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An Improved Approximation Algorithm for Maximum Edge
2-Coloring in Simple Graph

Graduate School of Science and Engineering, Tokyo Denki University
Zhi-Zhong Chen Ruka Tanahashi

Abstruct

We present a polynomial-time approximation
algorithm for legally coloring as many edges of a
given simple graph as possible using two colors.
It achieves an approximation ratio of $\frac{468}{5^{-}5}$ This
improves on the previous best (trivial) ratio of $\frac{4}{5}$

1 Introduction
Given a graph $G$ and a natural number $t$ , the
$m.a\cdot z;mum$ edge t-coloring problem (called MAX
EDGE $t$-COLORING for short) is to find a max-
imum set $F$ of edges in $G$ such that $F$ can
be partitioned into at most $t$ matchings of $G$ .
Motivated by call admittance issues in satel-
lite based telecommunication networks, Feige et
al. [1] introduced the problem and proved its
APX-hardness. Their APX-hardness proof in-
deed shows that the problem remains APX-hard
even if we restrict the input graph to a simple
graph and fix the input integer $t$ to 2. We call
this restriction (special case) of the problem MAX
SIMPLE EDGE $2-C\circ LORING$ .

Since MAX EDGE $t$-COLORING and its special
cases are hard, it is interesting to design approx-
imation algorithms for them. As observed by
$Fe\dot{i}ge$ et al. [1], MAX EDGE $t$-COLORING is ob-
viously a special case of the well-known maxi-
mum coverage problem (see [4]). Since the maxi-
mum coverage problem can be approximated by a
greedy algorithm within a ratio of $1-(1- \frac{1}{t})^{t}[4]$ ,
so can be $h\cdot f_{A}x$ EDGE $t$-COLORING. In particular,
the greedy algorithm achieves an approximation
ratio of $\frac{\theta}{4}$ for $hIAX$ EDGE 2-COLORING which is
the special case of MAX EDGE $t$-COLORINC where
the input number $t$ is fixed to 2. Feige et al. [1]
has improved the trivial ratio 44 to IIi by an LP
approach. Thev also pointed out that for MAX
$SIbIPL+$ EDGE 2-COLORING, the ratio IS can be
further improved to $\frac{4}{o^{r}}$ by the following simple al-
goritlun:

Input: A simple graph $G$ .

1. Compute a maximum subgraph $H$ of $G$ such
that the degree of each vertex in $H$ is at most
2 and there is no 3-cycle in H. (Comment:
This step can be done in $O(n^{2}m^{3})$ time [3].)

2. Remove one edge from each odd cycle of $H$ .
Output: $H$ .

Kosowski et al. [7] also considered MAX
SIMPLE EDGE 2-COLORING. They presented an
approximation algorithm that achieves a ratio of

$\frac{28\Delta-12}{s_{0\Delta-21}^{r}}$ where $\Delta$ is the nlaximum degree of a ver-
tex in the input simple graph. This ratio can be
arbitrarily close to the trivial ratio $\frac{4}{5}$ because $\Delta$

can be very large.
In this paper, we present a polynomial-time

approximation algorithm for MAX SIMPLE EDGE
2-COLORING which achieves a ratio of $\ovalbox{\tt\small REJECT} 4575$ To
achieve this, we first design a randomized algo-
rithm and then derandomize it. The analysis of
our algorithm is quite nontrivial.

Kosowski et al. [7] showed that approximation
algorithms for MAX $SIhIPLE$ EDGE 2-COLORING
can be used to obtain approximation algorithms
for certain packing problems and fault-tolerant
guarding problems. Combining their reductions
and our improved approximation algorithm for
$l\backslash IAX$ SIAIPLE EDGE $2-CoLOHJNG$ . we can ob-
tain improved approximation algorithms for their
packing problems and fault-tolerant guarding
problems immediately.

2 Basic Definitions
$Tln\cdot oughout$ the remainder of this paper, a graph
means a simple undirected graph (i.e., it has nei-
ther parallel edges nor self-loops).

