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Stationary patterns for a cooperative model with
nonlinear diffusion

FRRERY « REEFEBE T AR KB M (Kazuhiro Oeda)
Graduate School of Fundamental Science and Technology,
Waseda University

1 Introduction

In this article we study positive steady-state solutions of the following strongly
coupled reaction-diffusion system:

4 Q .
utzA[(1+“+v)u]+u(a—u+cv) in 2 x(0,7),
(P) 4 vy = Av + v(=b+ du —v) in 2 x (0,7),
ou Ov ,
%=5;=0 : on 82 x (0,T),
(u(,0) = uo(-), v(,0) = wo(:) in £,

where (2 is a bounded domain in RY with smooth boundary 8f2; 3/0n denotes the
outward normal derivative on 82; a,b,c,d and p are all positive constants; o is a
non-negative constant; uo and vo are given non-negative functions which are not
identically zero. System (P) is a Lotka-Volterra cooperative model with a density-
- dependent diffusion term of a fractional type; unknown functions u and v represent
population densities of two cooperative species, respectively; a and —b denote the
intrinsic growth rates of the respective species; c and d denote interaction coefficients.
When o = 0, (P) is reduced to a classical Lotka-Volterra cooperative model with
diffusion. See [6] and [13] for such a cooperative model.
In the first equation of (P), the nonlinear diffusion term aA{u/(u+wv)} describes
a situation where species u tends to leave low-density areas of species v. This
situation is natural because relations between u and v are cooperative. A population
model with density-dependent diffusion was first proposed by Shigesada, Kawasaki
and Teramoto [14] to investigate the habitat segregation phenomena between two
competing species. Since their work, many mathematicians have studied population
models with density-dependent diffusion. However, population models including
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density-dependent diffusion terms of a fractional type have appeared in recent years;
for example, see [5], [16] for cooperative models with Dirichlet boundary conditions;
[2], [3] for prey-predator models with Dirichlet boundary conditions; [12], [15] for
three-species prey-predator models with Neumann boundary conditions. See also
the monograph of Okubo and Levin [11] for the biological background.

The stationary problem associated with (P) is

4 (0% .

A[( ”+v)u]+u(a—u+cv)—0 in 2,
(SP) 4 Av+v(-b+du—v)=0 in £,

Ou Ov

ké_ﬁ_%_o on 0f2.

Our main purpose is to study the existence of stationary patterns (i.e. positive
non-constant solutions) for (SP) with the weak cooperative condition

a 1
E>E>C. (11)

From now on, we will always assume (1.1). It is well known that, if o = 0, then
every solution of (P) converges to a unique positive constant steady-state

(u*v*) o= a—bc ad-1b
T \1—ed’1-cd

uniformly as t — oo; see [6]. This implies the following proposition.
Proposition 1.1. Let o = 0. Then (u*,v*) is a unique positive solution of (SP).

Proposition 1.1 means that no stationary pattern exists in the linear diffusion
case. However, the presence of density-dependent diffusion enables us to construct
stationary patterns of (SP). We focus on a to show the emergence of stationary
patterns for (SP).

Let 0 = Mg < A1 < A2 < --- denote eigenvalues of —A with the homogeneous
Neumann boundary condition on 82 and let m; denote the algebraic multiplicity of
Ai- Then we have the following theorem.

Theorem 1.1. Suppose that {v*(b — p)}/(u +v*) € (Al,)\lﬂ) for some l > 1 and
that 3°._, m; is odd. Then there exists a positive constant o* = = a*(a, b, ¢, d, u) such
that (SP) has at least one positive non-constant solution for each oo > o*

We are also interested in the limiting patterns of (SP) as @ — oo. Under the
restriction IV < 3, we obtain the following limiting system as a — oo.
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Theorem 1.2. Suppose N < 3 and b > pu. Let {(u;,v;, )}, be any sequence such
that lim; .. a; = 0o and positive functions (u;,v;) satisfy (SP) with o = o;. Then,
by passing to a subsequence if necessary, it holds that

lim (u;, %) = (t(u+9),7) in CY(2) x CH{),
100
where T is a positive constant satisfying 1 < dr < b/u, U is a positive function in 2

and (7,7) satisfies

(AD+0{—b+dru+ (dr—1)5} =0  in £,
dv

Son 0 on 012, (1.2)

L/ﬂ?(,u +70){a—Tp +‘ (¢c—7)v}dz = 0.

