
Title
HEISENBERG'S FUNDAMENTAL EQUATION AND
QUANTUM FIELD THEORY WITH A FUNDAMENTAL
LENGTH(Micro-Macro Duality in Quantum Analysis)

Author(s) NAGAMACHI, S.; BRUNING, E.

Citation 数理解析研究所講究録 (2007), 1565: 74-85

Issue Date 2007-07

URL http://hdl.handle.net/2433/81168

Right

Type Departmental Bulletin Paper

Textversion publisher

Kyoto University



HEISENBERG’S FUNDAMENTAL EQUATION
AND

QUANTUM FIELD THEORY
WITH A FUNDAMENTAL LENGTH

S. NAGAMACHI AND E. BR\"UNING

ABSTRACT. Heisenberg’s fundamental equation of the universe $[8, 9]$ has a
coupling constant $l$ which has the dimension of length [L]. We consider a
model which has a coupling constant $l$ of the same dimension as Heisenberg’s
fundamental equation of the universe, and solved it. The solution is not an
operator-valued tempered distribution but an ultrahyperfunctions. The con-
stant $\ell=l/(\sqrt{2}\pi)$ is the fundamental length in the sense of [1], that is, events
occuning within the distance $\ell$ cannot be distinguished in the framework of
Ultrahyperfunction Quantum Field Theory which has been developed recently
by the authors.
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1. INTRODUCTION
The basic relativistic equation of quantum mechanics called Dirac equation

$i \frac{\hslash}{c}\gamma_{\mu}\frac{\partial}{\partial x_{\mu}}\psi(x)-m\psi(x)=0,$ $x_{0}=ct,$ $x_{1}=x,x_{2}=y,$ $x_{3}=z$ (1.1)

contains a constants $c$ (velocity of light) whiCh is the fundamental constant in rel-
ativity theory, and Planck’s constant $h=2\pi\hslash$ which is the fundamental constant
in quantum mechanics. The dimension of $c$ is $[LT^{-1}]$ and that of $h$ is $[ML^{2}T^{-1}]$ .
W. Heisenberg thought that a fundamental equation of Physics must also contain
a constant $l$ with the dimension of length [L]. If such a constant $l$ Is introduced,
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then the dimensions of any other quantity can be expressed in terms of combi-
nations of the basic constants $c,$ $h$ and $l$ , e,g., time $[T]=[L]/[LT^{-1}]$ , or mass as
$[M]=[ML^{2}T^{-1}]/([LT^{-1}][L])$ .

In 1958, Heisenberg and Pauli introduced the equation

$\frac{\hslash}{c}\gamma_{\mu}\frac{\partial}{\partial x_{\mu}}\psi(x)\pm l^{2}\gamma_{\mu}\gamma_{5}\psi(x)\overline{\psi}(x)\gamma^{\mu}\gamma_{5}\psi(x)=0$ , (1.2)

which was later called the equation of the universe and studied in $[4, 9]$ . The
constant $l$ has the dimension [L] and is called the fundamental length of the
theory.

Unfortunately, nobody has been able to solve this equation. At present, even
in the more advanced Ramework of ultra hyperfunction quantum field theory, we
do not see how this equation could be solved. Accordingly we study a linearized
version of this equations which enherits the important property of a fundamental
length $l$ and which first has been studied by Okubo [13]. This linearized version
is solvable in the sense of classical field theory. We write it in the form

$\{\begin{array}{l}\square \phi(x)+(\frac{m}{\hslash})^{2}\phi(x)=0(i\frac{\hslash}{c}\gamma^{\mu}\frac{\partial}{\partial x^{\mu}}-\tilde{m})\psi(x)=-2\gamma^{\mu}l^{2}\psi(x)\phi(x)\frac{\partial\phi(x)}{\partial x^{\mu}}\end{array}$ (1.3)

and propose to solve these equations by two methods, (I) constructing the Schwinger
functions of the fields $\phi(x)$ and $\psi(x)$ , and (ii) constructing directly the operator-
valued generalized functions which satisfy the system of equations (1.3). In the
following we will work with the natural units $c=\hslash=1$ . Then the system of
equations (1.3) reads

$(\square +m^{2})\phi(x)=0$ (1.4)
$(i\gamma^{\mu}\partial_{\mu}-\tilde{m})\psi=-2l^{2}\gamma^{\mu}\psi(x)\phi(x)\partial_{\mu}\phi(x)$. (1.5)

and they are the field equations of the following Lagrangian density:
$L(x)=L_{Ff}(x)+L_{Fb}(x)+L_{I}(x)$ , (1.6)

$L_{Ff}(x)=\overline{\psi}(x)(i\gamma_{\mu}\partial^{\mu}-\tilde{m})\psi(x)$ , (1.7)

$L_{Fb}(x)= \frac{1}{2}\{(\partial^{\mu}\phi(x))^{2}-m^{2}\phi(x)^{2}\}$ , (1.8)

$L_{I}(x)=2l^{2}(\overline{\psi}(x)\gamma_{\mu}\psi(x))\phi(x)\partial^{\mu}\phi(x)$ . (1.9)
Equatim (1.5) has no solutions in the axiomatic framework of Wightman, that

is, the field $\psi(x)$ iv not an operator-valued tempered distribution. But, as we are
going to show, Equation (1.5) has a solution $(\phi, \psi)$ as operator-valued tempered
ultrahyperfunction which satisfy the conditions of the framework of a relativistic
quantum field theory with a fundamental length as given in [1].

