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Chern-Simons variation and Hida-Mazur theory

Masanori Morishita (Kyushu Univ.)
Yuji Terashima (Tokyo Inst. of Tech.)

We would like to discuss the variation of $SL_{2}(\mathbb{C})$ Chern-Simons invariants over the
deformation space of hyperbolic structures on a knot complement in analogy with Hida-
Mazur theory on the deformation of Galois representations and modular p-adic L-functions.
The motivation and idea are coming from the analogy between knot theory and number
theory, and so let us start to recall the basic analogies between knots and primes.

1. Analogies

knot $rightarrow$ prime
$K$ : $S^{1}=K(\mathbb{Z}, 1)\mapsto S^{3}=\mathbb{R}^{3}\cup\{\infty\}$ $Spec(\mathbb{F}_{p})=K(\hat{\mathbb{Z}}, 1)\mapsto Spec(\mathbb{Z})\cup t\infty$}

tube neighborhood $V_{K}$ $rightarrow$ p.adic integers $Spec(\mathbb{Z}_{p})$

$\partial V_{K}$ p-adic numbers $Spec(\mathbb{Q}_{p})$

$D_{K}=\pi_{1}(\partial V_{K})$ $D_{p}=\pi_{1}^{6t}(Spec(\mathbb{Q}_{p}))$

$1arrow\langle m_{k}\ranglearrow D_{K}arrow\langle l_{K}\ranglearrow 1$ $rightarrow$ $1arrow I_{p}arrow D_{p}arrow(\sigma_{p}\rangle$ $arrow 1$

$l_{K}$ : longitude of $K$
$\sigma_{p}$ : Robenius over $p$

$m\kappa$ : meridian of K $I_{p}$ : inertia gr. over $p,$ $I_{p}^{t}=\langle\tau_{p}\rangle$

$[m_{K}, l_{K}]=1$ $\tau_{p}$ : monodromy over $p,$ $\tau_{p}^{p-1}[\tau_{p}, \sigma_{p}]=1$

Here, $I_{p}^{l}$ denotes the maximal tame quotient of $I_{p^{i}}$ In general, we call an element of a
quotient of $I_{p}$ a monodromy over $p$ .

$X_{K}=S^{3}\backslash K$ $rightarrow$ $X_{p}=Spec(\mathbb{Z}[1/p])$

$knotgroupG_{K}=\pi_{1}(X_{K})$ $primegroupG_{p}=\pi_{1}^{\acute{e}t}(X_{p})$

infinite cyclic cover $rightarrow$ $\mathbb{Z}_{p}$-cover
$X_{K}^{\infty}arrow X_{K}$ $x_{p}\infty=Spec(\mathbb{Z}[1/p, \prime^{\infty}\eta_{1})arrow X_{p}$

$Ga1(X_{K}^{\infty}/X_{K})=\langle\alpha\rangle$ $Ga1(X_{p}^{\infty}/X_{p})=\langle\gamma\rangle$

Alexander $module/polynomial$ $rightarrow$ Iwasawa $module/polynomial$
$\Delta_{K}(t)=\det(t-\alpha|H_{1}(X_{K}^{\infty}))$ $I_{p}(T)=\det(T-(\gamma-1)|H_{1}(X_{p}^{\infty}))$

analytic $tor8ion=Reidemeister$ torsion $rightarrow$ Iwasawa main conjecture

For more analogies and details, we refer to [Mo]. In fact, there are close analogies between
Alexander-Fox theory and Iwasawa theory. From the variational point of view, one sees
that:
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considering the infinite cyclic cover $X_{K}^{\infty}arrow X_{K}$ ( $resp$ . $\mathbb{Z}_{p}$ -cover $X_{p}^{\infty}arrow X_{p}$ )
is equivalent to
considering the deformation of $GL_{1}$ -representations of the knot group $G_{K}$ (resp. prime
group $G_{p}$ ).

