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1 Introduction
In this paper, we consider the nonlinear elliptic equation
Au+A(-u+ull)=0 nQcCS" (1.1)

under the homogeneous Dirichlet boundary condition. Here A denotes the
Laplace-Beltrami operator on the standard unit sphere S* ¢ R"t!. We
assume that n > 3, p > 1, A > 0 and that 2 C S” is a geodesic open ball,
called a “spherical cap”, centered at the North Pole (0,...,0,1). To start
our analysis, we express (2 in polar coordinates in order to make our setting
clear.

Let (y1,%2,...,Yn+1) be the Cartesian coordinates in R"+1, We express
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the points of S" in terms of polar coordinates:

¢ k
Yk = (Hsin0j) cosbri1, k=1,2,...,n -2,
j=1

n-1
Yn—1 = ( H sinej) cos ¢,

ﬁ

Yn = (ﬁ sin 0,-) sin ¢,

i=1

Yn+1 = cosbs.
\

Then §2 can be expressed in polar coordinates as
Q=Q, = {(01,92,...,0,,_1,¢) 0<6 <7—¢,
0<6;<m(E=23,..,n-1), 0S¢521r}.

We shall consider how solutions behave as ¢ — 0, i.e., what will happen to
solutions if 2 becomes closer to the full sphere S".
In polar coordinates, A becomes

n-1

— . . 2 k _k
Au = ;(sm&...smek_l) (sin %) "69 {(smﬂk)"

Ou
06,

Here we can consider (1.1) in the class of “radial” functions, that is, functions
depending only on the azimuthal angle §; (=“latitude”). For such a function

v, A reads as 5
_ 1 0 n—1 v |
A= 16, 96, {(Sm ) 27 86, } (1.2)

which will be denoted by Ag,. Then (1.1) becomes

Agyv + A(=v +02) =0. (1.3)

Thus (1.1) is reduced to an ordinary differential equation of the degenerate
Sturm-Liouville type.
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As for the precedent works, Stingelin [18] considered (1.1) for a fixed
spherical cap, containing the upper hemi-sphere and for large A > 0 and the
homogeneous Dirichlet condition, and showed numerically the bifurcation
diagram, which seemed as if imperfect bifurcations occur. His diagrams
look very like the one obtained in Kabeya, Morishita and Ninomiya [13] for
the problem

du

ov

where 8/8v denotes the outer normal derivative.

Inspired by [18], we will determine the asymptotic behavior of the solu-
tions as € — 0. |

Recently, Brezis and Peletier [5] studied (1.3) for n = 3 and p = 5. They
confirmed Stingelin’s results [18] did and they showed several properties of
the bifurcation diagram for large A (and necessarily with small u(0) > 0).
Moreover, very recently, Bandle and Wei [6, 7, 8] studied intensively this
subject from the singular perturbation point of view, as in Ambrosetti, Mal-
chiodi and Ni [1, 2] and Malchiodi, Ni and Wei [15]). Various concentration
phenomena have been observed in [6, 7, 8] for large A with a fixed domain.

Au+AuwP —u)=0 in {Jy| <1} CR"? +eu=0 on {|y =1},

Notice that (1.1) on S™ has a constant solution v = 1 for any A >
0. Although this constant is never a solution to the Dirichlet problem, as
in Section 4 of [5], the analysis of the corresponding linearized problem is
important. More precisely, for given € > 0, we consider the problem

{ Apv+(P—1)A=0 in (0,7 —¢)

(1.4)
vg, (0) = 0, v(m —¢),
and look for azimuthal eigenvalues Af, . > 0 and the corresponding eigen-
functions v = ¢p), with k — 1 zeros in (0,7 —¢) (k=1,2,3,...).
As a comparison, we also consider properties of a solution to the following

eigenvalue problems
{ Agv+(p—1)dv =0,
vg, (1) = v, (0) = 0.

We say that )i (k € N) is the k-th eigenvalue if a nontrivial solution v =
to (1.5) changes its sign (k — 1) times in [0,7). The first eigenvalue A; is
zero and the corresponding eigenfunction is a constant.

The eigenvalues and the eigenfunctions will play important roles to the
analysis.

(1.5)
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Taking the consideration above into account, we investigate the follow-
ing Neumann-Dirichlet boundary value problem of the ordinary differential
equation

Ap v+ A(—v+1P) =0, 0<O<m—¢
{ . ) , L6

v(m—¢e)=0, wg(0)=0.

