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Abstract

In this paper, we generalize the pickup and delivery problem with time windows by
allowing additional constraints on each route, and propose a heuristic algorithm. Our
algorithm first generates a set of feasible routes, and repeats modifying the set by using
the information from a Lagrangian relaxation of the set covering problem corresponding
to the current set. It then solves the resulting set covering problem to construct a good
feasible solution for the original problem. We conduct computational experiments for
instances with various constraints and confirm the flexibility and robustness of our
algorithm.

1 Introduction

The pickup and delivery problem with time windows (PDPTW) is a problem that asks to
find optimal routes and schedules of a fleet of vehicles serving all requests [5, 15]. Each
request signifies the delivery of a demand from an origin to a destination. The origin and
destination of each request must be visited by the same vehicle in the order of origin and
destination. Each service (i.e., pickup at an origin or delivery at a destination) must start
within a given time window (time window constraint). Each vehicle has a capacity, and
the total amount of loads of a vehicle must always be kept within its capacity (capacity
constraint).

Exact and heuristic algorithms for this problem has widely being studied. Savelsbergh
and Sol [14] proposed a branch and price algorithm based on a set partitioning formu-
lation. Dumas, Desrosiers and Soumis [6] proposed a column generation scheme using a
constrained shortest path as a subproblem. Nanry and Barnes [10] presented a reactive
tabu search approach. A variant of the genetic algorithm called a grouping genetic algo-
rithm was presented by Pankratz [11]. Li and Lim [9] proposed a tabu-embedded simulated
annealing. They also generated new benchmark instances, and tested the performance of
their algorithm on them. Bent and van Hentenryck [2] and Ropke and Pisinger [13] proposed
large neighborhood search based algorithms, and obtained good results on the benchmarks
of Li and Lim. ‘ :

In this paper, we further generalize the pickup and delivery problem with time windows
by allowing additional constraints on each route (abbreviated as PDP-ACER) such as the
Last-in-First-Out constraint (abbreviated as LIFO), renewable or nonrenewable multi re-
sources and so on. The LIFO constraint says that a load being picked up is always placed at
the rear of the vehicle while only the load at the rear can be unloaded. As these constraints
are diverse, it is not realistic to develop solution methods in individual cases. Hence we try
to develop a method which treats those constraints in an integrated way, where we assume
that all constraints have the monotone property:



If a route covering a set of requests satisfies a given constraint, then any subroute
(i.e., covering a subset of the requests) also satisfies the constraint.

We note that many constraints that appear in practice are monotone, and that their feasibil-
ity can be determined easily. The LIFO is an example of such constraints. Cordeau et al. [4]
and Carrabs et al. [3] addressed the pickup and delivery traveling salesman problem with
the LIFO constraints. If we assume that the traveling times satisfy the triangle inequalities,
then it implies that time window constraints also satisfy the monotone property.

In our approach, we formulate the problem as a set covering problem (abbreviated as
SCP), such that all requests must be covered by a set of feasible routes. Since enumerating
all feasible routes is not realistic, we try to construct a set of good feasible routes which
is of manageable size, but has sufficient diversity. It constructs an initial set of routes by
the insertion method, and then repeats reconstructing the set of candidate routes. In the
reconstruction procedure, we estimate the attractiveness of a route by its relative cost of
the Lagrangian relaxation of the set covering problem with the current set of routes. It
then generates new routes from those with small relative costs by applying five types of
operations. The resulting SCP instance is then solved to find a good feasible solution of
PDP-ACER. Although a solution of SCP may cover a request more than once, we can easily
transform it into a feasible solution of the original problem as a result of the monotone
property of constraints. This type of approach, called column generation, is known to
be useful for problems with complicated or tight constraints. Note that our algorithm is
heuristic though the column generation method is usually used for exact algorithms. For
PDPTW, Savelsbergh and Sol [14] and Dumas, Desrosiers and Soumis {6] proposed exact
algorithms using the column generation approach based on a set partitioning formulation of
the problem.