In number theory, there is a non-abelian generalization of the classical Iwasawa theory
along this variational viewpoint, due to mainly H. Hida and B. Mazur, namely the de-
formation theory of $GL_{n}$-representations of $G_{p}$ and the theory of associated arithmetic
invariants. Our motivation was to find an analogue of Hida-Mazur theory in the context
of knot theory, which would be a natural non-abelian generalization of Alexander-Fox
theory:

Alexander-Fox theory $rightarrow$ Iwasawa theory
$||$ $||$

deformation theory of l-dim. repr’s of $G_{K}$ deformation theory of l-dim. repr’s of $G_{p}$

and associated topological invariants and associated arithmetic invariants

$\downarrow$ $\downarrow$

$rightarrow$ Hida-Mazur theory
II

deformation theory of n-dim. repr’s of $G_{p}$

and associated arithmetic invariants

2. Deformation of hyperbolic structures on a knot complement and of
modular Galois representations

We start to recall some general notions in group representations.

knot: For a knot $K\subset S^{3}$ with $G_{K}$ $:=\pi_{1}(S^{3}\backslash K)$ and $n\geq 1$ , we set

$X_{K}^{n}=Hom(G_{K}, GL_{n}(\mathbb{C}))//GL_{n}(\mathbb{C})$

$:=Hom_{C-alg}((R_{K}^{n})^{G_{K}},\mathbb{C})$ ,

where $R_{K}^{n}$ denotes the tautological n-dimensional representation ring on which $G_{K}$ acts
by the conjugation via the tautological representation $G_{K}arrow GL_{\mathfrak{n}}(R_{K}^{n}))$ and $(R_{K}^{n})^{G_{K}}$

stands for the invariant subring. The set $\mathfrak{X}_{K}^{n}$ is a complex affine variety, called the
character variety of n-dimensional representations of $G_{K}$ .
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prime: For a prime $Spec(F_{p})$ , the prime group $G_{p}$ is profinite and hence the naive analogue
of the character variety does not provide a good moduli. Thus, following Mazur ([Mal]),
we consider “infinitesimal deformations” of a given residual representation

$\overline{\rho}:G_{p}arrow GL_{n}(F_{p})$ .

Namely, the pair $(R, \rho)$ is called a deformation of $\overline{\rho}$ if

$\{\begin{array}{l}\bullet RR/m_{R}=\mathbb{F}_{p}\bullet\rho:G_{p}arrow GL_{n}(R)\rho m_{R}=\overline{\rho}\end{array}$

In the rest of this note, we assume for simplicity that $p>2$ and $\overline{\rho}$ is absolutely irre-
ducible. A fundamental theorem by Mazur is:

Theorem 1 ([Ma]). mere is a universal deformation $(R_{p}^{\mathfrak{n}}, \rho_{p}^{n})$ of $\overline{\rho}$ so that any defor-
mation of $(R, \rho)$ is obtained up to a certain conjugacy via a $\mathbb{Z}_{p}$-dgebra homomorphism
$1*arrow R$.

We then define the universal deformation space $X_{p}^{n}(\overline{\rho})$ of $\overline{\rho}$ by

$X_{p}^{n}(\overline{\rho})$ $:=Hom$ろー$alg(R_{p}^{n},\mathbb{C}_{P})$

where $\mathbb{C}_{p}$ stands for the p-adic completion of an algebraic closure of $\mathbb{Q}_{p}$ , and $\mathfrak{X}_{p}^{\mathfrak{n}}(\overline{\rho})$ is
regarded as a rigid analytic space. We write $\rho_{\varphi}$ $:=\varphi\circ\rho_{p}^{n}$ : $G_{p}arrow GL_{n}(\mathbb{C}_{p})$ for a $\varphi\in \mathfrak{X}_{p}^{\mathfrak{n}}(\overline{\rho})$ .

We will discuss analogies between $X_{K}^{\mathfrak{n}}$ and $X_{p}^{n}(\beta)$ and some invariants defined on them
for the cases of $n=1$ and 2.