In Sections 2-5, we discuss the Wightman axioms for the fields with a fun-
damental length, which uses the theory of tempered ultrahyperfunctions. In Sec-
tion 6, the SChwinger functions and Wightman functions are constructed by path
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integral method. The Wightman functions are tempered ultrahyperfunctions.
In Section 7, the operator-valued tempered ultrahyperfunctions are constructed,
which satisfy the system of equations (1.3). The Wightman functions constructed
from the operator solutions coincide with those which are constructed by path
integral method. The detailed calculations are found in $[11, 2]$

2. WIGHTMAN AXIOMS

Wightman’s set of axioms consist of the following 7 conditions. A special
attention is paid to the locality axiom WVI.
W.I (RelativiStic invariance of the state space).
W.II (Spectral property).
W.III (Ebcistence and uniqueness of the vacuum).
W.IV (Fields and temperedness).
W.V (Poincar\’e-covariance of the fields).
W.VI (Locality, or microcausality).
Any two field components $\phi_{j}^{(\kappa)}(x)$ and $\phi_{\ell}^{(\kappa’)}(y)$ either commute or anti-commute
under a spacelike separation of $x$ and $y$ :
If $f$ and $g$ have space-like separated supports, then

$\phi_{j}^{(\kappa)}(f)\phi_{\ell}^{(\kappa’)}(g)\Psi\mp\phi_{\ell}^{(\kappa’)}(g)\phi_{j}^{(\kappa)}(f)\Psi=0$

for all $\Psi\in \mathcal{D}$ , the common domain for all operator $\phi_{j}^{(\kappa)}(f)$ . We express this by
saying

$\phi_{j}^{(\kappa)}(x)\phi_{\ell}^{(\kappa’)}(y)\Psi\mp\phi_{\ell}^{(\kappa’)}(y)\phi_{j}^{(n)}(x)\Psi=0$ for $(x-y)^{2}<0$ .
W.VII (Cyclicity of the vacuum).

3. FUNDAMENTAL LENGTH

The axiom W.VI says that two events which are space-likely separated are inde-
pendent. Even If we replace W.VI by a weaker axIom

$\phi_{j}^{(\kappa)}(x)\phi_{\ell}^{(\kappa’)}(y)\Psi\mp\phi_{\ell}^{(\kappa’)}(y)\phi_{j}^{(\kappa)}(x)\Psi=0$ for $(x-y)^{2}<-\ell^{2}<0$ , (3.1)
which says that the two events which are separated by $\ell$ are independent, we can
prove W.VI by using the other axioms. It Is not easy to weaken the condition of
locality if the field $\phi_{j}^{(\kappa)}(x)$ has the localization property of Schwartz distributions.
We must introduce generalized functions which have more general localization
properties than distrIbutions.
We indicate briefly a way in which locallzation properties of generalized functions
can be ‘we&ened’. Denote $T(-\ell, \ell)=\mathbb{R}+i(-l, l)\subset C$ , and let $\mathcal{T}(T(-P,l))$ be
the set of functions $f$ holomorphic in $T(-P, \ell)$ . Then for $|a|<\ell$ , we get

$\int_{-\infty}^{\infty}\sum_{n=0}^{\infty}\frac{a^{n}}{n!}\delta^{(n)}(x)f(x)dx=\sum_{n=0}^{\infty}\frac{(-a)^{n}}{n!}f^{(n)}(0)$

3
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$=f(-a)= \int_{-\infty}^{\infty}\delta(x+a)f(x)dx$ .

The above equality implies the following two facts.
(A) $\Delta_{N}(x)=\sum_{n=0}^{N}\frac{a^{n}}{n!}\delta^{(n)}(x)$ converges to $\delta(x+a)=\delta_{-a}(x)$ in $\mathcal{T}(T(-\ell,l))’$

as $Narrow\infty$ . Clearly, for all $N\in N$ , supp $\Delta_{N}=\{0\}$ while for the limit we
find supp $\delta_{-a}=\{-a\}$ .

(B) If $|a|>l,$ $\Delta_{N}(x)$ does not converge in $\mathcal{T}(T(-\ell, \ell))’$ .
(A) and (B) say: Elements in $\mathcal{T}(T(-\ell, \ell))’$ do not allow to distinguish between
$\{0\}$ and $\{-a\}$ , if $|a|<p$ but if $|a|>\ell$ then elements in $\mathcal{T}(T(-pp))’$ can be used
to dIstinguish between the locations $\{0\}$ and $\{-a\}$ .

