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Stationary patterns for a cooperative model with
nonlinear diffusion

早稲田大学・大学院基幹理工学研究科 大枝和浩 (Kazuhiro Oeda)
Graduate School of Fundamental Science and Technology,

Waseda University

1 Introduction
In this article we study positive steady-state solutions of the following strongly

coupled reaction-diffusion system:

(P) $\{\begin{array}{ll}u_{t}=\Delta[(1+\frac{\alpha}{\mu+v})u]+u(a-u+cv) in \Omega\cross(0, T),v_{t}=\Delta v+v(-b+du-v) in \Omega\cross(0, T),\partial u \partial v -=-=0 on \partial\Omega\cross(0, T),\end{array}$

$\partial n$ $\partial n$

$u(\cdot, 0)=u_{0}(\cdot)$ , $v(\cdot, 0)=v_{0}(\cdot)$ in $\Omega$ ,

where $\Omega$ is a bounded domain in $\mathbb{R}^{N}$ with smooth boundary $\partial\Omega;\partial/\partial n$ denotes the
outward normal derivative on $\partial\Omega;a,$ $b,$ $c,$ $d$ and $\mu$ are all positive constants; $\alpha$ is a
non-negative constant; $u_{0}$ and $v_{0}$ are given non-negative functions which are not
identically zero. System (P) is a Lotka-Volterra cooperative model with a density-
dependent diffusion term of a fractional type; unknown functions $u$ and $v$ represent
Population densities of two cooperative species, respectively; $a$ $and-b$ denote the
intrinsic growth rates of the respective species; $c$ and $d$ denote interaction coefficients.
When $\alpha=0,$ $(P)$ is reduced to a classical Lotka-Volterra cooperative model with
diffusion. See [6] and [13] for such a cooperative model.

In the first equation of (P), the nonlinear diffusion term $\alpha\Delta\{u/(\mu+v)\}$ describes
a situation where species $u$ tends to leave low-density areas of species $v$ . This
situation is natural because relations between $u$ and $v$ are cooperative. A population
model with density-dependent diffusion was first proposed by Shigesada, Kawasaki
and Teramoto [14] to investigate the habitat segregation phenomena between two
competing species. Since their work, many mathematicians have studied population
models with density-dependent diffusion. However, population models including

数理解析研究所講究録
第 1588巻 2008年 87-98 87



density-dependent diffusion terms of a fractional type have appeared in recent years;
for example, see [5], [16] for cooperative models with Dirichlet boundary conditions;
[2], [3] for prey-predator models with Dirichlet boundary conditions; [12], [15] for
three-species prey-predator models with Neumann boundary conditions. See also
the monograph of Okubo and Levin [11] for the biological background.

The stationary problem associated with (P) is

$(SP)\{\begin{array}{ll}\Delta[(1+\frac{\alpha}{\mu+v})u]+u(a-u+cv)=0 in \Omega,\Delta v+v(-b+du-v)=0 in \Omega,\frac{\partial u}{\partial n}=\frac{\partial v}{\partial n}=0 on \partial\Omega.\end{array}$

Our main purpose is to study the existence of stationary patterns (i.e. positive
non-constant solutions) for (SP) with the weak cooperative condition

$\frac{a}{b}>\frac{1}{d}>c$ . (1.1)

bom now on, we will always assume (1.1). It is well known that, if $\alpha=0$ , then
every solution of (P) converges to a unique positive constant steady-state

$(u^{*}, v^{*})$ $:=( \frac{a-bc}{1-cd}$ $\frac{ad-b}{1-cd})$

uniformly as $tarrow\infty$ ; see [6]. This implies the following proposition.

Proposition 1.1. Let $\alpha=0$ . Then $(u^{*}, v^{*})$ is a unique positive solution of (SP).

Proposition 1.1 means that no stationary pattern exists in the linear diffusion
case. However, the presence of density-dependent diffusion enables us to construct
stationary patterns of (SP). We focus on $\alpha$ to show the emergence of stationary
patterns for (SP).