To confirm the flexibility and efficiency of our algorithm, we conducted computational
experiments. We first confirmed the usefulness of using the Lagrangian relaxation, and then
tested our algorithm on available benchmark instances of PDPTW as well as some new
instances with additional and/or modified constraints. We compared our algorithm with a
local search type algorithm which we prepared for the purpose of comparison, and confirmed
the flexibility of our algorithm. '

2 Problem Definition

We formulate PDP-ACER as follows. Let G = (V, E) be a complete directed graph with
vertex set V = {0,1,...,2n} and edge set E = {(i,j) | 4,5 € V,i # j}. In this graph,
vertex 0 is the depot. Vertices from 1 to n are customers where loads are picked up and
vertices from 1 + 1 to 2n are customers where loads are delivered. Each edge (i, ) € E has
a traveling cost c;; > 0 and a traveling time t;; > 0. The traveling costs and times satisfy
the triangle inequalities,

Cik + Ckj 2 cij and ti + tr; > tij, Vi,j,k € V. (1)

Let H = {1,2,...,n} be a given set of requests. Each request h € H signifies the delivery
from the origin h € V to the destination h + n € V (for convenience, we call a request
and its origin by the same name h). The vertices h and h + n must be visited by the same
vehicle (coupling constraint), and h must be visited before h + n (precedence constraint).
All requests are served by a fleet of homogeneous vehicles. Each vehicle must start from the
depot, serve some requests and return to the depot. Let S, be the set of requests served by
its route r, m, = |S;|, and o, be the sequence of customers to be visited, where o,.(k) denotes
the kth customer in the route r. We assume 0,.(0) = o.(2m, + 1) = 0 for convenience.

In this paper, we consider various constraints imposed on each route. Each customer
t € V has a handling time s; for the service and a time window [e;,l;], where e; is the
release time to serve ¢ and [; is the deadline of the service. Serving a request h consumes
the resource, which are classified into renewable and nonrenewable resources. For example,
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the weight of loads can be treated as renewable resources, and the workload for pickup and
delivery of loads can be treated as nonrenewable resources. Each request h consumes th
units of renewable resources (p = 1,2,...,p) while it is loaded, and consumes g;o" units
of nonrenewable resources (p’ = 1, 2, ..., 7). Each vehicle has capacities Q) for renewable
resources p and Q" for nonrenewable resources p’. The total load of each renewable
resource p at each customer k in route r must not exceed the capacity Qp; i.e.,

Z Ghp < Qp for any k=0,1,...,2m,.
R€Srior ! (h)<k<oy ! (h+n)

The total load of each nonrenewable resource p’ in route r must be within Q?°"; i.e.,

P

E q;'llon < Qnon.

heS,

We further introduce the LIFO constraint. That is, if a request h is picked up before
a request h/, either h is delivered before the plckup of b’ or after the delivery of &'; i.e.,
o7 1(h) < a‘l(h’ ) implies either

o7 (h) <ot (W) <o (W +n) <o (h+n)

or
o7 (k) < o7 (h+n) <o (W) < o7 (W +n).

The standard PDPTW has the time window constraint and only the one dimensional renew-
able resource (i.e., p =1 and = = 0). In this paper, we permit the time window constraint
and and more general resource constraints (i.e., p > 1 and 7 > 0 are allowed). As for the
LIFO constraint, we consider both cases in which it is imposed and not. In addition to
the above constraints, any monotone constraint can be imposed, assuming that we have
an algorithm to efficiently test its feasibility. We remark that the following property holds
under monotone constraints.

Property 2.1 Given a feasible route, any request can be deleted from the route without
violating the constraints and without increasing the cost.

Let v be the number of vehicles used in a solution. A feasible solution is aset {o1,02,...,0,}
of routes such that each o, satisfies all the given constraints and each request is serviced
exactly once. In the literature, it is often considered that the primary objective is to reduce
the number of vehicles, and the secondary objective is to minimize the total traveling cost.
However, for convenience, we adopt the following objective function:

Se,
r=1

where
2m.,

Cr=a+ Z Co\(i)o,(i+1)
=0 . .
(i.e., C, is the sum of the fixed cost a for using one vehicle and the traveling cost of r).
If we need to reduce the number of vehicles, we set o to a large value compared with the
traveling cost.
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3 Set Covering Formulation

The PDP-ACER can be formulated as the following set covering problem:

SCP(R*) minimize Z Crz,
reER*
subject to Z anrtr >1, YheH
reR*
z‘l‘ e {O, 1}, V’f‘ E }Z"l

where R* is the set of all feasible routes, and

o =4 1 (if request h is in route r € R*)
=1 0 (otherwise).

