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Symmetricity of the Protocols Related to Oblivious Transfer

井上大輔 田中圭介
Daisuke Inoue Keisuke Tanaka

東京工業大学情報理工学研究科
Department of Mathematical and Computing Sciences

Tokyo Institute of Technology
W8-55, 2-12-1 Ookayama Meguro-ku, Tokyo 152-8552, Japan

{inoue1, keisuke}@is.titech.ac.jp.

Abstract– In this paper, we show that the special case of strong conditional oblivious
transfer from $S$ to $R$ can be obtained from only one instance of itself from $R$ to $S$ . Our
reduction protocol Is simple and efficient, and preserves the security of the inversion.

Keywords: oblivious transfer, conditional, reduction, symmetricity.

1 Introduction

In modem cryptography, secure multi-party
computation (MPC) has been actively studied,
where two or more mutually distrusting parties
share computational tasks. Oblivious transfer is
one of the most interesting primitives which can
construct a secure MPC protocol $[5][4]$ . How-
ever, it is known that OT cannot be achieved from
scratch. Therefore various assumptions are pro-
posed, such as computational assumptions, cryp-
tographic tools, weaker variation of or, or inver-
sion of itself.

or is first introduced by Rabin [5], which in-
volves two parties, the sender and the receiver.
The sender sends a bit to the receiver and the
receiver obtains it with probability 1/2, however
the sender never leams about the output to the re-
ceiver. OT was developed to various types, such
as chosen l-out-of-2 $OT((12)- OT)13$] and strong
conditional $OT$ (SCOT) [1]. In $t_{1}^{2}$ )$- OT$, the sender
sends two bits $b_{0}$ and $b_{1}$ and the receiver obtains
exactly one of them $b_{c}$ dependently on receiver’s
choosing bit $c$ . $c$ is kept secret from the sender,
and $b_{1-c}$ from the receiver. SCOT is similar to $(_{1}^{2})-$

OT, except the point that the sender also inputs the
choosing bit. scar requires a predIcate Q. since
the output to the receiver depends on the result-
ing value $c=Q(x,y)$, where $x$ is the choosing bit
of the sender and $y$ of the receiver. The sender ob-

tains no information about $y$. and the receiver does
about $x$ and $b_{1-C}$ .

In [2], $Cr6peau$ and Santha $p_{I}\mathfrak{v}posed$ a reduc-
tion obtaining $(_{l}^{2})-\sigma r$ from $S$ to $R$ invoking some
instances of $(_{1}^{2})- OT$ from $R$ to $S$ . Their reduction
needs $n$ instances to achieve 2$\Theta(n)$ security. They
raised the question whether it is possible to im-
plement oblivious transfer in one direction using
fewer instance of oblivious aansfer in the other.
Wolf and Wullschleger found an affirmative an-
$oneinstanceoftheinversionof(1)- O\Gamma.There- swerin[6].Theyalsoproposed(2)- OTviaonlyf$

duction protocol achieves equivalent security to
invoked $(_{1}^{2})- OT$ protocol. Their construction bases
on the fact that $(_{1}^{2})- O\Gamma$ has information-theoretical
symmetry.

Contribution. In this paper, we consbuct the
special cases of SCOT from only one instance of
their inversion. We assume XOR-, AND-and OR-
or, which are scar for predicates XOR, AND
and OR, respectively, and whose inputs are re-
stricted to a bit. Our reduction is simple, efficient
and tight. We can apply the reduction protocol to
a SCOT protocol with arbitraIy secunity, perfect,
statistical and perfect, and the resulting protocol
achieves the equivalent security to invoked scac
protocol.
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2 Preliminaries 3 Deflnition

We use the standard notations and conventions
for writing probabilistic algorithms and experi-
ments. Let $a$ and $b$ be bits. Then $a\oplus b$ , ab and
$a+b$ denotes the bit obtained as the bitwise log-
ical XOR, AND and OR of $a$ and $b$, respectively.
We say a function $f$ : $Narrow R$ is negligible in $n$ if
for every positive polynomial $p$ there exists an $N$,
such that for all $n>N,f(n)<1/p(n)$ . Let $(X_{n}\}_{n\epsilon N}$

and $\{Y_{n}\}_{n\epsilon N}$ be distribution ensembles. We say
[$X_{n}\}_{n\epsilon N}$ and $\{Y_{n}\}_{n\epsilon N}$ are computationally indistin-
guishable if, for any distinguisher algorithm $D$,
$|Pr_{D}(X_{n})-Pr_{D}(Y_{n})|<\epsilon(n)$ is negligible in $n$ where
$Pr_{D}(X_{n})$ is the probability that $D$ accepts $x$ chosen
according to the distribution $X_{n}$ . We call $[X_{n}\}_{n\epsilon N}$

and ( $Y_{n}\}_{n\epsilon N}$ are statistically indistinguishable if
$\sum_{a}|Pr[X_{n}=\alpha]-Pr[Y_{n}=\alpha]|is$ negligible. We call
$\{X_{n}\}_{n\epsilon N}$ and $\{Y_{n}\}_{n\epsilon N}$ are perfectly indistinguish-
able if for all $\alpha\in N,$ $Pr[X_{n}=\alpha]=Pr[Y_{n}=\alpha]$ .
$X\equiv*Y$ denotes that distributions $X$ and $Y$ are in-
distinguishable, $wheoe*isp,$ $s$ or $c$ if that indis-
$tinguishability\backslash$ is perfect, statistical or computa-
tional, respectively.