Let $0=\lambda_{0}<\lambda_{1}<\lambda_{2}<\cdots$ denote eigenvalues $of-\Delta$ with the homogeneous
Neumann boundary condition on $\partial\Omega$ and let $m_{i}$ denote the algebraic multiplicity of
$\lambda_{i}$ . Then we have the following theorem.

Theorem 1.1. Suppose that $\{v^{*}(b-\mu)\}/(\mu+v^{*})\in(\lambda_{l}, \lambda_{l+1})$ for some $l\geq 1$ and
that $\sum:_{=1}m_{i}$ is odd. Then there exists a positive constant $\alpha^{*}=\alpha^{*}(a, b, c, d, \mu)$ such
that (SP) has at least one positive non-constant solution for each $\alpha>\alpha^{*}$ .

We are also interested in the limiting patterns of (SP) as $\alphaarrow\infty$ . Under the
$re$strlction $N\leq 3$ , we obtain the following limiting system as $\alphaarrow\infty$ .
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Theorem 1.2. Suppose $N\leq 3$ and $b>\mu$ . Let $\{(u_{i}, v_{i}, \alpha_{i})\}_{i=1}^{\infty}$ be any sequence such
that $\lim_{iarrow\infty}\alpha_{i}=\infty$ and positive functions $(u_{i}, v_{i})$ satisfy (SP) with $\alpha=\alpha_{i}$ . Then,
by passing to a subsequence if necessary, it holds that

$\lim_{iarrow\infty}(u_{i}, v_{i})=(\tau(\mu+\overline{v}),\overline{v})$ in $C^{1}(\overline{\Omega})\cross C^{1}(\overline{\Omega})$ ,

where $\tau$ is a positive constant satisfying $1<d\tau<b/\mu,\overline{v}$ is a positive function in $\Omega$

and $(\tau,\overline{v})$ satisfies

$\{\begin{array}{ll}\Delta\overline{v}+\overline{v}\{-b+d\tau\mu+(d\tau-1)\overline{v}\}=0 in \Omega,\frac{\partial\overline{v}}{\partial n}=0 on \partial\Omega,\int_{\Omega}(\mu+\overline{v})\{a-\tau\mu+(c-\tau)\overline{v}\}dx=0. \end{array}$ (1.2)

We expect that the limiting system (1.2) may give much information on profiles
of stationary patterns of (SP) for large $\alpha$ . We will give some remarks about (1.2) in
the last section.

Throughout the article, the usual norms of If $(\Omega)$ for $p\in[1, \infty$ ) and $C(\overline{\Omega})$ are
defined by

$\Vert\psi\Vert_{p}$ $:=( \int_{\Omega}|\psi(x)|^{p}dx)^{1/p}$ and $\Vert\psi\Vert_{\infty}$

$:= \max_{x\in\Omega}|\psi(x)|$ ,

respectively.

2 Stability of the constant solution $(u^{*}, v^{*})$

In this section, we will analyze the linearized stability of the constant stationary
solution $(u^{*}, v^{*})$ for (P).

The linearized eigenvalue problem of (P) at $(u^{*},v^{*})$ is given by

$\{\begin{array}{ll}\text{一} (1+\frac{\alpha}{\mu+v}*)\Delta h+\frac{\alpha u^{*}}{(\mu+v^{*})^{2}}\Delta k+u^{*}h-cu^{*}k=\eta h in \Omega,-\Delta k-dv^{*}h+v^{*}k=\eta k in \Omega,\frac{\partial h}{\partial n}=\frac{\partial k}{\partial n}=0 on \partial\Omega.\end{array}$ (2.1)

We know that $(u^{*},v^{*})$ is linearly stable when $\alpha=0$ . Using the expansions of $h$ and
$k\ln$ terms of eigenfunctions $of-\Delta$ , one can see that $\eta$ is an eigenvalue of (2.1) if
and only if

det $(-\eta+$.
$(1+ \frac{\alpha}{\mu+v^{*}})\lambda_{i}+u^{*}-dv^{*}$ $- \frac{\alpha u}{-\eta+(\mu+v^{*})^{2}}\lambda_{i}-cu^{*}\lambda_{i}+v^{*I}=0$
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for some $i\geq 0$ . In particular, $\eta=0$ is an eigenvalue of (2.1) if and only if

