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Abstract

The half-space problem for steady gas flow with evaporation or condensation is
studied for the case where the gas-liquid interaction law, i.e., the kinetic boundary
condition at the gas-liquid interface, is extended to a wide class. It is shown that
the half-space problem can be formulated as independent of the detail of the gener-
alized kinetic boundary condition concerned. On the basis of this fact, we show that
the steady solution of Boltzmann equation with the generalized kinetic boundary
condition can be obtained from the steady solution for the complete condensation
condition.

1 Introduction

It is well known that the gas behavior near the boundary is essentially in
a nonequilibrium state unless the entire flow field is in a equilibrium state.
The typical length scale characterizing the nonequilibrium behavior of gas
near the boundary is the mean free path of the gas molecules, $p$ and the
nonequilibrium region is called the Knudsen layer, if the characteristic length
scale for the entire flow field, say $L$ , is sufficiently large compared with the
mean free path $\ell$ . The gas behavior outside the Knudsen layer may be regarded
in a local equilibrium state in the leading order of approximation, and hence
the gas behavior can be determined by the macroscopic quantities, such as
the gas density, gas velocity, gas temperature, and so on, and the macroscopic
quantities are governed by equations of fluid mechanics.
$\overline{**p_{resent}}$ address: Division of Mechanical Engineering, Osaka University, Suita,
565-0871, Japan. Email address: yano@mech.eng.$oeaka_{r}$u.ac.jp

数理解析研究所講究録
第 1592巻 2008年 95-104 95



In the presence of evaporation or condensation at the vapor-liquid interface,
the gas near the gas-liquid interface cannot be in an equilibrium state. There-
fore, the boundary conditions for fluid mechanics equations should be derived
from the kinetic theory of gases or the molecular gas dynamics. To do so, we
have to solve the Boltzmann equation with the kinetic boundary condition at
the gas-liquid interface and the boundary condition at a distant region where
the gas is in a local equilibrium state. This is called the half-space problem of
gas ffow with evaporation or condensation.

The half-space problem has been extensively studied by Sone and his col-
leagues (Sone 1978, Sone&Onishi 1978, Sone, Aoki&Yamashita 1986, Sone,
Aoki, Sugimoto&Yamada 1988, Sone&Sugimoto 1990, Aoki, Sone&Yamada
1990, Aoki, Nishino, Sone&Sugimoto 1991, Sone, Aoki&Doi 1992, Sone,
Golse, Ohwada&Doi 1998, Bardos, Golse&Sone 2006). Most of above studies
have treated the case of kinetic boundary condition of complete condensation
type; the case of a generalized boundary condition has been discussed by Aoki
&Sone (1991) and Sone (2006).

In the present paper, we address a further generalized boundary condition, in
which the velocity distribution function for the molecules leaving the interface
is assumed to be a half of Maxwellian multiplied by a factor $\mathcal{A}$ , and we $don$ )

$t$

require any special property for $\mathcal{A}$ . We have proposed this type of kinetic
boundary condition at the interface through a series of molecular dynamics
studies (Ishiyama, Yano&FUjikawa $2004a$, Ishiyama, Yano&Fujikawa $2004b$ ,
Ishiyama, Yano&Fujikawa 2005).

2 Governing equation and boundary condition

Consider the semi-infinite space filled with a condensable monatomic gas and
bounded by a planar condensed phase of the same molecules. The temperature
of the condensed phase is $T_{w}$ , which is constant, and the gas at a distant region
from the condense phase is in an equilibrium state.

We assume that the gas is an ideal gas and its behavior is independent of
time and the space coordinates parallel to the interface of gas and condensed
phase. Then, the gas behavior is governed by the Boltzmann equation

$\xi_{1}\frac{\partial f}{\partial X_{1}}=J(f, f)$ , $(0<X_{1}<\infty)$ , (1)

where $f(X_{1},\xi_{i})$ is the velocity distribution function of gas molecule, $\xi_{i}(i=$

$1,2,3)$ is the molecular velocity, $X_{1}$ is the space coordinate, the subscript 1
denotes the component normal to the interface, and the interface is located
at $X_{1}=0$ . The right-hand side of Eq. (1), $J(f, f)$ , is the collision term that
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describes the binary collision of gas molecules. We don’t mention the detail of
the collision term for a while and in fact the present theory is not restricted
to any specific form of collision term.