An algorithm is a Turing machine. An efficient
algorithm is an algorithm running in probabilis-
tic polynomial time. An interactive Tuning ma-
chine is a probabilistic algorithm with an addi-
tional communication tape. A set of interactive
Turing machines is a protocol. Let $A=(A_{1},A_{2})$

and $\overline{A}=(\overline{A_{1}},\overline{A_{2}})$ be the pairs of algorithm. Then
we say $\overline{A}$ is admissibleforA if $\overline{A_{1}}=A_{1}$ or $\overline{A_{2}}=A_{2}$

holds.
In an algorithm we use the following nota-

tions. If $A$ is a probabilistic algorithm, then $yarrow$

$A(x_{1},x_{2}, \ldots,)$ is the probabilistic experiment of
obtaining $y$ by running $A$ on inputs $(xx, \ldots)$,
where the probability space is given by the ran-
dom coins of algorithm $A$ . If $S$ is a flnite set, then
$x\langle-S$ is the operation of picking an element uni-
formly from $S$ . If $\Pi=(P_{1}, \ldots, P_{n})$ is a proto-
col, then $yarrow\Pi_{P_{l}}(x_{1}, \ldots , x_{n})$ denotes running a
protocol with inputs $X_{1},$ $\ldots,x_{n}$ and receiving $y$ re-
sulting output of participant $P/\cdot$ If $a$ is neither an
algorithm nor a set nor a protocol, then $xarrow\alpha$ is
a simple assignment statement. $Let\perp be$ a special
symbol which indicates that an algorithm outputs
nothing.

3.1 Security
We employ the security model of protocol[6],

the real and the ideal model. The ideal model
means the situation in which every player can ac-
cess afunctionality by defined inputs and outputs,
and have no other way of communication each
other. Since functionality always computes and
outputs correctly with inputs, any cheating is im-
possible. However, there does not exist such a per-
fect black box practically. Hence it should be en-
abled by a protocol, namely the real model. In the
real model, a player can cheat by not following the
protocol. We say a protocol securely computes a
functionality, if for any player in the real model,
there exists a player in the ideal model which has
indistinguishable outputs from the real player with
the same information. Common input $z$ represents
some additional auxiliary input for both parties.
An honest party does not need it, but a malicious
party can use it, for instance, to record and carry
down information about previous executions of
the protocol. We assume at least one of the par-
ties is honest.

Let $Z$ be a domain of a common input $z$ We
formalize the secure implementation of $f$ : $Xx$
$yarrow ux\eta$’ as follows.

The Real Model.
In the real model, $f$ has to be computed by

a $prot\infty ol\Pi=(A_{1},A_{2})$ without any help of a
trusted party. Let $\overline{A}=(\overline{A_{1}},\overline{A_{2}})$ be an admissible
pair for $\Pi$. Then the joint execution of $\Pi$ under $\overline{A}$

in the real model,

$real_{n\overline{A}tz)}(x,y)$,

is the resulting output pair, given the inputs $x\in$

$X,y\in y$ and auxiliary input $ZE$ Z. $real_{n\overline{A}tz)}(x,y)$

is also a random variable with the coin of $\overline{A}$.
The Ideal Model.

In the ideal model, the two pames can make use
of a trusted party to calculate the function. The al-
gorithms $\overline{B_{1}}$ and $\overline{B_{2}}$ of the protocol $\overline{B}=(\overline{B_{1}},\overline{B_{2}})$

receive the inputs $x$ and $y$, oespectively, and aux-
iliary input $z$ . They send values af and $y’$ to the
oeusted $pa\eta$, who sends back the values $u’$ and $\sqrt{}$

satisfying $(u’.v’)=.f(x’,y’)$. Finally, $\overline{B_{1}}$ and $\overline{B_{2}}$
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output the value $u$ and $v$. The two honest algo-
rithms $B_{1}$ and $B_{2}$ always send $x’=x$ and $y’=y$
to the trusted party, and always output $u=u’$ and
$v=v’$ . Now, if $\overline{B}=(\overline{B_{1}},\overline{B_{2}})$ is admissible pair
of algorithm for protocol $B=(B_{1},B_{2})$ , the joint
execution of$f$ under $\overline{B}$ in the ideal model,

denote thefollowingprimitive between a sender $S$

and a receiverR (see Figure 1). $S$ has three inputs
$x,$ $m_{0}$ and $m_{1}$ and no output, so does $R$ with input
$y$ and output $u$ such that $u=m_{Q\langle x,y)}$.

