-

View metadata, citation and similar papers at core.ac.uk brought to you byj‘: CORE

provided by Kyoto University Research Information Repository

Bl
oo o e/,
&

Kyoto University Research Information Repository > KYOTO UNIVERSITY

Symmetricity of the Protocols Related to Oblivious Transfer
Title (Foundations of Theoretical Computer Science : For New
Computational View)

Author(s) | Inoue, Daisuke; Tanaka, Keisuke

Citation O0O0OoobOooOoog (2008), 1599: 65-72

Issue Date | 2008-05

URL http://hdl.handle.net/2433/81794

Right

Type Departmental Bulletin Paper

Textversion | publisher

Kyoto University

https://core.ac.uk/display/39214183?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

goooboooogn
0 15990 2008 O 65-72

65

Symmetricity of the Protocols Related to Oblivious Transfer

H L+ K| He £
Daisuke Inoue Keisuke Tanaka
BN LREKRY: R TN

Department of Mathematical and Computing Sciences
Tokyo Institute of Technology

W38-55, 2-12-1 Ookayama Meguro-ku, Tokyo 152-8552, Japan
{inouel, keisuke}@is.titech.ac.jp.

Abstract— In this paper, we show that the special case of strong conditional oblivious
transfer from S to R can be obtained from only one instance of itself from R to §. Our
reduction protocol is simple and efficient, and preserves the security of the inversion.

Keywords: oblivious transfer, conditional, reduction, symmetricity.

1 Introduction

In modern cryptography, secure multi-party
computation (MPC) has been actively studied,
where two or more mutually distrusting parties
share computational tasks. Oblivious transfer is
one of the most interesting primitives which can
construct a secure MPC protocol [5][4]. How-
ever, it is known that OT cannot be achieved from
scratch. Therefore various assumptions are pro-
posed, such as computational assumptions, ctyp-
tographic tools, weaker variation of OT, or inver-
sion of itself.

OT is first introduced by Rabin [5], which in-
volves two parties, the sender and the receiver.
The sender sends a bit to the receiver and the
receiver obtains it with probability 1/2, however
the sender never learns about the output to the re-
ceiver. OT was developed to various types, such
as chosen I-out-of-2 OT ((3)-OT) [3] and strong
conditional OT (SCOT) [1]. In (3)-OT, the sender
sends two bits by and b; and the receiver obtains
exactly one of them b, dependently on receiver’s
choosing bit ¢. ¢ is kept secret from the sender,
and b1 from the receiver. SCOT is similar to (3)-
OT, except the point that the sender also inputs the
choosing bit. SCOT requires a predicate Q, since
the output to the receiver depends on the result-
ing value ¢ = Q(x,y), where x is the choosing bit
of the sender and y of the receiver. The sender ob-

tains no information about y, and the receiver does
about x and b; .. ’

In [2], Crépeau and Santha proposed a reduc-
tion obtaining (%)-OT from S to R invoking some
instances of (3)-OT from R to S. Their reduction
needs n instances to achieve 28 security. They
raised the question whether it is possible to im-
plement oblivious transfer in one direction using
fewer instance of oblivious transfer in the other.
Wolf and Wullschleger found an affirmative an-
swer in [6]. They also proposed (3)-OT via only
one instance of the inversion of (%)-OT. The re-
duction protocol achieves equivalent security to
invoked (3)-OT protocol. Their construction bases
on the fact that (3)-OT has information-theoretical
symmetry.

Contribution. In this paper, we construct the
special cases of SCOT from only one instance of
their inversion. We assume XOR-, AND- and OR-
OT, which are SCOT for predicates XOR, AND
and OR, respectively, and whose inputs are re-
stricted to a bit. Our reduction is simple, efficient
and tight. We can apply the reduction protocol to
a SCOT protocol with arbitrary security, perfect,
statistical and perfect, and the resulting protocol
achieves the equivalent security to invoked SCOT
protocol.