Let $G$ be a graph. We denote the vertex set
of $G$ by $V(G)$ , and denote the edge set of $G$ by
$E(G)$ . The degree of a $vel\{ex\iota$ in $G$ , denoted
by $d_{G}(v)$ , is the number of edges incident to $v$ in
$G$ . A vertex $\iota$ of $G$ with $d_{G}(v)=0$ is called an
isolated vertex. An independent set of $G$ is a set
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$S$ of vertices of $G$ such that no two vertices of $S$

are adjacent $\ln G$ .
A cyde in $G$ is a connected subgraph of $G$ in

which each vertex is of degree 2. A path in $G$ is
a connected subgraph of $G$ in which exactly two
vertices are of degree 1 and the others are of de-
gree 2. The length of a cycle or path $C$ is the
number of edges in $C$ . A cycle of odd (respec-
tively, even) length is called an odd (respectively,
even) cycle. A k-cycle is a cycle of length $k$ . Sim-
ilarly, a $k^{+}$ -cycle is a cycle of length at least $k$ .
A path component (respectively, cyde component
of $G$ ) is a connected component of $G$ that is a
path (respectively, cycle). Note that an isolated
vertex of $G$ is not a path component of $G$ .

For a function $b$ mapping each vertex $v$ of $G$

to anonnegative integer, a $k$matchm9 of $G$ is a
subgraph $H$ of $G$ such that $d_{H}(v)\leq b(v)$ for all
vertices $v$ of $H$ . When $b(v)\leq 1$ for all vertices
$v$ of $G$ , a b-matching of $G$ is call\’e a matching
of $G$ . The size of a b-matching $Af$ of $G$ , denoted
by $|\lambda I|$ , is the number of edges in $M$ . Given
a graph $G$ and a function $b$ mapping each ver-
tex $v$ to a nonnegative integer, the maximum
b-matching problem is to find a b-matching of
$G$ of maximum size. Similarly, given a graph
$G$ , the maximum matching problem is to find a
maximum matching of G. $G$ is $ed.ge- 2- c\cdot olomble$

if $E(G)$ can be paltition\’e into $t\backslash vo$ matchings.
Thus, MAX $SIhIPLE$ EDGE 2-COLORING is the
problem of finding a maximum edge 2-colorable
subgraph in a given graph. Note that $G$ is edge
2-colorable if and only if each connected compo-
nent of $G$ is an isolated vertex, a path, or an even
cycle.

For a random event $A,$ $Pr[A]$ denotes the prob-
ability that $A$ occurs. For two random events $A$

and $B,$ $Pr[A|B]$ denotes the probability that $A$

occurs given the occurrence of $B$ . For a random
variable $X,$ $\mathcal{E}[X]$ denotes the expected value of
X.

2. Remove one (arbitrary) edge from each odd
$7^{+}$ -cycle of $H$ .

3. For $i\in\{0,1\}$ , let $T_{i}$ be the set of vertices $v$

of $H$ with $d_{H}(v)=i$ .

4. Let $V_{5c}$ be the set of vertices on 5-cycles of
$H$ .

5. Construct an auxiliary graph $A$ , where
$V(A)=T_{0}\cup T_{1}\cup V_{5\iota}$ and $E(A)$ consists of
those $\{u, v\}\in E(G)$ such that no connected
component of $H$ contains both $u$ and $v$ .

6. Compute a maximum b-matching $\Lambda I$ in $A$ ,
where $b(v)=2-d_{H}(v)$ for each $v\in T_{0}\cup T_{1}$

and $b(v)=1$ for each $v\in V_{5c}$ .
7. Choose one edge from each 5-cycle of $H$ uni-

formly and independently at random and re-
move it $komH$ .

8. Let $M’$ be the set of all edges $\{v, v\}$ in $AI$

such that $d_{H}(u)+d_{AI}(u)\leq 2$ and $d_{H}(v)+$

$d_{AI}(v)\leq 2$ .
9. Add the edges in $M’$ to $H$ .

10. For each odd cycle $C$ in $H$, select one edge
in $E(C)\cap\Lambda I’$ uniformly and independently
at random and delete it from $H$ .

11. Output $H$ .

3.1 The First Analysis
For each $i\in\{1.2,7,9,10\}$ , let $H_{i}$ be the con-
tent of graph $H$ immediately after Step $i$ of our
algorithm. Note that $H_{10}$ is the output of our
algorithm. Related to $H_{1}$ , we define two sets and
two numbers as follows:. $E_{5c}$ is the set of edges on the $5- c_{J^{r}}cles$ of $H_{1}$ .. $E_{Fc^{-}}=E(H_{1})-E_{5c}$ .