Note that in this formulation we can write Zre p@heZr 2> 1 instead of
Y rer+ @hrZr =1 by Property 2.1.

However, enumerating all feasible routes is not realistic because the size of R* is expo-
nentially large. We therefore choose a subset R (C R*) of manageable size and solve the
corresponding set covering problem SCP(R). The obtained solution may not be an optimal
solution to SCP(R*) but is a feasible solution. If R is cleverly constructed to represent
R*, the solution would be a good feasible solution to SCP(R*). In order to solve SCP(R),
we use the algorithm proposed by Yagiura et al. [16]. Finally we construct a solution of
PDP-ACER from the solution of SCP(R). The solution to SCP(R) may contain more than
one route serving the same request. In this case, based on Property 2.1, we can remove the
over-covered requests one by one in a greedy way until no such request remains.

The following is the outline of our algorithm:

1. Generate a set R of feasible routes.
2. Solve the resulting instance of SCP(R).
3. Construct a feasible solution of PDP-ACER from the solution obtained in 2.

The main part of our algorithm is how to generate the set R. To obtain a good solution,
we need to choose R very carefully. For instance, if we generate a large set R that has only
similar routes, it will take a large amount of time to solve SCP(R) and the quality of a
solution may be poor. On the other hand, if we can construct a small set R of good routes
having sufficient diversity, then we can expect to get a good solution in short computation
time. The route generation will be described in Section 4.

4 Route Generation

Our route generation algorithm consists of two phases. The first phase is the initial con-
struction phase, which generates a certain number of routes for each request by an insertion
method. The second phase is the reconstruction phase, which chooses good routes from the
current set of routes, and add their neighboring routes. To estimate the attractiveness of
a route, we use its relative cost of the Lagrangian relaxation of SCP(R), where R is the
current set of routes. The algorithm executes the initial construction phase once, and then
repeats the reconstruction phase until a given time limit is reached.

The algorithm may possibly generate duplicate routes in the sense of covering the same
set of requests. To avoid such duplication, we use a hash table, and check whether such a
route already exists in R or not, whenever a new route is added in R. If a route with the
same set of requests exits, we choose the one having the lower cost.



4.1 Initial Construction Phase

The initial construction phase starts from the empty set R = @), and applies an insertion
method to generate 3 (a parameter) routes for each request. The insertion method first
prepares a route that contains only the specified request and the depot, and then repeats
inserting requests into the route by the criteria as described below, as far as the feasibility
of constraints is maintained. When the route becomes maximal (i.e., no more request can
be inserted to it), we add it to R.

The insertion method proceeds as follows. We define the insertion cost of a request h
into route r, when its origin h is inserted between o,(k) and o.(k + 1) and its destination
n + h is inserted between o.(k') and o (k' + 1) (k' > k), by

) Cor(k)h T Chyhtn + Chin,on(k+l) — Cop(k)or(k+1)y if k=K
Or(h, k, k') = § Cop(k)h + Chop(k+1) = Cop(k)or(k+1)
+ca,.(k’),h+n + Chtn,or(k'+1) — Cov(k')o (k' +1)> otherwise.

We then define 6™i®(h) as the minimum of 6,(h, k, k') among all ¥ and k' whose resulting
routes are feasible. If all combinations of k and ¥’ are infeasible, we set 6™"(h) = oo. If
request h is chosen and 67'"(h) < oo, we thus insert h to the best positions k and k’ which
attains 6™"(h) = d,(h,k,k’). Next we describe how to choose requests h to insert. If the

algorithm always chooses the request that achieves the minimum insertion cost, the resulting -

set of routes may not have sufficient diversity, which is not desirable in order to achieve high
performance. We therefore incorporate randomness in the manner as often used in GRASP
(greedy randomized adaptive search procedure) [7]. Let D, be the set of requests h with
the & (x is a parameter) smallest values of 6"'"(h)(< oc) among those in H \ S, (i.e., the
requests not in route r). Then, in each iteration, the algorithm chooses a request h randomly
from D,, until a maximal route is reached. In this way, we usually obtain different routes
by this insertion method, even if it starts from the same initial request. Let Construct(3)
be the set of routes output in this phase.

4.2 Reconstruction Phase

In the reconstruction phase, it modifies the given set of routes by using the Lagrangian
relaxation of the set covering problem SCP(R). It first calculates the Lagrangian multipliers
by applying a subgradient method, and, based on them, selects some routes from the current
set R (Section 4.2.1). Then it generates additional routes by applying five types of operations
to the selected routes, and updates the set R (Section 4.2.2 and 4.2.3). This procedure is
repeated until no new route is generated or until it reaches the time limit.