$\frac{\lambda_{i}}{(\mu+v^{*})^{2}}\{(\mu+v^{*})(\lambda_{i}+v^{*})-du^{*}v^{*}\}\alpha+(\lambda_{i}+u^{*})(\lambda_{i}+v^{*})-cdu^{*}v^{*}=0$

for some $i\geq 0$ . Note that $(\lambda_{i}+u^{*})(\lambda_{i}+v^{*})-cdu^{*}v^{*}>0$ for all $i\geq 0$ because
of (1.1). Thus it is easy to see that the linearized stability of $(u^{*},v^{*})$ changes as $\alpha$

increases in (P) if and only if

$(\mu+v^{*})(\lambda_{1}+v^{*})-du^{*}v^{*}=(\mu+v^{*})\lambda_{1}+v^{*}(\mu+v^{*}-du^{r})$

$=(\mu+v^{*})\lambda_{1}+v^{*}(\mu-b)$

$<0$ .
Therefore, $b>\mu$ is necessary for the linearized stability of $(u^{*}, v^{*})$ to change (and so
we do not discuss the case $b\leq\mu$ , especially, $-b\geq 0$). This means that the difference
in the intrinsic growth rates between two species $u$ and $v$ contributes to creating
stationary patterns in (SP).

3 Proof of Theorem 1.1

3.1 Reduction to the semilinear system
Our method of the proof of Theorem 1.1 will be based on the Leray-Schauder

degree theory (see e.g., [9]) and some a priori estimates. We first introduce a new
unknown function $U$ by

$U=(1+ \frac{\alpha}{\mu+v})u$ . (3.1)

Clearly, there exists a one-to-one correspondence between $(u, v)>0$ and $(U, v)>0$ .
As far as we discuss positive solutions, (SP) is rewritten in the following equivalent
form:

(EP) $\{\begin{array}{ll}\Delta U+\frac{\mu+v}{\mu+v+\alpha}U(a-\frac{\mu+v}{\mu+v+\alpha}U+cv)=0 in \Omega,\Delta v+v(-b+d\frac{\mu+v}{\mu+v+\alpha}U-v)=0 in \Omega,\frac{\partial U}{\partial n}=\frac{\partial v}{\partial n}=0 on \partial\Omega.\end{array}$

Thuv, it is sufficient to show the existence of positive non-constant solutions of (EP).
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3.2 A priori estimates
In this subsection, we will give some a priori estimates for positive solutions

of (EP). Before stating the a priori estimates, we recall the following maximum
principle due to Lou and Ni [7].

Lemma 3.1. Suppose that $g\in C(\overline{\Omega}\cross \mathbb{R})$ .
(i) If $w\in C^{2}(\Omega)\cap C^{1}(\overline{\Omega})$ satisfies

$\Delta w(x)+g(x, w(x))\geq 0$ in $\Omega$ , $\frac{\partial w}{\partial n}\leq 0$ on $\partial\Omega$ ,

and $w(x_{0})= \max_{\Omega}w$, then $g(x_{0}, w(x_{0}))\geq 0$ .
(ii) If $w\in C^{2}(\Omega)\cap C^{1}(\overline{\Omega})$ satisfies

$\Delta w(x)+g(x, w(x))\leq 0$ in $\Omega$ , $\frac{\partial w}{\partial n}\geq 0$ on $\partial\Omega$ ,

and $w(x_{0})= \min_{\Omega}w$ , then $g(x_{0}, w(x_{0}))\leq 0$ .

Now we can derive the following a priori estimates.