$n=1$ : The $GL_{1}$ -theory is simply a restatement of the analogy between Alexander-Fox
theory and Iwasawa theory:

$R_{K}^{1}=\Lambda_{C}=\mathbb{C}[t^{\pm 1}]$ $R_{p}^{1}=\hat{\Lambda}=\mathbb{Z}_{p}[[T]]$

$X_{K}^{1}\simeq \mathbb{C}^{x}$ $rightarrow$ $\mathfrak{X}_{p}^{1}(\overline{\rho})\simeq D_{p}^{1}=\{z\in \mathbb{C}_{p}||z|_{p}<1\}$

$\chi’arrow\chi(\alpha)$ $\varphi\succ$} $\rho_{\varphi}(\gamma)-1$

$(Ga1(X_{K}^{\infty}/X_{K})=\langle\alpha\rangle=\mathbb{Z})$ $(Ga1(\mathbb{Q}^{\infty}/\mathbb{Q})=\langle\gamma\rangle=\mathbb{Z}_{p})$

invariants on $\mathfrak{X}_{K}^{1}$ : invariants on $\mathfrak{X}_{p}^{1}(\overline{\rho})$ :
twisted Alexander poly. (analytic torsion) $rightarrow$ twisted Iwasawa poly. (p-adic L-function)

for a repr. $\rho:G_{K}arrow GL_{n}(\mathbb{C})$ for a repr. $\rho:G_{p}arrow GL_{n}(\mathbb{Z}_{p})$

$\Delta_{K,\rho}(t)(\tau_{K,\rho})$ $I_{p,\rho}(T)(L_{p}(\rho, s))$

describes the variation of describes the variation of
$H^{1}(G_{K},\rho\otimes\chi),$ $\chi\in \mathfrak{X}_{K}^{1}$ $Se1(G_{p},\rho\otimes\rho_{\varphi}),$ $\varphi\in X_{p}^{1}(\overline{\rho})$
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Here, $Se1(G_{p}, M)$ denotes the Selmer group for a $G_{p}$-module $M$ (a subgroup of $H^{1}(G_{p}, M)$

with a local condition).

$n=2$: The $GL_{2}$-theory is concerned with hyperbolic geometry and Chern-Simons gauge
theory in the knot side and Hida-Mazur theory and $\gamma adic$ gauge theory in the prime
side.

knot: We assume that $K$ is a hyperbolic knot. Since $G_{K}$ has a trivial center and any
representation $G_{K}arrow PGL_{2}(\mathbb{C})=PSL_{2}(\mathbb{C})$ can be lifted to $G_{K}arrow SL_{2}(\mathbb{C})$ , we may
consider only $SL_{2}(\mathbb{C})$-representations without losing generality. So, we set

$\mathfrak{X}_{K}^{2}$ $:=Hom_{gr}(G_{K}, SL_{2}(\mathbb{C}))//SL_{2}(\mathbb{C})$ .

Note that the restriction of $[\rho]\in X_{K}^{2}$ to $D_{K}$ is conjugate to an upper triangular repre-
sentation:

$\rho|_{D_{K}}\simeq(^{x_{0}}\rho\chi_{\rho}^{-1)}*$

Let $\rho^{o}$ be a lift of the holonomy representation associated to the hyperbolic structure on
$S^{3}\backslash K$ and let $\mathfrak{X}_{K}^{2,0}$ be the irreducible component of $X_{K}^{2}$ containing $[\rho^{o}]$ . The following
theorem was shown by W. Thurston:

Theorem 2 ([T]). The map $\Phi_{K}$ : $X_{K}^{2,0}arrow \mathbb{C}$ defined by $\Phi_{K}([\rho])$ $:=tr(\rho(m_{K}))$ is bianalytic
in a neighborhood of $[\rho^{o}]$ . In particular, $X_{K}^{2,a}$ is a complex algebraic curve.

Let $m$ and $l$ be functions on $\mathfrak{X}_{K}^{2,0}$ defined by $m(\rho)=\chi_{\rho}(m_{K})$ and $\chi_{\rho}(l_{K})$ respectively.

Theorem 3 ([NZ]). Let $x:=\log m(\rho)(\log m(\rho^{o})=0)$ and suppose $\partial V_{K}=\mathbb{C}^{x}/q^{l}$ . Then
we have

$\frac{dl}{dx}|_{x=0}=\frac{1}{2}\frac{\log q}{2\pi\sqrt{-1}}$ .

prime: We assume that $\overline{\rho}$ is a mod $p$ representation associated to an ordinary modular
elliptic curve $E$ over $\mathbb{Q}$ which corresponds to an ordinary Hecke eigenform $f$ of weight
2: $\overline{\rho}=\rho_{E}$ mod $p=\rho_{f}$ mod $p,$ $\rho_{E}=\rho_{f}$ : $G_{p}arrow GL_{2}(\mathbb{Z}_{p})$ . Here a representation
$\rho:G_{p}arrow GL_{2}(A)$ is called ordinary if the restriction of $\rho$ to $D_{p}$ is conjugate to an upper
triangular representation:

$\rho|_{D_{p}}\simeq(x_{0}\rho,1$ $\chi_{\rho 2}*,$) $\chi_{\rho,1}|_{I_{p}}=1$ .

