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1 Introduction

We shall dIscuss Random complex systems which are evolutional. For
$thiS^{\wedge}$ purpose we follow the following steps:

Reduction $arrow$ Synthesis $arrow Analysis$

I. ReductIon. This step means that we construct a system of independent
random variables such that they are functions of the given random system
and have the same information as the given system. For a stochastic
process and a random field, the innovation appears as the most natural
concept to realize the reduction.

In significant cases, innovation appears as the time derivatIve of a L6vy
process. According to the L\’evy-It\^o decomposition of a L6vy process, we
know an important innovation consists of (Gaussian) white noise and
compound Poisson noise. It is therefore understood that white noise and
Poisson noise are typical atomic components of innovation. White noise
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is realized by taking the time derivative of a Brownian mnotion $B(t)$ , so
it is denoted by $\dot{B}(t)$ , and a realization of Poisson noise, denoted by $\dot{P}(t)$ ,
is the time derivative of a Poisson process $P(t)$ . Eacb of these noises
actually forms a system of idealized elemental random var ables.

The next step is synthesis. Our aim is to form a functional of the noises
so as to express a mathematicaJ model of the given random phenomenon.
Naturally, the functional is nonlinear in the variables and may depends
of the time $t$ . Once such a functional is presented, we can go to the
analysis of the functional. We shall be able to deal with differential and
integral caJculus includIng LaplacIans, harmonic analysis, in particular
Fourier analysis, and so forth.It should be noted that everything is infinite
dimensional, although this is not noticed at each time. That is the white
noibe analysis.

We do not go into details, but the advantages or characteristics of our
analysis should now be made clear.

They are

1. First $\dot{B}(t)$ and $\dot{P}(t)$ have been given Identity for every $t$ . It is easy to
understand that they are generalized stochastic process by parameterized
with test function $\xi$ like $\dot{B}(\xi)$ and $\dot{P}(\xi)$ . But we g\’ive correct mathematical
meaning to both $\dot{B}(t)$ and $\dot{P}(t)$ , respectively. Indeed, they are generalized
linear functionals of Brownian motion and Poisson process, respectively.
In fact, they are taken to be variables of general\’ized functionals, where $t$

runs through an interval $T\subset R$ .

Naturaly, we are led to introduce classes of generalized functionals of
white noise and Poisson noise, respectively. We are indeed gien a quite
wider classes of random functionals, so that various kinds of collabo-
rations and applications not only within mathematics, but in quantum
dyn\^amics, information science and molecular biology.

2. Effective use of the infinite dimensional rotation group and infinite
symmetric group. These two groups appear as invariance of white noise
and Poisson noise, respectively. Our analysis has, therefore, an aspect of
harmonic analysis, which is, of course, infinIte dimensional. In particular,
unitary representations of the groups give us a powerful tool of the analy-
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sis. Moreover, it is exPected some duality can be discovered between two
noises. Motivation will be seen in I. $Ojimas$) works, in particular in 10]
$and\ovalbox{\tt\small REJECT}$ the references listed there. We are grateful to him for his suggestion.

3. Study of random fields (and further quantum fields) is a natural
development of the analysis where functiuonals have expression in terms
of idealized elemental random variables. this direction may be said an
innovation approach. Some results can be seen in [7].

Remark The white noise analysis based on Gaussian variables has ex-
tensively developed with the significant properties mentioned in 1,2 and
3 above. One can expect similar results on the analysis of Poisson noise
functionals. Similar analysis can be applied, although here arlse diffi-
culties. They can be overcome in some ways or other. What are really
interesting story exist in the dissimilarity between two noises. We are
interested in those dissimilarity and will show some of them.

2 Gaussian system of random variables

$\hat{T}here$ are many significant properties which characterize a Gaussian
distribution. There are interesting cases where linear operations are in-
volved. Others to be mentioned are limit theorems involving the central
limit theorem and domain of attraction for Gaussian distribution. Unfor-
tunately there is no space to write those interesting characteristIcs, and
we have to come to a system involving many Gaussian random variables.

We prepare a definition.