4. ULTRAHYPERFUNCTION
Tempered ultrahyperfunctios were first introduced by Hasumi, M. [7] in 1961
and developed by Morimoto, M. [10] in 1975. Here we just mention the basic
definition. For a subset $A$ of $\mathbb{R}^{n}$ , we denote by $T(A)=\mathbb{R}^{n}+iA\subset \mathbb{C}^{\mathfrak{n}}$ the tubular
set with base $A$ . For a convex compact set $K$ of $\mathbb{R}^{n},$ $\mathcal{T}_{b}(T(K))$ is, by definition,
the space of all continuous functions $f$ on $T(K)$ which are holomorphic In the
interior of $T(K)$ and satisfy

$\Vert f\Vert^{T(K),j}=\sup\{|z^{p}f(z)|;z\in T(K), |p|\leq j\}<\infty,$ $j=0,1,$ $\ldots$

where $p=(p_{1}, \ldots,p_{\mathfrak{n}})$ and $z^{p}=l_{1}^{1}\cdots z_{n}^{p_{n}}$ . $\mathcal{T}_{b}(T(K))$ is a R\’echet space with
the semi-norms $\Vert f\Vert^{T(K),j}$ . If $K_{1}\subset K_{2}$ are two compact convex sets, we have the
canonical injections:

$\mathcal{T}_{b}(T(K_{2}))arrow \mathcal{T}_{b}(T(K_{1}))$ .
Let $O$ be a convex open set in $\mathbb{R}^{n}$ . We define

$\mathcal{T}(T(O))=\lim_{arrow}\mathcal{T}_{b}(T(K_{1}))$ ,

where $K_{1}$ runs through the convex compact sets contained in $O$ , and the projective
limit is taken following the restriction mappings.

Definition 4.1. A tempered ultra-hyperfunction is by definition a continuous
linear functional on $\mathcal{T}(T(\mathbb{R}^{n}))$ .
Remark 4.2. It seems that the space $\mathcal{T}(T(\mathbb{R}^{n}))$ is quite unique, in the sense
that it is not among the many spaces considered in the book of $I.M$ . Gel’fand
and $G.E$ . Shilov [5]. There we find function spaces $S^{1,B}$ and $S^{1}= \lim_{Barrow\infty}S^{1,B}=$

$1{\rm Im} \mathcal{T}_{b}(T(K_{1}))$ ,
$K_{1}arrow\{0\}$

but no space $\lim_{0arrow B}S^{1,B}=\lim_{R^{n}arrow K_{1}}\mathcal{T}_{b}(T(K_{1}))=\mathcal{T}(T(\mathbb{R}^{n}))$ .

By the reason explained in Section 3, we can formulate relativistic quantum
field theory with a fundamental length by using tempered ultrahyperfunctions,
which is shown in [1] and in the next section.
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5. AXIOMS FOR ULTRAHYPERFUNCTION QUANTUM FIELDS OF MIXED TYPE

Here we state $Wigtmans$ axioms for the ultrahyperfunction quantum field the-
ory. For the case of neutral scalar fields, these axioms have been presented in [1].
W.I. Relativistic invariance of the state space;
W.II. Spectral property;
W.III. Existence and uniqueness of the vacuum;
W.IV. Fields: The components $\phi_{j}^{(\kappa)}$ of the quantum field $\phi^{(\kappa)}$ are operator-valued
generalized functions $\phi_{j}^{(\kappa)}(x)$ over the space $\mathcal{T}(T(\mathbb{R}^{4}))wIth$ common dense domain
$D;1.e.$ , for all $\Psi\in \mathcal{D}$ and all $\Phi\in \mathcal{H}$ ,

$\mathcal{T}(T(\mathbb{R}^{4}))\ni farrow(\Phi, \phi_{j}^{(\kappa)}(f)\Psi)\in \mathbb{C}$

is a tempered ultrahyperfunction. It is assumed that the vacuum vector $\Phi_{0}$ is
contained in $\mathcal{D}$ and that $\mathcal{D}$ is taken into itself under the action of the operators
$\phi_{j}^{(\kappa)}(f)$ and $U(a, A)$ , i.e., $\phi_{j}^{(\kappa)}(f)D\subset \mathcal{D},$ $U(a, A)\mathcal{D}\subset \mathcal{D}$ . Moreover it is assumed
that there exist indices $\overline{\kappa},\overline{J}$ such that $\phi_{\frac{}{f}}^{(\overline{n})}(\overline{f})\subset\phi_{j}^{(\kappa)}(f)^{*}$ where * indicates the
Hilbert space adjoint of the operator in question.
W.V. Poincar\’e-covariance of the fields;
W.VI. Extended causality or extended local commutativity: Any two field
components $\phi_{j}^{(\kappa)}(x)$ and $\phi_{l}^{(\kappa’)}(y)$ either commute or anti-commute if the distance
between $x$ and $y$ is greater than $\ell$ :
a) The functionals

$\mathcal{T}(T(\mathbb{R}^{4}))\otimes \mathcal{T}(T(\mathbb{R}^{4}))\ni f\otimes garrow(\Phi, \phi_{j}^{(\kappa)}(f)\phi_{l}^{(\kappa’)}(g)\Psi)$ $\bm{t}d$

$\mathcal{T}(T(\mathbb{R}^{4}))\otimes \mathcal{T}(T(\mathbb{R}^{4}))\ni f\otimes garrow(\Phi, \phi_{l}^{(\kappa’)}(g)\phi_{j}^{(\kappa)}(f)\Psi)$

can be extended continuously to $\mathcal{T}(T(L^{\ell}))$ in some Lorentz frame, for arbitrary
elements $\Phi,$ $\Psi$ in the common domain $\mathcal{D}$ of the field operators $\phi_{j}^{\kappa}(f)$ , where