S $R$

$idea1_{f^{\overline{B}\langle z)}}(x,y)$,

is the resulting output pair, given the inputs
$x\in \mathcal{X},y\in y$ and auxiliary input $z\in Z$.
$idea1_{f\cdot\overline{B}(z)}(x,y)$ is also a random variable with the
coin of $\overline{B}$.
Security: Real $\equiv I\bm{d}\bm{m}l$.

A $prot\infty ol\Pi$ computes a functionality $f$ com-
Putationally (or statistically, $pe$ を ctly) securely if
for any real adversary, there exists an ideal adver-
sary which is as efficient as, and has computation-
ally (or statistically, $perf\infty tly$) indistinguishable
output from the real.

This formulation can also aPply to reduction
$prot\infty ol$ of functionality $f$ to functionality 8, such
that the “real” $partiCipa\mathfrak{n}tS$ access a protocol se-
curely computing $g$ .
Definltion 1. Apmtocol $\Pi$ computes $f$ computa-
tionally (or statistically, $p\ell$ifectly) securely iffor
every admissible $\overline{A}=(\overline{A_{1}},\overline{A_{2}})$ there exists an ad-
missible $\overline{B}=(\overline{B_{1}},\overline{B_{2}})$, as efcient as, and with
exactly the same set of honest players as $\overline{A}$, such
thatfor all $x\in X,y\in y$ and $z\in Z$,

$rea1_{\Pi\overline{A}tz)}(x,y)\equiv idea1_{f,\overline{B}1z)}(x,y)$

holds, where $\equiv means$ that the distributions are
computationally (or statistically, perfectly) indis-
tinguishable.

Deflnition 2. Apmtocol $\Pi$ securely reduces $f$ to
afmctionality $g$ if $\Pi$ computationally (or statisti-
cally, $pe$fectly) securely computes $f$ where every
player in the real model have access to the pro-
tocol which $con\varphi utanonally$ (or statistically, per-
fectly) securely computes $g$.
3.2 Strong Condttional ObMvious Ttansfer

We formalize $sc\sigma r$ as a functionality.

Deflnition 3 (Q-SCOT). By Q-SCOT or strvng
conditional oblivious transferfor predicate $Q$, we

Figure 1: Strong conditional oblivious transfer

In this paper, we consider three $p_{I}uicat\epsilon s$ ,
XOR, AND and OR. We define $XOR- O\Gamma$, AND-
OT and $OR- O\Gamma$ as a special case of Q-SCOT
where all inputs are l-bit. In other words,
$(x,m_{0},m_{1})\in\{0,1\}^{3}$ and $y\in\{0,1\}$ and each output
of $XOR-\sigma r$, AND-OT and $OR- O\Gamma$ is as foUows:

$XOR\cdot O\bm{T}:m_{\ovalbox{\tt\small REJECT} y}=m_{0}$ ( $1\oplus x$ ey) $\oplus m_{1}(x\oplus y)$ .
$AND\cdot O’P$. $m_{xy}=m_{0}(1\oplus\eta)\oplus m_{1}(xy)$ ,

OR-OT: $m_{x+y}=m_{0}(1\oplus x)(1\oplus y)\oplus m_{1}(1\oplus(1\oplus$

$x)(1\oplus y))$.

4 Construction
In this section, we constmct three restricted

SCOT protocols, XOR-OT, $AND- 0\Gamma$ and OR-
OT via protocols which securely compute inver-
sions of themselves. An inversion means the
replacement of player’s role, i.e., $S$ can access
the inversion as $R$, and vice versa. Let Q-TO
denote a protocol which securely computes the
inversion of a functionality $Q- 0\Gamma$, where $Q=$

{XOR,AND, OR}. We use the notion $\equiv$ in our se-
curity proofs. $X\equiv Y$ denotes that distributions $X$

and $Y$ are indistinguishable, $wheoe*isp,$ $s$ or $c$

if invoked Q-TO is perfect, statistical or computa-
tional secure, respectively.

4.1 XOR-OT
We present a simple protocol, INV-XOR $=$

(S. $R$). securely computing $XOR- O\Gamma$ via an inver-
sion protocol of $XOR-\sigma r$, namely XOR-TO. The
protocol is defined as Figure 2.
Theorem 4. INV-XOR securely computes XOR-
OT reducing to one instance ofXOR-TO.
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$s$ $R$ ideal adversary $\overline{B_{2}}$ as follows:

Algorithm $\overline{B_{2}}(y,z)$

$((a’, b_{0}’,b\{), i’)arrow\overline{A_{21}}(y,z)$

$u\epsilon- XOR- OT_{R}(b_{0}’\oplus b_{1}’)$

$t’c-u\oplus(1\oplus a’)b_{0}’\oplus a’b_{1}’$

output $\overline{A_{22}}(y,z,a’,b_{0}’,b_{1}’, ", i’)$ .
Note that $((a’,b_{0}’, b_{1}’),i’)$ is identically distributed
with $((a,b_{0},b_{1}), i)$ and

Figure 2: INV-XOR

Proof. We have to consider three cases, both par-
ties aIe honest, the sender is honest, and the re-
ceiver is honest.