Compared with the knot case, it is natural to impose the ordinary condition to deforma-
tions of $\overline{\rho}$ .
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We have the following fundamental:

Theorem 4 (1) ([H1,2]). There is a universal ordinary modular deformation $(R_{p}^{2,0.m},\rho_{p}^{2,0.m})$

( $R_{p}^{2,0.m}$ is called the p-adic Hecke-Hida ring) of $\overline{\rho}$ such that any ordinary modular defor-
mation $(R,\rho)$ of $\overline{\rho}$ is obtained via a $\mathbb{Z}_{p}$ -algebra homomorphism $R_{p}^{2,0.m}arrow R$ .
(2) ([Ma]). There is a $univer8al$ ordinary deformation $(R_{p)}^{2,0}\rho_{p}^{2,0})$ of $\overline{\rho}$ such that any or-
dinary deformation $(R, \rho)$ of $\overline{\rho}$ is obtained ma a $\mathbb{Z}_{p}$ -algebra homomomphism $R_{p}^{2,0}arrow R$ .
By the universality of $(R_{p}^{2,0},\rho_{p}^{2,0})$ , we have a $\mathbb{Z}_{p}$-algebra homomorphism

$R_{p}^{2,0}arrow R_{p}^{2,0.m}$

which we assume in the following to be an isomorphism. In fact, this assumption is
satisfied under a mild condition owing to the works of A. Wiles etc.

We then define the universal ordinary deformation space of $\overline{\rho}$ by

$\mathfrak{X}_{p}^{2,0}(\overline{\rho})$ $:=Hom$ろー $alg(R_{p}^{2,0}, \mathbb{C}_{P})$

which may be regarded as an (infinitesimal) analog of $X_{K}^{2,0}$ . As an analogue of Theorem
2, we have:

Theorem 5. Take an element $\gamma\in I_{p}$ which is mapped to a generator of $Ga1(\mathbb{Q}^{\infty}/\mathbb{Q})$

where $\mathbb{Q}^{\infty}$ is the unique $\mathbb{Z}_{p}$-extension of $\mathbb{Q}$ . The map $\Phi_{p}$ : $\mathfrak{X}_{p}^{2,0}arrow \mathbb{C}_{p}$ defined by $\Phi_{p}(\varphi)$ $:=$

$tr(\rho_{\varphi}(\gamma))$ is bianalytic in aneighborhood of $\varphi_{f}$ where $\varphi_{f}\circ\rho_{p}^{2,0}=\rho_{f}$ .

Remark. The analogy between the structures of $X_{K}^{2,0}$ and $\mathfrak{X}_{p}^{2,0}(\rho)$ was first pointed out
by Kazuhiro Fujiwara.

The following theorem by Greenberg and Stevens may be seen as an analog of Neumann-
Zagier’s theorem 3.

Theorem 6 ([GS]). Suppose that $E$ is split multiplicative at $p$ . Write

$\rho_{p}^{2,0}|_{D_{p}}\simeq(^{x_{0}}1\chi_{2}*)$ $\chi_{1}|_{I_{p}}=1$

and set $a_{p}:=\chi_{1}(\sigma_{p})$ : $\mathfrak{X}_{p}^{2,0}arrow \mathbb{C}_{p}$ , and let $E(\mathbb{C}_{p})=\mathbb{C}_{p}^{x}/q^{\mathbb{Z}}$ . Then we have

$\frac{da_{p}}{d\rho}|_{\rho=2}=-\frac{1}{2}\frac{\log_{p}(q)}{ord_{p}(q)}$($=Mazur- Tate- Teitelbaum’ s\mathcal{L}$-invariant).
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Next, we discuss some analogies between invariants defined on $X_{K}^{2,0}$ and $X_{p}^{2,0}(\rho)$ .