4.2.1 Selection of Routes

From the current set R, the algorithm selects some number of routes for two purposes: (1)
to choose a set of routes from which new routes are generated, and (2) to reduce the number
of routes in R when the size of R becomes too large. We estimate the attractiveness of a
route by its relative cost for the Lagrangian relaxation problem of SCP(R). See for example
the review by Fisher [8] for the Lagrangian relaxation.

The Lagrangian relaxation of SCP(R) with a given nonnegative n = |H| dimensional

Lagrangian multiplier vector u= (u,u2, ..., uy) is defined as follows:
L(u) = minge(oyin ch-:vr + Zuh (1 — Y rer OhrZr)
reR heH @)
= minme{o‘l}lﬂl Zcr(u)x, =+ Zuh’
reR heH
where

cr(u) = Cr — Zahruh
heH
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i8 the relative cost associated with ». An optimal solution z(u) to problem (2) is easily
obtained by

1 if cr(u) <0
Tr(u)=¢0orl ifc(u)=0
0 if ¢ (u) > 0.

The value L(u) gives a lower bound on the optimal value of problem SCP(R). The La-
grangian dual is the problem of finding a Lagrangian multiplier vector u* that maximizes
L(u). It is known that an optimal multiplier vector u* can be obtained as an optimal
solution to the dual of the LP relaxation of SCP:

maximize E Un

heH

subject to Z upan- < Cp, VreR
heH -
uy 2 0, VYh € H.

If a good Lagrangian multiplier vector u is obtained, the relative cost c,(u) gives reliable
information on the attractiveness of fixing z, = 1, because it is reported that all r with
zr = 1 in an optimal solution of SCP tend to have small c,(u) values.

We calculate the Lagrangian multiplier u for SCP(R) by a heuristic approach called the
subgradient method [1, 8, 16], because computing an optimal u* of the above LP problem
is usually quite expensive. We evaluate a route r by its relative cost c,(u) of the obtained
Lagrangian multiplier u. Let R’ be the set of routes with an (a is a parameter) smallest
values of ¢, (u) among those in R. Furthermore, for each request h € H, let R}, be the set of
routes with the b (b is a parameter) smallest values of c,(u) among those in R that include
h. Finally let R” = (J, ¢4 Ry, Our procedure Selection(R, u, a, b) outputs the set R’ U R".

4.2.2 Neighboring Routes of a Route
We introduce three operations to generate neighboring routes of a route r.

Insertion This operation inserts a new request h into r at the best position (i.e., at the
pair of positions that achieves 6™i"(h)). The algorithm applies this operation for each
request (which is not in r), and all feasible routes obtained by these operations are
output. Let Insertion(r) be the set of routes output by applying this procedure to r,
whose size is |Insertion(r)| = O(n).

Deletion This operation deletes one request from r. The algorithm applies this operation
for each request in r, and all routes obtained by these operations are output. Note that
the feasibility after deletion is preserved by Property 2.1. Let Deletion(r) be the set
of routes output by applying this procedure to r, whose size is |Deletion(r)| = 0(m,.).

Swap This operation deletes one request from r and then inserts one request which is not
in r at the best position. The algorithm applies this operation for &ll pairs of a request
in r and another not in r. All feasible routes obtained by these operations are output.
Let Swap(r) be the set of routes output by applying this procedure to r, whose size is
[Swap(r)| = O(m,n).

4.2.3 Neighboring Routes of Two Routes
In addition, we use two operations to generate neighboring routes of two routes r and r’'.

2-opt* method This operation is similar to the 2-opt* neighborhood operation proposed
by Potvin et al. [12]. Given two routes r and r' satisfying S,NS,» = , it first constructs
a route by concatenating the former part of r and the latter part of r/, cut at k and
k'
(r(0),0+(1),...,0.(k), 00 (K'), 00 (K + 1),...,00(2m, + 1)).
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For this, it chooses a random position k of r, and then chooses the minimum k' such
that the resulting concatenated route is feasible with respect to the time window
constraint. However, the resulting route may not satisfy the coupling or other con-
straints, and some modification may be necessary for remedy. To recover the coupling
constraints, for example, it inserts for each violating customer in the route the corre-
sponding customer not in the route at the best position under the feasibilities of other
constraints. Otherwise it deletes the violating customer from the route. Similar reme-
dies are applied to recover other constraints. It repeats this process until all requests
in the route satisfy the given constraints. Let 2-opt*(r, ') be the generated route by
applying this procedure to r and 7/ if it exists; otherwise it denotes the empty set.