A generalized kinetic boundary condition that we study here is

$f= \frac{\mathcal{A}}{(2\pi RT_{w})^{3/2}}$ exp $(- \frac{\xi_{i}^{2}}{2RT_{w}})$ , $(X_{1}=0, \xi_{1}>0)$ , (2)

where $R$ is the gas constant. Here, we assume (i) $\mathcal{A}>0$ , (ii) $\mathcal{A}$ is a function
of $T_{w}$ , (lil) $\mathcal{A}$ is independent of $\xi_{i}$ .

If $\mathcal{A}=\rho^{*}$ , where $\rho^{*}$ is the saturated vapor density at temperature $T_{w}$ , then
Eq. (2) reduces to the complete condensation condition, the case of which has
been extensively studied by Sone and his colleagues. If $\mathcal{A}=\alpha\rho^{*}+(1-\alpha)\sigma$ , then
Eq. (2) reduces to the boundary condition discussed by Aoki&Sone (1991)
and Sone (2006), where $\alpha$ is a constant $(0<\alpha<1)$ specified in advance.
The mass flux of the molecules incident on the interface is represented by $\sigma$ ,
defined by

$\sigma=-(\frac{2\pi}{RT_{w}})^{1/2}\int_{\xi_{1}<0}\xi_{1}f|_{X_{1}=0}d\xi$ , (3)

where $d\xi=d\xi_{1}d\xi_{2}d\xi_{3}$ and the range of integration is $-\infty<\xi_{1}<0$ and
$-\infty<\xi_{1},\xi_{2}<\infty$ ; if nothing is stated, the integration is carried out over the
whole space of $\xi_{1}$ . In the latter case, $\mathcal{A}$ is dependent on $f$ for $\xi_{1}<0$ at $X_{1}=0$

through $\sigma$ . This does not conflict with the above three assumptions on $\mathcal{A}$ .

We shall remark that if $\mathcal{A}\neq\rho^{*},$ $\mathcal{A}$ should depend on $f$ for $\xi_{1}<0$ at $X_{1}=0$

so that the equilibrium state at $T_{w}$ can be satisfied by Eq. (2). In this case,
the numerical value of $\mathcal{A}$ cannot be specified before solving the problem, as in
the case of $\mathcal{A}=\alpha\rho^{*}+(1-\alpha)\sigma$ .

The boundary condition at infinity is given by

$f= \frac{\rho_{\infty}}{(2\pi RT_{\infty})^{3/2}}\exp[-\frac{(\xi_{i}-v_{\infty})^{2}}{2RT_{\infty}}]$ , $(X_{1}arrow\infty)$ , (4)

where $\rho_{\infty},$ $v_{i\infty}$ , and $\tau_{\infty}$ are, respectively, the gas density, the gas velocity, and
the gas temperature at infinity, which are constants and $v_{2\infty}=v_{3\infty}=0$ . Aoki,
Nishino, Sone&Sugimoto (1991) have extended the half-space problem to the
case where $v_{2\infty}\neq 0$ .
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3 Reformulation of the half-space problem

3.1 Nondimensionalization

The half-space problem (1)(2)(4) can be nondimensionalized as follows:

$\zeta_{1}\frac{\partial\hat{f}}{\partial x_{1}}=\frac{2}{\sqrt{\pi}}\hat{J}(\hat{f}, f)$, $(0<x_{1}<\infty)$ , (5)

$\hat{f}=\frac{\hat{\mathcal{A}}}{\pi^{3/2}}e^{-\zeta_{4}^{2}}$ , $(x_{1}=0, \zeta_{1}>0)$ , (6)

$f= \frac{\hat{\rho}_{\infty}}{(\pi\hat{T}_{\infty})^{3/2}}\exp[-\frac{(\zeta_{1}-\hat{v}_{1\infty})^{2}}{\hat{\tau}_{\infty}}]$ , $(x_{1}arrow\infty)$ . (7)