prime: A typical invariant on $\mathfrak{X}_{p}^{2,0}(\overline{\rho})$ is a p-adic modular L-function $L_{p}(\rho, s),$ $\rho\in \mathfrak{X}_{p}^{2,0},$ $s\in$

$\overline{\mathbb{Z}_{p}}$([GS]). Geometrically, $L_{p}(\rho, s)$ is given as a section of a rigid analytic line bundle $\mathfrak{L}_{p}$

of modular symbols:

$\mathfrak{X}_{p}^{2,0}\mathfrak{L}_{p}\downarrow L_{p}(\rho, s)$ is a section ($s$ fixed)

We note that the value $L_{p}(\rho, 0)=L_{p}(f_{\rho},0)$ at $s=0(f_{\rho}$ being a modular form corre-
sponding to $\rho$) is given by $r_{p}(\{u, v\})(\omega)\cdot c$ , where $r_{p}$ : $K_{2}(C_{\rho})arrow H_{DR}^{1}(C_{\rho}/\mathbb{Q}_{p})(C_{\rho}$ being
a modular curve) is the p-adic regulator.

knot: Take a small affine open $X\subset X_{K}^{2,0}$ containing $\rho^{o}$ if necassary, and let

$L_{K}(\rho)$ $:=-2\pi^{2}CS(\rho)+\sqrt{-1}Vol(\rho)$

be the $SL_{2}(\mathbb{C})$ Chem-Simons invariant. Our theorem is

Theorem 7. There is a holomorphic line bundle $\mathfrak{L}_{K}$ with holomorphic connection on $X$

such that $L_{K}(\rho)$ is given by a flat section:

$\mathfrak{L}_{K}\mathfrak{X}\downarrow$ $L_{K}(\rho)$ is a flat section

For the construction of $\mathfrak{L}_{K}$ , we apply S. Bloch’s geometric construction of a tame symbol
([B1]). Let $H$ be the 3 $x3$ Heisenberg group:

$H(R)$ $:=\{(\begin{array}{lll}1 a c0 l b0 0 1\end{array})|a,b,c\in R\}$ ( $R$ : a commutative ring)

The complex manifold $P:=H(\mathbb{Z})\backslash H(\mathbb{C})$ is a principal $\mathbb{C}^{x}$ -bundle over $\mathbb{C}^{x}\cross \mathbb{C}^{x}$ by the
map

$Parrow \mathbb{C}^{x}\cross \mathbb{C}^{x}$ ; $(\begin{array}{lll}l a c0 1 b0 0 l\end{array})$ }$arrow(\exp(2\pi\sqrt{-1}a),\exp(2\pi\sqrt{-1}b))$

and l-form $\theta=dc$ –adb gives a connection on $P$ . Let $T(l, m^{2})$ : $\mathfrak{X}arrow \mathbb{C}^{x}x\mathbb{C}^{x}$ be a
holomorphic map defined by $T(l,m^{2})(\rho)$ $:=(l(\rho), m^{2}(\rho))$ and define

$\mathfrak{L}_{K}$ $:=T(l,m^{2})^{s}(P,\theta)$ .
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Then the flat section is given by

$S( \rho^{o})+\log l(\rho^{o})\int_{\rho^{o}}^{\rho}d$log $m^{2}+ \int_{\rho^{o}}^{\rho}d$ log $ld$ log $m^{2}=L_{K}(\rho)$ .

To see why $L_{K}(\rho)$ is seen as an analog of $L_{p}(\rho, 0)$ , we give a cohomological interpretation
of the above construction. Let $r_{\infty}$ : $K_{2}(X)arrow H^{1}(\mathfrak{X},\mathbb{R})$ be the Beilinson regulator.
We consider the natural map $\iota$ : $H_{D}^{2}(X, \mathbb{Z}(2))arrow H_{D}^{2}(X, \mathbb{R}(2))rightarrow H^{1}$ (SC, R) where $H_{D}^{*}$

stands for the Deligne cohomology ([Brj). It is known that $H^{2}(\mathfrak{X}, \mathbb{Z}(2))$ is interpreted
as the group of isomorphism classes of holomorphic line bundlee on ec with holomorphic
connection ([ibid]), and so $\mathfrak{L}_{K}$ is regarded as an element of $H^{2}(\mathfrak{X}, \mathbb{Z}(2))$ . Then we can
show that

$\iota(\mathfrak{L}_{K})=r_{\infty}(\{l,m^{2}\})$

which is reminiscient of the connection between $L_{p}(\rho, 0)$ and the $\Psi$adic regulator.

