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COMMON FIXED POINT THEOREMS FOR
ASYMPTOTICALLY NONEXPANSIVE MAPPINGS

HAFIZ FUKHAR-UD-DIN

Department of Mathematics, The Islamia University of Bahawalpur
63100, Pakistan
e-mail: hfdin@ya.hoo.com

Abstract. In this paper, we assume that set of common fixed points
of two asymptotlca.lly nonexpansive mappings is nonempty and one of
these mappings is completely continuous. Then an iterative sequence
{zn} converges strongly to some common fixed point of these mappings.
If the mappings are not completely continuous but either the norm of
the space is Fréchet differentiable or the dual of the space has Kadec-
Klee property, then the iterative sequence {z,} converges weakly to
some common fixed point of these mappings.

1. Introduction

Let C be a nonempty subset of a real Banach space E. A mapping
T :C — Cis: (i) nonexpansive if HTm—TyH < |lz —y|| for all
z,y € C(ii) asymptotically nonexpansive if for a sequence {k,} C
[1 oo) with limp e k» = 1, we have ||[T"z — T"y|| < kn |z — y|| for
all z,y € C and for all n > 1;(iii) uniformly L— Lipschitzian if there
exists a constant L > 0 such that |7z — T™y|| < L||lz — y|| for all
z,y € C and for all n > 1; (iv) completely continuous if {T'z,} has a
convergent subsequence in C' whenever {z,} is bounded in C.

It is obvious that nonexpansive mapping is asymptotically nonex-
pansive and asymptotically nonexpansive is uniformly L— Lipschitzian
but converses of these statements are not true, in genera.l Asymp-
totically nonexpansive mappings, since their introduction in 1972 by
Goebel and Kirk [4] have remained under study by various authors.
Goebel and Kirk [4] also proved: If C is a nonempty bounded closed

Key words and phrases. Noor Iterations, Asymptotically quasi-nonexpansive
mapping, Common fixed point, Weak and Strong convergence.
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convex subset of a uniformly convex Banach space Eand T : C — C'is
an asymptotically nonexpansive mapping, then T has a fixed point. In
recent years, Mann and Ishikawa iterative sequences have been studied
extensively by many authors to solve one-parameter nonlinear opera-
tor equations as well as variational inequalities on a convex set C in
Hilbert and Banach spaces (see, for example [8-11], [13],[14] and the
references therein).

Finding common fixed points of a finite family {7} : j = 1,2, 3, ...,n}
of mappings acting on a Hilbert space is a problem that often arises
in applied mathematics. Probably the most important case is the one
where each mapping T is the metric projection onto some closed con-
vex set C;, under the assumption that intersection of all involved sets
C; is nonempty. In fact, many algorithms for solving ” convex feasibility
problem” connected to metric projections may be generalized to differ-
ent classes of more general mappings having a nonempty set of common
fixed points; for more details, see [12]. In 2001, Khan and Takahashi
[6] introduced the following modified Ishikawa iterative scheme of two
self mappings S, T on a convex set C' :

x, € C,
= B, T"@n + (1 = B,) T, (1.1)
Tpy1 = S Yn+ (L —0)zn, n21,

1
where 0 < § < a,,8, < 1— 6 for some § € (0,=) and they ap-

proximated common fixed points of two asymptotically nonexpansive
mappings through weak and strong convergence of the scheme. Their
weak convergence result does not apply to L? spaces with p # 2 be-
cause none of these spaces satisfy the Opial property while the strong
convergence of the sequence has been proved under the assumption
that domain of the mappings is compact. Moreover, the conditions on
the iteration parameters a,, 3, are also strong.

In this paper, by weaknening the conditions on the iteration pa-
rameters oy, 3,, we, first, approximate common fixed points of two
asymptotically nonexpansive mappings through weak convergence of
the sequence (1.1) in the uniformly convex Banach space satisfying one
of the conditions: (1) The space satisfy the Opial property; (ii) The

norm of the space is Fréchet differentiable; (iii) The dual of the space.

has Kadec-Klee property. We also establish the strong convergence of
the sequence (1.1) .
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2. PRLIMINARIES AND NOTATIONS

A Banach space E is uniformly convex if for each » € (0,2], the
modulus of convexity of F/, given by

) 1
6(r) =t {1- S+l ol < LIl < e =l 27

satisfies the inequality §(r) > 0. For a sequence, the symbol — (resp.—)
denotes norm (resp. weak) convergence. The space E is said to satisfy
the Opial condition [7] if for any sequence {z,} in E, z, — = implies
that limsup,, ., ||z» — z|| < limsup,_, ||zn — y|| for all y € E with
y # . It satisfies the Kadec-Klee property if for every sequence {z,}
in E, z, — z and ||z,|| — ||z|| together imply z, — z as n — oc.