We expect that the limiting system (1.2) may give much information on profiles

of stationary patterns of (SP) for large o. We will give some remarks about (1.2) in
the last section.

Throughout the article, the usual norms of L?(§2) for p € [1,00) and C(f2) are
defined by

1/p
ol = ([ w@Pdz) " and (ol = maxto(a))

respectively.

2 Stability of the constant solution (u*,v*)

In this section, we will analyze the linearized stability of the constant stationary
solution (u*,v*) for (P).
The linearized eigenvalue problem of (P) at (u*,v*) is given by

, *
—(1+ @ )Ah+—-°‘l—Ak+u*h-cu*k=nh in 0,
(b +v%)?

p+ o )
{ —Ak — dv*h + vk = nk in 2, (21
oh Ok
3 =3 = on 0f2.

We know that (u*,v*) is linearly stable when a = 0. Using the expansions of h and
k in terms of eigenfunctions of —A, one can see that  is an eigenvalue of (2.1) if
and only if

det —n+'(1+;fv—;))\,~+u* e et _
‘ —dv* '—’I’)+)\¢+’U*
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for some 7 > 0. In particular, 7 = 0 is an eigenvalue of (2.1) if and only if

Ai
m{(ﬂ +v*) (A + %) — durv*ta + (A + u*) (N + ) — cdutv* =0

for some ¢ > 0. Note that (\; + u*)(\; + v*) — cdu*v* > 0 for all 4 > 0 because
of (1.1). Thus it is easy to see that the linearized stability of (u*,v*) changes as a
increases in (P) if and only if

(B +v") (A + ") = du*v* = (p+v*) A + v* (4 + v* — du)
= (u+v)A +v*(p—b)
<0.

Therefore, b > p is necessary for the linearized stability of (u*,v*) to change (and so
we do not discuss the case b < p, especially, —b > 0). This means that the difference
in the intrinsic growth rates between two species u and v contributes to creating
stationary patterns in (SP).

3 Proof of Theorem 1.1

3.1 Reduction to the semilinear system

Our method of the proof of Theorem 1.1 will be based on the Leray-Schauder
degree theory (see e.g., [9]) and some a priori estimates. We first introduce a new
unknown function U by

!
U=({1+ u. 3.1
(+755): @
Clearly, there exists a one-to-one correspondence between (u,v) > 0 and (U,v) > 0.
As far as we discuss positive solutions, (SP) is rewritten in the following equivalent
form:

4
AU+~M—U(a——’iﬂ—U+w) =0 in 2,
H+v+a H+v+a
(EP)4AU+'U(—b+d—H—v—-U—v)=O in £2,
pu+v+a
oU ow
\a—n—~%—0 on 6.0

Thus, it is sufficient to show the existence of positive non-constant solutions of (EP).
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3.2 A priori estimates

In this subsection, we will give some a priori estimates for positive solutions
of (EP). Before stating the a priori estimates, we recall the following maximum
principle due to Lou and Ni [7].

Lemma 3.1. Suppose that g € C(2 x R).
(i) If w e C%(2) N CHN) satisfies

Aw(z) + g(z,w(z)) >0 in £, ?8% <0 on 39,
and w(zo) = maxg w, then g(zy, w(xo)) > 0.
(i) If w e C*(02)NCYN) satisfies
: - fw
Aw(z) + gz, w(z)) <0 in 2, 5,20 on 00,

and w(zo) = ming w, then g(zy, w(zy)) < 0.
Now we can derive the following a priori estimates.