3 The Algorithm
Throughout this section, fix a graph $G$ and a
maximum edge 2-colorable subgraph Opt. Given
$G$ , our algorithm flnds an edge 2-colorable sub-
graph of $G$ as follows:

1. Compute a maximum subgraph $H$ of $G$ such
that each connected component of $H$ is an
isolated vertex, a path, or a $4^{+}$ -cycle. (Com-
ment: The set of vertices $v$ of $H$ with
$d_{H}(v)\leq 1$ is an independent set of $G$ be-
cause of the maximality of $H.$ )

. $n_{7c+}$ is the number of $7^{+}$ -cycles of $H_{1}$ .. $n_{pc}$ is the tlumber of path components of $H_{1}$ .

Lemma 3,1 $|V(H_{1})-V(A)|=|Er_{c}|-$
$2n_{7c+}-n_{pc}$ .
PROOF. For each path component $P$ of $H_{1}$ ,
$|E(P)|=|V(P)|-1$ and two vertioes of $P$ are
contained in $A$ . So, each path component of $H_{1}$

contributes 1 to the value of $|E_{\overline{5c}}|-|V(H_{1})-$

$l^{r}(A)|$ . Similarly, for each cvcle component $C$

of $H_{1},$ $|E(C)|=|V(C)|$ and two $T^{r}ertice8$ of $C$

are contained in $A$ . Thus, each cycle compo$\cdot$

nent of $H_{1}$ contributes 2 to the value of $|E_{Tc}|-$
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$|V(H_{1})-V(A)|$ . This comPletes the Proof of the
lemma. 口

Related to Opt, we define flve sets of edges as
follows:. $E_{opt}^{A}$ is the set of edges $\{u, v\}$ in Opt such

$thatbothuandvareverti\infty sofA$.
$\bullet E_{opt}^{X}=E(Opt)-E_{opt}^{A}$ .. $E_{opt}^{A,5c}$ (respectively, $E_{opt}^{A,7c+}$ ) is the set of

edges $\{u, v\}\in E_{opt}^{A}$ such that some 5-cycle
(respectively, path component) of $H_{2}$ con-
tains both $u$ and $v$ . (Comment: By the max-
imality of $E(H_{1})$ , there is no edge $\{u, v\}\in$

$E_{opt}^{A}$ such that some path component of $H_{1}$

contains both $u$ and $v$ . So, the endpoints
of each edge in $E_{opt}^{A,7c+}$ must appear on the
same $7^{+}$-cycle of $H_{1}.$ ). $E_{opt}^{A_{:}\epsilon x}=E_{opt}^{A}-(E_{opt}^{A,5c}\cup E_{opt}^{A,7c+})$

Lemma 3.2 $|E_{opt}^{A}|\geq|E(Opt)|-2|\oplus_{c}|+$

$4n_{7c+}+2n_{pc}$ .
PROOF. Since, each vertex can be adjacent to
at most two edges in Opt, $|E(Opt)-E_{opt}^{A}|\leq$

$2|V(H_{1})-V(A)|$ . So, the lemma follows from
Lemma 3.1 immediately. $\square$

Corollary 3.3 $|E_{opt}^{A,ex}|$ $\geq$ $|E(Opt)|-$
$2|E_{\overline{5c}}|+4n_{7c+}+2n_{pc}-|E_{\varphi t}^{A,5c}|-|E_{\varphi t}^{A.7c+}|$ .
PROOF, Obviously, $|E_{opt}^{A,ex}|=|E_{opt}^{A}|-(|E_{opt}^{A,5c}|+$

$|E_{opt}^{A_{:}7c+}|)$ . So, the $co$rollary follows from Lemma
3.2 immediately. $\square$

Lemma 3.4 For each edge $e\in M$,
$Pr[e\in E(H_{10})]\geq\frac{8}{7S}$

PROOF. Fix an arbitrary edge $e=\{u, v\}$ in $\Lambda I$ .
We distinguish three cases as follows:

Case 1: Both $u\in V_{5c}$ and $v\in V_{5c}$ . In this
case, since $Pr[d_{H_{7}}(u)=1]=\frac{2}{5}Pr[d_{H_{7}}(v)=1]$