The nondimensional variables are defined as

$x_{1}= \frac{X_{1}}{\ell_{0}}$ , $\zeta_{1}=\frac{\xi_{1}}{\sqrt{2RT_{w}}}$ , $i= \frac{f(2RT_{w})^{3/2}}{\rho}*$
’

$\hat{\mathcal{A}}=\frac{\mathcal{A}}{\rho^{n}}$ , (8)

$\hat{\rho}_{\infty}=\frac{\rho_{\infty}}{\rho}*$

’ $\hat{v}_{1\infty}=\frac{v_{i\infty}}{\sqrt{2RT_{w}}}$ , $\hat{T}_{\infty}=\frac{\tau_{\infty}}{T_{w}}$ , (9)

where $\ell_{0}$ is the mean free math in the equilibrium state at temperature $T_{w}$

and density $\rho^{*}$ .

3.2 Mass flux across the interface

The mass flux across the interface, $m$ , is given by

$m= \int\xi_{1}f|_{X_{1}=0}d\xi=\rho_{\infty}v_{1\infty}$ , (10)

where the first equal sign is the definition and the second sign holds because of
the assumption of steady state. Substituting the definitions of nondimensional
variables into Eq. (10) leads to the nondimensional relation for mass flux across
the interface,

$\hat{m}=\hat{\rho}_{\infty}\hat{v}_{1\infty}=\int_{\zeta_{1}>0}\zeta_{1}f|_{x_{1}=0}d\zeta+\int_{\zeta_{1<0}}\zeta_{1}\hat{f}|_{x_{1}=0}d\zeta=\frac{\hat{A}-\hat{\sigma}}{2\sqrt{\pi}}$ , (11)

where $d\zeta=d\zeta_{1}d\zeta_{2}d\zeta_{3}$ and

$\hat{\sigma}=-2\sqrt{\pi}\int_{\zeta_{1}<0}\zeta_{1}\hat{f}|_{x_{1}=0}d\zeta$ . (12)
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Making use of Eq. (11), we can eliminate $\mathcal{A}$ from the nondimensional kinetic
boundary condition at the interface, Eq. (6), and we have

$f= \frac{2\sqrt{\pi}\hat{\rho}_{\infty}\hat{v}_{1\infty}+\hat{\sigma}}{\pi^{3/2}}e^{-\zeta^{2}}$, $(x_{1}=0, \zeta_{1}>0)$ , (13)

That is, the half-space problem (1)(2)(4) can be formulated as Eqs. (5), (13),
and (7), irrespective of $\mathcal{A}$ , i.e., the detail of gas-liquid interaction law.

S. S Elimination of $\hat{\rho}_{\infty}$

Introducing new variables

一

$= \frac{\hat{f}}{\hat{\rho}_{\infty}}$ , $\overline{x}_{1}=\hat{\rho}_{\infty}x_{1}$ , $\overline{\sigma}=\frac{\hat{\sigma}}{\hat{\rho}_{\infty}}=-2\sqrt{\pi}\int_{\zeta}\zeta_{1}\overline{f}|_{x_{1-}}d\zeta$ , (14)

we can transform the half-space problem, Eqs. (5), (13), and (7), into

$\zeta_{1}\frac{\partial\overline{f}}{\partial\overline{x}_{1}}=\frac{2}{\sqrt{\pi}}\hat{J}(\overline{f},$

一

$)$ , $(0<\overline{x}_{1}<\infty)$ , (15)

$\overline{f}=\frac{2\sqrt{\pi}\hat{v}_{1\infty}+\overline{\sigma}}{\pi^{3/2}}e^{-\zeta^{2}}$ , $(\overline{x}_{1}=0, \zeta_{1}>0)$ , (16)

$\overline{f}=\frac{1}{(\pi\hat{T}_{\infty})^{3/2}}\exp[-\frac{(\zeta_{i}-\hat{v}_{i\infty})^{2}}{\hat{\tau}_{\infty}}]$ , $(\overline{x}_{1}arrow\infty)$ . (17)

