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1 Introduction

In this paper, we consider the following heat equation with nonlinear boundary
condition:

W:Au mQx(O,T),
_g% —Bu) ond2x(0,T),

u(z,0) = up(z) in S

The peculiarity of the equation lies in its nonlinear boundary condition. These
nonlinear flux condition on the boundary often comes from the so-called Stefan-
Boltzmann’s radiation law, which says that the heat energy radiation from the sur-
face of the body J is given by J = o(T* — T}), where o > 0 is a physical constant,
T is the surface temperature and T, is outside temperature. This nonlinear flux
condition from Stefan-Boltzmann’s law implies that G(u) is monotone increasing
function. In this case, the solvability and the uniqueness for this parabolic equation
is completely covered by the abstract theory by H.Brézis [1].

However, if we consider the case where the heat flux radiated from the surface is
reflected by its surrounding materials, then we must consider also the absorption
effect. For such a case B(u) could not be a monotone increasing function.

In fact, such a kind of non-monotone radiation-absorption model are already pro-
posed from the view point of engineering (see e.g. [5]).

In this note we are concerned with such a non-monotone radiation-absorption model.
In order to analyse the basic nature of nonlinear boundary conditions, here we con-
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sider the following elliptic equation with the nonlinear boundary condition:

O )~ gu) on B W

{—Au+bu=f(:z:) in £,
on

where b > 0 and 2 C RY is a bounded open set with smooth boundary 89. We
assume the following conditions:

(B1) B(0) =0, B(u) is continuous and monotone increasing function.
(62) 1m 2Y _ g

(g1) g¢(0) =0, g(u) is locally Lipschitz continuous function on R.
(g2) There exist k € (0,1), C; > 0 such that "

|g'(uw)] <kB'(u)+C; ae ueR. (2)

Here (g2) is the crucial condition in our later arguments which implies that g(u) can
be regarded as the small perturbation for the leading term £(u).

2 Main result

We set
D(j) = {u € HY(Q): ‘/‘mj(u)dS < oo}_, j(u) = Iﬂ(s) ds.

The effective domain D(j) of j(-) gives the natural domain where the associated
functional for our equation can be well defined. Our first main result can be stated
as follows.

Theorem 2.1. Assume (B1), (82), (gl) and (g2). Then for any f € L?(2) there
ezists a solution u € H2(Q) N D(j) of (1) satisfying

llull3r2qy + 13(w)llr ey € CA+ || fliZ2qy)s (3)
where C is a positive constant.

Remark 2.1. When g(u) = 0, it is well known that for any f € L*(Q) there ezists
an unique solution u € H3(Q) of (1) (see e.g. H. Brézis [1)).

However for our case the uniqueness does not hold in general. In fact, if we take
B(u) = lult2%u (¢ > 2), g(u) = au, f = 0 and o > 0 large enough, then the
uniqueness does not hold.
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Remark 2.2. Theorem 2.1 assures only the existence of solution satisfying the
elliptic estimates (3), but does not give any information about elliptic estimates for
any given weak solutions of (1). However if we impose the additional condition:

(83) 3C; > 0 such that uf(u) < Cyj(u) for allu € R,

we can show that for any weak solution u € H(Q) N D(j) of (1) should belong to
H%*(Q) and satisfies (3).

Next we consider the followiné nonlinear elliptic equations with the nonlinear
boundary condition:

—Au+bu=|ufflu inQ,
{ Jul ”

~& = |u|i~u — g(u) on IR,

whereb>0and 1 <g<p<2*—1= N2, -
Here, instead of (g2), we need to assume a little bit stronger condition (g2)’.

(g2)’ For any e > 0, there exists C. > 0 such that
lg'(u)| < €lul* ' +C. ae R. (5)
We also need the following additional assumption.
(g3) lim g(u)/u=0.
Then our main results for (4) can be stated as follows.

Theorem 2.2. We assume (gl), (g2)’ and (g3). Then there exists a nontrivial
solution u € H2(Q) N L*®() N D(j) of (4).