2 Preliminaries

We use the standard notations and conventions
for writing probabilistic algorithms and experi-
ments. Let a and b be bits. Then a @ b, ab and
a + b denotes the bit obtained as the bitwise log-
ical XOR, AND and OR of a and b, respectively.
We say a function f : N — R is negligible in n if
for every positive polynomial p there exists an N,
such thatforalln > N, f(n) < 1/p(n). Let {Xp}nen
and {Y,}nen be distribution ensembles. We say
{Xn)nen and {Y,},en are computationally indistin-
guishable if, for any distinguisher algorithm D,
[Prp(X,)—Prp(Y,)l < €(n) is negligible in n where
Prp(Xp) is the probability that D accepts x chosen
according to the distribution X,. We call {X,}nen
and {Y,)nen are statistically indistinguishable if
3o IPr[X, = a]-Pr[Y, = a]|is negligible. We call
{Xn)lnen and {Y,)nen are perfectly indistinguish-
able if for all @ € N, Pr[X,, = a] = Pr[Y, = a].
X = Y denotes that distributions X and Y are in-
distinguishable, where * is p, s or c if that indis-
tinguishability is perfect, statistical or computa-
tional, respectively.

An algorithm is a Turing machine. An efficient
algorithm is an algorithm running in probabilis-
tic polynomial time. An interactive Turing ma-
chine is a probabilistic algorithm with an addi-
tional communication tape. A set of interactive
Turing machines is a protocol. Let A = (A, A3)
and A = (A1, A) be the pairs of algorithm. Then
we say A is admissible for Aif A} = Aj orAz = Az
holds.

In an algorithm we use the following nota-
tions. If A is a probabilistic algorithm, then y «
A(x1,x2,...,) is the probabilistic experiment of
obtaining y by running A on inputs (x1, x,...),
where the probability space is given by the ran-
dom coins of algorithm A. If S is a finite set, then
x « § is the operation of picking an element uni-
formly from S. If Il = (Py,...,Py) is a proto-
col, then y « Ilp/(xy,...,x,) denotes running a
protocol with inputs x;, ..., x, and receiving y re-
sulting output of participant P;. If a is neither an
algorithm nor a set nor a protocol, then x « a is
a simple assignment statement. Let 1L be a special
symbol which indicates that an algorithm outputs
nothing.

66

3 Definition

3.1 Security

We employ the security model of protocol [6],
the real and the ideal model. The ideal model
means the situation in which every player can ac-
cess a functionality by defined inputs and outputs,
and have no other way of communication each
other. Since functionality always computes and
outputs correctly with inputs, any cheating is im-
possible. However, there does not exist such a per-
fect black box practically. Hence it should be en-
abled by a protocol, namely the real model. In the
real model, a player can cheat by not following the
protocol. We say a protocol securely computes a
functionality, if for any player in the real model,
there exists a player in the ideal model which has
indistinguishable outputs from the real player with
the same information. Common input z represents
some additional auxiliary input for both parties.
An honest party does not need it, but a malicious
party can use it, for instance, to record and carry
down information about previous executions of
the protocol. We assume at least one of the par-
ties is honest.

Let Z be a domain of a common input z. We
formalize the secure implementation of f : X x
Y — U XV as follows.

The Real Model.

In the real model, f has to be computed by
a protocol IT = (A;,A;) without any help of a
trusted party. Let A = (4;,Az) be an admissible
pair for I. Then the joint execution of I1 under A
in the real model,

realp 7% »):

is the resulting output pair, given the inputs x €
X,y € Y and auxiliary input z € Z. real;; A%
is also a random variable with the coin of A.

The Ideal Model.