$T(L^{\ell})=\{(z_{1}, z_{2})\in \mathbb{C}^{4\cdot 2};|{\rm Im} z_{1}-{\rm Im} z_{2}|_{1}<l\}$,

where $|y|_{1}=|y^{0}|+\sqrt{\sum_{i=1}|y_{i}|^{2}}$.
b) The carrier of the functional

$f\otimes garrow(\Phi, [\phi_{j}^{(\kappa)}(f), \phi_{l}^{(\kappa’)}(g)]_{\mp}\Psi)$

on $\mathcal{T}(T(\mathbb{R}^{4}))\otimes \mathcal{T}(T(\mathbb{R}^{4}))$ is contained in the set
$W^{\ell}=\{(z_{1}, z_{2})\in \mathbb{C}^{4\cdot 2};z_{1}-z_{2}\in V^{\ell}\}$ ,

where
$V^{\ell}=\{z\in \mathbb{C}^{4};\exists x\in V, |{\rm Re} z-x|+|{\rm Im} z|_{1}<p\}$

is a complex neighborhood of light cone $V$ , i.e., this functIonal can be extended
continuously to $\mathcal{T}(W^{\ell})$ .
W.VII. Cyclicity of the vacuum.
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Remark 5.1. The condition (3.1) is expressed that the support of the vector-
valued distribution $\phi_{j}^{(\kappa)}(x)\phi_{l}^{(\kappa’)}(y)\Psi\mp\phi_{\ell}^{(\kappa’)}(y)\phi_{j}^{(\kappa)}(x)\Psi$ is contained In the set $W_{\ell}=$

$\{(x, y)\in \mathbb{R}^{4\cdots 2};(x-y)^{2}\geq-l^{2}\}$ . However, the tempered ultrahyperfunction has
a carrier but generally no support, the smallest carrier, and therefore we replace
the condition (3.1) with the condition b) of W.VI, that is, the functional

$f\otimes garrow(\Phi, [\phi_{j}^{(\kappa)}(f), \phi_{i}^{(\kappa’)}(g)]_{\mp}\Psi)$

is continuously extended to $\mathcal{T}(W^{p})$ where $W^{\ell}$ is a complex neighborhood of $W_{\ell}$ .

6. PATH INTEGRAL QUANTIZATION

We quantize this model by path integral methods (see [3]). Formally, the time-
ordered two point function is calculated as

$\int\overline{\psi}_{\alpha}(x_{1})\psi_{\beta}(x_{2})$ exp $i \{\int_{\mathbb{R}^{4}}L_{I}(x)dx\}d\mathcal{D}(\psi,\overline{\psi})d\mathcal{G}(\phi)$

$\cross\{\int\exp i\{\int_{R^{4}}L_{I}(x)dx\}d\mathcal{D}(\psi,\overline{\psi})d\mathcal{G}(\phi)\}^{-1}$ ,

$d \mathcal{G}(\phi)=\exp i\{\int_{R^{4}}L_{Fb}(x)dx\}\prod_{x\in \mathbb{R}^{4}}d\phi(x)$

$d \mathcal{D}(\psi,\overline{\psi})=\exp i\{\int_{R^{4}}L_{Ff}(x)dx\}\prod_{x\in \mathbb{R}^{4}}\prod_{\alpha=1}^{4}d\psi_{a}(x)d\overline{\psi}_{a}(x)$ .

All these integrals have a rigorous meaning if the continuous space-time is replaced
by a lattice. For positive integers $M,$ $N$ define $L=MN,$ $\Delta=\sqrt{\pi}/M$ and the
lattice

$\Gamma=\{t=j\Delta;j\in \mathbb{Z}, -L<j\leq L\}=\Delta \mathbb{Z}/(2\sqrt{\pi}N)$ .
The lattice version of the differential operator $-\triangle+m^{2}$ on $\mathbb{R}^{\Gamma^{4}}=\mathbb{R}^{4\cdot 2L}$ is the
following difference operator

$-\triangle+m^{2}$ : $\mathbb{R}^{\Gamma^{4}}\ni\Phi(x)arrow$

$- \sum_{\mu=0}^{3}\frac{\Phi(x+e_{\mu})+\Phi(x-e_{\mu})-2\Phi(x)}{\Delta^{2}}+m^{2}\Phi(x)\in \mathbb{R}^{\Gamma^{4}}$ .