Mixing two routes Given two routes r and r’, and a Lagrangian multiplier vector u, this
operation starts from opix := o, and repeats modifying the current onix 8o that its
set of requests becomes closer to that of o,+, by inserting or deleting different requests
between omix and o,.  Similarly to §2i"(h), we denote by 6%i*(h) the minimum
increase in the cost when request h is inserted into onix. In each iteration, an insertion
is first tried: It chooses the request h that minimizes 6™ (h) — up, (i.e., the increase in
the relative cost) among those requests which are in o, but not in omix, and inserts it
at the best position of omix provided that the resulting route is feasible. If there is no
such request or all inserting positions make the resulting route infeasible for all such
requests, then it turns to the deletion operation with the following rule. Let

camlx(k*l)amix(k+2) - C"mlx(k'" 1),k

TChhtn T Chtn,omix(k+2)) ifk'=k+1
6mix(h) = Cﬂmlx(k—l)”nxlx(k+1) -+ co'mlx(k’—l)a'mgx(k’-‘-l)

“Comix(k—1),h ~ Ch,omix(k+1) .

“Comix(k' 1), itn = Chtn,omm(k/+1) otherwise

where ouix(k) = h and og,ix(k’) = h + n. Then the operation chooses the request A
with the minimum é_, (h) + us (i.e., the increase of the relative cost) among those
not in o, but in oy,ix, and removes it from opyjx.

Letting omix be the new route obtained either by the insertion or the deletion, the
algorithm executes another iteration (that starts with insertion and then deletion if
insertion is impossible) unless omix = o,+ holds.

All routes obtained during the above modifications are considered as candidates to be
added into R. Let Mixing(r, r’, u) be the set of all feasible routes output by this
procedure from routes r and r'. Its size is |Mixing(r, ', u)| = O(m, + m.).
4.2.4 Reconstruction Algorithm
The entire reconstruction algorithm by the above five operations is summarized as follows.
Algorithm Reconstruction(R,a,b,a’,V', u)
Input: A set R of routes, parameters a, b,a’,bt and pu.
Output: A set R’ of routes.
Step 1. Calculate the Lagrangian multiplier u by the subgradient method.
Step 2. Let R :=Selection(R, u, a,b) and R’ := R.
Step 3. Let R’ := R’ U (U, (Insertion(r) U Deletion(r) U Swap(r)))
- Step 4. For all pairs of routes r, 7 € R,

R =

R' U 2-opt*(r, ') ifS, NS =0
R’ U Mixing(r,r’, u) otherwise.



Step 5. If |R'| > p, let R’ := Selection(R/, u, o', V).
Step 6. Return R'.

As described before, the algorithm reconstructs the set of routes by calling algorithm
Reconstruction repeatedly until it reaches a given time limit.

4.3 Overall Algorithm

Let ¢ be an upper limit of computation time of constructing routes. We use a heuristic SCP
solver by Yagiura et al. [16] (denoted YKI) whose time limit can be set arbitrarily. Let ¢’ be
an upper limit of computation time of YKI. Then overall algorithm is described as follows:

Algorithm RouteGeneration(Z,{,{’, 5, 1, a,b,a’, V)

Input: A PDP-ACER instance Z, parameters ¢, (’, 8, u,a,b,a’ and b'.

Output: A set R of routes. |

Step 1. Let R’ :=Construction(3) and rep := 0.

Step 2. If total computing time reaches ¢, then go to Step 4.

Step 3. R’ :=Reconstruction(R’,a,b,a’,b', ) and rep := rep + 1. Return to Step 2.

Step 4. Convert R’ into an instance of SCP, and solve it by YKI with time limit ¢’.
Let R be the output solution of the SCP.

Step 5. Construct a solution R of the PDP-ACER from RA.
Step 6. Return R.