Lemma 3.2. Let $\zeta$ be any fixed positive number. Then there exist two positive
constants $C_{*}(\zeta)=C_{*}(\zeta, a, b, c, d, \mu)<C^{*}(\zeta)=C^{*}(\zeta, a, b, c, d, \mu)$ such that, if $\alpha\leq\zeta$ ,
then any positive solution $(U, v)$ of (EP) satisfies

$a\leq U(x)\leq C^{*}(\zeta)$ and $C_{*}(\zeta)\leq v(x)\leq C^{*}(\zeta)$ for all $x\in\overline{\Omega}$ .

Proof. Let $U(x_{0})= \max_{\Omega}U$ and $v(y_{0})= \max_{\Omega}v$ with $x_{0},$
$y_{0}\in\overline{\Omega}$ . Applying Lemma

3.1 to (EP), we have

$m_{\frac{a}{\Omega}}xU\leq\frac{\mu+v(x_{0})+\alpha}{\mu+v(x_{0})}(a+cv(x_{0}))$

and
$\max_{\Omega}v\leq-b+d\frac{\mu+v(y_{0})}{\mu+v(y_{0})+\alpha}U(y_{0})\leq-b+d$ max U. (3.2)

Thus

$\max_{\Omega}U\leq a+cu(x_{0})+\zeta\frac{a+cv(x_{0})}{\mu+v(x_{0})}$

$\leq a+c(-b+d\max_{\Omega}U)+\zeta\max\{\frac{a}{\mu},$ $c\}$ .

Therefore, we see
$m_{\frac{a}{\Omega}}xU\leq\frac{a-bc+\zeta\max\{a/\mu,c\}}{1-cd}$ . (3.3)
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It follows from (3.2) and (3.3) that

$\max_{\overline{\Omega}}v\leq-b+\frac{d(a-bc+\zeta\max\{a/\mu,c\})}{1-cd}=\frac{ad-b+\zeta d\max\{a/\mu,c\}}{1-cd}$ . (3.4)

Hence we have obtained the deslred upper bound of $(U, v)$ .
Let $U(z_{0})= \min_{\overline{\Omega}}U$ with some $z_{0}\in\overline{\Omega}$ . Using Lemma 3.1 to the first equation

of (EP), we get

$\min_{\Omega}U\geq\frac{\mu+v(z_{0})+\alpha}{\mu+v(z_{0})}(a+cv(z_{0}))\geq a$ . (3.5)

Thus we have obtained the desired lower bound of $U$ .
Finally, we derive a lower bound of $v$ by contradiction. Suppose that there exist

a certain positive constant $\zeta_{0}$ and a sequence $\{(U_{i}, v_{i}, \alpha_{i})\}_{i=1}^{\infty}$ such that $\alpha_{i}\leq\zeta_{0}$ for
all $i\in N,$ $\lim_{iarrow\infty}\alpha_{i}=\alpha_{\infty}$ for some non-negative constant $\alpha_{\infty}$ ,

$\lim_{iarrow\infty}m_{\frac{i}{\Omega}}nv_{i}=0$ (3.6)

and positive functions $(U_{i}, v_{i})$ satisfy

$\{\begin{array}{ll}\Delta U_{i}+\frac{\mu+v_{i}}{\mu+v_{i}+\alpha_{i}}U_{i}(a-\frac{\mu+v_{i}}{\mu+v_{i}+\alpha_{i}}U_{i}+cv_{i})=0 in \Omega,\Delta v_{i}+v_{i} (-b+d\frac{\mu+v_{i}}{\mu+v_{i}+\alpha_{i}}U_{i} \text{一} v_{i})=0 in \Omega,\frac{\partial U_{i}}{\partial n}=\frac{\partial v_{i}}{\partial n}=0 on \partial\Omega.\end{array}$ (3.7)

By using the regularity theory for elliptic equations (see e.g., [1]) to the second
equation of (3.7), it follows from (3.3) and (3.4) that