Lemma 3.2. Let { be any fized positive number. Then there exist two positive
constants C,(¢) = C.({, a,b,¢,d, p) < C*(¢) = C*(¢,a, b, c,d, u) such that, if a < ¢,
then any positive solution (U,v) of (EP) satisfies

a<U(z) <C*() and C.({) <wv(z)<C*({) forall z€ .

Proof. Let U(zo) = maxg U and v(y,) = maxps v with o, yo € 2. Applying Lemma
3.1 to (EP), we have

N+’U($o)+0&
<
mexU S e otey @t (o))
and + ()
BT U\Yo '
< - —_— < -b+d U. 3.2
mng__ b+du+v(yo)+aU(yo)‘ + mg,x (3.2)
Thus
a + cv(zo)

<
mng_a+cv(zo)+(u+v(mo)

<a+c(-b+dmaxU) +Cmax{%,c}.

Therefore, we see
maxU < &= bc+(ma.x{a/u,c}.

fo} - 1—cd (3.3)
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It follows from (3.2) and (3.3) that

maxv < —b+ d(a — bc + ( max{a/u, c}) _ ad—b+ (dmax{a/p, c}_ (3.4)
Q2 1l—cd 1—-cd
Hence we have obtained the desired upper bound of (U, v).
Let U(z) = ming U with some 2, € 2. Using Lemma 3.1 to the first equation
of (EP), we get

p+v(2) + o
> m(a + cv(2p)) 2 a. (3.5)
Thus we have obtained the desired lower bound of U.

Finally, we derive a lower bound of v by contradiction. Suppose that there exist
a certain positive constant (o and a sequence {(U;, v, ;) }32; such that o; < (o for
all i € N, lim;_,, @; = a for some non-negative constant o,

min U
7]

lim minv; =0 (3.6)

i—oo

and positive functions (U;, v;) satisfy

( X .
AU+ —EEY g, (a— Lv’——Ui-kcvi) =0 in £,
K+ v+ B+ v+ oy
S Avi 4 (~b+d—ETY y ) =0 in 0, (3.7)
B+ v+
ou; Ov;
Fn - Bn on Of2.

By using the regularity theory for elliptic equations (see e.g., [1]) to the second
equation of (3.7), it follows from (3.3) and (3.4) that

lvillwze0y < C(Co)

with some positive constant C(¢o) = C(¢o, a, b, ¢,d, u) independent of i. f p> N,

then Sobolev’s embedding theorem implies {v;}$2, is compact in C'(£2). Conse-

quently, there exists a subsequence, which is still denoted by {v;}{2;, such that
lim v; = v, in C}(f2) (3.8)
1—00

with some non-negative function v, € C*(£2). Similarly, there exists a non-negative

function U, € C({2) such that

,1ir2) Ui =Ux in CY). (3.9)
F—
Therefore, vy, satisfies
+v ) OV
Avoo-l-voo (*b-l—d“—f-;):—j%;(]oo—voo) =0 in .Q, %=0 on 012
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in a weak sense. By standard elliptic regularity theory we have v, € C?({2) and
thus v is a classical solution of the above equation. Then it follows from (3.6),(3.8)
and the strong maximum principle that v, = 0 in £2. We can easily see from the
above argument that U, satisfies

AUy + —F Uoo(a— s Um)=o in 2, Y= _0 onon
b+ Qoo U+ Ooo on

in the classical sense. Then by the strong maximum principle and Lemma 3.1, either
Us = a(p+ a)/pt or Uy = 0 in 2. Combining (3.5) and (3.9), we can conclude
Uso = a(p + ae)/p in 2. Hence

lim (—b+ d—“—ﬂi—Ui ~ vi) =ad—b>0 uniformlyin 2
i—00 M+ v+
by (1.1) and this means
V; (-b-{-d—ﬂi—[]’ - ’U.i) >0 in 2
m+ v+ o

for sufficiently large i € N because v; > 0 in £2. On the other hand, from the second
equation of (3.7), we have

/ v; <—b + d——“j—-——vi—~Ui — v,-) dr = ——/ Avidzr = — 6vido =0
o) Btv+ o o) a0 On
for all ¢ € N. This is a contradiction; thus our proof is complete. O