It is clear that the half-space problem (15)(16)(17) is independent of $\hat{\rho}_{\infty}$ and
hence its solution $\overline{f}$ is also independent of $\hat{\rho}_{\infty}$ . If we could solve the half-space
$p_{\wedge}roblem(15)(16)(17)$ and obtain $\overline{f}$ as a function of $\overline{x}_{1}$ and $\zeta_{i}$ , the solution
$f$ of the half-space problem, Eqs. (5), (13), and (7), would be retrieved by a
conversion formula

$f(x_{1}, \zeta_{1};\hat{\rho}_{\infty},\hat{v}_{1\infty},\hat{T}_{\infty})=\hat{\rho}_{\infty}\overline{f}(\hat{\rho}_{\infty}\overline{x}_{1}, \zeta_{i};\hat{v}_{1\infty},\hat{T}_{\infty})$. (18)

S.4 Existence of solution

What is of importance in the half-space problem (5)(6)(7) is the existence
of a set $(\hat{\rho}_{\infty},\hat{v}_{1\infty},\hat{T}_{\infty})$ that allows the half-space problem to have a solution.
Such a set $(\hat{\rho}_{\infty},\hat{v}_{1\infty},T_{\infty})$ is used as the boundary condition for fluid mechanics
equations outside the Knudsen layer.

The mathematical proof of the existence of a set $(\hat{\rho}_{\infty},\hat{v}_{1\infty},\hat{T}_{\infty})$ that allows the
half-space problem to have a solution or the existence of the solution of the
half-space problem seems not to be obtained. However, as long as the csse of
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the complete condensation condition, the extensive numerical study by Sone
and his colleagues has been accepted as a numerical proof.

As mentioned above, the complete condensation condition is prescribed by
$\mathcal{A}=1$ and hence the mass flux relation (11) can be written as

$2 \sqrt{\pi}\hat{v}_{1\infty}+\overline{\sigma}=\frac{1}{\hat{\rho}_{\infty}}$ . (19)

Since the existence of the solution of the half-space problem, Eqs. (5), (13), and
(7) with Eq. (19), has been proved numerically, the solution $f(x_{1},\zeta_{i})$ exists
for some set $(\hat{\rho}_{\infty}c,\hat{v}_{1\infty C},\hat{T}_{\infty C})$ , where the subscript $C$ denotes the set that
allows the half-space problem to have a solution for the complete condensation
condition. The solution $\overline{f}(\overline{x}_{1}, \zeta_{i})$ for the half-space problem (15)(16)(17) with
Eq. (19) is then obtained by using the conversion formula (18) inversely.

For $\hat{\mathcal{A}}\neq 1$ , the mass flux relation (11) can be written as

$2 \sqrt{\pi}\hat{v}_{1\infty}+\overline{\sigma}=\frac{1}{\hat{\rho}_{\infty}/\hat{\mathcal{A}}}$ . (20)

Therefore, the solution of the half-space problem (15)(16)(17) actually exists
for the set $(\hat{\rho}_{\infty},\hat{v}_{1\infty},\hat{T}_{\infty})=(\hat{\rho}_{\infty}c\hat{\mathcal{A}},\hat{v}_{1\infty C},\hat{T}_{\infty C})$ , and it is substantially equiv-
alent to the solution for the complete condensation condition. In fact, making
use of the fact that $\overline{f}_{\hat{A}\neq 1}=\overline{f}_{\hat{A}=1}$ and

$\hat{\rho}_{\infty}\overline{f}_{\hat{A}\neq 1}(\hat{\rho}_{\infty}\overline{x}_{1}, \zeta_{i})=\hat{f}_{\hat{A}\neq 1}(x_{1}, \zeta_{i})$ , $\frac{\hat{\rho}_{\infty}}{\hat{\mathcal{A}}}\overline{f}_{\hat{A}=1}(\frac{\hat{\rho}_{\infty}}{\hat{\mathcal{A}}}\overline{x}_{1},$ $\zeta_{1)}=\hat{f}_{\hat{A}=1}(x_{1},\zeta_{i})$ , (21)

we immediately have

$\hat{f}_{A\neq 1}(x_{1},\zeta_{i})=\hat{\mathcal{A}}\hat{f}_{\hat{A}=1}(\hat{\mathcal{A}}x_{1},\zeta_{i})$ (22)

where the vubscripts $\hat{\mathcal{A}}\neq 1$ and $\hat{\mathcal{A}}=1$ represent the solutions for $\hat{\mathcal{A}}\neq 1$ and
$\hat{\mathcal{A}}=1$ , respectively.