$= \frac{2}{5},$ $d_{AI}(u)\leq 1$ , and $d_{AI}(v)\leq 1$ , we have $Pr[e\in$

$\Lambda I’]=Ts4$ . Thus, it remains to show that $Pr[e\in$

$E(H_{11)})|e \in\Lambda I’]\geq\frac{2}{3}$ Assume that $e\in\Lambda I’$ . If
no odd cycle of $H_{9}$ contains $e$ , then we are done.
So, further assume that some odd cycle $C$ of $H_{9}$

contains $e$ . We claim that $C$ contains at least
three edges of $\Lambda I’$ . For a contradiction, assume
that $C$ contains only one edge $e’$ of $\Lambda I’$ other
than $e$ . Obviously, if we delete $e$ and $e’$ from $C$ ,
we obtain two paths $P_{1}$ and $P_{2}$ both of which are
connected components of $H_{7}$ . AIoreover, one of

$u$ and $v$ is an endpoint of $P_{1}$ and the other is an
endpoint of $P_{2}$ . Now, since $u\in V_{5c}$ and $v\in V_{5c}$ ,
$P_{1}$ and $P_{2}$ must have been obtained in Step 7 by
deleting one edge from each 5-cycle of $H_{1}$ . So,
both $P_{1}$ and $P_{2}$ are of length 4. However, this
implies that the length of $C$ is 10 which is even,
a contradiction. Hence, the claim holds. By the
cliam, we have $Pr[e\in E(H_{10})|e\in M’]\geq\geq\theta$

immediately.
Case 2: Exactly one of $u$ and $v$ is contained in

$V_{5c}$ . We assume that $u\in V_{5c}$ but $v\not\in V_{5c}$ ; the
other case is similar. Then, $Pr[d_{H_{7}}(u)=1]=g2$

and $d_{At}(u)\leq 1$ . Moreover, $v\in T_{0}$ or $v\in T_{1}$ . In
the former case, $d_{H_{?}}(v)=0$ and $d_{M}(v)\leq 2$ . In
the latter case, $d_{H_{7}}(v)=1$ and $d_{A1}(v)\leq 1$ . So, in
both cases, $d_{H_{7}}(v)+d_{AI}(v)\leq 2$ . Consequently,
$Pr[e\in M’]\geq\frac{2}{5}\cdot 1=\frac{2}{5}$ . Thus, it suMces to show
that $Pr[e\in E(H_{10})|e\in M’]\geq F1$ . Assume that
$e\in M’$ . If no odd cycle of $H_{9}$ contains $e$ , then we
are done. On the other hand, if some odd cycle
$C$ of $H_{9}$ contains $e$ , then the assumption $u\in V_{oc}$,
guarantees that $C$ contains at least two \’eges of
$\lambda\prime I’$ and hence $Pr[e\in E(H_{10})|e\in M’]\geq\frac{1}{2}$ .

Case 3: Both $u\not\in V_{6c}$ and $v\not\in V_{oc}r$ . Then, as
discussed in Case 2 about $v$ , we have $d_{H_{7}}(u)+$

$d_{AI}(u)\leq 2$ and $d_{H_{7}}(v)+d_{Af}(v)\leq 2$ . So, $Pr[e\in$

$\Lambda I’]=1$ . Thus, it suffices to show that $Pr[e\in$

$E(H_{10})|e \in\Lambda^{l}I’]\geq\frac{1}{2}$. Assume that $e\in\Lambda^{r}I’$ . If
no odd cycle of $H_{9}$ contaims $e$ , then we are done.
So, further assume that some odd cycle $C$ of $H_{9}$

contains $e$ . We claim that $C$ contains at least
two edges of AL For a contradiction, assume
that the claim is false. Then, the path obtained
from $C$ by deleting $e$ is a connected component of
$H_{2}$ . However, this contradicts the construction
of graph $A$ in Step 5. Thus, the claim holds.
Consequently, $Pr[e\in E(H_{10})|e\in\Lambda I’]\geq f1$ . $\square$

By Lemma 3.4 and the algorithm, we have the
following corollary immediately:

Corollary 3.5 $\mathcal{E}[|E(H_{10})|]\geq|\ \overline{c}|-$

$n_{7c+}+ \frac{4}{5}|E_{5c}|+\frac{8}{75}|\Lambda I|$ .
Lemma 3.6 $|\Lambda\cdot 1|\geq|E_{\varphi t}^{A.ex}|/2$ .
PROOF. Let $\Lambda I’’$ be a maximum matching in
graph $A$ . Since Opt has no odd cycle, $E_{opt}^{A.e}$

can be partitioned into two matchings of $A$ . So,
$|\Lambda I’’|\geq|E_{opt}^{A,ex}|/2$ . On the other hand, since $\Lambda I$

is a maximum b-matching of $A$ with $b(v)\geq 1$ for
each $v\in V(A)$ , we have $|1\backslash [|\geq|M’’|$ . Thus, the
lemma holds. $\square$
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Theorem 3.7 $\mathcal{E}[|E(H_{10})|]\geq\frac{146}{175}|E(Opt)|$

