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Ultrafilters and Higson compactifications

Masaru Kada / 嘉田勝
(Osaka Prefecture University, Japan / 大阪府立大学)

Abstract
We prove the following $th\infty rem$ : If there is a base $F$ of a non-

rapid ultrafilter on $w$ , then we can approximate $\beta\omega$ by $|\mathcal{F}|$-many
Higson compactifications of $w$ in a nontrivial way. It is still open
whether we can eliminate the assumption that $\mathcal{F}$ is non-rapid.

MSC: Primary $03E17$; Secondary $03E35$ , 54D35

1 lntroduction
In this paper we give apartial answer to aquestion which wae posed by
Kada, Tomoyaeu and Yoshinobu [3].

We refer the reader to the book [1] for undefined set-theoretic notions.
For $X,$ $Y\in[\omega]^{\omega}$ , we write $X\subseteq*Y$ (or $Y\supseteq*X$ ) if $X\backslash Y$ is finite. The
symbol $\omega^{\uparrow w}$ denotes the set of all strictly increaeing $h\iota nctions$ in $\omega^{\omega}$ . For
$f,g\in\omega^{w}$ , we write $f\leq^{*}g$ if $f(n)\leq g(n)$ holds for all but finitely many
$n\in\omega$ . Adominating family is acofinal subset of $\omega^{\omega}$ with respect to
$\leq*$ The dominating number $\mathfrak{d}$ is the smaUest cardinality of adominating
fanily.

For compactifications $\alpha X$ and $\gamma X$ of acompletely regular Hausdorff
space $X$ , we write $\alpha X\leq\gamma X$ if there is acontinuous surjection $\varphi hom\gamma X$

onto $\alpha X$ such that $\varphi rx$ is the identity function on $X$ , and $\alpha X\simeq\gamma X$

if $\alpha X\leq\gamma X\leq\alpha X$ . The $Stone-\check{C}$ech compactification $\beta X$ of $X$ is the
maximal compactification of $X$ in the sense of the order relation $\leq among$

compactifications of $X$ modulo the equivalence $relation\simeq$ .
We lntroduce the foUowing notation: For compactification $\alpha X$ of $X$ and

disjoint closed subsets $A,B$ of $X$ , we write $A\Vert B(\alpha X)$ if $c1_{\alpha X}A\cap c1_{\alpha X}B=$

$\emptyset$ , and otherwise we write A $XB(\alpha X)$ . It is not so hard to $8how$ that
$A||B(\alpha X)$ if and only if there is abounded continuous function $fhom$
$\alpha X$ to $\mathbb{R}$ sui that $f”A=\{0\}$ and $f”B=\{1\}$ . Note that $\alpha X\leq\gamma X$

is equivalent to the aesertion that, for disjoint closed subsets $A,$ $B$ of $X$ ,
$A||B(\alpha X)$ implies $A\Vert B(\gamma X)$ . For anormal space $X,$ $A||B(\beta X)$

holds for any pair $A,$ $B$ of disjoint closed subsets of $X$ .
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We say a metric $d$ on a space $X$ is proper if each d-bounded subset of
$X$ has a compact closure. We say a metric space is proper if its metric is
proper. For a proper metric space (X, d) and disjoint closed subsets $A,$ $B$

of $X$ , we say $A$ and $B$ diverge with respect to the metric $d$ , or $A$ and $B$

d-diverge in short, if for every $R>0$ there is a compact subset $K$ of $X$

such that $d(A\backslash K, B\backslash K)>R$ holds.
The Higson compactification $\overline{X}^{d}$ of (X, $d$) is uniquely characterized (up

$to\simeq$-equivalence) by the property that $A\Vert B(\overline{X}^{d})$ if and only if $A$ and
$B$ ldiverge. Note that Higson compactifications are metric-dependent.

In the paper [3] the authors introduced the following cardinal charac-
teristics to investigate approximability of $\beta w$ by sets of Higson compacti-
fications of $w$ . For a metrizable space $X$ , let $PM’(w)$ be the set of proper
metrics $d$ on $X$ such that $d$ is compatible with the topology on $X$ and
$\overline{w}^{d}\not\simeq\beta w$ holds. For $d_{1)}d_{2}\in PM’(w)$ , we write $d_{1}\subseteq d_{2}if\overline{\omega}^{d_{1}}\leq\overline{w}^{d_{2}}$ holds.