3.3 Completion of the proof of Theorem 1.1
Set X = C(£2) x C(£2). For each a > 0, define an operator F, by

- (U) _[(Ca+n [U + ey (a — by gy cv)]
“\v (-A+D7 fv+o(=b+dv—v)] )

where I is the identity map from C(£2) into itself, and (—A + I)~! is the inverse
operator of —A + I subject to the homogeneous Neumann boundary condition on
012. It is easy to see that F, : X — X is well-defined, and that by elliptic regularity
theory and Sobolev’s embedding theorem, F, is a continuous and compact operator
for each a > 0. From these observations, one can define the Leray-Schauder degree
of I — F, at 0 in a suitable open set. Furthermore, (U, v) is a positive solution of
(I — Fo)(U,v) = 0 if and only if (U,v) is a positive solution of (EP).

In view of (3.1), we set

* o *
U, = (1+N+v*>u.
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Hence (U}, v*) is a zero point of I — F,,. Then we can calculate the index of I — Fp at
(u*,v*) and the index of I — F, at (U?,v*) for sufficiently large o, which are denoted
by index(I — Fp, (u*,v*)) and index(] — Fy, (U2, v*)), respectively. We refer to [10)
for the proofs of Lemmas 3.3 and 3.4. :

Lemma 3.3. It holds that index(I — Fy, (u*,v*)) = 1.

Lemma 3.4. Suppose that {v*(b— p)}/(u + v*) € (\i, Mit1) for some l > 1. Then
there exists a positive constant o* = o*(a, b, c,d, u) such that, if & > a*, then

index(I — Fy, (U2, 0")) = (=1)Zi=1™,
where m; denotes the algebraic multiplicity of \; defined in Section 1.

By virtue of Lemmas 3.3 and 3.4, we are ready to prove Theorem 1.1. In the
proof of Theorem 1.1, we represent (EP) as (EP),, to indicate the dependence on c.

Proof of Theorem 1.1. Fix any o > «a*, where o* is a constant given in Lemma
3.4. It follows from Lemma 3.2 that there exist two positive constants C,(a) =
Cu(aya,b,¢,d, u) < C*(a) = C*(a, a,b, ¢, d, u) such that

a<U(z) <C*(a2) and C.(a) <v(z) < C*(a) forall z€
for any positive solution (U, v) of (EP), with any v € [0, ]. We define

Ci(a)
2

S= {(U,’U)EX[%SUS2C*(C¥), <v<2C*(a) in f)};

so that I — F, has no zero point on the boundary of S for any v € [0, a]. Note that
I — F} has a unique zero point (u*,v*) in S. On account of the homotopy invariance
of the Leray-Schauder degree and Lemma 3.3, we have

deg(I — F,, S,0) = deg(I — Fy, S,0) = index(I — Fp, (u*,v*)) = 1. (3.10)
Suppose that (EP), has no positive non-constant solution, i.e. I — F, has a unique
zero point (U2, v*) in S. Then from the assumption Zi=1 m; being odd and Lemma
3.4, it follows that

deg(I — Fa, S,0) = index(I — F,, (U2, v*)) = (=1)Zi=1™ = 1,

which contradicts (3.10). Thus we complete the proof. a
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4 Proof of Theorem 1.2

We first state some a priori estimates independent of a.

Lemma 4.1. Suppose that N < 3. Then there exists a positive constant Cp =
Co(a, b, ¢, d, u) independent of a such that any positive solution (u,v) of (SP) satisfies

lullo £ Co and |jv]le < Co.

Lemma 4.1 can be proved by combining the L2-estimates for positive solutions of
(SP) (independent of a and N) with Harnack inequality (due to Lin, Ni and Takagi
[4], and Lou and Ni [8]). We refer to [10] for the proof of Lemma 4.1.

We are now in a position to prove Theorem 1.2..