Definition A system $X=\{X_{\alpha}, \alpha\in A\}$ of real valued random variables
is called a Gaussian system if any finite linear combination of the $X_{\alpha}’ s$ is
Gaussian.

Before we come to a general theory on a system involving infinitely
many random variables, we prepare the main lemma due to P. L6vy for
a system of two random variables.

Lemma (P. L\’evy) For a pair (X, Y), suppose that there exists $U$ and
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$V$ such that

$Y=aX+U$,

and
$X=bY+V)$

where $U$ is independent of $X$ and $V$ is independent of $Y$ , respectively,
and where $a$ and $b$ are constant, then there are only three possibilities:

i) there exists an affine relation between $X$ and $Y$ ,

ii) $X$ and $Y$ are independent,

iii) (X, Y) is a Gaussian system.

Remark For a system of Poisson random variables similar statement
does not exist.

$\backslash Example$ . Let $P(t),$ $t\geq 0$ , be a Poisson process. Take $P(s)$ and $P(t)$ with
$s<t$ . Then,

$P(t)=P(s)+(P(t)-P(s))$

is fine, since $P(s)$ and $P(t)-P(s)$ are Independent. On the other hand,
if we have

$P(s)=bP(t)+V$,

then, by the Raikov Theorem (1938), both $bP(t)$ and $V$ should be Pois-
son random variables. Hence, $b=1$ , so that the above equality is not
acceptable.

There one can see a dissimilarity between Gaussian and Poissson dis-
tributions.

Let $X=\{X_{\alpha}, \alpha\in A\}$ be a Gaussian system and let $A$ be an infinite
set, countable or may not. If $A$ is uncountable, we have to assume that
the system is separable.

Definition
1. A random variable $Y$ which is outsIde of X is said to be linearly
dependent on X, if $Y$ is expressed in the form

$Y=U+V$,
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where $U$ is a memeber in X, and $V$ is independent of X.
In the above expression, $U$ and $V$ are unique up to non-random con-

stants.

2. A system X is said to be completely linearly correlated, if for any
subclass X’ $\subset X$ , any $Y$ outside of X’ is linearly dependent on X’.

Theorem 2.1 A completely linearly correlated system X is Gaussian,
except isolated members.

More precisely, we can state the result as the decomposition theo-
rem of a completely linearly correlated system.

Theorem 2.2 For a separable completely linearly coroelated system $X=$

$\{X_{\alpha}, \alpha\in A\}$ , the set $A$ admits a partition:

$A=A_{0}+ \sum_{n\geq 1}A_{n}$
,

wheoe

1) $X_{0}=\{X_{\alpha}, \alpha\in A_{0}\}$ is a Gaussian system,

2) $X_{n}=\{X_{\alpha}, \alpha\in A_{n}\},$ $n\geq 0$ , are mutually independent systems,

3) for any $n>0,$ $X_{n}$ involves only one element except constant.

3 Whitening of Gaussian processs
A particular Gaussian system is a Gaussian process $X(t),$ $t\in T$ , de-

pending on the time parameter $t$ , the set $T$ being an interval of $R$. We
are interested in the causality of functions or operations related to the
process. For this purpose it is necessary to have the step of reduction of
the complex random system given by the process $X(t)$ . There we have
to introduce generalized stochastic processes, which is idealised elemental
stochastic process; it is still Gaussian.

We then come to the general theory of representation of Gaussian pro-
cesses in terms of Gaussian noises (independent systems). Let $X(t),$ $t\geq a$ ,
be a Gaussian process satisfying
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1) it is separable, and

2) it has no remote past.

Then we have a theorem (T.H. and H. Cram\’er).

Theorem 3.1 Under the assumptions 1) and 2) w\’ith additional assump-
tion that $E(X(t))=0$, there exist at most countably many Gaussian
noises $\dot{Z}_{n}(t),n\geq 0$ , and $L^{2}(dm_{n})$ kemels $F_{n}(t, u)$ such that

$X(t)= \sum_{n}\int_{a}^{t}F_{n}(t, u)\dot{Z}_{n}(u)du$ ,

for which
$B_{t}(X)=_{n}B_{t}(\dot{Z}_{n})$

holds for every $t$ . The sum in the above formula means the lattice sum.
The measures $dm_{n}$ are arranged in an decreasing order.