Let S={z € E: ||z|| =1} and let E* be the dual of E, that is, the
space of all continuous linear functionals f on E. Then the norm of E
is Gdteaux differentiable if

oo o+ tyl = ]
t—0 t
exists for each z and y in S. Moreover, this norm is Fréchet differentiable
if for each z in S, this limit is attained uniformly for y € S. In the case
of Fréchet differentiable norm, it has been obtained in [13] that

(h @)+ 3ol < 3lla+ Al < (b, J@) + 3 el + bCIAIX®)

for all z,h in E, where J is the Fréchet derivative of the functional
%|H|2 at ¢ € X,{(.,.) is the pairing between E and E* and b is a
function defined on [0, ) such that lim,j 22 = 0.

A mapping T : C — E is demiclosed at y € E if for each sequence
{z,}in C and each z € E, =, — z and T'z, — y imply that z € C and
Tz = y. Throughout the paper, F(T') denotes the set of fixed points of
T.

We need the following useful lemmas for development of our conver-
gence results.

Lemma 2.1[3]. Let {r,} and {s,} be two nonnegative real sequences
such that

Tnt1 L (14 8,)rn, foralln>1.

If 370 | 8 < 00, then lim,_, T exists.
Lemma 2.2[6]. Let E be a normed space and C be a nonempty
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L—Lipschitzian mappings of C into itself. Define a sequence {z,} as
in (1.1). If

lim [z ~ S"zal| = 0= lim [lzn ~ Tzl
then

lim ||z, — Sz,|| = 0= lim ||z, — Tz,|| .
n—oo n—ro0

Lemma 2.3 [2]. Let C be a nonempty closed convez subset of a uni-
formly convex Banach space E and let T : C — C be an asymptotically
nonexpansive mapping. Then I — T is demiclosed at 0. ,
Lemma 2.4 [5]. Let E be a reflexive Banach space such that E* has the
Kadec-Klee property. Let {z,} be a bounded sequence in E and z*,y* €
W (Zn) (weak w-limit set of {z,}). Suppose limp, oo ||tTn + (1 — t)z* — 3*||
exists for all t € [0,1]. Then z* = y*.

Lemma 2.5 [14]. Let p > 1 and r > 0 be two fized real numbers
Then a Banach space E is uniformly convex if and only if there is a
continuous strictly increasing convex function g : [0,00) — [0, 00) with
g(0) =0 such that

Iz + (1= NyllP < Mlzl” + (1= X) [lyll” — m(Ng(llz — 1))

for all z,y € B,[0] = {z € E: ||z|| < r}, where mp(X) = AP(1 - A) +
‘A(1 = \)? for all X €[0,1].

Lemma 2.6[1]. Let E be a uniformly convex Banach space and let
C be a nonempty bounded closed convex subset of E. Then there is a
strictly increasing and continuous convez function g : [0,00) — [0, 00)
with g(0) = 0 such that, for every Lipschitzian continuous mapping
T :C — E and for all z,y € C and t € [0, 1],the following inequality
holds:

IT(z + (1 - t)y) — Tz + (1= )Tyl < Lg™* (llo — yll = L7 [Tz — Tyll) ,
where L > 1 is the Lipschitz constant of 7.

3. WEAK AND STRONG CONVERGENCE RESULTS

We first prove the following helpful lemmas.

Lemma 3.1. Let C be a nonempty closed convex subset of a normed
space E and let S,T : C — C be asymptotically nonerpansive map-
pings both with sequence {k,} C [1,00) such that Y >, (ko — 1) < 00.
If F(S) N F(T) # ¢ and the sequence{z,} is defined by (1.1), then



lim, . ||Zn — p|| exists for all p € F(S) N F(T).

Proof. For any p € F(S) N F(T), we have

”an('smyn - p) + (1 - a’n)(xn - p)”

ankn [[yn — pll + (1 — az) [|zn - pl|

Ok ||Bn(T"%n — p) + (1 = B,)(zn — D)l
+(1 = o) ||z — o]

anﬁnk‘?& |lzn — 2| + an(l— B,)kn llzn — 2|
+(1 = ow) [|zn — pll

< kﬁ Iz~ — pl| -

|@n+1 — pll

IAIA I

IA

By Lemma 2.1, lim,_. ||Z, — p|| exists for all p € F(S) N F(T) as de-
sired.