Let $dG(\Phi)$ be a Gaussian measure on $\mathbb{R}^{4\cdot 2L}$ defined by

$dG(\Phi)=C$ exp $\{\frac{1}{2}\sum_{y\in\Gamma^{4}}[\sum_{\mu=0}^{3}\frac{\Phi(y+e_{\mu})+\Phi(y-e_{\mu})-2\Phi(y)}{\Delta^{2}}$

$-m^{2} \Phi(y)]\Delta^{4}\}\prod_{y\in\Gamma^{4}}d\Phi(y)$
,
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where $C$ is the normalization constant such that $\int dG(\Phi)=1$ . The exponent

of the measure is the (Euclideanized $x^{0}arrow-iy^{0},$ $xarrow y$) discretIzation of
Lagrangian $i \int L_{Fb}(x)dx$ .
Now we can calculate the covariance of $dG(\Phi)$

$\int\Phi(y_{1})\Phi(y_{2})dG(\Phi)=2(-\triangle+m)^{-1}(y_{1},y_{2})=2S_{m}(y_{1}-y_{2})$

$S_{m}(y_{1}-y_{2})=(2 \pi)^{-4}\sum_{p\in\overline{\Gamma}^{4}}e^{ip(y_{1}-y_{2})}[\sum_{\mu=0}^{3}$($2-2$ cos $p_{\mu}\Delta$ ) $/\Delta^{2}+m^{2}]^{-1}\eta^{4}$ ,

$\tilde{\Gamma}=\{s=j\eta;j\in \mathbb{Z}, -L<j\leq L, \eta=\sqrt{\pi}/N\}=\eta \mathbb{Z}/(2\sqrt{\pi}M)$ .
The following fact is shown in [11] by using nonstandard analysis: $S_{m}(y_{1}-y_{2})arrow$

$S_{m}(y_{1}-y_{2}),$ $M,$ $Narrow\infty$ , where

$S_{m}(y_{1}-y_{2})=(2 \pi)^{-4}\int_{R^{4}}e^{ip(y_{1}-y_{2})}[p^{2}+m^{2}]^{-1}d^{4}p$

is the Schwinger function of neutral scalar field of mass $m$ . In order to deal with
the fermion field $\Psi$ , we need the measure $dD(\Psi^{1}, \Psi^{2})$ on the Grassmann algebra
generated by $\{\Psi_{\alpha}^{1}(y), \Psi_{\alpha}^{2}(y);\alpha=1, \ldots,4, y\in\Gamma^{4}\}$:

$dD( \Psi^{1}, \Psi^{2})=C’\exp\{-\sum_{y\in\Gamma^{4}}\Psi^{2T}(y)[\sum_{\mu=0}^{3}\gamma_{\mu}^{B}\nabla_{\mu}+\tilde{m}]\Psi^{1}(y)\Delta^{4}\}$

$\cross\prod_{y\in\Gamma^{4}}\prod_{\alpha=1}^{4}d\Psi_{\alpha}^{1}(y)d\Psi_{\alpha}^{2}(y)$ ,

$\Psi^{1}=(\Psi_{1}^{1},$
$\ldots,$

$\Psi_{4}^{1}\rangle^{T},$ $\Psi^{2}=(\Psi_{1}^{2}, \ldots, \Psi_{4}^{2})^{T}$ ,

$\gamma_{0}^{E}=\gamma_{0}=(\begin{array}{ll}\sigma_{0} 00 -\sigma_{0}\end{array})$ $\gamma_{j}^{B}=-i\gamma_{j}=(\begin{array}{ll}0 -i\sigma_{j}i\sigma_{j} 0\end{array})$ $j=1,2,3$,

$\sigma_{0}=(\begin{array}{ll}1 00 1\end{array})$ $\sigma_{1}=(\begin{array}{ll}0 1l 0\end{array}),$ $\sigma_{2}=(\begin{array}{l}0-ii0\end{array})$ $\sigma_{3}=(\begin{array}{l}100-l\end{array})$

$\nabla_{\mu}\Psi_{k}=\{\begin{array}{ll}\nabla^{+}\Psi_{k}(y)=(\Psi_{k}(y+e_{\mu})-\Psi_{k}(y))/\Delta if k=1,2,\nabla^{-}\Psi_{k}(y)=(\Psi_{k}(y)-\Psi_{k}(y-e_{\mu}))/\Delta if k=3,4.\end{array}$

The idea to replace the partial derivatives in the continuum case by the forward-,
respectively backward- difference as describe above, has originally been developed
in [12] in order to avoid the doubling problem. Using $P\pm=(1\pm\gamma_{0}^{B})/2$ the
interaction Lagrangian is defined as:

$-L_{I}(y)= \Psi^{2T}(y)e^{il^{2}\Phi(y)^{2}}\sum_{\mu=0}^{3}\gamma_{\mu}^{E}$

$\cross[P_{+}\Psi^{1}(y+e_{\mu})\{e^{-il^{2}\Phi(y+e_{\mu})^{2}}-e^{-1l^{2}\Phi(y)^{2}}\}/\Delta$
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$+P_{-}\Psi^{1}(y-e_{\mu})\{e^{-il^{2}\Phi(y)^{2}}-e^{-il^{2}\Phi(y-e_{\mu})^{2}}\}/\triangle]$ ,
Now we calculate the lattice version of the Schwinger functions of the interacting
fields. The two point Schwinger function is

$\int\Psi_{\alpha}^{1}(y_{1})\Psi_{\beta}^{2}(y_{2})$ exp $( \sum_{y\in\Gamma^{4}}L_{I}(y)\Delta^{4})dD(\Psi^{1}, \Psi^{2})dG(\Phi)$