The symbol like $B_{t}(X)$ denotes the sigma field wzth oespect to which
all the $X(s),$ $s\leq t$ , are measumble. The measure $dm_{n}$ is unique up to
equivalence. Moreover $F_{n}(t, u)^{2}dm_{n}(u)$ is unique.

This theorem shows how our idea is realized: getting the system $\{\dot{Z}_{n}\}$

is the step of reduction, and forming the representation in terms of the
stochastic integrals corresponds to the step of synthesis.

The method of investigating a Gaussian process mentioned above leads
us to a possible method of the study of more general Gaussian system.

We discuss a Gaussian system for which we ignore the causality (or time
propagation). Hence, we may assume that a separable Gaussian system
$X=\{X_{\alpha}, \alpha\in A\}$ , is given where the parameter set $A$ is arbitrary. Then,
we can prove a generalization of the theorem mentIoned above.

Theorem 3.2 The whitening is possible for a separable completely lin-
early correlated system $X=\{X_{\alpha}, \alpha\in A\}$ .

Proof. To make the matter simple, we assume that $E(X_{\alpha})=0$ . By using
the theorem, the decomposition of the parameter set $A$ is given

$A=A_{0}+ \sum_{n\geq 1}A_{n}$
.
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For the sets $X_{n}=\{X_{\alpha}, \alpha\in A_{n}\},$ $n>0$ , the whltening is already made.
So we must prove the theorem only for a Gaussian system $X_{0}=\{X_{\alpha},$ $\alpha\in$

$A_{0}\}$ .
Suppose there exists a subset $A_{0}’\subset A_{0}$ for which whitening of X’ $=$

$\{X_{\alpha}, \alpha\in A_{0}’\}$ is done (existence of such $A_{0}’$ is obvious). If $A_{0}’$ is not
equal to $A_{0}$ , we can find $X_{\beta}$ which is linearly correlated to X‘. So, we can
extend the system X’. Hence there exists alinearly ordered (by inclusion)
subsystems of $X_{0}$ . By Zorn’s Lemma there exists a maximal subsystem,
which must be the entire $X_{0}$ . Thus, the theorem is proved.

Remark. If $A_{0}$ is linearly ordered, then, with a slight generalization, the
canonical representation theory can be applied.

We may now say that for any separable linearly correlated system the
step of reduction can alaways be done.

4 Nonlinear functions of Gaussian systems.
Quadratic forms I

Concerning the step of reduction, the most powerful technique seems to
be the innovation approach, or whitening more general random complex
system is expected. By this method, suppose we are given a Gaussian
noise. To fix the idea, we shall assume a white noise is given. Let us
denote it by $\dot{B}(t),t\in R$ . This system is fitting to be taken as a variable
system of functionals to be discussed.

Onoe a variable system is given, it is natural to dIscuss polynomials
in those varla bles in the system. In the present case, we must discuss
polynomials in $\dot{B}(t)s$ . Linear functions are Gaussian, and if it depends
on the time parameter $t$ , it is a Gaussian process that has been discussed
in the last section.

We are now ready to come to quadratic forms. The simplest example
is just a square of $\dot{B}(t)$ , i.e. $\dot{B}(t)^{2}$ . Needless to say, it has no meening at
all. Remind the particular equation of the It\^o formula:

$(dB(t))^{2}=dt$ .
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Hence $\dot{B}(t)^{2}=\frac{1}{dt}$ , which is not suitable in our case. However, we should
manage $\dot{B}(t)^{2}$ as the most basic functional (simplest monomial) of white
noise beyond the classical formula. We carefully see both sldes to rec-
ognize that the left side is still random and its expectation is equal to
the right side. The difference can be magnified to close up randomness
that remains. There arises the idea of renormalization to jump beyond
the classical stochastic calculus. To give a rigorous meaning to this trick
we need (($renormallzation’$ . Note that it is entirely different from the
orthogonalizatIon done by using the Hermite polynomials.