In the ideal model, the two parties can make use
of a trusted party to calculate the function. The al-
gorithms B, and B; of the protocol B = (By, By)
receive the inputs x and y, respectively, and aux-
iliary input z. They send values x’ and y’ to the
trusted party, who sends back the values ¥’ and v/
satisfying (u’,v') = f(x’,y’). Finally, B and B,

output the value u and v. The two honest algo-
rithms B; and B, always send x’ = xand y’ = y
to the trusted party, and always output 4 = u’ and
v = v'. Now, if B = (By, By) is admissible pair
of algorithm for protocol B = (Bj, B;), the joint
execution of f under B in the ideal model,

ideal fj(z)(x, y),

is the resulting output pair, given the inputs
x € X,y € Y and auxiliary input z € Z.
ideal fj(z)(x, y) is also a random variable with the

coin of B.

Security: Real = Ideal.

A protocol IT computes a functionality f com-
putationally (or statistically, perfectly) securely if
for any real adversary, there exists an ideal adver-
sary which is as efficient as, and has computation-
ally (or statistically, perfectly) indistinguishable
output from the real.

This formulation can also apply to reduction
protocol of functionality f to functionality g, such
that the “real” participants access a protocol se-
curely computing g.

Definition 1. A protocol I1 computes f computa-
tionally (or statistically, perfectly) securely if for
every admissible A = (A1, A;) there exists an ad-
missible B = (B, B2), as efficient as, and with
exactly the same set of honest players as A, such
thatforallxe X,ye Yandz e Z,

real; Ap®>y) = ideal f.E(z)(x’ y)

holds, where = means that the distributions are
computationally (or statistically, perfectly) indis-
tinguishable.

Definition 2. A protocol I1 securely reduces f to
a functionality g if I1 computationally (or statisti-
cally, perfectly) securely computes f where every
player in the real model have access to the pro-
tocol which computationally (or statistically, per-
fectly) securely computes g.

3.2 Strong Conditional Oblivious Transfer
We formalize SCOT as a functionality.

Definition 3 (Q-SCOT). By Q-SCOT or strong
conditional oblivious transfer for predicate Q, we

67

denote the following primitive between a sender S
and a receiver R (see Figure 1). S has three inputs
x, my and my and no output, so does R with input
y and output u such that u = mg.y).

S R

X —> —— y

Q-SCOT

mgy ———pt

my —sl " U = MQY(xy)

Figure 1: Strong conditional oblivious transfer

In this paper, we consider three predicates,
XOR, AND and OR. We define XOR-OT, AND-
OT and OR-OT as a special case of Q-SCOT
where all inputs are 1-bit. In other words,
(x,mg,m;) € {0, 1}* and y € {0, 1} and each output
of XOR-OT, AND-OT and OR-OT is as follows:

XOR-OT: mygy =mp(l@x0y)dmi(x DY),
AND-OT: my,y, = mo(l & xy) ® mi(xy),

OR-OT: myyy=mp(lex)loyyom(le(le
x)(1 ey)).

4 Construction

In this section, we construct three restricted
SCOT protocols, XOR-OT, AND-OT and OR-
OT via protocols which securely compute inver-
sions of themselves. An inversion means the
replacement of player’s role, i.e., S can access
the inversion as R, and vice versa. Let Q-TO
denote a protocol which securely computes the
inversion of a functionality Q-OT, where Q =
{XOR, AND, OR}. We use the notion = in our se-
curity proofs. X = Y denotes that distributions X
and Y are indistinguishable, where * is p, s or ¢
if invoked Q-TO is perfect, statistical or computa-
tional secure, respectively.

4.1 XOR-OT

We present a simple protocol, INV-XOR =
(S, R), securely computing XOR-OT via an inver-
sion protocol of XOR-OT, namely XOR-TO. The
protocol is defined as Figure 2.

Theorem 4. INV-XOR securely computes XOR-
OT reducing to one instance of XOR-TO.

68

ideal adversary B, as follows:

X

mgy —»
mip —

Algorithm By (, 2)
(@, by, b)), ') — A21(%,2)

reg {0,1}

mydmy —»
XOR-TO [+ 7

§ - — 7Dy

t=s®
x(mo ® my) ® mg
t

u=ter

Figure 2: INV-XOR

Proof. We have to consider three cases, both par-
ties are honest, the sender is honest, and the re-
ceiver is honest.