Definition 1.1. $\mathfrak{h}\mathfrak{p}’$ is the smallest cardinality of a subset $D$ of $PM’(w)$

such that $D$ is directed with respect to the order relation $\subseteq$ and $\sup\{\overline{w}^{d}$ :
$d\in D\}\simeq\beta w$ , where the supremum is in the sense of the order relation $\leq$

among compactifications of $w$ .
Throughout the present paper, an ultrafilter means a nonprincipal ul-

trafilter on $\omega$ . The cardinal $u$ is the smallest cardinality of a subset of $[w]^{w}$

which generates an ultrafilter.
In the paper [3] the authors asked the following question.

Question 1.2. $\mathfrak{h}\mathfrak{p}’\leq u$ ?

This question is still open.
In Section 2 we prove that, if a subset $\mathcal{F}$ of $[\omega]^{w}$ generates a non-rapid

ultrafilter, then $\mathfrak{h}\mathfrak{p}’\leq|\mathcal{F}|$ holds. We say a filter $\mathcal{F}$ on $\omega$ is rapid if for all
$h\in w^{\uparrow w}$ there is a set $X\in \mathcal{F}$ such that for all $n<w$ we have $|X\cap h(n)|\leq n$ ,
or equivalently, if the set of increasing enumerations of sets in $\mathcal{F}$ is a
dominating family. When an ultrafilter $\mathcal{U}$ is generated by a subset $\mathcal{F}$ of
$[w]^{w},$ $\mathcal{U}$ is rapid if and only if the set of increasing enumerations of sets of $\mathcal{F}$

is a dominating family. As a consequence, we see that $u<\mathfrak{d}$ implies $\mathfrak{h}\mathfrak{p}’\leq u$ ,
since an ultrafilter generated by a set of size less than $\mathfrak{d}$ cannot be rapid.
So the mam result in Section 2 gives a partial answer to Question 1.2.

Remark 1.3, It is known that non-rapid ultrafilters can be constructed in
ZFC, but we do not know if we can find a non-rapid ultrafilter which is
generated by a subset of $[w]^{\omega}$ of size $u$ under ZFC. See Section 3 for further
discussion.
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2 The Main Result
First we prove a simple combinatorial lemma.
Lemma 2.1. Suppose that a subset $\mathcal{F}$ of $\omega^{\uparrow w}$ is not a dominating family.
Then there is a function $h\in w^{\uparrow\omega}$ such that, for all $f\in \mathcal{F}$ there are
infinitely many $m<w$ such that the interv$al[h(m),$ $h(m+1))$ contains two
consecutive values of $f$ .
Proof. Suppose that $\mathcal{F}\subseteq w^{\uparrow w},$ $g\in w^{\uparrow w}$ and for all $f\in \mathcal{F}$ there are infinitely
many $n<\omega$ which $satis\phi f(n)<g(n)$ . Define $h\in w^{\uparrow W}$ by letting $h(n)=$
$g(2n)$ for each $n.\cdot$ We show that $h$ satisfies the requirement. Suppose not.
Find an $f\in \mathcal{F}$ such that, for all but finitely many $m<w$ , the interval
[$h(m),$ $h(m+1))$ contains at most one value of $f$ . Then we can find a $k<\omega$

such that for all $n<w$ we have $f(n+k)>h(n)$ . Since $h(n)=g(2n)$ and
$g$ is increasing, for all $n>k$ we have $f(n+k)>h(n)=g(2n)>g(n+k)$ .
But it is impossible by the choice of $g$ . $\square$

Now we are going to prove the main theorem.