Both partles are honest Let first both parties
be honest, i.e., $\overline{A}=$ INV-XOR. In this case, we
deflne the adversary $\overline{B}$ in the ideal model as $B$ .
For all $(x,m_{0},m_{1})\in\{0,1\}^{3},y\in\{0,1\}$ and $z\in Z$ ,

since we have $s\equiv r\oplus y(m_{0}\oplus m_{1})$.
$rea1_{XOR-\sigma r\overline{A}(z)}((x,m_{0},m_{1}),y)$

$=(\perp,u)$

$=(\perp,t\oplus r)$

$=(\perp,s\oplus x(m_{0}\oplus m_{1})\oplus m_{0}\oplus r)$

$\underline{=}(\perp.(x\oplus y)(m_{0}\oplus m_{1})\oplus m_{0})*$

$=(\perp,(1\oplus x\oplus y)m_{0}\oplus(x\oplus y)m_{1})$

$=(\perp,m_{x\oplus y})$

$=idea1_{XOR- O\Gamma.\overline{B}(\iota)}((x,m_{0},m_{1}).y)$.
The flrst party is honest Let now the first
party be honest, i.e., $\overline{A}=(S,\overline{A_{2}})$. To describe
the cheating method of $\overline{A_{2}}$ , we divide $\overline{A_{2}}$ into
two algorithms $\overline{A_{21}}$ and $\overline{A_{22}}.\overline{A_{21}}$ receives $(y,z)$

and sends $((a,b_{0},b_{1}), \iota)=\overline{A_{21}}(y,z)$ to XOR-TO
and $\overline{A_{22}}$, where $(a, b_{0},b_{1})$ is an input to XOR-TO
and $i$ is status information. Then $\overline{A_{22}}$ receives
$t=b_{(mo\oplus’ n_{1})\oplus a}\oplus x(m_{0}\oplus m_{1})\oplus m_{0}$, and outputs
$\overline{A_{22}}(y,z,a,b_{0},b_{1},t,\iota)$ . For any $\overline{A_{2}}$, we define the

$f=u\oplus(1\oplus a’)b_{0}’\oplus a’b_{1}’$

$=m_{x\oplus\langle b_{\acute{0}}\oplus b_{1}’)}\oplus(1\oplus a’)b_{0}’\oplus a’b_{1}’$

$=m_{0}(1\oplus x\oplus(b_{0}’\oplus b_{1}’))\oplus m_{1}(x\oplus(b_{0}’\oplus b_{1}’))$

$\oplus(1\oplus a’)b_{0}’\oplus a’b_{1}’$

$=b_{0}’(1\oplus m_{0}\oplus m_{1}\oplus a’)\oplus b_{1}’(m_{0}\oplus m_{1}\oplus a’)$

$\oplus x(m_{0}\oplus m_{1})\oplus m_{0}$

$=b_{(m_{0}\Phi m\downarrow)\oplus a’}’\oplus x(m_{0}\oplus m_{1})\oplus m_{0}$.

Thus we have, for all $(x,m_{0},m_{1})\in\{0,1\}^{3},y\in$

[$0,1$ } and $z\in Z$,

$oea1_{XOR- O\Gamma,\overline{A}(\iota)}((x,m_{0},m_{1}),y)$

$=(\perp,\overline{A_{22}}(y,z,a,b_{0},b_{1},t,\iota))$

$\equiv(\perp,\overline{A_{22}}(y,z,a,b0b_{1}t$

$b_{(m\oplus m_{1})\infty}\oplus x(m_{0}\oplus m_{1})\oplus m_{0},\iota))$

$\equiv(\perp,\overline{A_{22}}(y,z,a’,b_{0}’,b_{1}’p$

$b_{(m0\otimes/n_{1})\infty}’\oplus x(m_{0}\oplus m_{1})\oplus m_{0},i’))$

$=(\perp,\overline{A_{22}}(y,z,a’,b_{0}’,b_{1}’.l,i’))$

$=idea1_{XOR-\sigma r,\overline{s}(z)}((x,m_{0},m_{1}),y)$.
The second party is honest. Assume now that
the second $paRy$ is honest, i.e., $\overline{A}=(\overline{A_{1}},R)$.
Similarly to the previous case, we divide $\overline{A_{1}}$ into
three algorithms, $\overline{A_{11}},\overline{A_{12}}$ and $\overline{A_{13}}.\overline{A_{11}}$ receives
$(x,m_{0},m_{1})$ and sends ($c_{J)}=\overline{A_{11}}(x,m_{0},m_{1})$ to
XOR-TO and $\overline{A_{12}}$, where $c$ is an input to XOR-TO
which returns $s=r\oplus yc$ and $j$ is a status informa-
tion. Then $\overline{A_{12}}$ sends $t=\overline{A_{12}}((x,m_{0},m_{1}),z,c, s,r)$

to $R$ and outputs $\overline{A_{13}}((x,m_{0},m_{1}),z.c, s.j,t)$. For
any real adversaIy $\overline{A_{1}}$, we deflne the ideal adver-
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sary $\overline{B_{1}}$ as follows: S $R$

