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Global asymptotic stability for a class of difference equations
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Department of Mathematical Science, Waseda University

HABENAREYR GEEXRT (Emiko Ishiwata)

Department of Mathematical Information Science, Tokyo University of Science
Nicola Guglielmi

Dipartimento di Matematica, Pura ed Applicata, Universita de L’Aquila -
1 Introduction

Consider the following nonlinear difference equation with variable coefficients:

Tntl = 4Ty — Z;n=0 a’jfj(xﬂ—j)$ n= 07 1’ 2’ Tty (11)
m
where0<¢<1, a; >0, Ostma.ndZaj>0. We now assume that
Jj=0

f(z) € C(—00,+00) is a strictly monotone increasing function,
O =0, o< <1, z+£0, 1<j<m, and , (1.2)
if f(z) # z, then a.-li.Eloo f(z) is finite, otherwise f(z) = z.

The above difference equation has been studied by many literatures (see for example, {1]-[9] and
references therein).

Definition 1.1 The solution y* of (1.1) is called uniformly stable, if for any € > 0 and non-
negative integer ng, there is a constant § = §(e) > 0 such that sup{|yn,—i —¥*] | 0 < i < m} <4,
implies that the solution {yn}3%, of (1.1) satisfies |yn — y*| <€, n=ngo,no +1,---

Definition 1.2 The solution y* of (1.1) is called globally attractive, if every solution of (1.1)
tends to y* as n — o0o.

Definition 1.3 The solution y* of (1.1) is called globally asymptotically stable, if it is uniformly
stable and globally attractive.

In this paper, we study ”semi-contractive” functions and global asymptotic stability of dif-

ference equations. In Section 2, we first define semi-contractivity of functions and show the
related results on the global asymptotic stability of difference equations.

2 Semi-contractive function

Assume that

9(z0,21,-+* ,2m) € C(R™') and g¢(y,y,--- ,y) = y has a unique solution y = y*. (2.1)



100

Definition 2.1 The function g(29, 21, - ,2m) 8 said to be semi-contractive at y*, if
(i) for any constants z < y* and 2z; > z, 0 < i < m, there exists a constant y* < Z < +00 such
that g(z0,21,"** ,2m) < Z, and for any z < 2z, < 2, 0 < i < m, there erists a constant Z > 2

such that Z < g(20,21,"** ,2m), OT

(i) for any constants Z > y* and z; < Z, 0 < i < m, there erists a constant y* > 2 > —oo such
that g(29,21, - ,2m) = 2, and for any z < z < Z, 0 < i < m, there exists a constant Z < %
such that Z > g(z0,21," " , 2m)-

Lemma 2.1 If g(y) € C(R) is a strictly monotone decreasing function such that g(g(y)) > y
for any y < y*, then g(z) is semi-contractive for y*.

Lemma 2.2 Assume (2.1) and that each gi(z0,21,° " ,2m), 0 < i < m is semi-contractive for
y*. Then for any bp; >0, n >0, 0 <i<m such that 3 i~ obni =1 and limp_,00 b = b;, 0 <
i < m, it holds that 37~y bnigi(20,21, -+ ,2m) i8 semi-contractive for y*.

Collorary 2.1 Assume (2.1) and that g(29,21,--- ,2m) 8 semi-contractive for y*. Then for
any 0 < g, < 1, gn(20,21,°** ,2m) and k such that

lim g, =¢<1, and 0<k<m,
n—=00 (2.2)

n]-_l._‘ngogn(z‘)’zly b ,Zm) = g(zOszlv v ’zm) fO'I‘ any 29,21, y2m € (—09, +w)a
it holds that gn2k + (1 — gn)gn(20, 21, -+ , 2m) 18 semi-contractive for y*.