Lemma 3.2. Let E be a uniformly convex Banach space and let C be
a nonempty closed convex subset of E. Let S,T : C — C be asymptot-
ically nonexpansive mappings both with sequence {k,} C [1,00) such
that Y (k. — 1) < oo. Define sequences {z,} and {y.} by (1.1),
where {a,},{8,} are real sequences in [0, 1] satisfying > > a,(1 —

n=1
ap) = 00, liminf, .o, > 0 and 8, € [6,1 — §] for some § € (0, -;—)

If F(S)NF(T) # ¢,then there exists a subsequence {z;} of {z,} such
that

11m ”IIL,, - SIB,,“ =0= hm ||x, - T(Ui“ .
1—00 1—00

Proof. For all p € F(S) N F(T), lim,—.co ||Zn — p|| exists as proved

in Lemma 3.1 and therefore {z, — p} is bounded. Consequently, {

Yn—D}, {T"zn—p}, {T™y~—p} are bounded. Therefore, we can obtain a

closed ball B, [0] such that {z,—p, y—p, T"z,—p, T"y,—p} C B.[0]NC.
With the help of Lemma 2.5 and the scheme (1.1), we have

Il

18 (T"zn — p) + (1 = B,)(zn — P)II”

BullT"zn — pl* + (1 - B,) |z — plI?
—72(8,)g (|£n — T"2xl|)

k721. ”xn - p“2 - 7r2(:3n)g (”xn - Tnxn“) (31)

llym = plI?

IA

IA
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Again by Lemma 2.5, the scheme (1.1) and the inequality (3.1), we
infer that

IZa+s = PI* < llom(S™Yn — p) + (1 — o)(2s — D)
< oS —pl* + (1 — an) ||zn — plI?
~72(an)g (||5"Yn — znll)
< okl llyn — plI* + (1 — an) ||zn — plf?
—m2(n)g (15" Yn — Zal)
< ank: |z — p“2 - ankfzzﬂ?(ﬂn)g (len — T z4||)

+(1 — an) |lzn — plI* — m2(an)g (I1S™¥n — all)
< Kbz — pl* - aam2(B,)g (| 2n — Tza))
—ma(an)g (15" yn — zal)
< loa - p“2 — anm2(B,)g (||zn — T"4]|)
—m2(n)g ([S™Yn — znll) + (k7 — 1)Q
where Q is a real number such that ||z, — p|” < Q.
From the above estimate, we obtain the following two unportant
inequalities:
m2(en)g (154 = Zall) < llon =2l = l2nsr = I
+(ki — 1)Q; (3.2)

ankﬁ"ﬁ(ﬁn)g (IT"zn — zall) < llwn — PH2 — ||Zn+1 — p”2
+(k2 - 1)Q. (3.3)

Let m be any positive integer. Summing up the terms from 1 to m
on both sides in the inequality (3.2), we have

> 72(0n)g (1% — 2all) < llor =PI = llmes —PI* + QD (k7 — 1)

n=1 n=1

< e -plP+Q) (ki -1).

n=1

When m — oo in the above inequality, we get

Z"W(an)g (15" yn — mn”) < o0

n=1

and hence
lim inf g (/|S"yn — Zal|) = 0.
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By the properties of g, we have
11711{1_’glf I1S™y, — zn|| = 0.
Since liminf, o, > 0, we have a,, > a for all n > ny. Also
B, € [6,1 — 6] for some 6 € (0, %)
Then the inequality (3.3) reduces to

a8 3 g (1T —2al) < llon — 5P +@ Y (K= 1)

n=ng
< 09,

which further, implies that
lim |T"z, — z,|| = 0.

n—oo

Observe that

|zn = S"2all < 18720 = S"ynll + 15"y — znl|
kn [|#n = ynll + 1S"yn — Znl|
< k(1= 8) [T 2n — @l + [[8yn — znl| -
By liminf on both sides in the above inequality, we get
Iirr&gxf |lzn — S™z,|| = 0.

Hence there exists a subsequence {z;} of {z,} such that
lim ||z; — S'z;|| = 0 = lim ||z — Tz .

1—00 1—00

Finally by Lemma 2.2, we get that
im (|z; — Sz;|| = 0 = lim ||z; — Tz

Lemma 3.3. Let E be a uniformly convex Banach space and let
C,S,T and {z,} be taken as in Lemma 3.1. If F(S) N F(T) # ¢,then

for all py,ps € F(S) N F(T), lim, oo ||[tzn + (1 — t)p1 — p2|| exists for

all t € [0,1].