$+ \frac{2}{105}|E_{5}$
。

$|- \frac{4}{75}|E_{opt}^{A,5c}|-\frac{4}{75}|E_{opt}^{A,7c,+}|$ .
PROOF. Combining Corollary 3.5 and Lemma
3.6, we have

$\mathcal{E}[|E(H_{10})|]\geq|E_{\overline{5c}}|-n_{7c+}+\frac{4}{5}|E_{5c}|+\frac{4}{75}|E_{opt}^{A.ex}|$ .

$v\in W,$ $d_{K}(v)<2$ . We claim that $|W| \geq\frac{5}{4}|F|$ .
To see this, first observe that we always have
$|W|\geq|F|+1$ . Moreover, $|F|\leq 4$ because Opt
cannot contain a 5-cycle. Thus, the claim holds.
The clalm implies the lemma immediately be-
cause summing up $\frac{5}{4}|F|$ over all 5-cycles $C$ of $H_{1}$

yields the bound $\frac{5}{4}|E_{opt}^{A,5c}|$ . $\square$

So, by Corollary 3.3 and a simple calculation, we
have

$\mathcal{E}[|E(H_{10})|]\geq\frac{4}{75}|E(Opt)|+\frac{67}{75}|E_{p_{c}}|+\frac{4}{5}|E_{5}$
。

$|$

$- \frac{59}{75}n_{7c+}+\frac{8}{75}n_{pc}-\frac{4}{75}|E_{opt}^{A,5c}|-\frac{4}{75}|E_{opt}^{A,7c+}|$ .

Consequently, since $n_{lc+}\sim\leq(|E(H_{1})|-|E_{6c}|)/7$

and $|E_{F}o\overline{c.}|=|E(H_{1})|-|E_{oc}r|$ . we have

$\mathcal{E}[|E(H_{10})|]\geq\frac{4}{75}|E(Opt)|+\frac{82}{105}|E(H_{1})|+\frac{2}{105}|E_{5c}|$

$- \frac{4}{75}|E_{opt}^{A,5c}|-\frac{4}{75}|E_{opt}^{A,7c+}|$ .

Now, since $|E(H_{1})|$ is at least as large as
$|E(Opt)|$ , the theorem follows. $\square$

The following corollary shows that our algo-
rithm achieves an expected ratio of $\frac{304}{3\overline,5}$

Corollary 3.8 $\mathcal{E}[|E(H_{10})|]$ $\geq$

$\frac{304}{375}|E(Opt)|+\frac{2}{125}|E_{F\overline{c}}|$ .
PROOF. Obviously, $|E_{opt}^{A,7c+}| \leq n_{7c+}\leq\frac{1}{7}|E_{\overline{5c}}|$ .
Moreover, since Opt cannot contain a 5-cycle,
$E_{opt}^{A.5c}$ contains at most four edges $\{u.v\}$ with
$u\in V(C)$ and $v\in V(C)$ for each 5-cycle $C$ of $H_{1}$ .
Consequently, $|E_{opt}^{A.5c}| \leq\frac{4}{5}|E_{5c}|=\frac{4}{5}|E(H_{1})|-$

$\frac{4}{5}|E_{o\overline{c}}r|$ . Also recall that $|E(H_{1})|\geq|E(Opt)|$ .
Now, by the last inequality in the proof of Theo-
rem 3.7, the corollary follows. $\square$

In the next subsection, we will give another
analysis of the algorithm and combine it with the
analysis in this section to obtain a better ratio.

3.2 The Second Analysis
Let $K$ be the graph with vertex set $V(A)$ and
edge set $E_{opt}^{A}-(E_{opt}^{A.5c}\cup E_{opt}^{A_{\overline{l}}c+})$ .