Both parties are honest. Let first both parties
be honest, i.e., A = INV-XOR. In this case, we
define the adversary B in the ideal model as B.
For all (x,mg,m;) € {0,113,y € (0,1} and z € Z,
since we have s = r ® y(mo ® my),

realyor.or,a (% Mo, m1), y)
=(L,u)
=(L,t&r)
=(L,s®@x(myedm))®moedr)

= (L, (x © y)(mo © my) & m)
=L (1 &x®y)mo® (x®y)m)
= (L, myoy)

= idealyop_or By (X M0, 1),).

The first party is honest. Let now the first
party be honest, i.e., A= (S Az). To describe
the cheating method of Az, we divide A, into
two algorithms Ay and Ay, Ay receives 0,2)
and sends ((a, bo, b1),i) = A21(%,2) to XOR-TO
and A;z, where (a, by, by) is an input to XOR-TO
and i is status information. Then Ay; receives
t = bmyom)ea ® x(mo & my) & B mo, and outputs
A2y, z,a,bg, by, t,i). For any Az, we define the

u « XOR-OTx(b) & b))
! —uo(lea)byoab)
output Az (y,z,a’, b}, b}, 7, i').
Note that ((a’, by, b)), i’) is identically distributed
with ((a, bg, b1), i) and .
! =ue(1ea’)by®a'b]
= Mya(bjeb]) @ (e a')b’ @ a’b’
= mo(1 ® x ® (by @ b7)) & mi(x ® (b & b}))
® (1@ a')by ®a'b]
bp(lemyem @a)®bi(mpem ®a)
® x(mo & m1) & mg
= Dimyem; oo D X(mMo © m1) @ my.

Thus we have, for all (x,mg,m;) € {0,103,y €
{O,1}and z€ Z,

realy o o, 4 (% Mo, m1), ¥)
= (L,A22(,2,a, bo, by, 1, 1))
= (1,A22(9,2,, bo, b1,
bmoom,yea® X(mo ® m1) © my, i)
£ (L,A%0,2.4d,b),b),
(moomy e ® X(Mo & m1) & mo, i)
= (L, An(y,2,a’, b}, b}, 7, i)
= idealxon-orj(z)((’" my, my), y).

The second party is honest. Assume now that
the second party is honest, i.e., A = (A_l ,R).
Similarly to the previous case, we divide A into
three algorithms, An,Aq2 and A13 Au receives
(x,mg,my) and sends (c, j) = A11(x,mo,m1) to
XOR-TO and A;3, where c is an input to XOR-TO
which returns s = r ® yc and j is a status informa-
tion. Then A2 sends t = A12((x, mo, m1), 2, C, S, J)
to R and outputs A;3((x, mo, m1),z,¢, s, j,t). For
any real adversary A;, we define the ideal adver-

sary B; as follows:

Algorithm B;((x, mp, my), 2)
(,) « An((x,mo, my),72)
s «x {0, 1}
¢ — Ap((x,mo,m1),z,¢', ', j')
1 « XOR-OTs(0,s’ & ¢, s’ &t & c’)
output Ag3((x,mg,m1),z,¢, s, j',).

For the sender’s inputs (0, s’ @ ¢,s’ & ¢ & ¢’) and
the receiver’s input y, the output of XOR-OT to
the receiver u is as follows:

u=(s'erYle0ey)o(sorac)0oy)
=t'es oy

(¢/, j’) has the identical distribution with (c, j).
Since s = r ® yc and r is uniform and indepen-
dent of all other variables, s is uniform and inde-
pendent as well, which means that it has exactly
the same distribution as s’. Therefore ¢’ is identi-
cally distributed with r. We have from above, for
all (x,mp,m1) € {0,1)3,y € (0,1} and z € Z,

realy o or,4¢) (%, Mo, m1),y)
= (Ai3((x,mo,m), z,¢, 5, j, 1), 1 ® 7)
= (A13((x,mo,m1), 2, ¢, 5, j,), 1@ s @ yc)

£ @n((xmo,m),z,c, s, 7, 0),0 & ®yc')

= idealXOR_mj(z)((X, mg, mj)v)’)-

Obliviously, the simulated adversaries are as ef-
ficient as the real adversary. m]

4.2 AND-OT

We present a simple protocol, INV-AND =
(S, R), securely computing AND-OT via an inver-
sion protocol of AND-OT, namely AND-TO. The
protocol is defined as Figure 3.