Theorem 2.2. Suppose that there is a subset $\mathcal{F}$ of $[w]^{w}$ of size $\kappa$ which
generates a non-rapid ultrafilter on $\omega$ . Then $\mathfrak{h}\mathfrak{p}’\leq\kappa$ .
Proof. Let $\mathcal{F}$ be a subset of $[\omega]^{w}$ of size $\kappa$ which generates a non-rapid
ultrafilter. Then the set of increasing enumerations of sets in $\mathcal{F}$ is not a
dominating family. By the previous lemma, find a function $h\in\omega^{\uparrow w}$ such
that, for every $X\in \mathcal{F}$, for infinitely many $m<w$ we have $|X\cap[h(m),$ $h(m+$ .
$1))|\geq 2$ . We may assume that $h(O)=0$. Define a function $\pi\in\omega^{w}$ by
letting $\pi(k)=m$ if $h(m-1)\leq k<h(m)$ .

For each $X\in \mathcal{F}$ , we define a function $\rho_{X}$ with domain $w\cross w$ in the
following way:

$\rho x(k, l)=\{\begin{array}{ll}0 if k=l1 if k, l\in X, k\neq l and \pi(k)=\pi(l)\pi(k)+\pi(l) otherwise.\end{array}$

It is easily checked that $\rho x$ is a metric on $w$ and any $\rho x$-bounded subset
of $\omega$ is finite, and so $\rho x$ is a proper metric on $w$ .

By the choice of $h$ , For any $X\in \mathcal{F}$ there are infinitely many pairs
$k,l\in w$ for which $\rho_{X}(k, l)=1$ holds, and so we can construct a pair $A,$ $B$

of disjoint infinite subsets of $w$ so that $A$ $MB(\overline{w}^{\rho x})$ holds. This ensures
that $\rho_{X}\in PM’(w)$ for all $X\in \mathcal{F}$.

Note that, for $X,$ $Y\in \mathcal{F},$ $X\supseteq^{*}Y$ implies $\rho_{X}\subseteq\rho_{Y}$ . Since $\mathcal{F}$ generates an
ultraSilter, $\mathcal{F}$ is. $\supseteq*$-directed ($even\supseteq$-directed), and so the set $\{\rho_{X} ; X\in \mathcal{F}\}$

$is\subseteq$-directed.
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We can easily see that, for $B\subseteq\omega$ , if $X\subseteq*B$ or $X\sigma^{*}w\backslash B,$
$t\dot{h}$en

$B\Vert\omega\backslash B$ (di”). Since $\mathcal{F}$ generates an ultrafilter, for each $B\subseteq\omega$ we
can find an $X\in \mathcal{F}$ such that $X\subseteq^{*}B$ or $X\subseteq^{*}\omega\backslash B$ . This implies that,
for any pair $A,$ $B$ of disjoint subsets of $w$ , there is an $X\in \mathcal{F}$ such that
$A\Vert B(\overline{\omega}^{\rho x})$ holds, which means that $\sup\{\overline{w}^{\rho x} : X\in \mathcal{F}\}\simeq\beta\omega$. By

$the\square$

definition of $\mathfrak{h}\mathfrak{p}’$ , we have $\mathfrak{h}\mathfrak{p}’\leq|\mathcal{F}|=\kappa$ .
In the paper [3] the authors also introduced the following variant of the

cardinal $\mathfrak{h}\mathfrak{p}’$ .
Deflnition 2.3. $\mathfrak{h}t$ is the smallest cardinality of a subset $D$ of $PM’(\omega)$

such that $D$ is well-ordered by $\subseteq$ and $\sup\{\overline{w}^{d} : d\in D\}\simeq\beta w$ (if such a set
$D$ exists; otherwise we write $\mathfrak{h}t=\infty$).

An ultrafilter is called a simple $p_{\kappa}$ -point, where $\kappa$ is a regular uncountable
cardinal, if it is generated by a subset of $[\omega]^{w}$ which is well-ordered $by\supseteq^{*}$ in
order type $\kappa$ . The following result is obtained as a coro ary of the previous
$th\infty rem$ .
Corollary 2.4. Suppose that there is a subset $\mathcal{F}$ of $[w]^{w}$ of size $\kappa$ such
that $\mathcal{F}$ is well-ordered $by\supseteq^{*}$ and generates a non-rapid ultrafilter on $\omega$ (so

$\mathcal{F}$ generates a simple $p_{\kappa}$ -point). Then $\mathfrak{h}t\leq\kappa$ .

