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A mathematical analysis in discrete transition system.

Hokkaido University Takenori Takada

Hokkaido University Takashi Kohyama

Ritusmeikan University Hisao Nakajima

Introduction

It is well known that forest community is consisted of multiple layers of tree populations,

from shrubs to taller tree species; especially, tropical forests have 3 or 4 layers with 30 to 50

meters tall. Individuals of the same species also occupy the different layers as they grow up

from seedlings or saplings to mature trees. They transit from lower layer to middle and top

layer during their lifetime. Therefore, dynamics of multi-layer population can be described as
the transitions among discrete layers, using variables which represent the number of

individuals at each layer. In this paper, we constructed discrete transition system and

examined the local stability of the equilibrium of the system. The preceding studies examined

the local stability of the two-layer system and obtained several theorems on permanence and

persistence (Thieme (2003), Baer et a1.(2006)). We extended the system to three-layered one
and discussed about the relationship between local stability and the pattem of interaction

among individuals at different layers. We showed that one-sided interaction (or $asymmeu\cdot ic$

competition) through light resource promotes the stability of tree populations.

Two-layer transition system

A species is distributed both in the lower and upper layer and the number of individuals at

lower and upper layer are denoted as $X_{1}$ and $x_{2}$ , respectively. The new-bom individuals are

recruited into only the lower layer with fecundity function $f(x_{1}.x_{2})$ , and individuals step up

from the lower to upper layer when they grow up with growth rate function $g(x_{1},x_{2})$ . Only

the upper-layer individuals reproduce the new-born individuals. The mortality rate functions

of lower- and upper-layer individuals are denoted as $m_{1}(x_{1},x_{2})$ and $m_{2}(x_{1},x_{2})$ ,

respectively. Then, discrete transition system can be written as:
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$\{\begin{array}{l}\frac{dx_{1}}{dt}=f(x_{1},x_{2})x_{2}-g(x_{1},x_{2})x_{1}-m_{1}(x_{1},x_{2})x_{1}\frac{d\kappa_{2}}{dt}=g(x_{1},x_{2})x_{1}-m_{2}(x_{1},x_{2})x_{2}\end{array}$ (1)

where the first derivatives of $f(x_{1},x_{2})$ and $g(x_{1},x_{2})$ with respect to $x_{j}$ are non-positive and

that of $m_{i}(x_{1},x_{2})$ is non-negative because of the negative density effect.

Therefore, the system has always $(0,0)$ and positive equilibria as long as the density effect is

operated, and the number of positive equilibria depends on the functional forms of vital rate

functions. Zero equilibrium is unstable, as far as

$f(0,0) \frac{g(0,0)}{g(0,0)+m_{1}(0,0)}>m_{2}(0,0)$ . (2)

Under the condition (2), we examined the local stability of the positive equilibrium without

specifying the functional forms of vital rates. The biological constraints of those functions

are:

$f(x_{1}.x_{2}),g(x_{1},x_{2}),m_{j}(x_{1},x_{2})>0$ and $\frac{f}{fx_{j}}\leq 0,\frac{\partial g}{\partial x_{j}}\leq 0,\frac{\partial m_{i}}{\partial x_{j}}\geq 0$ . (3)

(i) The mode of density-dependence

The modes of density-dependence, i.e. interaction among individuals, are also defined, using

the first derivative of a function with respect to stage variables. Suppose that mortality rate

function of lower-layer individuals depends negatively on only the number of upper-layer

individuals, which means one-sided interaction by taller individuals. Then,

$\frac{\partial m_{1}}{\partial x_{2}}>0$ and $\frac{\partial m_{1}}{\partial x_{1}}=0$ (One-sided interaction).

On the other hand, mortality rate function of upper-layer individuals depends negatively on

only the number of lower-layer individuals, which means inverse one-sided interaction by

lower individuals (we, hereafter, call it “revolution”).

Then,

$\frac{\partial m_{2}}{\partial x_{1}}>0$ and $\frac{\partial m_{2}}{\partial x_{2}}=0$ (Revolution).

If a function depends both on lower- and upper-layer individuals, it is called both-sided

interaction as:
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$\frac{\partial m_{2}}{\partial x_{1}}>0$ and $\frac{\partial m_{2}}{\partial x_{2}}>0$ (Both-sided interaction).

(ii) Single density effect

We firstly examine the single density effect on the local stability of positive equilibrium. If

only a vital rate function $(h)$ depends on only one variable, we call it single’ density effect. It

also means other vital rate functions are constant and density-independent. There are four

vital rate functions and two variables in two-layer transition system. Therefore, we analyzed

eight kinds of the systems with single density effect (Table 1).