Theorem 5. INV-AND securely computes AND-
OT reducing to one instance of AND-TO.

Proof. As in the case of XOR-OT, we have to
consider three cases, both parties are honest, the
sender is honest and the receiver is honest.

69

s R
¥ ¥ = xmp o my) rer (0,1}
my —»
mi —» , — 1
X' =
AND-TO |+ r
§ < — r®Yy
t=s@®my
t o
u=ter
ol

Figure 3: INV-AND

Both parties are honest. Let first both parties
be honest, i.e., A = INV-AND. In this case, we
define the adversary B in the ideal model as B.
For all (x,mg,m;) € {0,113,y € {0,1} and z € Z,
since we have s = r @ xy(mo ® my),

real \Np.or.a) (%: 0, M1, 7).
=(L,u)
=(L,tdr)
=(L,s®&@my@®r)

= (L, xy(mo ® my) @ mg)
= (L, (1 ® xy)mg @ xym,)
= (L, myy) .
= ideal \Np.or () ((X: M0, M1),).

The first party is honest. Let now the first party
be honest, i.e., A = = (S, Az). To describe the
cheating method of Az, we divide A, into two
algorithms, Ay and Az. Az receives (y,z) and
sends ((a, bo, b1),i) = Az1(y,2) to AND-TO and
Az, where (a, by, by) is an input to AND-TO and
i is status information. Then A—zz receives t =
bm(mo@m,)eamo, and outputs Azz(y z,a, by, bl,t i).
For any Az, we define the ideal adversary B, as

follows:
Algorithm By(y,2)
(@', b, b)), i) & A2i(3,2)
u «— AND-OTg(a(b; ® b}))
! —udb
output Ax(y,z a’, by, b}, 1, i').
Note that ((a’, by, b)), i’) is identically distributed
with ((a, by, b1), i) and
! =udb
= Mg (b0b,) © by
= mo(1 & xa’ (b ® b)) ® my(xa’(by @ b)) & b,
= by(1 © xa’(mg ® my)) & b](xa’(mo © m1)) & mo
= bl (mowmy) © Mo-
Thus we have, for all (x,mg,m;) € {0,1P,y €
{0,1}and z € Z,
real ,np, ot 7 ((X: Mo, m1),)
= (L, A2(,2,a, bo, b1, 1,1)
= (L, A0, 2,4, bo, b1,
bxaimoem,) ® my, i)
£ (L, An(,2.d', b, b},
bt moomy) ® M0, 1))
= (L,Ax(y, z,a', by, bl, 7, 1))
= ideal \np, o1 B (% Mo, 1),).

The second party is honest. Assume now that
the second party is honest, i.e., A = (A;,R).
Similarly to the previous case, we divide A, into
three algorithms, A;;,A;; and A—{;_Ajf receives
(ximOvml) and SCP&S (C9j) = All(xvm()’ml)
to AND-TO and A;;, where c¢ is an input to
AND-TO which returns s = r @ y(1 & ¢)
and j is status information. Then A, sends
t = Ap((x,mg,m1),z,0,S,) to R and outputs
f_ﬂ-:;-((x,mo,mo,z, c, 5, j, t). For any real adversary
A1, we define the ideal adversary B as follows:

Algorithm B;((x, mg, m;),)

(C’, j') - E((xr mo, ml)v Z)
s «r{0,1}

U« Z-E((-xa my, ml)v 2 C’, S', j')
1« AND-OTs(1,s/ ®t,s o @lec)
output z_l;((x’ my, M]), Z, C’, S’, jlr tl)-

70

For the sender’s inputs (0, s’ @ ¢, s’ & ¢ & ¢’) and
the receiver’s input y, the output of AND-OT to
the receiver u is as follows:

u=(or) (leyo(sarolecd)y
=fesoylec).