The S-transform

To establish a more general method to introduce polynomials in $\dot{B}(t)s$

and continuous sum (not integrals based on them) we employ the S-
transform. This transform looks like an infinite dimensIonal analogue
of the Laplace transfrom in its epression, but entirely different. See the
definition

$S\varphi(\dot{B})(\xi)=e^{-\frac{1}{2}\Vert\xi||^{2}}E[e^{(B,\xi)}\varphi(\dot{B})]$

which carries $\dot{B}$-functionals to a space of ordinary functionals of the $\xi$ .
By using this transform we can get visualized expression as (non-random)
ordInary functionals, so that we can immediately appeal to the classical
theory of functionals.

In addition, the transform is obtained by the phase average, which turns
out to be the time average due to the ergodic theorem. The second advan-
tage is good for statIstical apprecation. Note that the S-transfom is dif-
ferent from the classical transform on Hilbert space (cf. Segal-Bargmann
transform). Its Image forms a Reproducing Kernel Hilbert space. A
member of this space is called a U-functional.

Example Application to the data processing of the astrophysical statis-
tics of X-ray.

A detailed, in fact rigorous, mathematical interpretation has been given
in [8], before that the idea appeared in [6].

We are now ready to discuss typical quadratic functionals of $\dot{B}(t)s$ .
Needless to say, quadratic forms are significant in many places in math-
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ematics. Here the variables are taken to be $\dot{B}(t))s$ .
1) Ordinary functionals $\varphi$ in $H_{2}$ . Its S-transform is expressed in the

form
$\int\int F(u, v)\xi(u)\xi(v)dudv$ ,

where $F$ is a symmetric $L^{2}$-kernel. With this representation we obtain
characteristic functions, orthogonal series expansion, and others $hom$ the
kemel properties of $F$ , like in the case of the stochastic area.

2) Quadratic forms in terms of $\dot{B}(t))s$ expressed as either linear func-
tionals of: $\dot{B}(t)^{2}$ : $s$ or integrals of $\dot{B}(t)\dot{B}(s),$ $t\neq s$ . There appear really
generalized white noise functionals. We may write functionals in question
in the S-transform:

$(S \varphi)(\xi)=’\int F(u, v)\xi(u)\xi(v)dudv$ ,

where $F$ is a symmetrlc generalized function on $R^{2}$ .

We now rush to discuss differential calculus. Before we come to ac-
tual computation, we need to understand some hidden structure of white
noise theory. Hidden structure means that unlike visualized expression,
we have to recognize latent trait of infinite dimensional calculus. The sys-
tem $\{\dot{B}(t)\}$ looks like a system of continuously many independent random
variables depending on $t$ which runs through a continuum. This under-
standing, however, is not good. The real meaning will be understood by
observing the calculus that we are going to develop, where separability is
behind.

Coming to visualIzed expression, that is, using the S-transform, the
differential operator is defined. Note that it is not quite the same as $\frac{d}{dx}$ .
For a white noise functional $\varphi(x)$ , we have a U-functional $U(\xi)$ :

$U(\xi)=(S\varphi)(\xi)$ .

The variation is denoted by $\delta U(\xi)$ . We assume that for $\delta\xi\in E$ we have

$U( \xi+\delta\xi)-U(\xi)=\int U’$ ( $\xi$ ,t)\delta \mbox{\boldmath $\xi$}(t)&+o(\delta \mbox{\boldmath $\xi$}).

The first term of the right side is denoted by $\delta U(\xi)$ and $U’(\xi, t)$ is a
generalized function of $t$ for any $\xi$ . The function of $t$ (may be said that
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it is parametrized by t) is the functional denvative in the Fr\’echet sense,
that is Fltr\’echet derivative.

If $U’(\xi, t)$ is a U-functional for every $t$ , then we write

$(S^{-1}U’(\cdot, t))(x)=\partial_{t}\varphi(x)$ .

Existence and the domain of the operator $\partial_{t}$ are defined in the usual
manner. Note that the domain of $\partial_{t}$ includes $(S)$ . We often write

$\partial_{t}=\frac{\partial}{\partial\dot{B}(t)}$ .