$\cross\{\int\exp(\sum_{y\in\Gamma^{4}}L_{I}(y)\Delta^{4})dD(\Psi^{1}, \Psi^{2})dG(\Phi)\}^{-1}$

$= \int e^{il^{2}\Phi(y_{1})^{2}1}\Psi’(y_{1})e^{-:l^{2}\Phi(y2)^{2}}\Psi^{\prime 2}(y_{2})dD(\Psi^{\prime 1}, \Psi^{\prime 2})dG(\Phi)$

$= \int\Psi^{\prime 1}(y_{1})\Psi^{r2}(y_{2})dD(\Psi^{\prime 1}, \Psi^{\prime 2})\int)^{2}$

where we used the change of variables
$\Psi^{1}(y)=e^{il^{2}\Phi(y)^{2}}\Psi^{\prime 1}(y),$ $\Psi^{2}(y)=e^{-:l^{2}\Phi(y)^{2}}\Psi^{\prime 2}(y)$ .

The covariance

$\int\Psi^{\prime 1}(y_{1})\Psi^{\prime 2}(y_{2})dD(\Psi^{\prime 1}, \Psi^{\prime 2})=\mathcal{R}_{\tilde{m};\alpha,\beta}(y_{1}-y_{2})$

converges to the Schwinger function

$R_{\tilde{m};\alpha,\beta}(y)= \{-\sum_{\mu=0}^{3}\gamma_{\mu}^{E}(\frac{\partial}{\partial y_{\mu}})+\tilde{m}\}_{\alpha,\beta}S_{\tilde{m}}(y)$

of the free Dirac field of mass $\tilde{m}$ . The integral

$\int e^{il^{2}\Phi(y_{1})^{2}}e^{-u^{2}\Phi(y_{2})^{2}}dG(\Phi)$

$=[(1-il^{2}S_{m}(0))(1+il^{2}S_{m}(0))-l^{4}S_{m}(y_{1}-y_{2})^{2}]^{-1/2}$ .
contains $S_{m}(0)$ which diverges to $\infty$ as $N,$ $Marrow\infty$ . But this divergent quantity
is removed by using the Wick products instead of the ordinary product in the
Lagrangian. It is defined by (see [6]):

: $e^{h\Phi(y)}$ $:= \sum[:(h\Phi(y))^{n} : /n!]=e^{-h^{2}S_{m}(0)}e^{h\Phi(y)}\infty$ .
$n=0$

This removes the divergent quantity and the result is

$\int:e^{:l^{2}\Phi(y_{1})^{2}}$ : : $e^{-il^{2}\Phi(y_{2})^{2}}$ : $dG(\Phi)=[1-4l^{4}S_{m}(y_{1}-y_{2})^{2}]^{-1/2}$ ,

and hence the two point Schwinger function of $\psi$ on the lattice
$[1-4l^{4}S_{m}(y_{1}-y_{2})^{2}]^{-1/2}\mathcal{R}_{\tilde{m};\alpha,\beta}(y_{1}-y_{2})$ ,
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converges to the continuum one:
$[1-4l^{4}S_{m}(y_{1}-y_{2})^{2}]^{-1/2}R_{\tilde{m};\alpha,\beta}(y_{1}-y_{2})$.

Let $D_{m}^{(-)}(x_{0}-i\epsilon, x)=S_{n}(ix_{0}+\epsilon, x)$ . Then the two point Wightman function
$W_{\alpha,\beta}(x_{0}-i\epsilon, x)$ is

$[1-4l^{4}D_{m}^{(-)}(x_{0}-i\epsilon, x)^{2}]^{-1/2}(i\gamma_{\mu}\partial^{\mu}+\tilde{m})_{\alpha,\beta}D_{\overline{m}}^{(-)}(x_{0}-i\epsilon, x)$ .
It follows ffom the relations

$|D_{m}^{(-)}(x_{0}-i\epsilon,x)|\leq(2\pi\epsilon)^{-2},$ $\epsilon^{2}D_{m}^{(-)}(-i\epsilon, 0)arrow(2\pi)^{-2}(\epsilonarrow 0)$

that if $\epsilon>\sqrt{2}l/(2\pi)$ , then $|4l^{4}D_{m}^{(-)}(x_{0}-i\epsilon,x)^{2}|<1$ and
$[1-4l^{4}D_{m}^{(-)}(z_{0},x)^{2}]^{-1/2}(i\gamma_{\mu}\partial^{\mu}+\tilde{m})_{\alpha,\beta}D_{\tilde{m}}^{(-)}(x_{0}-i\epsilon,x)$

is holomorphic for ${\rm Im} z_{0}>\sqrt{2}l/(2\pi)$ and defines a ultrahyperfunction $W_{\alpha,\beta}$ by
the fomula

$W_{\alpha,\beta}(f)= \int_{R^{4}}W_{\alpha,\beta}(x_{0}-i\epsilon, x)f(x_{0}-i\epsilon, x)dx$

for all $f\in \mathcal{T}(T(O_{s})),$ $O_{s}=\{x\in \mathbb{R}^{4};||x||<s\}$ for some $s>\sqrt{2}t/(2\pi)$ . $\sqrt{2}l/(2\pi)$

is the fundamental length in the sense of W.VI, i.e., two events within the distance
$\sqrt{2}l/(2\pi)$ cannot be distinguished. Thus the parameter $l$ which appears in the
equation (1.5) tums out to be tfe fundamental length. The full sequence of $n$

point Wightman ultrahyperfunctions is calculated in [11].