We should note that treating (1.6) as in Yanagida and Yotsutani [20, 21] or
in Kabeya, Yanagida and Yotsutani [14] does not seem to work well. We
analyze (1.6) as it is.
Also, we mention that we need not restrict the exponent p to sub-Sobolev
critical or critical one. We introduce an exponent ¢ and a Banach space.
For n > 3, choose a fixed g satisfying

n 1
max{g,(l—;)n}5q<n,

W = Wg;g,(ne),

where W is the completion of C§°(£})-functions depending only on 6,, with
respect to the norm

and set

1
|@llw = (/ |®g, |7 dS + |<I>|qu)’.
Qe

Qe

Also we define
L2, () := {f € LP(Q,) | f depends only on 6,}.

Note that for a function f depending only on #,, we have

/ £(61) dS = 8™ / (60 sin™1 6, dBy.
Q. 0

Because of the particular choice of ¢, Sobolev’s embedding
whi(Q,) < LP(S)

holds. Moreover, we denote the orthogonal projection with respect to L2,(2)
into the linear space (¢f.), by Pje and the projection into its orthogonal

space (pf,)1 by Q. More precisely,

Pjcu = ( /ﬂ preu dS) e
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and ‘
Qjafu =Uu = (-/S‘] ¢£€u dS) Sog’is)

where P is normalized such that [l¢P[|z2 = 1.

Note that the orthogonal decomposition is possible even for the Banach
space W since the space (pj,) is one dimensional.

Now, we are in a position to state our main result.

Theorem 1.1 Letp > 1, n >3, j > 2. Suppose that e, > 0 and (s« > 0 be
sufficiently small. Then there exist a set 8¢(5) € (Aj — Cxy Aj + Cu) X W for
‘any € € (0,¢e4), which satisfies the following:

(1) there exist a positive constant s, (depending only on €, > 0), functions
we, h(8) € W and a map H,(s,)) : R? = R such that

8¢(7) = {(\v) € (A — % A5 +6:) x W|
v(61;€) = 1+ we + spje + h(s),
is a solution to (1.1) and H.(s,\) =0, for |s| < s.«}.

(2) h(s) L @je in W.

(3) Jlwellw = O™ 9/9) and w.(61) — 1 locally uniformly on [0,7) as
e—0.

(4) The equation H(s,\) = 0 is asymptotically expressed as

sk+a182+n(e) +O0(eM—9/9| s|min{2.p} 4 c2(n—0)/g|| 4 |gmin{2P}+1) =

| 1.7
with k = (p — 1)(\ — Ag,c), where @; is the j-th eigenfunction of the
whole sphere case, a; s defined as

a1 = 2‘(2‘2:_12'/;1 (safe)a dS

and 7(€) s depending only on € and satisfies |n| > O(e™). Moreover,
if n =3, then ,
(—1)3+1

n(e) = y je + O(e?).

Remark 1.1 The leading three terms of (1.7) indicate that two bifurcation
curves are close but they are disconnected with each other.
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Remark 1.2 Our proof is indeed valid for € = 0 (the whole sphere case with
the homogeneous Neumann boundary condition). In this case, we can regard
we =0 and (1.7) is expressed as

3k + a18% + O(|s|min{2PH+1) = o (1.8)

with (o~ 1)
ay = p__2__/ (‘Pj)3 ds.
Qe

(1.8) represents two connected curves, that is, the local bifurcation at A = );
8 ensured.

The organization of this paper is as follows. Analysis on the linear
problem will be done by using the Legendre associate functions in Section
2. Sketch of a proof of Theorem 1.1 will be given in Section 3 with two key
lemmas.

2 Analysis of the linearized equation

In this section, we consider the linearized problem. The constant 1 is no
longer a solution to (1.1), however, the linearized equation around 1 gives
us the first approximation. Moreover, the behavior of a solution to the
linearized equation suggests the existence of the layer of the solution near
the boundary.

We investigate exact solutions to (1.4) and (1.5) by using the Legendre
associate functions. Here, we enumerate important facts and formulae (see
for details, Kabeya and Ninomiya [12]).