$Algorithm\overline{B_{1}}((x,m_{0},m_{1}),z)$

$(c’,j’)arrow\overline{A_{11}}((x,m_{0},m_{1}),z)$

$s’arrow_{R}\{0,1\}$

$t’arrow\overline{A_{12}}((x,m_{0},m_{1}),z,c’, s’,j’)$

$\perparrow XOR- OT_{S}(0, s’\oplus t’, s’\oplus t’\oplus c’)$

output $\overline{A_{13}}((x,m_{0},m_{1}),z,c’, s’,j’,t’)$ .
For the sender’s inputs $(0, s’\oplus f, \swarrow\oplus f\oplus c’)$ and
the receiver’s input $y$, the output of XOR-OT to
the receiver $u$ is as follows:

$u=(s’\oplus t’)(1\oplus 0\oplus y)\oplus(s’\oplus l\oplus c’)(0\oplus y)$

$=t’\oplus s’\oplus yc’$ . Figure 3: INV-AND

$(c’,j’)$ has the identical distribution with $(c.j)$ .
Since $s=r\oplus yc$ and $r$ is uniform and indepen-
dent of all other variables, $s$ is uniform and inde-
pendent as well, which means that it has exactly
the same distribution as $s’$ . Therefore $l$ is identi-
cally distributed with $t$. We have from above, for
all $(x,m_{0},m_{1})\in\{0,1\}^{3},y\in\{0,1\}$ and $z\in Z$,

$rea1_{XOR- 0,\overline{A}(z)}((x,m_{0},m_{1}),y)$

$\equiv s(\overline{A_{13}}((x,m_{0},m_{1}),z,c, s,j,t),t\oplus r)$

$=(\overline{A_{13}}((x,m_{0\prime}m_{1}).z,c,$ $s,j,t$)$,t\oplus s\oplus yc$)

$\equiv(\overline{A_{13}}((x,m0,m_{1}),z,c’, s’,f,t’),t’\oplus s’\oplus yc’)p$

$=idea1_{XOR- 0,\overline{B}(z)}((x,m_{0},m_{1}),y)$ .

Obliviously, the simulated adversaries are as ef-
ficient as the real adversary. ロ

4.2 $AND\cdot O\bm{T}$

We present a simple protocol, INV-AND $=$

$(S,R)$, securely computing AND-OT via an inver-
sion $prot\propto ol$ ofAND-OT, namely AND-TO. The
protocol is defined as Figure 3.

Theorem 5. INV-AND securely computes AND-
OT reducing to one instance ofAND-TO.

Proof As in the case of XOR-OT, we have to
consider three cases, both parties are honest, the
sender is honest and the receiver is honest.

Both parties are honest. Let first both parties
be honest, i.e., $\overline{A}=$ INV-AND. In this case, we
deflne the adversary $\overline{B}$ in the ideal model as $B$.
For all $(x,m_{0},m_{1})\in\{0.1\}^{3}.y\in\{0,1\}$ and $ZEZ$,
since we have $s\equiv rr\oplus xy(m_{0}\oplus m_{1})$ ,

$rea1_{AND\{y_{\Gamma\overline{A}(t)}}((x, m_{0}, m_{1}), y)$

$=(\perp, u)$

$=(\perp, t\oplus r)$

$=(\perp, s\oplus m_{0}\oplus r)$

� $(\perp, xy($鞠 $\oplus m_{1})\oplus m_{0})$

$=(\perp, (1\oplus xy)m_{0}\oplus\eta m_{1})$

$=(\perp. m_{xy})$

$=idea1_{AND-0.\overline{B}(Z)}((x, m_{0}, m_{1}),y)$.

The flrst parly is honest. Let now the first party
be honest, i.e., $\overline{A}=$ (S. $\overline{A_{2}}$). To describe the
cheating method of $\overline{A_{2}}$. we divide $\overline{A_{2}}$ into two
algorithms, $\overline{A_{21}}$ and $\overline{A_{22}}.\overline{A_{21}}$ receives $(y,z)$ and
sends $((a,b_{0},b_{1}),\iota)=\overline{A_{21}}(y,z)$ to AND-TO and

$\overline{A_{22}}$, where $(a, b_{0},b_{1})$ is an input to AND-TO and
$i$ is status information. Then $\overline{A_{22}}$ receives $t=$

$b_{xa(m_{0}\oplus m_{1})}\oplus m_{0}$, and outputs $\overline{A_{22}}(y,z,a,b_{0},b_{1},t,l)\cdot$.
For any $\overline{A_{2}}$, we deflne the ideal adversary $\overline{B_{2}}$ as
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follows:

Algorithm $\overline{B_{2}}(y,z)$

$((a’,b_{0}’,b_{1}’), i’)arrow\overline{A_{21}}(y,z)$

$uarrow AND- OT_{R}(a(b_{0}’\oplus b_{1}’))$

$t’arrow u\oplus b_{0}’$

ourput $\overline{A_{22}}(y,z,a’,b_{0}’, b_{1}’, t’,i’)$ .
Note that $((a’,b_{0}’,b_{1}’), i’)$ is identically distributed
with $((a,b_{0},b_{1}), i)$ and

$t’=u\oplus b_{0}’$

$=m_{xa’\langle b_{0}’\oplus b_{1}’)}\oplus b_{0}’$

$=m(1\oplus xa’(b_{0}’\oplus b_{1}’))\oplus m_{1}(xa’(b_{0}’\oplus b_{1}’))\oplus b_{0}’$

$=b_{0}’(1\oplus xa’(m_{0}\oplus m_{1}))\oplus b_{1}’(xa’(m_{0}\oplus m_{1}))\oplus m_{0}$

$=b_{xa’(\mathfrak{m}\oplus m_{1})}’\oplus m_{0}$ .
Thus we have, for all $(x,m_{0},m_{1})\in\{0,1\}^{3},y\in$

[$O,$ $1$ } and $z\in Z$,

$\iota ea1_{AND-\infty.\overline{A}\langle z)}((x,m_{0},m_{1}).y)$

$=(\perp.\overline{A_{22}}(y,z,a,b_{0},b_{1},t,\iota))$

.
$\equiv(\perp,\overline{A_{22}}(y,z,a,b_{0\prime}b_{1}t$

$b_{xa(m0\oplus m_{I})}\oplus m_{0},l))$

$\equiv(\perp,\overline{A_{22}}(\mathcal{Y},z,a’.b_{0}’,b_{1}’p$

$b_{xa’(mo\oplus m_{1})}’\oplus m_{0},i’))$

$=(\perp,\overline{A_{22}}(y,z,a’,b_{0}’,b_{1}’,f,i’))$

$=idea1_{AND\cdot 0,\overline{B}\langle z)}((x,m_{0},m_{1}),y)$.
The second Party ls honest. Assume now that
the second paIty is honest, i.e., $\overline{A}=(\overline{A_{1}},R)$.
Similarly to the poevious case, we divide $\overline{A_{1}}$ into
three algorithms, $\overline{A_{11}},\overline{A_{12}}$ and $\overline{A_{13}}.\overline{A_{11}}$ receives
$(x,m_{0},m_{1})$ and sends $(c,r)$ $=$ $\overline{A_{11}}(x,m_{0},m_{1})$

to AND-TO and $\overline{A_{12}}$, where $c$ is an input to
AND-TO which retums $s$ $=$ $r\oplus y(1\oplus c)$

and $j$ is status information. Then $\overline{A_{12}}$ sends
$t=\overline{A_{12}}((x,m_{0},m_{1}),z,c, s.j)$ to $R$ and outputs
$\overline{A_{13}}((x,m_{0},m_{1}),z,c, s.j,t)$. For any real adversary
$\overline{A_{1}}$, we define the ideal adversary $\overline{B_{1}}$ as follows:

$A1gorithm\overline{B_{1}}((x,m_{0},m_{1}),z)$

$(c’,j’)arrow\overline{A_{11}}((x,m_{0},m_{1}),z)$

$S’6-R\{0,1\}$ $l$

$fc-\overline{A_{12}}((x,m_{0},m_{1}),z,c’.s’,j’)$

$\perparrow AND- OT_{S}(1, s’\oplus t’, s’\oplus t’\oplus 1\oplus c’)$

For the sender’s inputs $(0, s’\oplus f, s’\oplus t’\oplus c’)$ and
the receiver’s input $y$ , the output of AND-OT to
the receiver $u$ is as follows:

$u=(s’\oplus t’)(1\oplus y)\oplus(s’\oplus t’\oplus 1\oplus c’)y$

$=t’\oplus s’\oplus y(1\oplus c’)$.

$(c’,j’)$ has the identical distribution with $(C,j)$ .
Since $s=r\oplus y(1\oplus c)$ and $r$ is uniform and inde-
pendent of all other variables, $s$ is uniform and in-
derndent as well, which means that it has exactly
the same distribution as $s’$ . Therefore $f$ is identi-
cally distributed with $t$. We have from above, for
all $(x,m_{0},m_{1})\in\{0,1\}^{3},y\in\{0.1\}$ and $z\in Z$.
$rea1_{XOR- 0,\overline{A}\langle z)}((x,m_{0},m_{1}),y)$

$\equiv(\overline{A_{13}}((x,m_{0},m_{1}),z,c,s,j,t),t\oplus r)$

$=(\overline{A_{13}}((x,m_{0}.m_{1}),z.c,$ $s.j,t$),

$t\oplus s\oplus y\langle 1\oplus c))$

$\equiv(\overline{A_{13}}((x,m_{0},m_{1}),z,c’, s’.j’,f)p$

$t’\oplus s’\oplus y(1\oplus c’))$

$=idea1_{XOR- O\Gamma,\overline{B}1z)}((x,m_{0\prime}m_{1}),y)$.
The second $\equiv$ means perfect indistinguishable,
hence the bottleneck of this evaluation is the first
“: ” deriving from the security of the AND-TO
protocol.