Theorem 2.3. Assume all the assumptions in Theorem 2.2 and let g(u) be a odd
function. Then there ezist infinitely many solutions {ux}r=1 of (4) in H*(Q) N
L () N D(j) satisfying
lim I(ux) = oo,
k—o0
where

I(u) = /ﬂ SVl + b + /a ((u) ~ G(w)ds - /ﬂ F(u)ds,

and j(u) = Zglul™!, G(u) = [§ 9(s)ds, F(u) = Zzluf*.
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3 Proofs of Theorems

3.1 Proof of Theorem 2.1
stepl: Approximation problem

We rely on the variational approach. Our functional I(-) associated with (1) is given
by

I(w) = /Q > (Il +bu?) do + /m ((w) — G(w)) dS — /Q @) dz,

where j(u) = [* B(s)ds, G(u) = [}’ g(s)ds. But this functional may not be defined
on H'(Q) in general, since the term j(u) and G(u) may not be integrable for all
u € H'(2). To avoid this difficulty, we introduce the following approximations Bn ()
and gn(-) for B(-) and g(-) respectively.

Bn)+ (u—n) u>n, gn)+(u—n) u>n,
Bn(u) = { B(u) lul <n,  ga(u) = { 9(u) lul < n,
B(-n)+ (u+n) u< —n, g(-n)+ (u+n) u<-—n.

Then approximation problem associated with these approximations is given by

—-Au+bu = f(x) in Q, 6
"gg = Bn(u) — gn(u) on O9. | (6)

By the trace embedding theorem (H!(Q) C L?(8%2)), we can well define on H1(f)
the associated functional I, for the approximation problem (6).

L(u) = /Q ~ (IVuf +bu?) do + /a ()~ Gn(w)dS - /ﬂ f(@)u ds.

We can easily find that there exists a minimizer u, of I,. In fact, by assumption (51)
and (g2) we can easily check I, is bounded below and I, is coercive on H'(2). Thus
there exists a global minimizer uy, of I,,, and u,, gives a solution of the approximation
problem (6).

step2: A priori estimates

Multiplying (6) by u,, integrating over £ and using assumption (g2), we get

lunlrs 0y + Wi (un) lz3com < € (1 + £ 1acey) » (7)

where C is independent of n.
The following H2-estimate is a key lemma.

Lemma 3.1. There exists a positive constant C independent of n such that

lunlizzg) < C (lunllzr@) + 1 fllz2@) - (8)
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Proof. The interior estimate can be done by the standard arguments, since it is
not affected by the (nonlinear) boundary condition. As for the estimates near the
boundary, we need to work by using local charts as in [1].

Let zo € 052 and U is a neighborhood of 2o, and let H : @, — QNU be a standard
transformation mapping with Q+ = {y = (¥,yn);l¢/| < 1, 0 < yv < 1} and
Q = {y = @,0);|¢/]| < 1}. We define @i, = upo H, f = f o H. In the new
coordinate, i, € H'(Q.) satisfies

Al B, O )
i,jz-.:l ./;4- aij(y)——:a;'](y)dy + L+ b, dJ (y)dy
+ [ (Bulin) - n@bo )y = [ Forway, @
Qo Q+

for any ¢ € {¢ € C'(Q);supp ¢ C Q+ U Qo}, where J(y) is the absolute value
of Jacobian, o(y’) is the surface element, and a;;(y) is a coefficient satisfying the
uniformly elliptic condition.
We test (9) by the following function ¢ given by,
1
— 2. 5 \_ -
¢ = D_n(6 Dhun)o_ 7)
where Dyl = l%[(‘rhﬁ — 1), Thii(y) = 4(y + h), h is a vector orthogonal to yy and 6
is a smooth function composing the partition of unity.
Let 9, = 01i,. Since a;;(y) satisfies the uniformly elliptic condition, each term in (9)
is estimated as
(the first term) > aol|DaVnlia — CllDAVall 12 |l@n |l — Clltinlln,
(the second term) < Cllin|,
(the fourth term) < C||fllz2(I|DaVallzs + liinllzr).

