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岡山大学環境学研究科 李聖林 (Sungrim Seirin Lee)
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1 Introduction
The purpose of this paper is to propose the model which describes the effect of
remained carcasses and study the persistence and the dynamics. We suppose that
the remained carcass of a prey becomes foods of outsider species after predators
have consumed the prey. It is well-known that many carnivorous insects such as
ericket eat not only vegetable but also the carcass of small animals.

For convenience, henceforth the prey will be called the existent prey and the
outsider species such as carnivorous insects, the existent prey. The variables of
$h_{1}(t),$ $h_{2}(t)$ and $p(t)$ denote the densities of the existent prey, the invader prey and
the predator respectively. In this paper, we consider as the following functional
response of the existent prey to the benefit of.remained carcasses:

$\Psi(h_{1}, h_{2},p)=\frac{\tau_{1}h_{2}p}{\tau_{2}h_{1}+\tau_{\delta}h_{2}}$ ,

where $\tau_{1},$ $\tau_{2}$ and $\tau_{3}$ are positive constants. we suppose that existent preys have two
negative effects by the intra-specics competition of themselves and the obstruction
of invader preys, to have remained $ca\iota\cdot casses$ . We $assu_{\wedge}^{-}\iota 1e$ that the two negative
effects are proportional to the density of the existent prey and the density of the
invader prey respectively, and for simplifying the model, the real amount of remained
carcasscs which the existent prey has is proportional to the total amoimt of rpmained
carcasses divided by the negative effects.

Hence, Incorporating the functional response $\Psi$ in the existent prey, the model
takes the form:

$\frac{d}{dt}\prime_{1_{1}},=\epsilon_{1}(1-\frac{h_{i}}{k_{1}})f_{t_{1}},-a_{1}h_{1}p+\frac{\tau_{1}h_{2}p}{\tau_{2}h_{1}+\tau_{3}h_{2}}h_{1}$

$\frac{d}{dt}h_{2}=\epsilon_{2}(1-\frac{h_{2}}{k,2})h_{2}-a_{2}h_{2}p$ (1)

$\frac{d}{dt}p=-\delta p+b_{1}h_{1}p+b_{2}h_{2}p$
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$\epsilon_{i}$ growth rate of preys in the absence of predator
$k_{i}$ carrying capacity of preys
$a_{i}$ consumption rate of preys by predator
$b_{i}$ rate of increase in the number of predators from ingesting prey

$\delta$ death rate of predator,

and $\epsilon_{i},$
$k_{i},$ $a_{i},$

$b_{i}$ and $\delta$ are positive constants. Now to avoid mathematical complexity,
we nondimensionlize the system(l) without loss of generality :

$\frac{d}{dt}y_{1}=(1-y_{1})y_{1}-\alpha_{1}y_{1}p+\frac{\omega y_{2}p}{ky_{1}+y_{2}}y_{1}$

$\frac{d}{dt}y_{2}=\epsilon(1-y_{2})_{l_{2}}/-\alpha_{2}y_{2}p$ (2)

$\frac{d}{dt}p=-\gamma p+\beta_{1}y_{1}p+\beta_{2}y_{2}p$

where

$\alpha_{i}=\frac{a_{i}}{\epsilon_{1}}$ , $\omega=\frac{\tau_{1}}{\epsilon_{1}}$ , $k=\tau_{2^{\frac{k_{1}}{k_{2}’}}}$ $\epsilon=\frac{\epsilon_{2}}{\epsilon_{1}}$ , $\gamma=\frac{\delta}{\epsilon_{1}}$ and $\beta_{i}=\frac{b_{i}k_{i}}{\epsilon_{1}}$ . (3)

In this paper, we suppose that

(I) The existent prey and the predator have already approached to stable
coexistence density before the invader prey invade.
(II) The gain of the existent prey given by the predator is less than loss
when the existent prey and the invader prey approach their carrying
$capacitics$ rcspectively.

These assumptions lead to the following mathematical assumptions and initial con-
dition:

$1> \frac{\gamma}{\beta_{1}}$ , (4)

$\frac{\omega}{k+1}<\alpha_{J}$ (5)

and
$(y_{1}(0), y_{2}(0),p(0))=( \frac{\gamma}{\beta_{1}},$ $n_{0},$

$\frac{1}{\alpha_{1}}(1-\frac{\gamma}{\beta_{1}}))$ . (6)

2 Analysis and Dynamics of the model

2.1
’

Steady states and Linear stability

In this section, we analyse stability of equilibria of system(2). On the boundary of
$R_{+}^{3}=\{(y_{1}, y_{2},p) : y_{1}\geq 0, y_{2}\geq 0,p\geq 0\}$ , we have eqililibria $E_{0}=(0,0,0),$ $E_{1}=$
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$(1, 0,0),$ $E_{2}=(0,1,0),$ $E_{3}=(1,1,0)$

$E_{4}=.( \overline{y}_{J}, 0,\overline{p})=(\frac{\gamma}{\beta_{1}})0,$ $\frac{1}{\alpha_{1}}(1-\frac{\gamma}{\beta_{1}}))$

since $\beta_{1}>\gamma$ from condition(4). The equilibrium

$E_{5}=(0,\overline{y}_{2},\tilde{p})=(0,$ $\frac{\gamma}{\beta_{2}},$
$\frac{\epsilon}{\alpha_{2}}(1-\frac{\gamma}{\beta_{2}}))$

exists if $\beta_{2}>\gamma$ . We $suImllarize$ the results of linear stability analysis for these
equilibria.