(c’, j') has the identical distribution with (c, /).
Since s = r & y(1 & ¢) and r is uniform and inde-
pendent of all other variables, s is uniform and in-
dependent as well, which means that it has exactly
the same distribution as s’. Therefore ¢ is identi-
cally distributed with . We have from above, for
all (x,mp,m;) € {0,1}%,y € {0,1} and z € Z,

realyor or, 70 (%, M0, m1), y)
= (An((x, mo,my), 2,¢, 5, j, 1), ® 7)

=‘(A_—|3((x’ my, ml)r 30,8, j’ t)y
tesey(loc)

£ An((x,mo,m), 2, ¢, 8, 1),
reseylec))
= idealxog-m'j(z)((xo mg, mi),y).

The second “=" means perfect indistinguishable,
hence the bottleneck of this evaluation is the first
“=” deriving from the security of the AND-TO
protocol.

Obliviously, the simulated adversaries are as ef-
ficient as the real adversary. o

43 OR-OT

We present a simple protocol, INV-OR =
(S, R), securely computing OR-OT via an inver-
sion protocol of OR-OT, namely OR-TO. The pro-
tocol is defined as Figure 4.

Theorem 6. INV-OR securely computes OR-OT
reducing to one instance of OR-TO.

Proof. We have to consider three cases, both par-
ties are honest, the sender is honest and the re-
ceiver is honest.

Both parties are honest. Let first both parties
be honest, i.e., A = INV-OR. In this case, we
define the adversary B in the ideal model as B.
For all (x,mg,m;) € {0,1)%,y € {0,1} and z € Z,

S R
X —> Y =16
my —» (1®x)(mo$m) r €z {0, 1}
m) —»
X —») y
OR-TO fe— ro&1
S -
«— I
t=sém
t e
u=teor
—
Figure 4: INV-OR

since we have s = r @ (1 ® x)(1 @ y)(mo ® m;),

realxon.orz(z)((x’ mg, my),y)
=(L,u)
=(Ll,t@r)
=(L,s@m@r)

= (L, (1@ x)(1 @ y)(mo ® my) ® my)

= (L (lex)(leyme (el eéx)ley)m)

= (4, mig(1@x)10y))
= (-Lv mx+y)
= idea]XOR_OT’E(Z)((xg mo, ml)’ y)'

The first party is honest. Let then the first
party be honest, i.e., A = (S,43). To describe
the cheating method of 4;, we divide A into
two algorithms, A;; and A,,. A21 receives (y, 2)
and sends ((a, by, b1),i) = Azl(y, Z) to OR-TO
and Ay, where (a,bo,by) is an input to OR-
TO and i is status information. Then Ay, re-
ceives t = biglex)1ea moom;) D ® my and outputs
An(,z,a, bo,bl,t i). For any Az, we define the
ideal adversary 82 as follows:

Algorithm E(y, 2)

(@, b, b)), 1) — Az1(3,2)
u «~ OR-OTr(1® (1 ea')(b{, ® b;))
! « udb

output Ax(y,z,4a’, b, L)

[Y

71

Note that ((a’, by, b7), i) is identically distributed
with ((a, by, b1),) and
! =udb;
= Mie(iex)1ea'Xbjeb)) ® b}
= mo(1 ® x)(1 ® a’)(by © b))
em(l1e(1ex)(1ea')(by e b)) e b
= bp(1 © x)(1 @ a’)(mo & my)
® bj(1 e (1 & x)(1®y)(mg ®m)) &m
= bletiex)1ea Xmoomy) © M1-

Thus we have, for all (x,mo,m;) € {0,113,y €
{0,1}and z € Z,

realog or 7 (X, Mo, m1), y)
= (L,A2(0,2,a, bo, by, 1, 1))
(L, A2(,2a, bo, by,
bre(iex)1@a)meem;) ® my, i)
£ (L, Ay, 2,d, b}, b

lec1ex)(16a Xmoam,) © M1, "))
= (L, A%y, z,d,b), b, 7, i)
= idealoR.o]"E(z)((xo mg, my), y).