Lemma 3.9 There $a\uparrow e$ at $le \alpha st\frac{5}{4}|E_{\sigma pt}^{A,5c}|$

vertices $v\in V_{5c}$ with $d_{K}(v)<2$ .
PROOF. Fix an arbitrary 5-cycle $C$ of $H_{1}$ . Let
$F$ be the number of edges $\{u, \iota)\}\in E_{o\rho t}^{A.5c}$ with
$\{u, v\}\subseteq V(C)$ . Let $\dagger\{!$ be the set of the end-
points of the edges in $P$ . Obviously, for each

Besides Lemma 3.6, we have another lower
bound on $|M|$ .

Lemma 3.10 $|M|\geq$ $|E_{\varphi t}^{A}|-|E_{5c}|-$

$2n_{7c+}-2n_{pc}+ \frac{1}{4}|E_{opt}^{A,5c}|+|E_{\varphi t}^{A,7c+}|$.
PROOF. Let $h$ be the number of vertices $v\in V_{Sc}$

with $d_{K}(v)=2$ . By Lemma 3.9, $h\leq|E_{5c}|-$

$\frac{5}{4}|E_{opt}^{A,5c}|$ .
Let $\ell$ be the number of vertioes $v\in T_{1}$ with

$d_{K}(v)=2$ . We claim that $\ell\leq 2(n_{7c+}+n_{pc})-$

$2|E_{opt}^{A.7c+}|$ . To see this, first observe that $|T_{1}|=$

$2(n_{7c+}+n_{pc})$ . Moreover, if $\{u, v\}\in E_{opt}^{A,7c+}$ , then
both $d_{K}(u)\leq 1$ and $d_{K}(v)\leq 1$ . Now, since no
two edges of $E_{opt}^{A^{-}c+}’$ can share an endpoint, the
claim holds.

Obviously, if we modify $K$ by removing one
edge from each $v\in V_{5c}\cup T_{1}$ with $d_{K}(v)=2$ ,
we obtain a b-matching of $A$ . So, since $M$ is a
maximum bmatching of $A$ , we have

$|\Lambda I|\geq|E_{opt}^{A}|-|E_{opt}^{A,5c}|-|E_{opt}^{A,7c+}|-h-\ell$ .

Thus, by the aforementioned bounds on $h$ and $\ell$ ,
the lemma holds. $\square$

Theorem 3.11 $\mathcal{E}[|E(H_{10})|]$ $\geq$

$\frac{82}{105}|E(Opt)|$ $+$ $\frac{2}{105}|E_{5c}|$ $+$ $\frac{2}{75}|E_{op\ell}^{A,5c}|$ $+$

$\frac{8}{75}|E_{\varphi t}^{A,7c+}|$ .
PROOF. Combining Corollary 3.5 and Lemma
3.10, we have

$\mathcal{E}[|E(H_{10})|]\geq|E_{\overline{5c}}|-\frac{91}{75}n_{7c+}+\frac{52}{75}|E_{6c}|$

$+ \frac{8}{\overline{/}5}|E_{opt}^{A}|-\frac{16}{75}n_{pc}+\frac{2}{\overline{/}5}|E_{op\ell}^{A,6c}|+\frac{8}{75}|E_{opt}^{4.7c+}|$ .

So, by Lemma 3.2 and a simple calculation, we
have

$\mathcal{E}[|E(H_{10})|]\geq\frac{8}{75}|E(Opt)|+\frac{59}{75}|E_{\overline{5r}}.|+\frac{52}{75}|E_{oc}’|$

$- \frac{59}{75}n_{\overline{/}c+}+\frac{2}{75}|E_{opt}^{A.5c}|+\frac{8}{75}|E_{opt}^{4.7c+}|$.
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Consequently, since $n_{7c+}\leq|E_{vc}\overline{\prime}|/7$ , we have

$\mathcal{E}[|E(H_{10})|]\geq\frac{8}{75}|E(Opt)|+\frac{354}{525}|E_{f_{c}}|+\frac{52}{75}|E_{5c}|$

$+ \frac{2}{75}|E_{opt}^{A,5c}|+\frac{8}{75}|E_{opt}^{A_{\backslash }\overline{/}c+}|$ .

Since $|E_{6c}|+|E_{oc}\ulcorner|=|E(H_{1})|$ , we have

So, summing up the left sides and the right sides
of the above two inequalities respectively, we have

$\mathcal{E}[|E(H_{10})|]\geq\frac{463}{575}|E(Opt)|+\frac{1}{115}|E(H_{1})|$

$\geq\frac{468}{575}|E(Opt)|$ .