Collorary 2.2 Assume that each g;(z) € C(R) and g;(y) = y has a unique solutiony = y*, 0 <
i < m, and each gi(z), 0 < i < m is semi-contractive for y*, then for any bp; >0, n >0, 0 <
' m

i < m such that Zb,.,.- =1 and liMp—.oo bpi = b;, 0 < 4 < m, it holds that 3 i~ bnigi(2:) is
i=0
semi-contractive for y*. In particular, for any 0 < ¢, < 1 and k such that lim, oo qn = ¢ <1
m

and 0 < k < m, it holds that gnzx + (1 — qn) z bn,igi(zi) is semi-contractive for y*.
=0

Remark 2.1 If g(29,21, ' ,2m) > O for any 2; > 0, 0 < i < m, then there are cases that we
may restrict our attention only to z; > 0, 0 < i < m and the unique positive solution y* > 0 of
a(y*,y*,- -+ ,y*) = y*, whether or not g(y,y,--- ,y) = y has other solutions y < 0.

Example 2.1 Examples of semi-contractive function g(z9, 21, , zm) for y*.

() g9(20,21,** ,2m) = 2me’=*m) y* =1 and ¢ < 2 (see [1]).

(1) g(z0,21, " ,2m) = zoexp{c(l — X inpaiz)}, ¥* = 1/(3pai) and ¢ < 2, where ag >
0,a;>0,1<i<mand (3%, ai)/ao < 2/e.

This is equivalent that h(ug,u1,-+ ,um) = ug — ¢ Y_1eg bi(e¥ — 1) is semi-contractive for u* =0
and ¢ < 2, where z; = y*e%, by = y*ap > 0, by = y*a; 20, 1 <i<m, Y oob =1, and
(S, b)/bo < 2/e (see [8)).

(i) g(z0,21,-"* ,2m) =c(l —€*™), y* =0 and ¢ < 1 (see [3}).

(iv) 9(z0,21, " y2m) = 1_40335’ z* = ((c—1)/b)/? and ¢ < 723, where p > 2 and b > 0 (see
[1]).

We consider the following difference equation

Yn+1 = @n¥n—k + (1 = @n)gn(¥UnsYn—1,** s Yn-m), n=0,1,---, (2.3)
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where we assume (2.1) and

0<gn<1l, limg,=¢9<1, ke{0,1,---,m}, and
{ ool { } (24)

Jim gn(20,21,° -+ 2m) = g(20, 21, + ,2m) for any 20,21, ,2m € (—00,+00).

Theorem 2.1 If g(20,21, " ,2m) 18 semi-contractive for y*, then y* of (2.3) is globally asymp-
totically stable for any 0 < g < 1.

Collorary 2.3 Assume that there erists a constant 0 < go < 1 and some 0 < k < m such
that gozx + (1 — g0)g(20, 21, -+ , 2m), 18 semi-contractive for y*. Then, for any go < gn <1 and
9n (20,21, -+ , 2m) which satisfy (2.4), the solution y* of (2.3) is globally asymptotically stable.

Remark 2.2 (i) The corresponding continuous case (2.3) is the following differential equation

yl(t) = _p(t){y(t) - T%J:gn(y(n)vy(n - 1)! vt ’y(n - m))}’ n<t<n+ 17 n= 0’ 1’ 27 R
p(t) >0, gn=e ST PO% <1,

(ii) In Theorem 2.1, a semi-contractivity condition is a delays and g,-independent condition for
the solution y* of (2.3) to be globally asymptotically stable.

By Theorem 2.1 and Example 2.1, we obtain the following result:

Example 2.2 Examples of delays and q-independent stability conditions.

(i) Ricker model yn+1 = qyn+{(1 = @Q)¥n—met~¥-m) 1 =0,1,2,.... The positive equilibrium
y* = 1 is globally asymptotically stable, if ¢ < 2 (see [1]).

(ii) Ricker model with delaled-density dependence yn+1 = qun+(1—q)yn exp{c(1—Y {2 @i¥n—i)}-

The positive equilibrium y* = 1/(3°/%, a;) is globally asymptotically stable, if ¢ < 2, where

a0 >0, 0,20, 1<i<mand (3%, a;)/ao < 2/e (see [8]).

(iii) Wazewska-Czyzewska and Lasota model yn+1 = qyn+(1 -—q)cz be”Wrn—¢ n=0,1,2,---,
i=0

where v >0, b, 20, 0<i<m, and Y 2 b =1.