$||v_{i}\Vert_{W^{2,p}(\Omega)}\leq C(\zeta_{0})$

with some positive constant $C(\zeta_{0})=C(\zeta_{0}, a, b, c, d, \mu)$ independent of $i$ . If $p>N$ ,
then Sobolev’s embedding theorem implies $\{v_{i}\}_{i=1}^{\infty}$ is compact in $C^{1}(\overline{\Omega})$ . Conse-
quently, there exists a subsequence, which is still denoted by $\{v_{i}\}_{i=1}^{\infty}$ , such that

$\lim_{iarrow\infty}v_{i}=v_{\infty}$ in $C^{1}(\overline{\Omega})$ (3.8)

with some non-negative function $v_{\infty}\in C^{1}(\overline{\Omega})$ . Similarly, there exists a non-negative
function $U_{\infty}\in C^{1}(\overline{\Omega})s$uch that

$\lim_{iarrow\infty}U_{i}=U_{\infty}$ in $C^{1}(\overline{\Omega})$ . (3.9)

Therefore, $v_{\infty}$ satisfie$s$

$\Delta v_{\infty}+v_{\infty}(-b+d\frac{\mu+v_{\infty}}{\mu+v_{\infty}+\alpha_{\infty}}U_{\infty}$ 一 $v_{\infty)}=0$ in $\Omega$ , $\frac{\partial v_{\infty}}{\partial n}=0$ on $\partial\Omega$
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in a weak sense. By standard elliptic regularity theory we have $v_{\infty}\in C^{2}(\overline{\Omega})$ and
thus $v_{\infty}$ is a classical solution of the above equation. Then it follows from (3.6),(3.8)
and the strong maximum principle that $v_{\infty}\equiv 0$ in $\overline{\Omega}$ . We can easily see from the
above argument that $U_{\infty}$ satisfies

$\Delta U_{\infty}+\frac{\mu}{\mu+\alpha_{\infty}}U_{\infty}(a-\frac{\mu}{\mu+\alpha_{\infty}}U_{\infty)}=0$ in $\Omega$ , $\frac{\partial U_{\infty}}{\partial n}=0$ on $\partial\Omega$

in the classical sense. Then by the strong maximum principle and Lemma 3.1, either
$U_{\infty}\equiv a(\mu+\alpha_{\infty})/\mu$ or $U_{\infty}\equiv 0$ in $\overline{\Omega}$ . Combining (3.5) and (3.9), we can conclude
$U_{\infty}\equiv a(\mu+\alpha_{\infty})/\mu$ in $\overline{\Omega}$ . Hence

$\lim_{iarrow\infty}(-b+d\frac{\mu+v_{i}}{\mu+v_{i}+\alpha_{i}}U_{i}-v_{i})=ad-b>0$ uniformly in $\Omega$

by (1.1) and this means

$v_{i}(-b+d \frac{\mu+v_{i}}{\mu+v_{i}+\alpha_{i}}U_{i}-v_{i})>0$ in $\Omega$

for sufficiently large $i\in N$ because $v_{i}>0$ in $\Omega$ . On the other hand, $hom$ the second
equation of (3.7), we have

$\int_{\Omega}v_{i}(-b+d\frac{\mu+v_{i}}{\mu+v_{i}+\alpha_{i}}U_{i}-v_{i})dx=-\int_{\Omega}\Delta v_{i}dx=-\int_{\partial\Omega}\frac{\partial v_{i}}{\partial n}d\sigma=0$

for all $i\in N$ . This is a contradiction; thus our proof is complete. $\square$

3.3 Completion of the proof of Theorem 1.1
Set $X=C(\overline{\Omega})\cross C(\overline{\Omega})$ . For each $\alpha\geq 0$ , define an operator $F_{\alpha}$ by