Obliviously, the simulated adversaries are as ef-
ficient as the real adversary. ロ

4.3 $OR\cdot\sigma r$

We present a simple $prot\infty ol$, INV-OR $=$

$(S,R)$, securely computing $OR- O\Gamma$ via an inver-
sion protocol ofOR-OT, namely OR-TO. The pro-
tocol is defined as Figure 4.

Theorem 6. INV-OR securely computes OR-OT
reducing to one instance ofOR-TO.

Proof. We have to consider three cases, both par-
ties are honest, the sender is honest and the re-
ceiver is honest.

Both Parnes are honest. Let first both parties
be honest, i.e., $\overline{A}=$ INV-OR. In this case, we
define the adversary $\overline{B}$ in the ideal model as $B$.
For all $(x,m_{0},m_{1})\in\{0,1\}^{3},y\in\{0,1\}$ and $z\in Z$,

output $\overline{A_{13}}((x,m_{0},m_{1}),z,c’,s’,f,f)$ .
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$s$ $R$ Note that $((a’,b_{\acute{0}}, b_{1}’), i)$ is identically distributed
with $((a, b_{0},b_{1}),i)$ and

$r=u\oplus b_{1}’$

$=m_{1\oplus\langle 1\oplus x)(1u’)(b_{\acute{0}}\oplus b_{1}’)}\oplus b_{1}’$

$=m_{0}(1\oplus x)(1\oplus a’)(b_{0}’\oplus b_{1}’)$

$\oplus m_{1}(1\oplus(1\oplus x)(1\oplus a’)(b_{0}’\oplus b_{1}’))\oplus b_{1}’$

$=b_{0}’(1\oplus x)(1\oplus a’)(m_{0}\oplus m_{1})$

$\oplus b_{1}’(1\oplus(1\oplus x)(1\oplus y)(m_{0}\oplus m_{1}))\oplus m_{1}$

$=b_{1\propto 1\oplus x)\langle 1u’)(mo\oplus m_{1})}’\oplus m_{1}$ .
Thus we have, for all $(x,m_{0},m_{1})\in\{0,1\}^{3},y\in$

[$0,1$ } and $z\in Z$,

Figure 4: INV-OR

since we have $s\equiv r\oplus(1\oplus x)(1\oplus y)(m_{0}\oplus m_{1})$ .
$rea1_{XOR-\sigma r\overline{A}(z)}((x,m_{0},m_{1}),y)$

$=(\perp,u)$

$=(\perp.t\oplus r)$

$=(\perp.s\oplus m_{1}\oplus r)$

� $(\perp,(1\oplus x)(1\oplus y)(m_{0}\oplus m_{1})\oplus m_{1})$

$=(\perp,(1\oplus x)(1\oplus y)m_{0}\oplus(1\oplus(1\oplus x)(1\oplus y))m_{1})$

$=$ ( $\perp,m_{1\oplus\langle 1\oplus x}$温 $1\oplus y$))
$=(\perp,m_{x+y})$

$=idea1_{XOR- O\Gamma,\overline{B}(z)}((x,m_{0},m_{1}),y)$ .

The flrst party is honest. Let then the first
party be honest, i.e., $\overline{A}=(S,\overline{A_{2}})$ . To describe
the cheating method of $\overline{A_{2}}$, we divide $\overline{A_{2}}$ into
two algorithms, $\overline{A_{21}}$ and $\overline{A_{22}}.\overline{A_{21}}$ receives $(y,z)$

and sends $((a,b_{0},b_{1}), \iota)=\overline{A_{21}}(y,z)$ to OR-TO
and $\overline{A_{22}}$, where $(a,b_{0}.b_{1})$ is an input to OR-
TO and $i$ is status information. Then $\overline{A_{22}}$ re-
ceives $t=b_{1\oplus\{1\oplus x)(1\oplus a)(m_{0}\oplus m_{1})}\oplus ml$ and outputs
$\overline{A_{22}}(y,z,a,b_{0},b_{1},t,\iota)$ . For any $\overline{A_{2}}$, we define the
ideal adversary $\overline{B_{2}}$ as follows:

Algorithm $\overline{B_{2}}(y,z)$

$((a’,b_{\acute{0}}.b_{1}’),i’)arrow\overline{A_{21}}(y,z)$

$u-OR- O\Gamma_{R}(1\oplus(1\oplus a’)(b_{0}’\oplus b_{1}’))$

$t’arrow u\oplus b_{1}’$

output $\overline{A_{22}}(y,z,a’,b_{0}’,b_{1}’,t’,i’)$ .