The following estimate for the third term is crucial.

(the third term) = . D (Bn(fin) = gn(itn))6? Driin dy/,

1
> | (Dniin)?6? / (ﬁ; (sThiln + (1 — 8)iin)
Qo 0
~0(8Thlim + (1 = 8)in) ) dsdy/,
1
/ (Dyiin)?6? f (1 - k)B. — Cy)dsdy/,
Qo 0
— ~ 2,/ ~2 I}
C( Qo(Dh'Un) dy +/;° a2 dy) ,

—€l| Daall1 @4y — C(&) |1 DaBnllZaiqy) — Cllttnllzn g,y

v

v

v
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In the first inequality, we used the following Lemma 3.2 and the last inequality is
deduced from the interpolation lemma and the trace lemma.

Lemma 3.2. Let f be a monotone increasing function. Then

b
/ £'(s) < £(6) - £(a).

Consequéntly combing these estimates, we get
I 8o,
ay‘layj

for (3,7) # (N, N).
To obtain the estimate for —'5‘, going back to (9) and choosing ¢ = -—'LJ, we obtain

<C (||Un||H1(Q+) + ”.flle(Q+))
L3(Q+)

9 (Q+) 6y2 ) 9(Q+) 6yN 6yN
0%*v,,
scl > By ||, Enllras) + 1fllza@s) | Illz2@ss
Gy 19952 Q)
for any ¢ € C(Q.).

Thus H2-estimate for ¥, is denved This estimate leads to the estimate for u, and
(8) is assured.

step3: Convergence to the original problem

By (7) and (8), {un}nen is bounded in H2(Q2). Then there exists u € H2(Q) N D(j)
and subsequences {uy }nen 8uch that

U, = U weskly in H?(Q),
Un(z) = u(z) a.e. 09,
Ou, Ou
-—n-(:z:) — a—n(:c) a.e. OS2

Hence by Lebesgue’s dominant convergence theorem and by the construction of
Bn, gn, We can show that

Bn(un) — B(u) in L2(69),
gn(us) — g(u) in L2(80).

Thus this u gives a solution of original problem (1). _ O
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3.2 Proof of Theorem 2.2

For this case, we use simpler approximations for §,g than previous ones. We set
B(u) = |u|?"u and

B(n) u>n, g(n) wu>n,
Ba(u) = B(u) |ul<n, ga(u)=4q g(u) |ul<n,
B(-n) u<-n, g(-n) u< -n.

stepl: Approximation problem

We again rely on the variational approach. The associated functional is defined by

L(u) = /n %(IVul2+bu2)dx+ /a (jn(w) — Gn(u))ds - /ﬂ F(u)ds.

We can easily see the existence of critical point u, of I,, by the following mountain
pass lemma.

Lemma 3.3 ([4]). Let E be a real Banach space and I € C'(E;R) satisfying
(PS)-condition. Suppose I(0) =0 and

(I;) there are constant p,o. > 0 such that I|sp, 2 o,
(I;) thereise € E\ B, such that I(e) <0,

where B, = {z € E; ||z|lg < p}. Then I possesses a critical value ¢ > .. Moreover
c can be characterized as

c=inf max I(u),
Y€ uev([0,1])

where T' = {7 € C([0,1]; E); ¥(0) = 0,7(1) = e}
In fact by (g2)’ and (g3), there exists R > 0 independent of n such that

Jn(w) — Gp(u) > —eu? — C|u|? for |u| < R,

Jn(u) — Gn(u) 20 for |u| > R, (10)

where ¢* = ?SI{,V__*_;H Thus by using the fact H'(2) C L9 (852), we have

,/an(jn(u) — Gn(u))dS 2 (jn(t) = Gn(u))dS,

/«snn{|u<z)|sn}

Y

- / (eu? + C.u?)dS,
ann{|u(z)|<R}

2 —E”u”%{l(n) - Ce||u|l§;1(g)-
Thus there exist p, o > 0, which are independent of n, such that