5 Computational Experiment

We conducted computational experiments to evaluate the proposed algorithm, which was
coded in C and run on a PC (Intel Pentium4, 2.8 GHz, 1 GB memory). We used the instance
groups having 100 to 400 customers from the PDPTW benchmarks of Li and Lim [9]. The
instances are categorized into the type-C1, C2, R1, R2, RC1, RC2. The types C, R and RC
represent the distribution of the customers in each instance. The customers are distributed
as clusters in type-C and distributed randomly in type-R. In type-RC, the customers are
partially distributed as clusters and the rest is distributed randomly. The types 1 and 2
represent the severeness of the time window and the capacity constraints of the instances;
the type 1 instances have severer constraints than the type 2 instances (hence more vehicles
are needed). The instances with 100 customers consist of 9 type-C1 instances, 12 type-R1
instances, 8 type-RC1 instances, 8 type-C2 instances, 11 type-R2 instances and 8 type-RC2
instances. The instances with 200 and 400 customers consist of 10 instances for each of
type-Cl, C2, R1, R2, RC1, RC2.

5.1 Efficiency of Using Lagrangian Multiplier

In the reconstruction phase of the route generation, relative cost is used to choose a subset

R (C R) for generating new routes. To confirm the effectiveness of this approach, we tested
two other methods for selecting a set of routes in the reconstruction phase. For comparison
purpose, we solved SCP(R) with the algorithm YKI whenever algorithm Reconstruction
outputs R, and observe the quality of the solution. The first method selects the set of routes
appearing in the best solution of SCP(R) found by YKI, and the second method selects a set
of routes randomly from the current R. We conducted the comparison of these two methods
with the method in Section 4.2 that uses the relative cost.
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Figure 2: Comparison of the three selection methods of routes (type-R instance)
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Figure 3: Comparison of the three selection methods of routes (type-RC instance)

Figures 1, 2 and 3 show the objective values of the solutions of SCP(R) obtained by YKI
against the number of iterations of algorithm Reconstruction. Figure 1 shows the result on
a type-C instance, and Figure 2 shows the result on a type-R instance, Figure 3 is the result
on a type-RC instance. In all figures, as the number of calls to Reconstruction increases, the
results of “Relative Cost” become better than the others. We therefore adopted the method
based on the relative cost in the algorithm Reconstruction.

5.2 Resulfs on Benchmark Instances

Next, we tested our algorithm on the PDPTW benchmarks of Li and Lim [9] as explained
in the beginning of Section 5. We set parameters to 8 = 200, a = 3, b =4, a’ = 150,000,
b’ = 600,000/|H| and p = 600,000. The time limit ¢ of constructing routes (i.e., excluding
the time for solving the set covering problem) is set to 600 seconds for the instances with
100 customers, 1400 seconds for the instances with 200 customers and 2500 seconds for the
instances with 400 customers. We set the time limit ¢’ for solving a set covering instance
to 400 seconds for 100 customers, 600 seconds for 200 customers and 1500 seconds for 400
customers instances. Therefore, in total, we spend 1000, 2000 and 4000 seconds for the
instances with 100, 200 and 400 customers, respectively. Table 1 shows the results of our
algorithm in column “Ours”, and the one proposed by Ropke and Pisinger [13] in “RP”.
Their algorithm is based on Large Neighborhood Search. They ran their algorithm for each
instance ten times on a 1.5 GHz PC with 256 MB memory. We compare our results with
their average results of the ten runs. In Table 1, column “2n” represents the number of
customers in the instance group and column “type” represents the type of the instance
_group. Columns “CNV” and “CDIST” represent the cumulative number of vehicles and
the cumulative traveling cost for the instances. Column “TIME” of “Ours” represents the
computation time in seconds for each instance and that of “RP” represents the average
computation time.

In Table 1, we observe that our method could not obtain better results than those of
Ropke and Pisinger. Note that the algorithm of Ropke and Pisinger is specialized to the
PDPTW while our algorithm can treat a variety of constraints. For type 2 instances, the
difference in solution quality is large, while for type 1 instances (having severer constraints
than type 2), the difference is rather small both in the number of vehicles and in the traveling
cost.
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Table 1: Results on Li and Lim’s instances

Ours
2n type CNV CDIST TIME CNV CDIST TIME
100 1 322 33650.65 1000 322.0 33599.02 41
100 2 85 29557.69 1000 81.0 24650.45 92
200 1 470 103763.05 2000 469.1 100940.60 158
200 2 150 100435.79 2000 139.0 80766.76 369
400 1 914 258333.55 4000 904.4 241015.00 543
400 2 311 250065.39 4000 263.4 184801.80 1219