The second party is honest. Assume now that
the second party is honest, i.e., A = (A, R).
Similarly to the previous case, we divide A, into
three algorithms, A;;,A 2 and Aj3. Ap; receives
(x,mg,m;) and sends (c, j) = A11(x, mg, my) to
OR-TO and A;;, where c is an input to OR-
TO which returns s = r & (1 ® y)(1 & ¢)
and j is status information. Then A, sends
t = Ap((x,my,m1),z,c,s5,j) to R and outputs
A13((x mo,m),2,¢, S, j, t). For any r real adversary
A, we define the ideal adversary B as follows:

Algorithm B;((x,mo, m1),2)

(¢, J') « A1 ((x, mg, my), 2)
s’ «g{0,1})

t’ Lo X;;((x, mg, mq); 2, c,o slo j')
1« OR-OTs(0,s @,y ot ©¢’)

output A3((x, mo,my),z,¢’, s, j', V).

For the sender’s inputs (¢’, s @ ¢ & 1,5 & ') and
the receiver’s input y, the output of OR-OT to the

receiver u is as follows:

u=(ere(lec)(1ay
e e le(lecd)(1ay)
=rese(loy)(lec).

(c’, j)) has the identical distribution with (c, j).
Since s = r& (1 ® y)(1 @ ¢) and r is uniform
and independent of all other variables, s is uni-
form and independent as well, which means that
it has exactly the same distribution as s’. There-
fore ¢ is identically distributed with . We have
from above, for all (x, mg, my) € {0,1)3,y € {0, 1}
andze Z,

malog.or;{(z)((xy mg, my),y)
= A13((x,mo,m1),z,¢, 8, j, 1), 1@ 1)

= (A13((x, mo,m1), z,¢, 5, j, 1),
teso(lay)l®c)

£ An((x,mo,my), 2, ¢, 5, 7, 1),
| Yo eeylec)
= idealon.orj(z)((xy mg, my),y).

The second “=" means perfect indistinguishable,
hence the bottleneck of this evaluation is the first
“=" deriving from the security of the OR-TO pro-
tocol.

Obliviously, the simulated adversaries are as ef-
ficient as the real adversary. 0

References

[1] Brake, L. F., anp KoLesnikov, V. Strong con-
ditional oblivious transfer and computing on
intervals. In ASIACRYPT (2004), P. J. Lee,
Ed., vol. 3329 of Lecture Notes in Computer
Science, Springer, pp. 515-529.

[2] Crfreau, C., AND SaANTHA, M. On the re-
versibility of oblivious transfer. In EURO-
CRYPT (1991), pp. 106-113.

[3] Even, S., GoipreicH, O., AND LEMPEL, A.
A randomized protocol for signing contracts.
Commun. ACM 28, 6 (1985), 637-647.

[4] GoLbReIcH, O., MicaLl, S., AND WIGDERSON, A.
How to play any mental game or a complete-
ness theorem for protocols with honest major-
ity. In STOC (1987), ACM, pp. 218-229.

72

[S] O.RaBiN, M. How to exchange secrets by
oblivious transfer. Tech. Rep. TR-81, Aiken
computation laboratory, Harvard University,
1981.

[6] WoLF, S., AND WULLSCHLEGER, J, Oblivi-
ous transfer is symmetric. In EUROCRYPT
(2006), S. Vaudenay, Ed., vol. 4004 of Lec-
ture Notes in Computer Science, Springer,
pp- 222-232.