Remark. Kirk and Klassen ([KK]) also constructed a line bundle $E_{K}$ over $X_{K}^{2,0}$ so that
$\mathfrak{L}_{K}(\rho)$ is regarded as a section. Though we have not seen the connection between $E_{K}$ and
$\mathfrak{L}_{K}$ yet, our construction using Deligne cohomology seems to be natural conceptually.

Now, compared with the prime side, we may expect that

there should be a 2-variable L-function $L_{K}(\rho, s),$ $\rho\in X,$ $s\in \mathbb{C}$ such that $L_{K}(\rho)$

would be a dominant term (special value) of $L_{K}(\rho, s)$ at $s=0$ .

Here is a candidate for such a L-function. Let $M_{\rho}$ be the hyperbolic deformation of
$M=S^{3}\backslash K$ with holonomy $\rho$. Then $M_{\rho}$ is a spin manifold with $S\dot{\mu}n(3)=SU(2)-$

principal bundle $S\dot{\mu}n(M_{\rho})arrow M_{\rho}$ . Let $D_{\rho}$ be the corresponding Dirac operator acting
on $C^{\infty}(S\dot{\mu}n(M_{\rho})\otimes(\mathbb{C}^{2})_{\rho})$ and we define the spectral zeta function by

$L_{K}( \rho, s):=\sum_{\lambda}\pm(\pm\lambda)^{\epsilon},$
$\pm=sign(Re(\lambda)),$ ${\rm Re}(s)>>0$

where $\lambda’ s$ run over eigenvalues of $D_{\rho}$ . Note that $D_{\rho}$ may not be self-adjoint (though its
symbol is self-adjoint) and so $\lambda$ may be imaginary. For a closed hyperbolic 3-manifold,
Jones-Westbury ([JW],[Y]) showed that $L_{K}(\rho, s)$ is continued as a meromorphic function
to $\mathbb{C}$ and the equality

$L_{K}(\rho)=2\pi^{2}L_{K}(\rho,0)$ .
It is desirable to extend this equality for a non-closed hyperbolic 3-manifold.

Finally, we note the following
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Theorem 8 (cf. [MT]). $L_{K}(\rho)$ gives a variation of mixed Hodge structure (V, $W_{*},$ $F^{*}$ ) on
ec defined by:

$V=\mathbb{Z}^{3}$ ,
$V=W_{0}\supset W_{-1}=\mathbb{Z}v_{2}\oplus \mathbb{Z}v_{3}\supset W_{-2}=\mathbb{Z}v_{3}$ where

$(\begin{array}{l}v_{l}v_{2}v_{3}\end{array}):=(100$

log
$l(\rho^{o})01$ $\log Sm_{1}^{2}((\rho^{o}))(001\int_{\rho^{o}}^{\rho}d\log l01\int_{\rho^{o}}^{\rho}d\log ld\log m^{2}\int_{\rho^{o_{1}}}^{\rho}d\log m^{2})((2\pi e_{1}\sqrt{-1})e_{2})$

Here $\{e_{1}, e_{2}, e_{3}\}$ is a standard basis of $V$, and $W_{0}/W_{-1}=\mathbb{Z}(0),$ $W_{-1}/W_{-2}=\mathbb{Z}(1)$ ,
$W_{-2}=Z(2)$ .
$V=F^{-2}\supset F^{-1}=\mathbb{Z}e_{1}\oplus \mathbb{Z}e_{2}\supset F^{0}=\mathbb{Z}e_{1}$ with $\nabla P^{-1}\subset\Omega^{1}\otimes F^{i}$ so that

$\nabla v:=dv-v(\begin{array}{llll}1 dlogl 0 0 1 dlog m^{2}0 0 1 \end{array})$ .
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