$\infty a1_{OR- or.\overline{A}\langle z)}((x,m_{0},m_{1}),y)$

$=(\perp,\overline{A_{22}}(y.z,a.b_{0},b_{1},t,i))$

$\equiv(\perp,\overline{A_{22}}(y,z.a.b_{0},b_{1}$ ,
$b_{1q1\oplus x)\langle 1u)(m0\oplus m_{1})}\oplus m_{1},\iota))$

$\equiv(\perp,\overline{A_{22}}(y,z,a’,b_{0}’,b_{1}’p$

$b_{1q1\Phi x)\langle 1u’\text{温}F\Phi m_{1})}’\oplus m_{1},i’))$

$=(\perp,\overline{A_{22}}(y,z,a’.b_{0}’.b_{1}’,f,i’))$

$=idea1_{OR- 0.\overline{B}1z)}((x,\eta,m_{1}),y)$ .
The second $par y$ is honest. Assume now that
the second party is honest, i.e., $\overline{A}=(\overline{A_{1}},R)$.
Similarly to the previous case, we divide $\overline{A_{1}}$ into
three algorithms, $\overline{A_{11}},\overline{A_{12}}$ and $\overline{A_{13}}.\overline{A_{11}}$ receives
$(x,m_{0},m_{1})$ and sends $(c,j)=\overline{A_{11}}(x,m_{0},m_{1})$ to
OR-TO and $\overline{A_{12}}$, where $c$ is an input to OR-
TO which retums $s$ $=$ $r\oplus(1\oplus y)(1\oplus c)$

and $j$ is status information. Then $\overline{A_{12}}$ sends
$t=\overline{A_{12}}((x,m_{0},m_{1}),z,c, s,j)$ to $R$ and outputs
$\overline{A_{13}}((x,m_{0},m_{1}),z,c, s,j, t)$. For any real adversary
$\overline{A_{1}}$, we define the ideal adversary $\overline{B_{1}}$ as follows:

$Algorithm\overline{B_{1}}((x.m_{0},m_{1}),z)$

$(c’,j’)arrow\overline{A_{11}}((x.m_{0},m_{1}),z)$

$s’arrow_{R}\{0,1)$

$’arrow\overline{A_{12}}((x.m_{0}.m_{1}),z,c’.s’,f)$

$\perparrow OR- OT_{S}(0, s’\oplus f, s’\oplus f\oplus c’)$

output $\overline{A_{13}}((x,m_{0},m_{1}),z,c’, s’,f,f)$ .
For the sender’s inputs $(c’, s’\oplus t’\oplus 1.s’\oplus f)$ and
the receiver’s input $y$, the output of $OR-\sigma r$ to the
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receiver $u$ is as follows:

$u=(s’\oplus t’\oplus 1)(1\oplus c’)(1\oplus y)$

$\oplus(s’\oplus t’)(1\oplus(1\oplus c’)(1\oplus y))$

[5] O.RABIN, M. How to exchange secrets by
oblivious transfer. Tech. Rep. TR-81, Aiken
computation laboratory, Harvard University,
1981.

$=t’\oplus s’\oplus(1\oplus y)(1\oplus c’)$ .
$(c’,f)$ has the identical distribution with $(c,j)$ .
Since $s=r\oplus(1\oplus y)(1\oplus c)$ and $r$ is uniform
and independent of all other variables, $s$ is uni-
form and independent as well, which means that
it has exactly the same distribution as $s’$ . There-
fore $l$ is identically distributed with $t$ . We have
from above, for all $(x,m_{0},m_{1})\in\{0,1\}^{3},y\in\{0,1\}$

and $z\in Z$,

[6] WOLF, S., AND WULLSCHLEGER, J. Oblivi-
ous transfer is symmetric. In EUROCRYPT
(2006), S. Vaudenay, Ed., vol. 4004 of Lec-
ture Notes in Computer Science, Springer,
pp. 222-232.

$oea1_{OR\cdot 0\Gamma,\overline{A}(z)}((x,m_{0},m_{1}),y)$

$\equiv(\overline{A_{13}}((x,m_{0},m_{1}),z,c, s,j,t),t\oplus r)$

$=(\overline{A_{13}}((x,m_{0},m_{1}).z.c, s,j,t)$ ,
$t\oplus s\oplus(1\oplus y)(1\oplus c))$

$\equiv(\overline{A_{13}}((x,m_{0},m_{1}),z,c’, s’,f,t’)p$

$r’\oplus s’\oplus(1\oplus y)(1\oplus c’))$

$=idea1_{OR\cdot 0,\overline{B}(z)}((x,m_{0},m_{1}),y)$ .
The second $\equiv$ means perfect indistinguishable,
hence the bottleneck of this evaluation is the first

$\equiv$ deriving from the security of the OR-TO pro-
tocol.

Obliviously, the simulated adversaries are as ef-
ficient as the real adversary. $\square$
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