$F_{\alpha}(\begin{array}{l}Uv\end{array})=(^{(-\Delta+I)^{-1}[U+\frac{\mu+v}{+v(\mu+v+\alpha}U(\frac{v}{+\alpha}U+cv}(-\Delta+I)^{-1}[v-b+ad_{\mu+v\overline{+\alpha}}^{\ovalbox{\tt\small REJECT}+v}-\mu+v$

where $I$ is the identity map from $C(\overline{\Omega})$ into itself, and $(-\Delta+I)^{-1}$ is the inverse
operator $of-\Delta+I$ subject to the homogeneous Neumann boundary condition on
$\partial\Omega$ . It is easy to see that $F_{\alpha}$ : $Xarrow X$ is well-defined, and that by elliptic regularity
theory and Sobolev’s embedding theorem, $F_{\alpha}$ is a continuous and compact operator
for each $\alpha\geq 0$ . IFlrom these observations, one can define the Leray-Schauder degree
of $I-F_{\alpha}$ at $0$ in a suitable open set. Furthermore, $(U, v)$ is a positive solution of
$(I-F_{\alpha})(U, v)=01f$ and only if $(U, v)$ is a positive solution of (EP).

In view of (3.1), we set

$U_{\alpha}^{*}=(1+ \frac{\alpha}{\mu+v}*)u^{*}$ .
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Hence $(U_{\alpha}^{*}, v^{*})$ is a zero point of $I-F_{\alpha}$ . Then we can calculate the index of $I-F_{0}$ at
$(u^{*}, v^{*})$ and the index of $I-F_{\alpha}$ at $(U_{\alpha}^{*}, v^{*})$ for sufficiently large $\alpha$ , which are denoted
by 1ndex$(I-F_{0}, (u^{*}, v^{*}))$ and $index(I-F_{\alpha}, (U_{\alpha}^{*}, v^{*}))$ , respectively. We refer to [10]
$fortheproofsofLemmas3.3and3.4$.
Lemma 3.3. It holds that index$(I-F_{0}, (u^{*}, v^{*}))=1$ .
Lemma 3.4. Suppose that $\{v^{*}(b-\mu)\}/(\mu+v^{*})\in(\lambda_{l}, \lambda_{l+1})$ for some $l\geq 1$ . Then
there exists a positive constant $\alpha^{*}=\alpha^{*}(a, b, c, d, \mu)$ such that, if $\alpha>\alpha^{*}$ , then

index$(I-F_{\alpha}, (U_{\alpha}^{*}, v^{*}))=(-1)^{\Sigma!}=1m$ :

where $m_{i}$ denotes the algebraic multiplicity of $\lambda_{i}$ defined in Section 1.

By virtue of Lemmas 3.3 and 3.4, we are ready to prove Theorem 1.1. In the
proof of Theorem 1.1, we represent (EP) as $(EP)_{\alpha}$ to indIcate the dependence on $\alpha$ .
Proof of Theorem 1.1. Fix any $\alpha>\alpha^{*}$ , where $\alpha^{*}$ is a constant given in Lemma
3.4. It follows from Lemma 3.2 that there exist two positive constants $C_{*}(\alpha)=$

$C_{*}(\alpha, a, b, c, d, \mu)<C^{*}(\alpha)=C^{*}(\alpha, a, b, c, d, \mu)$ such that

$a\leq U(x)\leq C^{*}(\alpha)$ and $C_{*}(\alpha)\leq v(x)\leq C^{*}(\alpha)$ for all $x\in\overline{\Omega}$

for any positive solution $(U, v)$ of $(EP)_{\nu}$ with any $\nu\in[0, \alpha]$ . We define

$S= \{(U, v)\in X|\frac{a}{2}\leq U\leq 2C^{*}(\alpha),$ $\frac{C_{*}(\alpha)}{2}\leq v\leq 2C^{*}(\alpha)$ in $\overline{\Omega}\}$ ;

so that $I-F_{\nu}$ has no zero point on the boundary of $S$ for any $\nu\in[0, \alpha]$ . Note that
$I-F_{0}$ has a unique zero point $(u^{*})v^{*})$ in $S$ . On account of the homotopy invariance
of the Leray-Schauder degree and Lemma 3.3, we have

$\deg(I-F_{\alpha}, S, 0)=\deg(I-F_{0}, S, O)=index(I-F_{0}, (u^{*}, v^{*}))=1$ . (3.10)

Suppose that $(EP)_{\alpha}$ has no positive non-constant solution, i.e. $I-F_{\alpha}$ has a unique
zero point $(U_{\alpha}^{*}, v^{*})$ in $S$ . Then from the assumption $\sum:_{=1}m_{i}$ being odd and Lemma
3.4, it follows that

$\deg(I-F_{\alpha}, S, O)=index(I-F_{\alpha}, (U_{\alpha}^{*}, v^{*}))=(-1)^{\Sigma_{*=1}^{l}m_{1}}=-1$ ,

which contradicts (3.10). Thus we complete the proof. $\square$
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4 Proof of Theorem 1.2
We first state some a priori estimates independent of $\alpha$ .