Letting t = cos(#) = yp+1, we have

-c% {(1 — 3" 2%} +(1 =)™ (p - 1)y =0, (2.1)

and (2.1) is called a “hyper-sphere” equation. Any solution of (2.1) are

expressed by the Legendre associate functions P}, QU as
¥ = c1(1 - 2)"H2PL() + ca(1 - £2)7H2QL (), (2:2)

where

”zn-2—2’ V__q\/(n—l)7+24(p—1))\—1. (2.3)
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The Legendre associate functions P}’ and QY are the independent solutions
to the associated Legendre equation

—%{(lmtz)%}+{u(u+l)— l’iztz}P=0. (2.4)

In case of n = 2m — 1, P! has a singularity at ¢ = 1 and hence ¢; = 0
must hold. Moreover, if

Jim (1 - ¢%)7#/2Qu(2)

is finite, then v corresponds to an eigenfunction and A does to an eigenvalue
to the whole sphere problem. Hence, we have

n-2—2+ \/(n—1)2+24(p—1))\—1 _y

for{=n-2,n—1,... when n =2m — 1. Thus, we obtain

(P— 1A= (L+1)(€+2—-n). (2.5)

On the other hand, in case of n = 2m, then Q¥ has a singularity at ¢t = 1
and there must hold c; = 0. Similarly, if

] — #2\—-1/2 pu
Jlim (1—£2)7#/2PY ()

is finite, then v becomes an eigenfunction. In this case, the eigenvalues A
are expressed as

(p—1),\=(e+-’23) (e+1——’23) (2.6)

for £ =n/2—1,n/2,... when n = 2m. In view of (2.5) and (2.6), for the
whole sphere case, we see that the eigenvalue A\ to (1.5) is expressed as

A= (k=1)(k+n—2)

fork =1,2,..., well-known eigenvalues for —A. The case k = 1 corresponds
to the constant eigenfunction. The corresponding eigenfunction ¢x(6;) is

- 1 (n—2)/2
or(f1) = sin(*—2/2 g Q- 1+(n-2) j2(cos )

when n is odd, and is

_ 1 (n—-2)/2
r(61) = sin™=2)/2 g, F, k—1+(n—2)/2(cos 61)
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when n is even.

The eigenvalues )\,28 for our problem (2.1) with ¥(—cose) = 0 are de-
termined by

Q‘(/n—Z)/Z(_ cos g) =0 for n =2m - 1,

and by
P{"=2/%(—cose) =0 for n = 2m,

with

\/(n—— 1)2 +4(p—1)AP, — 1
V= 2

The eigenfunction corresponding to Af;g is denoted by <p,13’ .- More precisely,
the eigenfunction is expressed in terms of the Legendre associate functions
as

1 (n-2)/2 ~
D sin(*~2)/2 6, {\/(n—1)2+4(p—1)x,2,—1}/2(cos01)’ for n =2m -1,
Pke = 1
(n—2)/2

sin(®=2/29, " {/ (n—1)2+4(p—1),\;‘.’,=—1}/2(c°8 61), for n = 2m.

_ (2.7)
By the continuous dependence on the parameter v, we see that A,‘c”e is close
to Ak, the eigenvalue of —A on the whole sphere S™ if € > 0 is small enough.
So is true for eigenfunctions.

Remark 2.1 Consider the case of n = 3. By (2.8), we see that

v=\/(p-—1))\+1-%

and that a solution ¢ to (2.1) is written as

¥ =ca(1-13)7V4Q)2(t)

__C4 o172 _cssin{/(p — 1)A + 16,1}
T Jemply  (cosbl)= sin 01

with some constants ¢; (j = 3,4,5). If follows from (m —€) = 0 that we

have the eigenvalues
1 kr \2
P = -13.
M p—l{(ﬂ—e) }
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Thus, the solution to (1.4) is explicitly expressed as

Phe(61) = % _P;/?(cosf;) = ——sin kb

+/sin 6, sin 6 T—€

where cg and c; are normalizing constants. The convergence of )\k 6, 18
readily seen. See also [5] for the three dimensional case.

3 Sketch of Proof of Theorem 1.1

In this section, we describe the key steps to prove Theorem 1.1 and a
sketch of a proof of Theorem 1.1. An intuitive explanation is the follow-
ing. First, we construct an auxiliary function p., which looks like a cut-off
function having a “boundary layer”. Secondly, we determine a solution
we € QW to the projected equation

Qje [A('we + pe) + A {(we + pe)i — (we + pe) } ] =0. (3.1)

Thirdly, we seek for a solution u = spp, + h(s) + & to (1.4) with & :=

(we + pe)+ and h(s) € Q;,W. Finally, we investigate the relation between s

and 7 := X — Aj¢ in order to see how the loca.l imperfect bifurcation occurs.