Proof of Theorem 1.2. Let {(u;,v;,;)}2; be any sequence such that lim; o 0; =-
oo and positive functions (u;, v;) satisfy (SP) with a = «;. Set

1 1
i = —+ U;.
alcar)

Note that positive functions (v;,v;) satisfy

( {a — .
Albi-l'uz(a U+ cvi) =0 in £,
§ Av; +vi(=b+du; —v;) =0 in £,
0’¢‘i _ Bv,- _
n@n_an—o on 02,

and that {1;}32, is bounded independently of i by Lemma 4.1. Then by the com-
pactness argument as in the proof of (3.8), there exists a subsequence, which is still
denoted by {#;}2,, such that
lim¢; =7 in CY()
1—00
for a non-negative function 7 € C*(£2). Similarly, we see
limv; =% in C'(f2) (4.1)
100

for a non-negative function & € C*(§2). Therefore, we obtain

i
li ; = li
z-ggou 1—1—{& 1/(2,-}-1/(/1,—{-?)1,)

m(u+ ) in CY£). (4.2)
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We will show that 7 is a positive constant. Observe that 7 satisfies

Ar=0 in 12, —81=0 on 012
on

in a weak sense. A standard elliptic regularity theory ensures 7 € C?(2); so that 7
must be a non-negative constant. Let v;(z;) = maxp v; with some z; € 2. It follows
from Lemma 3.1 that
b + Vi (IE,)

d
for all i € N. This fact, together with (4.2), yields 7 > 0.

We next prove (7, 7) satisfies (1.2). Note that ¥ satisfies

wi(zs) > > % (> 0)

Av+o{-b+dru+ (dr—1)5} =0 in £, % =0 on 9N (4.3)
in a weak sense. In the standard manner, one can see that 7 € C%(2) and 7 is a
classical nonnegative solution of (4.3). It follows from the strong maximum principle
that either = 0 or ¥ > 0 in 2. We show ¥ > 0 in {2 by contradiction. Suppose
that ¥ = 0 in 2. Then it follows from (4.1) and (4.2) that

lima—-u+cv;=a—7p and lim —b+du; —v; =—-b+dru

1—00 1—00

uniformly in 2. On the other hand,
/ ui(a — u; + cv;)dzr = / vi(=b+ du; — v;)dz =0 (4.4)
2 2

for all ¢ € N. Consequently, a — 70 = —b+ d7u = 0 because of u; > 0 and v; > 0 in
2 and thus ad — b = 0. This contradicts (1.1). Therefore © > 0 in 2.
By (4.1), (4.2) and (4.4), it is clear that

/(u +0){a—Tu+ (c—T)0}dr = / (v +0){a—7(p+0) +cv}dz = 0.
o o

Hence it only remains to show 1 < dr < b/u. By the assumption of Theorem
1.2,

—b+drpu < —p+drp = p(dr —1).
It thus follows from Lemma 3.1 and (4.3) that if d7 — 1 < 0, then maxy 7 < 0 and

this contradicts 7 > 0 in 2. Therefore, dr > 1. Using Lemma 3.1 and ¥ > 0 in 2
again, we obtain d7 < b/u. Hence we complete the proof. O
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5 Remarks about the limiting system (1.2)

We easily see that (7,7) = (u*/(pu+v*),v*) is the only positive constant solution
of (1.2). So our concern is about positive non-constant solutions of (1.2). We
discuss the differential equations without the integral constraint in (1.2) under the
restriction N < 3:

A+ 9{-b+drp+ (dr-1)3} =0 in £,

_ (5.1)
ov =0 on 012.
on
Set
w = dr -1 .
Cb—drp
where 1 < d7 < b/u. Then (5.1) is rewritten in the following equivalent form:
! Aw—w+w?=0 in £,
b—dru
5 (5.2)
=0 on Of2.
on

We note that, if (0 <)b—dru <« 1, then (5.2) has no positive non-constant solution
(see [4]). Therefore, b > 1 is necessary for (1.2) to have positive non-constant
solutions. We will study (1.2) in detail in the future.

Acknowledgment. The author would like to express his gratitude to Professor
Yoshio Yamada for his useful advice. '
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