Inles, 2 c. (11)
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Let ¢: be a first eigenfunction of —A¢ = A@, dlag = 0. If we take ||¢; || H(q) large
enough, I,(¢1) < 0. Hence (I;) and (I3) are verified.

step2: H'-estimates
Since uy, is a critical point of I,,, we have

L) = (3-537) [0Vl +102)

_,'_/m (-n( ) — mﬂn(u)u— (G (u) - ——gn( )))

By the construction of 8, g, and (g2)’,

Jn(u) — p—_}qﬂn(u)u - (Gn(u) - ﬁg,,(u)) >0 for |u| > n,
in(u) = Fhba(w)u — (Ga(w) = F1oa(w) = (C =~ ult* = C. for [u| < n.
Thus we get
Ln(un) > (% - -—) / ([Vun|? + bu2)dz — C. (12)

To obtain H-estimate, we need the boundedness of I.(un). But we note that e = ¢,
can be taken independent of n in Lemma 3.3. Hence since t¢; € I for all n, we get

In(un) = inf max I n((t)) < max I n(thr) = max [ (tr). (13)

Combing (12) and (13) we obtain the following H!-estimate.
|unll @) < C, (14)

where C is independent of n.
step3: L°-estimates

Here we consider the following linear equation.

—AV + bV = f(z) in Q, (15)
=& = f,(V) — g.(V) on R,
where b > 0.

Lemma 3.4. Assume (gl)and (g2) andr > N. Let V € H(Q) be a weak solution
of (15), then

Vil < C (14 1V lzacy + 1£ll5ay) (16)

where C is independent of n.
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Proof. Let V be a weak solution of (15) and set
w=(V-R)*+k,

where R is large enough constant such that f(u) — g(u) > 0 for u > R, and k > 0,
v 2 1 are chosen later. .
We put

_J0 lt] < k,
“”‘{uh—m k< It

and we use the test function ¢ = {ow. Since ¢ = 0if V < Rand (Ba(V)—gn(V))¢ >
0if V>R,

/ (VV - Vé+bVd)dz < / £ da.
Y] ]

Hence, since V < w if k > R, we have

v [Vl < [ \fwds, (17
) n
for k 2 R. .
We choose k = ||f|| 5, + R. Let 2= w'¥, then Hélder’ s inequality gives
1, 241 / 11,2 2
Tdx < = w? = _— < )
/ﬂlflwdz_fn Hurias = [ Wde < ol g, (18)

Since 2 < 25 < 2* = %, we can use the interpolation inequality,
20l 25 gy < ellzllze @) + € ll2llz2),

where 0 = 2= Thus (18) is rewritten as

/nlflw"da: < ez(fn ()" dz)’a'+0e-2“/n(wlt—‘)’dx,

< 62/0|V (wlt'l)lzda:+Ce'2"/n(w’#)2dx,

where we used Sobolev’s inequality. Choosing €2 = =7, we plug this formula into
(17) to get ‘

/ w1 |Vwltdz < Gy~ / wdz, (19)
(9] Q
which implies

”w”LZ;-('ﬁ-l)(n) S C;h"w”L'T“'l(n)'
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Weset vo=1, %1 +1=%(y+1),

1 1 2 i
”w“L'7i+1+1(Q) < C3 T |[wl| gy ) < C™F E;’;0(?’;)1”'w”L"OH(ﬂ)'

Thus we get

IV¥llzm@y < € (14 IV llzaey + £ 5 ay) -

By the quite same argument, we can obtain the estimate for V. O

Next we give an estimate for nonlinear problem (4).