In this final process, we test (1.4) with <p e+ Full proofs of the following

lemmas and Theorem 1.1 are written in Bandle, Kabeya and Ninomiya [4].
We define p. € C*°([0, 7 — €]) as follows:

1, 0<O0<m—2¢,
Pe = p(e—(ﬂ;—-%))’ m—2e<0<7—c¢,
0, T—e<0<m,

where p(s) € C*([0,1]) is a non-increasing function such that

p(0) =1,0'(0) = p"(0) = p(1) = p'(1) = p"(1) =

Next, we shall construct the solution w, of (3.1) by means of a con-
“traction principle in Q;W. For this purpose we rewrite equation (3.1) as
follows: '

Qie [ {A+ AP — DI} (we + pe = 1)
+A({we + (e = 1) + 1}, —pfwe +pe =1} - 1)] =o.
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Since A is close to Aj., the operator Tj¢ : QW — QjW given by

Tje := = [Qje(A+ Xp - 1)D)] "

is well-defined.
Hence w, is a solution of the integral equation

We = ATj,er,e [{'we + (pe - 1) + 1}1
~p(w, +pe = 1) = 1] = Qjslo = 1). (3.2)
Thus we define K ¢(we) by the right hand of the above equation:

K e(w) := AT};Qje [{'w + (pe — 1) + l}ﬁ- —p(w+pe—1) - 1] —Qje(pe—1).

Remark 3.1 Note that supp (o — 1) C [r — 2¢, ™ — €]. Consequently the
term Qj(pe — 1) can be regarded as “small” in the topology of W.

Lemma 3.1 There exist a positive constant M, (independent of € and )
and a positive constant €. such that K; . is a contraction mapping from

Bie = {U € QW | [Ulhw < Myctn-o/a)

into itself for any € € (0,¢€,) and any A € Jj := (Ajc — €4, Aje +€4). That is,
there exists a fized point we to (3.2) in By and € = wje + pe 15 a solution
to (3.1). Moreover, wj¢ is continuously differentiable in A and continuous
in e.

Next, we construct h(s) in Q; W so that u = 3<pfe + h(s) + & is a solution
to (1.1). Substituting u = swfe + h(s) + & to (1.1), we have

shpl. + (A + (p— 1)A)h + A&,

2 {(€ - &) +p(e;" = (30D, +h) + R(s,6:h) } = 0
(3.3)
where
R(s,e;h) = (spP. + h +£)P — €2 —pe2~ (39 +h). -~ (3.4)

We decompose (3.1) into P; . W-space and Q;,W-space. We will ensure that
h(s).exists in Q; W for any s near s = 0. Since ¢, satisfies

Qie [{Atis + 2 - €100 }] =0,
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we see that h(s) satisfies

Qie [{A+ (2~ DAYh+ A {p(E" — 1)(s¢. + h) + R(s, &5 h) }| =0.
Again, we will find h by the contraction mapping principle. Let us define
Koe(s)[h] := MT;eQiz [p(€5:" — 1)(sDe +h) + R(s, ;)|
and |
Bay,s i= {h € Qs W I|hllw < Ma(em=/7]s| + smintp2})}
Lemma 3.2 There exist s* > 0, My > 0 and €* > 0 such that for any s
and € (|s| < s*, 0< € < €*), Ka.(S) is a contraction map from By s into
itself. That is, there exists a fized point h(s) = h;j.(3) € Qj W of K3 .(s)

satisfying (8.83). Moreover, hj¢(38) is continuous in € and differentiable in s
and A.

The final step to prove Theorem 1.1 is to take the inner product of
we = € + 3p), + h(s) with ¢, to determine the relation between s and
k= (p — 1)(X — A;) for fixed € > 0. Then we have

H.(s, ) _
=g / (Apl)ef. dS + / {(A +(p— 1),\)h}<,aj’3€ ds
Qe Qe
+ Aée + Mp — 1)& boP dS
[ {a&+ 20— e Jof
D - '
0 [ {e-pte-n-1fefias+s [ {per-1}eRrras
+ [ {pet — (opZ. + W)+ AR(s,e5) }oE. dS = 0
Q. .
Noting that h(s) € QjW and Ah(s) + AM(p — 1)h € Q;W, we see that
/ {AR+ X(p—1)h} ¢, dS = 0.
Qe

Moreover, using the Lemmas above, we obtain the desired relation. O
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