The positive equilibrium y* is the positive solution of the equation y* = ce™W'. Put z, =

Y(y* — yn)- Then, this equation is equivalent to

m m
Tn+1 = qZn — (1 — @)vy" Zb,-(e""‘“" —1), where b 20, 0<i<m, Zb,- =1. (2.5)
i=0 i=0

Thus, the positive equilibrium y* is globally asmptotically stable, if ¢ < e/~ which is equivalent
that the zero solution of (2.5) is globally asymptotically stable if yy* < 1 (see [3]).

(iv) Bobwhite quail population model yp4+1 = gyn + (1 — q)l—:_'ﬁ'"—, n = 0,1,2,---, where
¢ > 1, b > 0. The positive equilibrium y* = ((c — 1)/b)}/? is globally asymptotically stable, if
¢ < 525 for p > 2 (see [1]).

We have the following counter example:

Example 2.3 Examples of g-dependent and delay-dependent stability conditions.

(i) A model in hematopoiesis yni1 = qyn + (1 — q)e2d~¥) n=0,1,2,---.

The equilibrium y* = 1 is globally asymptotically stable if q € [1/3,1), and 2-cycle if g € [0,1/3)
(see (2]).

(ii) A delayed model in hematopoiesis yp+1 = qyn + (1 — q)ez(l“”"-’), n=0,1,2,---.

The characteristic equation takes the form A3 — gA\? = —2(1 — q). Then for g = ¢ = 3;235 =
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0.633975--- > 1/3, the roots are —1 < A\; < 0, |Az| = |A3] = 1. For ¢2 < ¢ < 1, the equilibrium
y* =1 is locally attractive but it becomes unstable for ¢ = g2, and Hopf bifurcation occurs (see
[2]).
(iii) Ricker’s equation with delayed-density dependence yn41 = yn exp{cn(1— i b itn—i)}, n =
0,1,---, which is equivalent to Zny1 = ZTp — Cn Y iegbni(e®™ — 1), n = 0,1, .-, where
Cn, bn’i > 0, E:’;O bn’i = 1 and yn = ez"-
The positive equiliblium y* = 1 is globally asymptotically stable if limsup,_,q, YoMy <
§ + sery (see [7). '
(iv) A model of the growth of bobwhite quail populations yn+1 = qyn + (1 — q)1—+‘39‘—, n=
0,1,---, nm
where ¢,p > 0. If ¢ < 1, then for any 0 < ¢ < 1, ’}Lxxgoyn = 0. If ¢ > 1, then the positive
equilibrium y* = (¢ — 1)/? of the model exists. Moreover, if p < -(c_—l")’f-lfqy for m = 0, or
< =T 7 23;"“4 for m > 1, then the positive equiliblium y* is globally asymptotically
stable (see [4]).

3 Delays-independent stability conditions for (1.1)

After setting

L =ag, T2 = iai; r=ri+r, @) =qz-rfz), o) =(-1+vI+49)/(29), (3.1)

=1

we have the following result.

Theorem 8.1 Assume that f(z) = fo(z) =e* — 1 and 0 < ¢ < 1, and suppose that

rn<gq, r<g+(1-q)ln(g/r) and (¢/m)%€ ¥ (ri—r2)+(1-¢q)20, (3.2)
or

rn<g r>g+(1-9q) In(g/m), gra<m, (3.3)
r—ro(g/r1)%€"9—(1-q)(L-1)>0and L= ln’—‘-*';@—‘,%)ﬁ(-‘ll'—12 <0, )

or

{ rn>q r<l+gq, r-—r(g/r1)% 9~ (1-g)(In(g/r)~1)20, (3.4

- 2(q)
and L(g/r1)%e"9< T%;@'
Then, the zero solution of (1.1) is globally asymptotically stable.

Numerical result 3.1 Assume that f(z) = fo(z) =e*—1and 0<g< 1.

(i) The last inequality in (3.4) can be eliminated from (3.4).