Remark It should be noted that we did use the R\’echet derivative, but
not G\^ateaux derivative.

The operator $\partial_{t}$ acts as an annihilation operator acting on the space of
white noise fiictionals. Its adjoint operator $\partial_{t}^{*}$ can be defined, and it is
calle a creation operator. It is used to define stochastlc integrals, where
integrands are not necessarily non-anticipating.

Their commutation relations are

$[\partial_{t}, \partial_{s}^{*}]=\delta(t-s)$ .

In an analogous manner to the finite dimensional case, generator $r_{t,s}$ of
rotation is defined by

$r_{t,\epsilon}=\partial_{t}^{*}\partial_{s}-\partial_{s}^{*}\partial_{t}$ .

5 Quadratic forms II. A general stochastic
integrals

1. Laplacians.

Laplacians as a quadratic form of differential operators can be charac-
terized by rotations.

Generally speaking a Laplacian is understood to be a quadratic form of
a differential fom that satisfies some invariance. Our setup is as follows.
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We are concerned with the continuously many dimensional case, so that
differential operators are taken to be $\partial_{t},$ $t\in T$ , where $T$ is an interval, say
$[0,1]$ .

Once again, we remind a second order functional derivatives in the
space of U-functionals; let $(S\varphi)(\xi)=U(\xi)$ . The second order variation
of $U$ is expressed in the form

$\delta^{2}U(\xi)=\int\int_{[0,1]^{2}}U’’(\xi, u,v)\delta\xi(u)\delta\xi(v)dudv$,

where $U”(\xi,u,v)1s$ a symmetric generalized function of $(u,v)$ for every
$\xi$ . It is the second order functional derivative in the Frdchet sense. The
correspondence between white noise functionals and U-functionals tells
us that

$\partial_{t}\partial_{s}\varphi=S^{-1}(U’’(\xi, t, s))$ ,

if the right hand sIde exists.
The second order partial differential operator $D$ is now defined by

$D= \int/[0,1]F(u,v)\partial_{u}\partial_{v}dudv$ .

The choice of the class of the kemel $F(t, u)$ , which is symmetric, of
course depends on the problems to be discussed.

We can specify the operator $D$ by using commutation relations with
rotations $r_{s,t}=\partial_{\epsilon}^{*}\partial_{t}-\partial_{t}^{*}\partial_{s},$ $s,$ $t\in[0,1]$ . We may consider an analogy of
the finite dimensional case where the Laplacian is determined. Namely
we can prove

Theorem 5.1 The opemtor $D$ commutes with all rotations if and only
if $F(u, v)=0$ for off diagonal and $F(t, t)$ being a constant (ordinary or
genemlized) function.
Proof is given by actual computations of the commutators $[D,r_{\epsilon,t}],$ $s,t\in$

$[0,1]$ .

The situation is now divided into two cases.

1) $F(u,v)=c\delta(u-v)$ . Then, $D=c \int_{0}^{1}\partial_{t}^{2}dt$, which is the Volterra
Laplacian $\triangle_{V}$ by taking $c=1$ .
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2) $F(u, u)=1$ . Then, we have the L\’evy Laplacian $\Delta_{L}=\int_{0}^{1}\partial_{t}^{2}(dt)^{2}$ ,
although we need some interpretation to this integral.

In the case 2), there are many kinds of explanation on why $dt$ appears
in two holds. Here we may say one $dt$ is used to take average over $[0,1]$ .
Another explanation is that one $dt$ is used to cancel the singularity when
$\Delta_{L}$ is applied to generalized white noise functionals. There may be some
others.

The idea of characterization of quadratic differential operators by ro-
tations has appeared in the paper [8].

2. Comparison between Gaussian and Poisson noises.

A particular quadratic form of a Gaussian system, indeed that of a
Brownian motion has appeared In the study of a duality between white
noise and Poisson noise.(See [13]). The quadratic form in question can
play significant roles in the unitary representation of infinite symmetric
group and in the descrIption of hidden characteristic of Gaussian systems.