3 Consequences of the main result
The cardinal $\mathfrak{p}\mathfrak{p}$ , which was introduced in [3], is the smallest cardinal $\kappa$

for which a simple $p_{\kappa}$-point exists (if such a $\kappa$ exists; otherwise we write
$\mathfrak{p}\mathfrak{p}=\infty)$ . Here we introduce more cardinal characteristics.

Deflnition 3.1. u(non-rapid) is the smallest cardinality of a subset $\mathcal{F}$ of
$[w]^{w}$ which generates a non-rapid ultraSilter.

$\mathfrak{p}\mathfrak{p}$ (non-rapid) is the smallest cardinality of a subset $\mathcal{F}$ of $[w]^{w}$ which is
well-ordered $by\supseteq*and$ generates a non-rapid ultrafilter (if such a set $\mathcal{F}$

exists; otherwise we write $\mathfrak{p}\mathfrak{p}(non- rapid)=\infty)$ .
Using the above cardinal characteristics, Theorem 2.2 and Corollary 2.4

are represented as follows.

Corollary 3.2. $\mathfrak{h}\mathfrak{p}’\leq u$ (non-rapid) and $\mathfrak{h}t\leq \mathfrak{p}\mathfrak{p}$ ($non$-rapid).

It is clear that $u\leq \mathfrak{p}\mathfrak{p},$ $u\leq u$(non-rapid) and $\mathfrak{p}\mathfrak{p}\leq \mathfrak{p}\mathfrak{p}$ ($non$-rapid). Also it
is easily observed that $u<V$ implies u(non-rapid) $=u$, and $\mathfrak{p}\mathfrak{p}<\mathfrak{d}$ implies
$\mathfrak{p}\mathfrak{p}$ (non-rapid) $=\mathfrak{p}\mathfrak{p}$ . So we obtain the following result, which partialy
answers Question 1.2.

Corollary 3.3. If $u<\mathfrak{d}$ , then $\mathfrak{h}\mathfrak{p}’\leq u$ . If $\mathfrak{p}\mathfrak{p}<\mathfrak{d}$ , then $\mathfrak{h}\mathfrak{p}’\leq \mathfrak{p}\mathfrak{p}$ .
It is known that CH implies the existence of a simple $p_{\aleph_{1}}$ -point. Since the
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Miller forcing preserves p-points [1, Lemma 7.3.48] and the preservation of
p-points is preserved under countable support iteration [1, Theorem 6.2.6],
a generating set of a simple $p_{\aleph_{1}}$ -point in the ground model still generates
an ultrafilter in the forcing model by iterated Miller forcing. On the other
hand, $\mathfrak{d}=\aleph_{2}$ holds in the model obtained by a countable support iteration
of Miller forcing of length $w_{2}$ over a model for CH. Hence $\mathfrak{p}\mathfrak{p}<V$ is
consistent with ZFC.

But the following question is still open.

Question 3.4. $u(non-rapid)=u$ ? $\mathfrak{p}\mathfrak{p}(non-rapid)=\mathfrak{p}\mathfrak{p}$ ?

In the paper [3], another upper bound for $\mathfrak{h}\mathfrak{p}’$ is given.

Deflnition 3.5 ([2, Section 5]). For a function $h\in w^{w},$ $\mathfrak{l}_{h}$ is the smallest
size of a subset $\Phi$ of $\prod_{n<w}[w]\leq 2^{n}$ such that for every $f \in\prod_{n<w}h(n)$

there is a $\varphi\in\Phi$ such that $f(n)\in\varphi(n)$ for all but finitely many $n$ . Let
$\downarrow=\sup\{\mathfrak{l}_{h} : h\in w^{w}\}$ .
Theorem 3.6 ([3, Theorem 6.11]). $\mathfrak{h}\mathfrak{p}’\leq \mathfrak{l}$ .

Now we can see that the above inequality is consistently strict.