(ii) Under the condition ,—'_} < % and r < 1+ g, the third inequality of (3.4) is satisfied, and
hence the zero solution of (1.1) is globally asymptotically stable.

Example 3.1 Wazewska-Czyzewska and Lasota model (see [9]).
‘ m m
Yn+1 = qyn + (1 — q)ch,-e"”’”“—‘, where ¢, ¥>0, b; >0 and Zb.- = 1. (3.5)
=0 i=0

(3.5) is equivalent to (2.5). For equation (3.5), the positive equilibrium of (3.5), say y*, is globally
asymptotically stable, if 7y* < 1 (see [3] and Example 2.2 iii)). For the case yy* > 1, by using
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the generalized Yorke condition, [6, Theorem 8] extended these to yy* < (1 +¢™*!)/(1 — ¢™*1)
with some restricted conditions "Vi(q) < 0, Wi(g) < 0”. Note that the last condition contains
the restriction (g+¢%+---+¢™)¢™ < 1 for 0 < g < 1. On the other hand, by applying Theorem
3.1 and Numerical result 3.1 to (2.5) for a; = (1 — ¢)yy*b;, 0 < ¢ < m, we obtain another
sufficient condition, for example, Y 1=, b; < 2by and vy* < (1 + ¢)/(1 — g) for the solution y*

of (3.5) to be globally asymptotically stable. Note that e — 1 < /(1 —z) for 0 < £ < 1 and

% < }—’:g for 0 < ¢ < 1. Thus, compared with [6, Proof of Theorem 2] (and [1]-[9] and
references therein), one can see that our results offer new stability conditions to (3.5).

4 Semi-contractivity with a sign condition

For 0 < g < 1, consider the following nonautonomous equation

m
z,,+1=q:rn-—2anjfj(xn_j), n=0,1,---, ‘ (4.1)
=0
m .
where 0 < ¢<1,08,;>20,0<j<m n=0,1,---, and Zan,j > 0, and we assume that

j=0
there is a function f(z) such that (1.2) holds. .
For (4.1) and any 0 < [, < m, we can derive the following equation.

In m—k
Zna1 = {@" Tnt, + (1= 0) Y ¢* D nok,jfi(@n-k-3)}
k=0 =0 (4.2)

ln m
=3¢ D tnkifi@n-k—j) n=2m2m+1,.-.
k=1 j=m—k+1

Similar to the proofs of [5, Lemmas 2.3 and 2.4], we have the following two lemmas for (4.1).

Lemma 4.1 Let {z,}2, be the solution of (4.1). If there exists an integer n > m such that
Tn+1 2 0 and Tni1 > Tn, then there exists an integer g € [n—m, n] such that

Tg = Og}lsnmzn_j < 0. (4.3)

If there exists an integer n > m such that z,41 < 0 and 2,41 < Ty, then there exists an integer
gn € [n — m,n] such that '

TG, = or<_r}asxmmn_,- > 0. , (4.4)
After setting
m km—k m . m
F=f+7, @@)=g@-nf@), d=¢", I=(-1+1+40)/(2),
and m m
920,21, 2mi @) = Bl20) + )¢ Y an-k39(2), (4.6)

k=1 j=m-—k+1
we are able to prove the following results.
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If there exists an integer n > m such that z,41 > 0 and z,4+1 > zj, then by (4.3) and (4.2)
with l, =n - g, we have that

Znt1 S P(2g,) = F2f(Ln)y Ln= min zn;. (4.7)
If there exists an integer n > m such that z,,+) < 0 and z,4; < Zp, then by (4.4) and (4.2) with
l, = n — gn, we have that

2 d(xs, ) —T = ;
Tntl 2 ‘p(zgn) r2f(Rn), R, ogg%cmxn—r (48)
Lemma 4.2 Suppose that the solution z, of (4.1) is oscillatory about 0. If for some real
number L < 0, there erists a positive integer ng, > 2m such that o, > L for n > ny, then for
any integer n > ng + 2m,

Tnyt S Rp forn2>np+2m, and znpy1 2 S forn 2 ng +4m, (4.9)

where Ry = max ¢(z)—r2f(L) > 0and S = min ¢(z)—r2f(RL) < 0. Moreover, if S, > L
L<z<0 4 0<z<R_
for any L < 0, then nl_i_r.go zn =0.