Proof. The sequence {z,} is bounded, since hmn__,oo |z — pl| exists.
Hence we may assume C to be bounded. Let a,(t) = ||tz + (1 — t)p1 — p2l| -

Then a,(0) = ||p1 — p2|| and lim, o0 @n(1) = lim, oo ||Zn — p2f| exists
as proved in Lemma 3.1. Define W,, : C — C by:

Wot = 0, S™[B, Tz + (1 = B,)x] + (1 —an)z forallz € C.
Obviously F(S) N F(T) C F(W,). Also we can verify that
|Waz — Wayll < K2 llz — .-
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Set

Rn’m = n+m_1Wn+m_.2...Wn, m Z 1 and

bnm = || Rnm(t2n + (1 = £)p1) = (tRnmZn + (1 —t)p1)| .
Then

n+m-—1
| B — Ryl < ( II k?) lle -yl
j=n

Since R, Ty = Tpim, We have

= |[tTpim + (1 — t)p1 — D3|
S bn,m + ”Rn,m(tmn + (1 - t)pl) - p2”

b + (ﬁ k?) an(t)

j=n

Antm (t)

IA

< bnm + Haan(t), where H, = [ k2. (3.4)

, j=n
By Lemma 2.6, there exists a strictly increasing continuous function
g : [0, 00] — [0, 00] with g(0) = 0 such that
bn,m < 'Hng_l (“wn - P1“ - H;a—l ”Rn,mwn _plv”)
= Hng—l (Hxn - pl” - HJI "mn+m - pl”) ‘ (3'5)

Combining (3.4) and (3.5), we get |

a'n+m(t) < Hng—l (”zn - Pl“ - Hv:l “wn+m _PIH) + Hﬂan(t)
Now fixing n and letting m — oo in the above inequality, we have

m—ro0 m—o0

lim sup apn(t) < limsup Hog™ (|l — 1l = Hi* iz [lom — pall) + Hoon (8

and again letting n — oo, we get

lim sup an(t) < g7(0) + lim inf an(t) = liminf a,(t). -
This completes the proof. |
Lemma 3.4. Let E be a uniformly convex Banach space with a Fréchet
differentiable norm and let C,S,T and {z,} be as taken in Lemma
3.1. If F(S)N F(T) # ¢, then lim, o (T, J(p1 — p2)) exists for every
pp2 € F(S)N F(T). Moreover (p —q,J(p1 —p2)) = 0 for all p,q €
ww(Zn), where wy,(z,) denotes the weak w—limit set of {z,}.



Proof. Take z = p; — p, with p; # p, and h = t(z, — p;) in the
inequality (), we have

t{zn — p1, J(p1 — pz))+ lp1 — pa?

IA

1
5 1tz + (1 ~ 1)y — pol
t (xn — D, J(pl _p2))
1
+5 |11 = ol + bt ll2n — p1l)).

As sup,s; [|Tn — p1f| < M for some M > 0,it follows from above the
above inequality that

IA

_ 1
tlimsup (2, — py, J(pr = pa)) + 5 [IP1 — pall®

n—oeo

IA

1 ..
5 Jim [tz, + (1 - t)p1 — pal?
tlim inf (z,, — p1, J(p1 — p2))

n—

1
+3 llps = pall? + b(e)

IA

That is,
lim sup (z, — p1, J(p1 — p2)) < liminf (T — p1, J(P1 — P2))

n—o0
L)
= M

If ¢ — 0, then we see that lim, ., (z, — p1, J(p1 — p2)) exists for all
p1,p2 € F(S)NF(T). In particular, we have (p — q, J(p1 — p2)) = 0 for
all p,q € wy(z,), where wy(z,) denotes the weak w—limit set of {x,}.

Now, we are in a position to prove our convergence theorems.
Theorem 3.1. Let E be a uniformly convexr Banach space and C be
a nonempty closed convex subset of E. Let S,T : C — C be asymptot-
ically nonexpansive mappings both with sequence {k,} C [1,00) such

that Y o (k, — 1) < oo. Define sequences {z,} and {y,} by (1.1),
where {ay,}, {B,} are real sequences in [0, 1] satisfying lim inf,,_, 0ty >

0, Yoo an(l— ) = o0, and 8, € [6,1 — 6] for some § € (0, %) If

F(S)NF(T) # ¢ , then there exists a subsequence {z;} of {z,} which
converges weakly to a common fired point of S and T provided that
one of the following conditions holds:

(i) E satisfies the Opial property;

(it) E has a Frechet differentiable norm;
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(i1i) E* has the Kadec-Klee property.