We constructed the Jacobian matrix at the positive equilibrium to examine the local

stability and evaluated the signs of the trace and the determinant, using the signs of vital rate

functions (positive) and the derivatives (zero when it is constant or negative when it is density

dependent). If the trace is always negative and the determinant is always positive, the positive

equilibrium is always stable and never unstable irrespective of the specific functional forms of

vital rate functions. If the sign of either the trace or the determinant is not definite, it means
the equilibrium could be unstable depending on the strength of the density-dependence of the

function in question or the parameters.

In Table 1, most of the single density effects lead to the $s$tability of positive

Table 1 The result of single density effect for local stability of positive equilibrium.

‘Stable” in the cells means the positive equilibrium is never unstable irrespective of the

strength of density-dependence and “Unstable” does the equilibrium could be unstable

depending on the strength of density-dependence.
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equilibrium. Only the density effect by the number of lower individuals on the growth rate

function could be the cause of the instability.

(iii) Multiple density effects

In general, the system (1) has several density effects at the same time. In some
cases, the fecundity function depends both on $x_{1}$ and $x_{2}$ . In other cases, the fecundity function

depends on $x_{1}$ and the growth rate function depends on $x_{2}$ . We analyzed the loca] stability

analysis in such multiple density effects. The number of the combinations of

density-dependence of the vital rates functions is $2^{8}-1$ (Table 2). We constructed a computer

program to examine the local stability of the positive equilibrium. In the program, we
evaluated the signs of the trace and the determinant of the Jacobian, only using the signs of

Table 2 The result of multiple density effects for local stability of positive equilibrium.

“Yes” in the cells represents the density dependence by a variable in question. The hyphen

represents no density-dependent effect. $*$ represents the wild card of either‘Yes” or

hyphen.
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vital rate functions and the derivatives.

In Table 2, the result of single density effect is also represented in the former part of

the table, which shows the same result as in Table 1. In the cases of multiple density effects,

two types of instability could occur. One is the case where the density dependence of

growth rate function by $x_{1}$ (revolution factor). The other cause is the density dependence of

mortality rate function by $x_{1}$ (revolution factor) when coupled wiith $\frac{\partial f}{\partial x_{2}}<0$ or $\frac{\partial m_{1}}{\partial x_{2}}>0$ .
Therefore, if two revolution factors are removed, the system is always stable. Summanizing

the result of two-layer system, the positive equilibrium is never unstable if there is no
“revolution”.

$Thre\epsilon\cdot 1ay_{\bm{t}}r$ transition system

The same analysis was conducted in three-layer transition system. The discrete transition

system can be written as:

$\{\begin{array}{ll}\frac{dx_{1}}{dt}=f(x)x_{3}-g_{1}(x)x_{1}-m_{1}(x)x_{1} \frac{dx_{2}}{dt}=g_{I}(x)x_{I}-g_{2}(x)x_{2}-m_{2}(x)x_{2} \bm{x}=(x_{1},x_{2},x_{3}).\frac{dx_{3}}{dt}=g_{2}(x)x_{2}-m_{3}(x)x_{3} \end{array}$ (4)

Therefore, the system has always zero and positive equilibria as long as the density effect is

operated, and the number of positive equilibria depends on the functional forms of vital rate

function$s$ . Under the condition (2), we examined the local stability of the positive equilibrium

without specifying the functional form$s$ of vital rates.

(i) Single density effect

We firstly examine the single density effect on the local stability of positive equilibrium.

There are six vital rate functions and three variables in three-layer tran$s$ ition system.

Therefore, we analyzed local stabilities of 18 kinds of the systems with single density effect
(Table 3).

In Table 3, 6 kinds of single density effects lead to the instability of positive

equilibrium. Four kinds of single density effects are‘Revolution” type and the other two aoe
“one-sided interaction” type.

(ii) Multiple density effects
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We also analyzed the local stability analysis in the multiple density effects. The number of the

Table 3 The result of single density effects in three-layer transition system.

combinations of density-dependence of the vital rates functions is $2^{18}-1$ $(262,143)$. We

examined the local stability of the positive equilibrium, using the program to evaluate the

signs of the trace and the determinant. The result clarifies three types of causes for instability.

The first cause is a single density effect that leads to the instability. If the combination of

density effect includes the single density effect, it always causes the instability. The second

is a density effect on growth rate at middle layer by lower individuals. The density effect

could be the cause of instability when coupled with one or more of the following

density-dependence:

$\frac{\partial f}{\partial x_{2}}<0,\frac{\partial m_{1}}{\partial x_{2}}>0,\frac{\partial g_{1}}{\partial x_{2}}<0,\frac{\partial g_{1}}{\partial x_{3}}<0,\frac{\partial m_{2}}{\partial x_{3}}>0,\frac{\partial g_{2}}{\partial x_{3}}<0$ (5).

The third is a density effect on mortality rate at upper layer by lower individuals. The density

effect could be the cause of instability when coupled with one or more of the inequalities (5).

Summarizing the result in three-layer system, the positive equilibrium could be unstable even

if there is no ‘revolution”.
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