口

$\mathcal{E}[|E(H_{10})|]\geq\frac{8}{75}|E(Opt)|+\frac{354}{525}|E(H_{1})|+\frac{10}{525}|E_{5c}|$

$+ \frac{2}{75}|E_{opt}^{A,5c}|+\frac{8}{75}|E_{opt}^{A,7c+}|$ .

Now, since $|E(H_{1})|\geq|E(Opt)|$ , the theorem fol-
lows. $\square$

Corollary 3.12 $\mathcal{E}[|E(H_{10})|]$ $\geq$

$\frac{1258}{1575}|E(Opt)|+\frac{2}{105}|E_{5c}|$ .
PROOF. By Theorem 3.7, we have

$\frac{1}{3}\mathcal{E}[|E(H_{10})|]\geq-\frac{146}{5\frac{2541}{225}}|EE_{opt}^{A.5c}(Opt)||;^{|E_{5c}|}\frac{\frac{2}{31541}}{225}E_{opt}^{A,7c+}|$

.

On the other hand, by Theorem 3.11, we have

$\frac{2}{3}\mathcal{E}[|E(H_{10})|]\geq\frac{164}{315}|E(Opt)|+\frac{4}{315}|E_{5c}|$

$+ \frac{4}{225}|E_{opt}^{A,5c}|+\frac{16}{225}|E_{opt}^{A_{:}7c+}|$ .

So, summing up the left sides and the right sides
of the above two inequalities respectively, we have

$\mathcal{E}[|E(H_{10})|]\geq\frac{1258}{1575}|E(Opt)|+\frac{2}{105}|E_{5}$
。

$|$ .

口

Theorem 3.13 $\mathcal{E}[|E(H_{10})|]$ $\geq$

$\frac{468}{575}|E(Opt)|$ .
PROOF. By Corollary 3.8, we have

$\frac{25}{46}\mathcal{E}[|E(H_{10})|]\geq\frac{152}{345}|E(Opt)|+\frac{1}{115}|E_{\overline{5c}}|$ .

By Corollary 3.12, we have

$\frac{21}{46}\mathcal{E}[|E(H_{10})|]\geq\frac{629}{1725}|E(Opt)|+\frac{1}{115}|E_{5}$
。

$|$ .

3.3 Derandomization
Our algorithm makes random choices only in Step
7 and 10. To derandomize Step 10, we just mod-
ify it as follows:

10. For each odd cycle $C$ in $H$ , select an arbi-
trary edge of $C$ and delete it from $H$ .

Because the input graph is unweighted, it does
not matter which edge is deleted from each odd
cycle in Step 10. So, it should be clear that the
above modification of Step 10 does not affect the
approximation ratio achieved by the algorithm.

In Step 7, we make a random choice for each
5-cycle. In our above analysis of the algorithm,
only the proof of Lemma 3.4 is based on the mu-
tual independence between these random choices.
Indeed, by carefully inspecting the proof, we can
see that the proof is still valid even if the ran-
dom choices made in Step 7 are only pairwise
independent. So, we can derandomize it via con-
ventional approaches. Therefore. we have the fol-
lowing theorem:

Theorem 3.14 Thete is an $O(n^{2}m^{3})-$

time $app\uparrow^{\backslash }0’.rimation$ algorithm for MAX
$S_{IbtPLE}E_{DG}+2$-COLORING achiening $a\uparrow n-$

tio of $\frac{468}{575}$ where $n$ (respectively, m) is the
number of vertices ($\uparrow^{\backslash }espectively$ , edges) in
the input $g\uparrow^{\backslash }aph$.
PROOF. We estimate the running time of the de-
randomize algorithm as follows. Step 1 can be
done in $O(n^{2}m^{3})$ time [3]. Obviously, Steps 2
through 4 can be done in $O(n)$ time. Step 5 can
be trivially done in $O(n^{2})$ time. Since $b(v)\leq 2$

for each vertex $v$ , Step 6 can be done in $O(\sqrt{n}m)$

time [2]. In Step 7, we need to generate $O(n)$

pairwise independent random integers. A $\infty n-$

ventional way to do this uses two random seeds
$s_{1}$ and $s_{2}$ both of value $O(n)$ . So, the sample
space of $(s_{1}, s_{2})$ is of size $O(n^{2})$ . For each sample
$(s_{1}, s_{2})$ in the space, we perform Steps 8 through
11 to obtain an output $H(s_{1}.s_{2})$ . This takes a to-
tal $ti_{1}ue$ of $(\cdot n^{3})$ because Steps 8 through 11 can
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be done in $O(n)$ time, We then find the sam-
ple $(s_{1}, s_{2})$ in $O(n^{2})$ time such that $|H(s_{1}, s_{2})|$ is
maximized, and further output $H(s_{1}, s_{2})$ . $\square$

proximate for large values of $t$ . In more detail,
the following algorithm achieves a ratio of $\frac{t}{t+1}$ :