Assume that g(zo, 21, * - , 2m) is continuous for (20,21, ,2m) € R™*! and g(y*,¥",-* ,¥*) =
y* has a unique solution y*. '

Definition 4.1 The function g(zp,21, - ,2m) 18 8aid to be semi-contractive with a sign con-
dition 2z for y*, if

(i) for any constants z < y* and 2, > 2, 0 < i < m with zo < y*, there erists a constant
y* < Z < 400 such that g(20,21, - ,2m) < Z and for any 2 < 2; < Z, 0 < i < m with 2 > y*,
there ezists a constant Z > z such that Z < g(20,21,-* ,2m),

or

(ii) for any constants Z > y* and z; < %2, 0 < i < m with 2 > y*, there erists a constant
y* > z > —oo such that g(z0,21,--- y2m) = 2z and for any 2 < z; < 2, 0 < i < m with 2 < y*,
there exists a constant Z < % such that Z > g(20,21,** ,2m).

Then by (4.7), (4.8) and Lemma 4.2, we can obtain the following result.

Theorem 4.1 If §(20,21;d) = @(20) — F2f(21) i3 semi-contractive with a sign condition zo for
z* = 0, then the zero solution of (4.1) is globally asymptotically stable.

Note that if g(29,21;d) = @(20) — F2f(21) is semi-contractive with a sign condition 2o for
z* = 0, then the zero solution z* = 0 of (4.1) is uniformly stable and hence z* = 0 is globally
asymptotically stable.

For the special case f(z) = e®—1, we establish the following sufficient conditionsfor0 < ¢ <1
which are some extentions of the result in [5] for ¢ = 1.

Theorem 4.2 Suppose that f(z) = e® — 1 and that one of the following condition is fulfilled:

£ £
fa <1 and z€ '*: < 1"_2_ B , if 7 <4q, (4.10)
f<14+@ and %((1/71) eI E i A>G,
fg <1, LeM < d G3(6)>0 if 71<q
F<1l+44g, E(Q/Tl)qef"i > Te-_-; and G‘l(a) >0 if 7 >4, '
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=q\qln(q/T F—q—T* = _ =(5 /7 AT —G—T2e" _
vin | 1@ =a(an@/m) +7-q-re?) + 7 = #(g/m)TeI ~ g, (4.12)
G3($) = ('F] + (1 + Q)Fz) — q:,'~'2e$ _ ,Ferz—rze -z,

where o and & are the lowest solutions of G1(z) = 0 and G3(z) = 0, respectively, and and % is a
positive solution of §z%2 + z —1 = 0. Then, the solution z* = 0 of (4.1) is globally asymptotically
stable..

As an immediate consequence we have the following corollary.
Collbfary 4.1 Assume that f(z) = e* — 1 and that
F<14§ and 71 2> qr. (4.13)
If

Ny

7 = . z
() Z@mii< 15y, o () Z@m)N€TT> 1y ad Gi(@) >0, (414)

then, the zero solution of (4.1) is globally asymptotically stable.

m
Example 4.1 Consider a model Tn41 = gzn — Zai(e""“‘ -1), n=0,12,.--, where

=0
a; >0, 0<i<m, and Y 2,a; > 0. This equation ;s equivalent to (2.5), if Y vy ai = (1—q)vy*
and 0 < g < 1. By Corollary 4.1, the zero solution z* = 0 is globally asymptotically stable for
7 < 1+, if for the setting (4.5) and #; = §(*$2(1 - 2)e!~#)1/4, it holds that 2 < 149 —1. Since
e —1<z/(1 —z) for 0 < z < 1 and we do not need the restriction (g+ ¢*>+---+¢™)g™ < 1
for 0 < ¢ < 1 in [6, Theorem 2], our results improve some of [6, Theorem 8] (see [5]).
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