Corollary 3.7. $\mathfrak{h}\mathfrak{p}’<\mathfrak{l}$ (moreover, $\mathfrak{h}t<\mathfrak{l}$) is consistent with $ZFC$.
Proof. We know that there is a proper forcing notion $\mathbb{P}$ which satisfies the
following two properties (see Remark 3.8).

$\bullet$
$\mathbb{P}$ preserves p-points.

$\bullet$ In the forcing model by $\mathbb{P}$ , for any function $H\in w^{w}\cap V$ , there
is a function $g \in\prod_{n<w}H(n)$ such that, for every function $x\in$

$\prod_{n<w}H(n)\cap V$ there are infinitely many $n<w$ with $x(n)=g(n)$ ,
where V denotes a ground model.

We consider aforcing model obtained by acountable support iteration
of alternation of Miller forcing and the above forcing notion $\mathbb{P}$ of length $w_{2}$

over amodel for CH.
Since every iterand preserves $p$-points and the preservation of p-point8

is preserved under countable support iteration, agenerating set of asimple
$p_{\aleph_{1}}$ -point in the ground model still generatoe an ultrafilter in our forcing
model, and so $\mathfrak{p}\mathfrak{p}=\aleph_{1}$ holds. On the other htd, it is easily observed that
$\mathfrak{d}=\mathfrak{l}=\aleph_{2}=c$ holds in the same model. By CoroUary 3.3,

$\aleph_{1}=\mathfrak{h}\mathfrak{p}’\square =$

$\mathfrak{h}t<\mathfrak{l}=\aleph_{2}$ holds in this model.

Remark 3.8. The book [1] tells us in Subsection 7.$4.C$ that the infinitely
equal forcing EE meets the requirements which appear in the proof of
Corollary 3.7. But Brendle pointed out (in private communication) that
EE does not preserve p-points, and the following $tree\frac{-}{}1ike$ infinitely equal
forcing” TEE is what we actually need.
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$p\in \mathbb{T}EE$ if:

1. $p$ is a subtree of $\bigcup_{m<w}\prod_{n<m}2^{n}$ without endpoints,
2. there is a $C\in[\omega]^{w}$ such that, for $s\in p$ , if $|s|=n\in C$ then

$succ_{p}(s)=2^{n}$ ,

and TEE is ordered by inclusion.

Appendix: UItrafilter number for non-q-points
After the submission of the first version of this article, Blass pointed out
that the proof of the main theorem (Theorem 2.2) works under the aeト

sumption that $\mathcal{F}$ generates an ultraffiter which is not a q-point.
An ultrafilter $\mathcal{U}$ is called a q-point if for any finite-to-one function $f$

with domain $w$ there is an element $X$ of $\mathcal{U}$ such that $frx$ is a one-to-one
function.

It is easy to $s\infty$ that a $q$-point is arapid ultrafilter, so the assumption
that $\mathcal{F}$ generates anon-q-point ultrafflter is weaker than that $\mathcal{F}$ generatae
anon-rapid ultrafilter.

To $modi\Phi$ the proof of $Th\infty rem2.2$ to fit in the weaker assumption, juet
take afunction $\pi homw$ to $\omega\backslash \{0\}$ which witn\’eses that the ultrafilter
generated by $\mathcal{F}$ is not a $q$-point. Then for any $X\in \mathcal{F}$ there $axe$ infinitely
many $m\in w\backslash \{0\}$ for which $\pi^{-1}(\{m\})\cap X$ has at least two elements.
Define $\rho_{X}$ for each $X\in \mathcal{F}$ in the same way as the original proof.

Let $u$(non-q-point)be the smaUoet size of asubset $\mathcal{F}$ of $[\omega]^{w}$ which
$generat\infty$ anon-q-point ultrafilter. Clearly we have the inequdity $u\leq$

$u$(non-q-point) $\leq \mathfrak{u}$($non$-rapid), and so $u<\mathfrak{d}$ implies $u=u$($non- q$-point).
Now we can refine the first inequality of Corofary 3.2 to the inequality
$\mathfrak{h}\mathfrak{p}’\leq u$(non-q-point). Ako, instead of the first equality of Question 3.4,
we should ask whether u(non-q-point) $=u$ is proved under ZFC.
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