new
attributes $m_{a}$ for the atoms $a$ whose inverse images are not extents and compute
the new concept lattice.

3. WHAT NEXT?

Investigations should be carried out to compare the implication $th\infty ry$ of the
pcs-completion with that of the initial lattice. This approach should be compared
with other, namely the alpha Galois lattices, fault-tolerance patterns, association
rules. In a series of papers, V. Ventos and co-authors ([VPS, VST, VS05]) discussed
the use of partitions on the set of objects and introduced the so called alpha Ga-

$ofGiscall\text{\’{e}} an\alpha- mode1ofT\subseteq M(denot\text{\’{e}} byS\models T)if\frac{\in]^{0}|T\cap S|}{e[g]|S|}\geq\alpha.Forapartition\pi onG,wewriteg\models n\alpha Ttomeanthat[g]_{\pi}\models^{\alpha}\alpha T,wher\pi denotestheloislattices.Moreprecise1y,givenacontext(G,M,I)and\alpha,1],asubsetS$

class of $g$ w.r.t. $\pi$ . This defines a relation $I_{\alpha}^{\pi}\subseteq GxM$ by $gI_{\alpha}^{\pi}m:\Leftrightarrow g\models_{\alpha}^{\pi}\{m\}$ .
For $|\pi|=|G|$ and $\alpha=\mathfrak{s}^{1}\varpi$ we have $(G, M, I)=(G, M,I_{\alpha}^{n})$ . Unfortunately the
size of $\mathfrak{B}(G, M, I_{\alpha}^{\pi})$ is not always smaller as announced. A small example can be
found in [MK]. In [PB05] the authors proposed a generalization of concepts to
fault-tolerant patterns. In fact concepts are maximal rectangle full of crosses. A
fault-tolerant pattern can be interpreted as a concept with some crosses miss-
ing. In [Du96] and [Wh96] the authors considered taking the statistics in account to
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handle exceptions. As already mentioned closure and kernel operators are approx-
imation means for concept lattices. In [KS08] we gave a correspondence between
$closure/kernel$ operators and $lower/upper$ modular valuations. This provides an-
other mean to approximate concept lattices, and will be of great use in bringing
together the quantitative and qualitative methods. A general framework for lattice
approximation is an urgent need, and will strengthen the use of FCA in huge data.
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