Lemma 4.1. Suppose that $N\leq 3$ . Then there exists a positive constant $C_{0}=$

$C_{0}(a, b, c, d, \mu)$ independent $of\alpha$ such that any positive solution $(u, v)$ of (SP) satisfies
$\Vert u\Vert_{\infty}\leq C_{0}$ and $\Vert v\Vert_{\infty}\leq C_{0}$ .

Lemma 4.1 can be proved by combining the $L^{2}$-estimates for positive solutions of
(SP) (independent of $\alpha$ and $N$) with Harnack inequality (due to Lin, Ni and Takagi
[4], and Lou and Ni [8]). We refer to [10] for the proof of Lemma 4.1.

We are now in a position to prove Theorem 1.2.

Proof of Theorem 1.2. Let $\{(u_{i}, v_{i}, \alpha_{i})\}_{i=1}^{\infty}$ be any sequence such that $\lim_{iarrow\infty}\alpha_{i}=$ .
$\infty$ and positive functions $(u_{i}, v_{i})$ satisfy (SP) with $\alpha=\alpha_{i}$ . Set

$\psi_{i}=(\frac{1}{\alpha_{i}}+\frac{1}{\mu+v_{i}})u_{i}$ .

Note that positive functions $(\psi_{i}, v_{i})$ satisfy

$\{\begin{array}{ll}\Delta\psi_{i}+\frac{u_{i}(a-u_{i}+cv_{i})}{\alpha_{i}}=0 in \Omega,\Delta v_{i}+v_{i}(-b+du_{i}-v_{i})=0 in \Omega,\frac{\partial\psi_{i}}{\partial n}=\frac{\partial v_{i}}{\partial n}=0 on \partial\Omega,\end{array}$

and that $\{\psi_{i}\}_{i=1}^{\infty}$ is bounded independently of $i$ by Lemma 4.1. Then by the com-
pactness $ax$gument as in the proof of (3.8), there exists a subsequence, which is still
denoted by $\{\psi_{i}\}_{i=1}^{\infty}$ , such that

$\lim_{iarrow\infty}\psi_{i}=\tau$ in $C^{1}(\overline{\Omega})$

for a non-negative function $\tau\in C^{1}(\overline{\Omega})$ . Similarly, we see

$\lim_{iarrow\infty}v_{i}=\overline{v}$ in $C^{1}$ (ゆ) (4.1)

for a non-negative function $\overline{v}\in C^{1}(\overline{\Omega})$ . Therefore, we obtain

$\lim_{iarrow\infty}u_{i}=\lim_{iarrow\infty}\frac{\psi_{i}}{1/\alpha_{i}+1/(\mu+v_{i})}=\tau(\mu+\overline{v})$ in $C^{1}(\overline{\Omega})$ . (4.2)
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We will show that $\tau$ is a positive constant. Observe that $\tau$ satisfies

$\Delta\tau=0$ in $\Omega$ , $\frac{\partial\tau}{\partial n}=0$ on $\partial\Omega$

in a weak sense. A standard elliptic regularity theory ensures $\tau\in C^{2}(\overline{\Omega})$ ; so that $\tau$

must be a non-negative constant. Let $v_{i}(x_{i})= \max_{\Omega}v_{i}$ with some $x_{i}\in\overline{\Omega}$ . It follows
from Lemma 3.1 that