First we take an increasing sequence of vector spaces spanned by the
renormalized squares of increments of a Brownina motion $B(t),$ $t\in[0,1]$ .
Let $D_{n}$ be the partition of $[0,1]$ : $D_{n}=\{\Delta_{k}^{n}, 1\leq k\leq 2^{n}\},$ $|\Delta_{k}^{n}|=2^{-n}$ .
The system $\{B_{k}^{n}\equiv:(\Delta_{k}B)^{2} :, 1\leq k\leq 2^{n}\}$ , spans a 2$n$-dimensional vector
space $L_{n}$ which is a subspace of $L^{2}(\Omega)$ . The $L_{n}$ is $2^{n}$ dimensIonal.

Now let us change our viewpoint to discuss a unitary representation of
the symmetric group $S(n)$ , and follow the technique proposed in [12].

To specify the situation, consider $S(2^{n})$ . Let $\pi^{n}$ be a permutation of
a subset $\{1, 2, \cdots, 2^{n}\}$ , where $\pi^{n}(k)$ is the image of $k$ . Let $U_{\pi}^{n}$ be the
operator defined by

$U_{\pi}^{n}$ : $B_{k}^{n}arrow B_{\pi^{n}(k)}^{n}$ .

This extends to a unitary operator acting on $L_{n}$ . Thus, the triple $(S(2^{n}), U_{\pi}^{n}, L_{n})$

is a unitary representation of the group $S(2^{n})$ .

The special irreducible unitary representation is given by taking the
$one\triangleleft lImenslonal$ subspace of $L_{n}$ spanned by $\{c\sum_{1}^{2^{n}}Y_{k}^{n}\}$ , where $Y_{k}^{n},$ $1\leq$

$k\leq 2^{n}$ , are the orthonormal vectors given by $Y_{k}^{n}=;(-\Delta_{A,\Delta_{k}^{n}}^{n}\underline{B})^{2}$ $:\neq^{\Delta^{n}}2$
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We are now ready to define the projection

$(S(2^{n+1}), L_{n+1})arrow(S(2^{n}), L_{n})$ .

The mapping $S(2^{n+1})$ $arrow$ $S(2^{n})$ is easily done by the usual method.
While the projection of a vector needs interpretation. Let $B_{n}$ be the
smallest sigma-field with respect to which an the $Y_{k}^{n},$ $1\geq k\geq 2^{n}$ are
measurable. Then we establish a theorem.

Theorem 5.2 We have a relationship between the conditional expecta-
tions:

$E( \sum_{1}^{2^{n+1}}Y_{k}^{n+1}/B_{n})=\frac{1}{\sqrt{2}}\sum_{1}^{2^{n}}Y_{k}^{n}$ .

Proof comes from the computation of the conditional expectations.

We therefore establish a consistent family of irreducible representations
by using the conditional expectations. Hence, the existence of the pro-
jective limit

proj. $11m(S(2^{n+1}), L_{n+1})=(S(\infty), L_{\infty})$ .

One may ask how to understand the space $(S(\infty), L_{\infty})$ or the limit of
the sum $\sum Y_{k}^{n}$ of orthonormal vectors. Formally writing,

$\sum\frac{:(\triangle_{k}B)^{2}:}{(\Delta_{k})^{2}}\Delta_{k}$ .

We have, however, to have the average (arithmetic mean) to take an anal-
ogy of Cesaro limit. This can be done by dividing by $2^{n}$ , i.e. multiplying
$|\Delta|$ . Finally we come to

$/01$ : $\dot{B}(t)^{2}$ : $(dt)^{2}$ .

Noting that $\dot{B}(t)=\partial_{t}^{*}1$ , the above expression denotes the adjoint of the
L6vy Laplacian $\Delta_{L}$ .