4 Numerical example

Here, we confine ourselves to subsonic evaporation or subsonic condens& $\cdot$

tion state and we employ the $Boltzmann-Krook$-Welander (BKW) equation
(Sone 2006). The finite-difference method is uved after the elimination of $\zeta_{2}$

and $\zeta_{3}$ from the BKW equation, the methodology of which has been widely
known (Sone, Aoki&Yamashita 1986, Sone&Sugimoto 1990, Aoki, Sone
&Yamada 1990, Aoki, Nishino, Sone &Sugimoto 1991, Sone 2006). Sone
and his colleagues have summarized their results in terms of $p_{\infty}/p_{w},$ $T_{\infty}/T_{w}$ ,
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$\frac{v_{1\infty}}{\sqrt{2RTw}}$ $\frac{v_{1\infty}}{\sqrt{2RT_{w}}}$

Fig. 1. Numerical results for subsonic evaporation. (a) The relation between $\overline{\sigma}$ and
$\hat{v}_{1\infty}$ . $(b)$ The relation between $\hat{\tau}_{\infty}$ and $\hat{v}_{1\infty}$ .
and $v_{1\infty}/[(5/3)RT_{\infty}]^{1/2}$ (and velocity component tangential to the interface).
In the following, however, since $\hat{\rho}_{\infty}$ is eliminated in the half-space problem
(15) $(16)(17)\wedge$ ’ it is sufficient to explore the two-dimensional parameter plane
$(\hat{v}_{1\infty},T_{\infty})$ .

4.1 Subsonic evaporation

In Fig. 1, we plot the numerically obtained functions $\overline{\sigma}=Y_{1}(\hat{v}_{1\infty})$ and $\hat{\tau}_{\infty}=$

$Y_{2}(\hat{v}_{1\infty})$ for subsonic evaporation. The black spot in the figure designates
the sonic limit. The subsonic evaporation state is simply determined by $\hat{v}_{\infty}$

through functions $Y_{1}$ and $Y_{2}$ , which correspond to $h_{1}$ and $h_{2}$ functions tarbu-
lated in the book by Sone (2006).

4.2 Subsonic condensation

Figure 2 shows the numerically obtained function $\overline{\sigma}=Y_{3}(\hat{v}_{1\infty},\hat{T}_{\infty})$ . The black
spot in the figure designates the sonic limit. The Y3 function corresponds to
the $F_{\delta}$ function in the book by Sone (2006).

4. S Tempervature jump

In Fig. 3, the gas temperature $T_{B}$ divided by the temperature of the interface
$T_{w}$ is shown as a function of $\hat{\tau}_{\infty}$ and $\hat{v}_{1\infty}$ for subsonic condensation (Fig. $3(a)$ )
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Fig. 2. Numerical results for subsonic evaporation. The $\overline{\sigma}$ is plotted as a function of
$\hat{v}_{1\infty}$ and $\hat{\tau}_{\infty}$ .
and as a function of $\hat{v}_{1\infty}$ for subsonic evaporation (Fig. $3(b)$ ). The difference
between $T_{B}$ and $T_{w}$ is called the temperature jump.

$\frac{v_{1\infty}}{\sqrt{2RTw}}$

Fig. 3. The gas temperature at the interface $T_{B}$ . $(a)$ Subsonic condensation. (b)
Subsonic evaporation.

5 Conclusion

The half-space problem of the gas flow with evaporaion or condensation has
been considered for the case that the kinetic boundary condition at the inter-
face between the gas and its condensed phase is generalized. We have elimi-
nated $A$ and $\rho_{\infty}$ from the formulation of the problem, and thereby demonstrat-
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ing that the solution of the half-space problem (15)(16)(17) actually exists for
the set $(\hat{\rho}_{\infty},\hat{v}_{1\infty}, T_{\infty})=(\hat{\rho}_{\infty C}\hat{\mathcal{A}},\hat{v}_{1\infty C},\hat{T}_{\infty C})$ , and it is substantially equivalent
to the solution for the complete condensation condition.
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