$u_{i}(x_{i}) \geq\frac{b+v_{i}(x_{i})}{d}>\frac{b}{d}(>0)$

for all $i\in N$ . This fact, together with (4.2), yields $\tau>0$ .
We next prove $(\tau,\overline{v})$ satisfies (1.2). Note that $\overline{v}$ satisfies

$\Delta\overline{v}+\overline{v}\{-b+d\tau\mu+(d\tau-1)\overline{v}\}=0$ in $\Omega$ , $\frac{\partial\overline{v}}{\partial n}=0$ on $\partial\Omega$ (4.3)

in a weak sense. In the standard manner, one can see that $\overline{v}\in C^{2}(\overline{\Omega})$ and $\overline{v}$ is a
classical nonnegative solution of (4.3). It follows from the strong maximum principle
that either $\overline{v}\equiv 0$ or $\overline{v}>0$ in $\Omega$ . We show $\overline{v}>0$ in $\Omega$ by contradiction. Suppose
that $\overline{v}\equiv 0$ in $\Omega$ . Then it follows from (4.1) and (4.2) that

$\lim_{iarrow\infty}a-u_{i}+cv_{i}=a-\tau\mu$ and $\lim_{iarrow\infty}-b+du_{i}-v_{i}=-b+d\tau\mu$

uniformly in $\Omega$ . On the other hand,

$\int_{\Omega}u_{i}(a-u_{i}+cv_{t})dx=\int_{\Omega}v_{i}(-b+du_{i}-v_{i})dx=0$ (4.4)

for all $i\in N$ . Consequently, $a-\tau\mu=-b+d\tau\mu=0$ because of $u_{i}>0$ and $v_{i}>0$ in
$\Omega$ and thus $ad– b=0$. This contradicts (1.1). Therefore $\overline{v}>0$ in $\Omega$ .

By (4.1), (4.2) and (4.4), it is clear that

$\int_{\Omega}(\mu+\overline{v})\{a-\tau\mu+(c-\tau)\overline{v}\}dx=\int_{\Omega}(\mu+\overline{v})\{a-\tau(\mu+\overline{v})+c\overline{v}\}dx=0$ .

Hence it only remains to show $1<d\tau<b/\mu$ . By the assumption of Theorem
1.2,

$-b+d\tau\mu<-\mu+d\tau\mu=\mu(d\tau-1)$ .
It thus follows from Lemma 3.1 and (4.3) that if $d\tau-1\leq 0$ , then $\max_{\Omega}\overline{v}\leq 0$ and
this contradicts $\overline{v}>0$ in $\Omega$ . Therefore, $d\tau>1$ . Using Lemma 3.1 and $\overline{v}>0$ in $\Omega$

again, we obtain $d\tau<b/\mu$ . Hence we complete the proof. $\square$
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5Remarks about the limiting system (1.2)
We easily see that $(\tau,\overline{v})=(u^{*}/(\mu+v^{*}), v^{*})$ is the only positive constant solution

of (1.2). So our concern is about positive non-constant solutions of (1.2). We
discuss the differential equations without the integral constraint in (1.2) under the
restriction $N\leq 3$ :

$\{\begin{array}{ll}\Delta\overline{v}+\overline{v}\{-b+d\tau\mu+(d\tau-1)\overline{v}\}=0 in \Omega,\frac{\partial\overline{v}}{\partial n}=0 on \partial\Omega.\end{array}$ (51)

Set
$w= \frac{d\tau-1}{b-d\tau\mu}\overline{v}$ ,

where $1<d\tau<b/\mu$ . Then (5.1) is rewrltten in the following equivalent form:

$\{\begin{array}{ll}\frac{1}{b-d\tau\mu}\Delta w-w+w^{2}=0 in \Omega,\frac{\partial w}{\partial n}=0 on \partial\Omega.\end{array}$ (52)

We note that, if $(0<)b-d\tau\mu\ll 1$ , then (5.2) has no positive non-constant solution
(see [4]). Therefore, $b\gg 1$ is necessary for (1.2) to have positive non-constant
solutions. We will study (1.2) in detail in the future.
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