7. OPERATOR SOLUTION

Recall the system of equations (1.3) which which we plan to solve

$\{\begin{array}{l}\phi(x)+()^{2}\phi(x)=0(i\frac{\hslash}{c}\gamma_{\mu}\frac{\partial}{\partial x_{\mu}}-\tilde{m})\psi(x)=-2\gamma_{\mu}l^{2}\psi(x)\phi(x)\frac{\partial\phi(x)}{\partial x_{\mu}}\end{array}$

The basic ideas to solve the above system is quite natural: $?hke$ the free Klein-
Gordon field $\phi$ and suppose that we can show that (i)

$\rho(x)=:e^{il^{2}\phi(x)^{2}}$ $:= \sum_{n=0}^{\infty}i^{n}l^{2n}$ : $\phi(x)^{2n}$ $:/n!$

is well-defined as an operator-valued ultrahyperfunction, and that (ii) it satisfies

$\frac{\partial}{\partial x^{\mu}}\rho(x)=2il^{2}$ : \mbox{\boldmath $\rho$}. r\iota &ノ $2 \phi(x)\frac{\partial}{\partial x^{\mu}}\phi(x):=2il^{2}$ : $\rho(x)\phi(x)\frac{\partial}{\partial x^{\mu}}\phi(x):$ ,

and that (iii) the hee Dirac field $\psi_{0}(x)$ is a multiplier for the field $\rho$ .
Then define the field

$\psi(x)=\psi_{0}(x)\rho(x)$ ,
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and calculate

$(i \gamma_{\mu}\frac{\partial}{\partial x^{\mu}}-\tilde{m})\psi(x)=[(i\gamma_{\mu}\frac{\partial}{\partial x^{\mu}}-\tilde{m})\psi_{0}(x)]\rho(x)+\gamma_{\mu}\psi_{0}(x)\frac{\partial}{\partial x^{\mu}}\rho(x)$

$=-2l^{2} \gamma_{\mu}\psi_{0}(x):\rho(x)\phi(x)\frac{\partial}{\partial x^{\mu}}\phi(x)$ $:=-2l^{2}\gamma_{\mu}$ : $\psi(x)\phi(x)\frac{\partial}{\partial x^{\mu}}\phi(x)$ :.

Thus the operator-valued ultrahyperfunction $\psi(x)$ satisfies the equation (1.5).
While (i) is shown in E. Br\"uning and S. Nagamachi [1] we use the fundamental

fomula of A.S. Wightman and L. Galrding [14]
$(: D^{\alpha^{(1)}}\phi D^{\alpha^{(2)}}\phi\cdots D^{\alpha^{(l)}}\phi:(f)\Phi)^{(n)}(\xi_{1}, \ldots,\xi_{n})$

$= \frac{\pi^{l/2}}{(2\pi)^{2(l-1)}}\sum_{j=0}^{l}[\frac{(n-l+2j)!}{n!}]^{1/2}\int\cdots/(\prod_{k=1}^{j}d\Omega_{m}(\eta_{k}))$

$\cross\sum_{1\leq k_{1}<k_{2}<\ldots<k_{l-j}\leq nP}(j!)^{-1}\sum P((-i\eta_{1})^{\alpha^{(1)}}\cdots(-i\eta_{j})^{\alpha^{0)}}(i\xi_{k_{1}})^{\alpha^{(3+1)}}\cdots(i\xi_{k_{1-f}})^{\alpha^{(1)}}$

$\cross\tilde{f}\sum_{r=1}^{1^{j}}\eta_{r}-\sum_{r=1}^{l-j}\xi_{k_{r}}))\Phi^{(n-l+2j)}(\eta_{1},$ $\ldots,\eta_{j},\xi_{1)}$

..., $\hat{\xi}_{k_{1}},$ $\ldots,\hat{\xi}_{k_{l-f}},$ $\ldots,\xi_{n}$ ).

to show (ii). Rom this formula we get

$(: \phi^{l} : (-\frac{\partial}{\partial x^{\mu}}f)\Phi)^{(n)}=l(:(\frac{\partial}{\partial x^{\mu}}\phi)\phi^{l-1} : (f)\Phi)^{(n)}$,

$\frac{\partial}{\partial x^{\mu}}$ : $\phi(x)^{i}$ : $\Phi=l$ : $( \frac{\partial}{\partial x^{\mu}}\phi(x))\phi^{l-1}(x)$ : $\Phi$ .
$\Phi=\rho(f_{1})\cdots\rho(f_{n})\Phi_{0},$ $f_{j}\in \mathcal{T}(T(\mathbb{R}^{4})),$ $\Phi_{0}$ : vacuum for $\rho$ (and $\phi$). It follows

$\sum_{l=0}^{\infty}(ig)^{l}$ : $\phi^{2l}$ : $(- \frac{\partial}{\partial x^{\mu}}f)\Phi/l!$

$= \sum_{l=1}^{\infty}(ig)^{l}2:(\frac{\partial}{\partial x^{\mu}}\phi)\phi\phi^{2(l-1)}$ : $(f)\Phi/(l-1)!$

$=2(ig):( \frac{\partial}{\partial x^{\mu}}\phi)\phi\sum_{l=0}^{\infty}(ig)^{l}\phi^{2l}$ : $(f) \Phi/l!=2ig:(\frac{\partial}{\partial x^{\mu}}\phi)\phi\rho:(f)\Phi$ .