Table 2: Constraints of instances

Resource Capacity
INSTANCE »p b QL Q2 T™W LIFO
GC1 1 0 200 1000 [eq, L) 0
GC2 3 1 200 1000 [e;, ;) 1
GC3 1 0 200 1000 e}, 1] 0
GC4 1 1 200 1000 [0,00) 0
GC5 1 1 200 1000 [0,00) 1
GC6 2 0 200 200 e, L) 0

Table 3: Comparison for GC1-GC6

Ours LS
INSTANCE CNV CDIST CNV CDIST
GC1 208 65624.54 224 72422.65
GC2 278 95016.41 313 92170.04
GC3 142 48421.68 155 56234.36
GC4 234 79763.98 212 59545.98
GC5 238 84378.57 212 55065.95
GCé6 271 84785.49 276 82716.75
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5.3 Comparison of Our Algorithm with a Metaheuristic Algorithm

Finally, we conducted experiments to confirm the flexibility and performance of our algo-
rithm. We compared our algorithm with a metaheuristic algorithm coded in reference to the
algorithm proposed for PDPTW by Li and Lim [9]. It is based on a simulated annealing and
tabu search procedure, which uses the same objective function as ours; that is, the primary
objective is to reduce the number of vehicles and the secondary objective is to minimize
the total traveling cost. We modify it so that it can deal with PDP-ACER. The modified
algorithm executes the local search in a feasible region of the constraints of PDP-ACER.

We generated the PDP-ACER instances consisting of six groups GC1-GC6, modified
from the PDPTW instances of Li and Lim [9] by adding various constraints. We chose three
instances from those of Li and Lim for each type, and generated new instances from them;
hence each of GC1-GC6 contains 18 instances. Table 2 gives a sketch of the constraints
of those groups. In Table 2, columns “p” and “n” represent the number of renewable and
nonrenewable resources. Column “Q1” (resp., “Q2”) represents the vehicle capacities of
type 1 (resp., type 2) instances; that is, we set Qp = Q1 and Q57" := Q1 (resp., QF := Q2,
Qp" 1= Q2) for all type 1 (resp., type 2) 1nstances Column “TW” shows the mformatlon
about the time window constraint. In GC4 and 5, we set all time windows to [0, 00) (i.e.,
no time window constraints). On the other hand, in GC3, we cut 4% from the original time
windows by setting [e;, l;] to [e}, ] such that

eé =e; + 0.02([;’ - ei),
l: =1l; — OOZ(l; - ei), VieV.

For the rest (i.e., GC1, GC2 and GC6), we adopted the time windows of the original in-
stances. We imposed the LIFO constraint to GC2 and GC5 as shown in the LIFO column
by 1. .

We set parameters to § = 200, a = 3, b = 4, o’ = 150,000, ¥’ = 600,000/}H| and
u = 600,000. The time limit of constructing routes is set to 2400 seconds and the time limit
of solving the set covering problem is set to 1200 seconds. We set the time limit to 3600
seconds for the metaheuristic algorithm. Table 3 compares the results of our algorithm and
those of metaheuristic algorithm. In Table 3, column “INSTANCE” represents the name of
each instance group, column “CNV” means the cumulative number of vehicles and column
“CDIST” means the cumulative traveling cost.

The results show that for GC1, GC2, GC3 and GC6 whose instances have additional con-
straints or tight constraints, our algorithm works efficiently, but for GC4 and GC5 whose in-
stances have weaker constraints, the metaheuristic algorithm works better than ours. These

results confirm our expectation that our algorithm works well on the instances with tighter

constraints, because the number of feasible routes is limited in such cases.

6 Conclusion

We generalized the pickup and delivery problem with time windows by allowing additional
constraints having monotone property. Our algorithm first generates a set of feasible routes
and then solves the resulting set covering problem. We construct an initial set of routes
by an insertion method, and reconstruct the resulting set repeatedly by using various types
of neighborhood operations, while reducing the set size of candidate routes by utilizing the
Lagrangian relative costs. The computational results indicated that our algorithm works
more efficiently than a metaheuristic algorithm, if the instances have tighter constraints.
We also confirmed the flexibility of our algorithm by applying it to instances with various
constraints.
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