Lemma 3.5. Assume (gl) and (g2). For anyy> 1 there exist C >0 andy* > 1
which are independent of n such that any weak solution u, of (4) satisfies

lunllzr@) < C (llunllfae gy +1) - (20)
@

Proof. We repeat almost the same procedure as above.
We set w, = (un — R)* + R, and take ¢, = £ o w, as a test function where R, £ are
given in previous lemma. By the same reasoning as before, we get

/ WV ? < / P
N [}

We note that |u,| < w, and wy, > 1 by the definition of wy,, thus

/u;}“|Vw,,|2 S/wz""’.
a 0

By Sobolev’s inequality, we get

e T
"wﬂ"LZ}(7+1)(n) < Cw “wn”L-y+p(n)-

Weset 1 +p=2* y51+p= '25"(%' +1),

1 1112
”wﬂ”L"-'+1+"(n) < Cm# ”wnnzfvtip(n)'

Hence for any § > 2*, there exist C,~* > 0 which are independent of n such that
"wn”L5(9) < C"wﬂ”},‘a‘(g)-

By the same way as in the previous lemma, we obtain (20). O
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step4: H2-estimates

We apply (8) by regarding the nonlinear term |u[P~!u as the given external term f.
By Lemma 3.5,

lunllraey < € (unlifn@ + 1 £ @n)liEa) = C (lunllly + ey )
< C(llunlsa + lumlfir gy +1) s (21)

where C,~* are independent of n.
step5: Convergence to the original problem

By Lemma 3.4, (14) and (21), {tns }nen is bounded in H?(Q) N L*(S2). By the quite
same argument as before, there exist u € H2(Q) N L>(Q) N D(j) and a subsequence

{un}nen such that u, — u weakly in H%(2). Thus u turns out to be our desired
solution of (4).

3.3 Proof of Theorem 2.3

In this proof, we use the following symmetric mountain pass lemma.

Lemma 3.6 (symmetric mountain pass lemma). Let E be a real Banach space and
E,, = span{e;, ez, -+ ,em} C E where {€;};=1 are any linearly independent vectors
in E. We assume

(1) I € CYE;R) is even and satisfies (PS)-condition,
(2) there exists a, p > 0 such that I, > c,
(8) there exists Ry, > 0 such that I <0 on En, \ Bg,,.

Then there exist infinitely many critical points {u;};=1 of I satisfying,

Jim I(us) = oo.

Moreover the critical value is characterized as

I(u;) = inf max In(h(u)),
where E; = span{ei, ez, - ,¢e;} and ' = {h € C(E;E);h is odd,h(u) = u Vu €

In our case, we can take ¢; as e; independent of n in Lemma 3.6, where ¢; is the
i-th eigenfunction of —A¢ = ¢, @|lsq = 0. By Lemma 3.6 for any n € N there exist
infinitely many critical points {uf};en of I, satisfying

lim I,(u) = oo. (22)

J—o0
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Here we set ¢, = I,(ul), then this sequences {c¢},} are expressed as

n=1 ¢ < 4§ < & < < 4 — oo,
n=2 ¢ < 4 < 4 < < ¢ —oo
< < < < — 00

First we show that lim ¢ exists for any j € N.

n—00

By assumption (g2)’ we find that I,(u) < In41(u) for all u € H(Q) for large n € N.
Thus without loss of generality, we can assume

¢} < G- (23)
Moreover since we note that e; can be chosen independent of n in Lemma 3.6,

d = %ﬁ%xh(h(u)) < ma.x I(u) =

Thus ¢ = lim ¢, exists for all j € N.

By the same argument as before, there exist solutions {u};=1 of (4) satisfying
ul € H2(Q) N L®(Q) N D(j) and I(ul) = cl. If lim ¢] = oo, the proof is finished.

In fact, for ¢! there exists ci* such that ¢} < ci by (22) Sumla.rly we can find cf?
satisfying ¢ < c. Repea.tmg this procedure, we get sequences {c. } ;=1 satisfying

C<Cl<Cll ,Scij<cllj+1<cia+1<”
This implies lim ¢ = oo. O
j—+00
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