Proof. Let p € F(S)N F(T). Then lim,_, ||z, — p|| exists as proved
in Lemma 3.1. Let {z;} be the subsequence as introduced in Lemma.
3.2. Since E is reflexive, there exists a subsequence {z;} of {z;} con-
verging weakly to some z; € C. By Lemma 6, lim;_,, ||z; — Sz:|| = 0 =
lim; o ||@; — Tz;|| and I — S, I — T are demiclosed at 0 by Lemma 2.3,
therefore we obtain Sz; = z; and T'z; = z. That is, z; € F(S)NF(T).
In order to show that {z;} converges weakly to z;, take another sub-
sequence {zx} of {z;} converging weakly to some 2, € C. Again in the
same way, we can prove that 2, € F(S) N F(T). Next, we prove that
Zy = 2. Assume that (i) is given and suppose that 2; # z, then by
the Opial property

Jim llon = 2] = Jim [l2; —

< Jim [l2; 2

= lim ||z, — 2|
n—00

= Lim {lz, — 2|
—00

< lim ||z — 2|
k—o00

= lim ||z, = 2|
nN—=+00

This contradiction proves that {z;} converges weakly to a point in
F(S)NF(T). |

Next suppose that (ii) is satisfied. From Lemma 3.4, we have that
(p—q,J(p1 — p2)) = 0 for all p,q € wy(z;), where w,(z;) denotes the
weak w—limit set of {z;}. Now ||z; — z||° = (21 — 2, J(z1 — 22)) = 0
gives that z; = z,.Finally, let (iii) be given. Aslim,_,o ||tz, + (1 — t)21 — 22|
exists, therefore by Lemma 2.4, we obtain z; = 2.

If we replace the parametric conditions ” liminf, oo @, > 0, D o | ap(1—

ap,)=00"by”’0<é§<La,£1-86<1forsomeé € (0,-;—)” in Lemma.
3.2, it becomes Lemma 3 of Khan and Takahashi[6]. Then the above
theorem reduces to:

Theorem 3.2. Let E be a uniformly convex Banach space and let C be
a nonempty closed convex subset of E. Let S,T : C — C be asymptot-
ically nonexpansive mappings both with sequence {k,} C [1,00) such
that 3 >0 (kn — 1) < oo. Define sequences {z,} and {y.} by (1.1),
where {a,},{8,} are real sequences in [0,1] such that § < o, B, <

1—6 for some é§ € (0, -;-) If F(S)NF(T) # ¢, then {z,} converges
weakly to a common fixed point of S and T if one of the following



conditions holds:

(i) E satisfies the Opial property;

(ii) E has a Frechet differentiable norm;
(i4i) E* has the Kadec-Klee property.

Next, we prove our strong convergence theorem.
Theorem 3.3. Let E be a uniformly convexr Banach space and let
C be a nonempty closed convex subset of E. Let S,T : C — C
be asymptotically nonexpansive mappings both with sequence {k,} C
[1,00) such that > o2 (kn, — 1) < co. Define sequences {z,} and {y,}
by (1.1), where {a,} and{B,} are real sequences in [0,1] satisfying
liminf, ,wan >0, 32 o,(l—a,) =00, and § < B, <1—6 for

n=1
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some 6 € (0, %) If F(S)NF(T) # ¢ and either S or T is completely

continuous, then {z,} and {y,} converge strongly to the same common
fized point of S and T.

Proof. As proved in Lemma 3.2, there exists a subsequence {z;} of
{zn} such that

Since {z;} is bounded and S is completely continuous, so {Sz;} has a
convergent subsequence {Sz,}. Suppose Sz, — z € C.
Then

e, — 2l < llo - 5, + |5, - ]| 0.

Hence z; — 2. Then (3.6) assures that z is a common fixed point of S
and T. As lim,,_, ||z, — p|| exists for all p € F(S) N F(T), so z, — 2.
This completes the proof.
Remark 3.1. Our weak converence Theorems apply not only in
Hilbert and LP spaces (1 < p < oo) but also to the spaces whose dual
has the Kadec-Klee property. Our strong convergence result improves
Theorem 2 of Khan and Takahashi[6] due to the following reasons:

(i) Compactness of the domain is replaced by the complete continu-
ity; |

(ii) Conditions on iteration parameters are weaker than those used
in [6].
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