4 An Application
Let $G$ be a graph. An edge cover of $G$ is a set
$F$ of edges of $G$ such that each vertex of $G$ is
incident to at least one edge of $F$ . For a natural
number $k$ , a $[1, \Delta]$-factor $k- po.ck\dot{n}n,g$ of $G$ is a col-
lection of $k$ disjoint edge covers of $G$ . The size
of a $[1, \Delta]$-factor k-packing $\{F_{1}, \ldots, F_{k}\}$ of $G$ is
$|F_{1}|+\cdots+|F_{k}|$ . The problem of deciding whether
a given graph has a $[1, \Delta]$-factor k-packing was
considered in $[5, 6]$ . In [7], Kosowski et al. de-
fined the $minimum/l,$ $\Delta$]-factor k-pachng prob-
lem (MIN-k-FP) as follows: Given a graph $G$ , find
a $[1, \Delta]$-factor k-packing of $G$ of minimum size or
decide that $G$ has no $[1, \Delta]$-factor k-packing at
all.

According to [7], MIN-2-FP is of special interest
because it can be used to solve a fault tolerant
variant of the guards problem in grids (which is
one of the art gallery problems $[8, 9]$ ). Indeed,
they proved the following:

Lemma 4.1 If MAX SIKIPLE EDGE 2-
COLORING admlts an $appro\dot{n}mati.on$ algo-
rthm A $achievi\cdot ng$ a $\iota u$tio of $\alpha.$’ then $M_{IN-}$

2-FP admits an apptoximation algorithm
$B$ ahieznng a ratio of $2-\alpha$ . $Moreove\uparrow,$ $lf$

the time compleanty of $A$ is $T(n)$ , then the
time $comple’.\iota\cdot ity$ of $B$ is $O(T(n))$ .

So, by Theorem 3.14, we have the following
immediately:

Lemma 4.2 $The\uparrow^{\backslash }e$ is an. $O(n^{2}m^{3})$ -time
$app\uparrow vximationalgo?^{\backslash }ithm$ for $M_{lN-}2- FP$

achieving a ratio of $\frac{682}{575}$ where $n(\uparrow^{\tau}espec-$

tively, m) is the number of vertices (t’e-
spectively, edges) in the input graph.

Previously, the best ratio achieved by a
polynomial-time approximation algorithm for
hIIN-2-FP was 9 [7], although MIN-2-FP ad-
mits a polynomial-time approximation algorithm
achieving a ratio $*_{35-21}^{4-sn}$ , where $\Delta$ is the maxi-
mum degree of a vertex in the input graph [7].

5 Final Remarks
When the input graph is restricted to simple
graphs, $NI_{A}x$ EDGE $t$-COLORING is easier to ap-

$Input:t$
.

A simple graph $G$ and a natural number

1. Compute a maximum $\triangleright matching\Lambda I$ of $G$ ,
where $b(v)=t$ for all vertices $v$ of G. $(C,om_{\iota}-$

ment: Since an optimal solution $F$ can be
partitioned into $t$ matchings of $G$ , it is a $\triangleright$

matching of $G$ . Hence, $|E(\Lambda I)|$ is at least as
large as the size of an optimal solution.)

2. Partition $E(\Lambda I)$ into $t+1$ matchings
$AI_{1},$

$\ldots,$
$AI_{t+1}$ . (Comment: By Vizing’s The-

orem [10], this can be done in polynomial
time.)

$Output.:.ThelargestJI_{1}..,$
$AI_{t+1}$ .

$t$ matchings among

When $t=2$ , the above algorithm only achieves
a ratio of $\frac{2}{3}$ The simple algorithm for NIAX
SIKIPLE EDGE 2-COLORING pointed out by Feige
et al. (see Section 1) can be viewed as an im-
provement over the above algorithm. Our new
algorithm can be viewed as a furhter improve-
ment.
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