$\frac{\partial}{\partial x^{\mu}}\rho(x)\Phi=2ig:(\frac{\partial}{\partial x^{\mu}}\phi(x))\phi(x)\rho(x):\Phi$ .

(iii): From the system of axioms one proves that the vector-valued function
$\rho(z_{1})\cdots\rho(z_{n})\Phi_{0}$ is holomorphic in

$\{(z_{1}, \ldots, z_{n})\in \mathbb{C}_{\backslash }^{4n}{\rm Im} z_{1}\in V_{+}+(p_{1}o)){\rm Im}(z_{j}-z_{j-1})\in V_{+}+(\ell_{j}, 0)\}$
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for some $p_{j}>P>0$ $(j=1, \ldots , n)$ (see [2]). Let $\Psi_{0}$ is the vacuum for $\psi_{0}$ . Then
$\psi_{0,\alpha_{1}}(z_{1})\cdots\psi_{0,\alpha_{n}}(z_{n})\Psi_{0}1s$ holomorphic in

$\{(z_{1}, \ldots, z_{n})\in \mathbb{C}^{4n};{\rm Im} z_{1}\in V_{+}, {\rm Im}(z_{j}-z_{j-1})\in V_{+}\}$

Therefore, $\psi_{0,\alpha_{1}}(z)\Psi$ for $\Psi=\psi_{0,\alpha_{2}}(g_{2})\cdots\psi_{0,\alpha_{n}}(g_{n})\Psi_{0},$ $g_{j}\in S(\mathbb{R}^{4})$

and $\rho(z)\Phi$ for $\Phi=\rho(f_{2})\cdots\rho(f_{n})\Phi_{0},$ $f_{j}\in \mathcal{T}(T(\mathbb{R}^{4}))$ are holomorphic in
$\{z\in \mathbb{C}^{4};{\rm Im} z\in V_{+}+(\ell_{1},0)\}$ .

The product $(\psi_{0,\alpha}\rho)(f)$ is defined by

$(\psi_{0,\alpha}\rho)(f)(\Psi\otimes\Phi)=$

$= \int_{\Gamma_{N}}f(z)\psi_{0,\alpha}(z)\Psi\otimes\rho(z)\Phi dz,$ $\Gamma_{N}=\{z\in \mathbb{C}^{4};z=x+i(N, 0)\}$

for suitable $N>0$ . Moreover, we have $( \frac{\partial}{\partial x^{\mu}}(\psi_{0,\alpha}\rho))(f)\Psi\otimes\Phi$

$=( \psi_{0,\alpha}\rho)(-\frac{\partial}{\partial x^{\mu}}f)\Psi\otimes\Phi=\int_{\Gamma_{N}}(-\frac{\partial}{\partial x^{\mu}}f(z))\psi_{0,\alpha}(z)\Psi\otimes\rho(z)\Phi dz$

$= \int_{\Gamma_{N}}f(z)\{(\frac{\partial}{\partial x^{\mu}}\psi_{0,\alpha}(z)\Psi)\otimes\rho(z)\Phi+\psi_{0,\alpha}(z)\Psi\otimes\frac{\partial}{\partial x^{\mu}}\rho(z)\Phi\}dz$

$=(( \frac{\partial}{\partial x^{\mu}}\psi_{0,\alpha})\rho)(f)\Psi\otimes\Phi+(\psi_{0,\alpha}\frac{\partial}{\partial x^{\mu}}\rho)(f)\Psi\otimes\Phi$ .
Thus it follows

$\frac{\partial}{\partial x^{\mu}}(\psi_{0,\alpha}(x)p(x))(\Psi\otimes\Phi)=$

$=( \frac{\partial}{\partial x^{\mu}}\psi_{0,\alpha}(x))\rho(x)\Psi\otimes\Phi+\psi_{0,\alpha}(x)\frac{\partial}{\partial x^{\mu}}\rho(x)\Psi\otimes\Phi$ ,

and we deduce that Equation (1.5) holds. The Wightman functions for the field
$\psi(x)=\psi_{0}(x)\rho(x)1s$ calculated as

$(\Psi_{0}\otimes\Phi_{0}, \psi_{\alpha_{1}}(z_{1})\cdots\psi_{\alpha_{n}}(z_{n})\Psi_{0}\otimes\Phi_{0})$

$=(\Psi_{0}, \psi_{0,\alpha_{1}}(z_{1})\cdots\psi_{0,\alpha_{r\iota}}(z_{n})\Psi_{0})(\Phi_{0}, \rho(z_{1})\cdots\rho(z_{n})\Phi_{0})$ .
These Wightman functIons coincide with those which are calculated by the path
integral method in Section 6. A detailed analysis is found in [2].
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