For further development of the theory we refer to the paper [13]. We
shall however note one important fact. Namely, a generalization of the
stochastic integral.
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The following fact is well known.
The integral $\int_{0}^{1}f(t):\dot{B}(t)^{2}$ : $dt$ is well defined for $f\in L^{2}([0,1])$ , and is

a member of the space $H_{2}^{(-2)}$ involving generalized white noise functionals
of degree 2. Its dual space $H_{2}^{(2)}$ consists of all quadratic test functionals
of the $\dot{B}(t)s$ expressed in the form

$\int_{0}^{1}\int_{0}^{1}F(t, s)$ : $\dot{B}(t)\dot{B}(s)$ : $dtds$ ,

where $F$ is a member of symmetric Sobolev space of order 3/2. We
therefore have a Gel’fand triple:

$H_{2}^{(2)}\subset H_{2}\subset H_{2}^{(-2)}$ ,

where $H_{2}$ is the space of double Wiener integral. The sapces $H_{2}^{(2)}$ and
$H_{2}^{(-2)}$ form a dual (cf. [3] Part 1. Chap. II, III.) pair.

We now propose another dual pair, one of which is

$H_{2}^{(-2,1)}= \{\int_{0}^{1}$ : $\dot{B}(t):^{2}dt;f\in L^{2}([0,1])\}$ ,

a subspaoe of $H_{2}^{(-2)}$ .
Our aim is to define an integral

$\int_{0}^{1}g(t):\dot{B}(t):^{2}(dt)^{2}$

by using the projective limit theorem, and then to show that

$\{\int_{0}^{1}$ : $\dot{B}(t):^{2}dt\}$ and $\{\int_{0}^{1}$ : $\dot{B}(t):^{2}dt\}$

stands in a dual relation. cf. P. L6vy [3] Part I.Chap.II.

The details of the proof of this fact comes from Theorem(5.2) and Si
Si [9].

6 Poisson noise functionals

Dissimilarities in the analysis of Gaussian and PoIsson noise functionals
can be found in may ways. Among others
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1. Infinite symmetric group gives an invariance of Poisson noise mea-
sure. This property is compared with the fact that the infinite dimen-
sional rotation group give an invariance of wbite noise measure and even
gives a characterization of Gaussian measure. Unitary representation of
the infinite symmetric group shows a particularly potent properties of
Poisson noise. See e.g. [13].

2. Duality between GaussIan and Poisson noises is most interesting
topic to be investigated systematically. Professor I. Ojima highly recom-
mends and in fact we have started ajolnt work on this problem.

3. Orthogonal polynomials. As is well known, Hermite polynomials
define a complete orthonormal base (Fourier-Hermite polynomials) of the
Hilbert space $(L^{2})$ spanned by functionals of Brownian motion with finite
variance. It may be expected that similar role can be played by the
Charlier (Poisson-Charlier) polynomials in Poisson case. This may be all
right, In a sense. While, as is mentioned in the Remark in \S 11.2 of [5],
this is not quite so. To make a long story short, we claim the following
assertion. For simplicity, we assume that the time parameter runs through
$[0,1]$ .

Proposition 6.1 1) Two random variables $\langle\xi_{i},\dot{B}\rangle,$ $i=1,2$ , are indepen-
dent if and only if

$\int\xi_{1}(t)\xi_{2}(t)dt=0$ .

2) On the other hand, $\langle\xi_{i},\dot{P}\rangle,$ $i=1,2$ , are independent if and only if
$\xi_{1}(t)\xi_{2}(t)\equiv 0$ .

Proof. 1) is well known.

2) Suppose that $\langle\xi_{1},\dot{P}\rangle$ and $<\xi_{2},\dot{P}>$ are independent. Let $\varphi$ and
$\varphi_{i},$ $i=1,2$, be characteristic function of the pair and each members,
respectively. By assumption, we have

$\varphi(z_{1}, z_{2})=\varphi_{1}(z_{1})\varphi_{2}(z_{2}),$ $(z_{1}, z_{2})\in R^{2}$ .

Using the formula of Characteristic functional of $\dot{P}$ , we can conclude that
$\xi_{1}(t)\xi_{2}(t)\equiv 0$ must hold.
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Because of 2), orthogonalization of Poisson noise functIonals is some-
what different from the Gaussian case; namely we have to pay additional
attention on the completeness of the Poisson-Chasrlier polynomials. (See
[5].)
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