1. $E_{0},$ $E_{1},$ $E_{2}$ and $E_{3}$ are saddle points and so ar$eun_{L}stable$ . (7)

2. $E_{4}$ is locally asymtotically stable if $\epsilon-\frac{\alpha_{2}}{\alpha_{1}}(1-\frac{\gamma}{\beta_{1}})<0$ ,

but is unstable if $\epsilon-\frac{\alpha_{2}}{\alpha_{1}}(1-\frac{\gamma}{\beta_{1}})>0$ . (8)

3. $E_{5}$ is locally asymtotically stable if $1+ \frac{\epsilon}{\alpha_{l}\prime}(\omega-\alpha_{1})(1-\frac{\gamma}{\beta_{2}})<0$,

but is unstable if $1+ \frac{\epsilon}{\alpha_{2}}(\omega-\alpha_{1})(1-\frac{\gamma}{\beta_{2}})>0$. (9)

We note here that the equilibrium $E_{4}=(\overline{y}_{1},0,\overline{p})$ is initial condition in our Inodel.
Thus if it is unstable, invader preys can succeed in invading even if $t$}$\iota e$ density of
the invader prey is very small.

We write the equilibrium of which all the coordinates are positive as $E^{*}=$

$(y_{1}^{*}, y_{2}^{*}, p^{*})$ , and then say that $\Gamma\prec_{\text{ノ^{}*}}$ is an interior equilibrium. Now, we state the
existence and uniqueness of the interior equilibrium $E^{*}$ of system (2) $1^{\cdot}nder$ the
conditions that the equilibria $E_{4}$ and $E_{5}$ are unstable.

Proposition 1 There exists the interior equilibrium $E^{*}=(y_{1}^{*}, y_{2}^{*},p^{*})$ of system
(2) uniquely if and only if the condition (8) and (9) are satisfied.

We obtain the existence of the equilibrum point $E$“, but applications of Routh-
Hurwitz criterion give rise to complex set of mathematical conditions for stability
drawn $hom$ these. In fact, when the linearization matrix on $E^{*}$ leads to the eigen-
value equation $\lambda^{3}+A_{1}\lambda^{2}+A_{2}\lambda+A_{3}=0$ , Routh-Hurwitz criterion gives that all of
eigenvalues have negative real part if and only if

$A_{1}>0$ , $A_{3}>0$ and $D=A_{1}A_{2}-A_{3}>0$ .

We have $A_{1}>0$ and $A_{3}>0$ but the sign of $D$ depends on parameters. By numerical
simulations, wo find out Hope bifurcation for some parameter values. For instancc,
Figure 1 show that the stable region of the interior equilibrium $E^{*}$ for parameters
$\epsilon$ and $\beta_{1}$ . We carry out numerical simulation for parameters $\epsilon$ and $\beta_{1}$ with the
fixed other parameters, for example, $k=0.2,$ $\alpha_{1}=\alpha_{2}=2,$ $\beta_{2}=5,$ $\gamma=1$ and
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$p$

Figure 1: Stable region Figure 2: Limit cycle with $\epsilon=3$

$\omega=2.35$ , which parameter values satisfy the conditions (8), (9) and (5). The
invasion condirion(8) is satisfied in the region under the line of Figure 1. For proper
parameter values in the region satisfying $D\leq 0$ , the equilibrium $E^{*}$ may be unstable.
In fact, Figure 2 show that $a$

. limit $cycJ.e$ appears by choosing $\epsilon=3$ and $\beta_{1}=3$ .
Moreover, Figure 1 show that the $1i_{lI1}it$ cycle disappears and a stable equilibrium
appears again if we take $\epsilon$ large more and more.

2.2 Persistence
In this section, we prove strong pcrsistencc of the system (2). We $\iota xse$ the definition
of strong persistence, namely, a population $h(t)$ is said to persist if $h(O)>0$ and
$\lim\inf_{f,arrow\infty}h(t)>0.$ A system is said to persist if each component population per-
sists. To prove the persistence, we use Theorem (2.1) of $\vee\urcorner:reedman$ and Waltman[l],
which has proved by using dynamical system theory. First of all, to obtain the
existence of the dynamical system for the system (2), we have the following two
propositions.

Proposition 2 The solution $y_{1}(t),$ $y_{2}(l),p(t)$ of system (2) is bounded for all $t\geq 0$

and arbitrary initial values if the assumption (5), $\frac{\omega}{k+1}<\alpha_{1}$ , is satisfied.

Proposition 3 System (2) with nonnegative initial values has an unique local so-
lution.

Rom Proposition 2 and Proposition 3, we obtain the following Lemma.

Lemma 1 System (2) w\’ith nonnegative initial values has a global solution uniquely
if condition (5) is satisfied.

Then we obtain the strong persistence theorem for system (2).

Theorem 1 (Strong Persistence) System (2) persists strongly if the following as-
sumptions (5) , (8) and (9):

$\frac{\omega}{k+1}<\alpha_{1}$ , $\epsilon-\frac{\alpha_{2}}{\alpha_{1}}(1-\frac{\gamma}{\beta_{1}})>0$ and $1+ \frac{\epsilon}{\alpha_{2}}(\omega-\alpha_{1})(1-\frac{\gamma}{\beta_{2}}.)>0,$ (10)

are satisfied.
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2.3 Numerical simulation results I

In this section, we study the dynamics of system (2) more detail by using numerical
simulations. We assume the conditions (4), (5) and $\beta_{2}>\gamma$ , then the conditions (8)
and (9) are rewritten for the parameter $\epsilon_{c}\backslash s$ the following:

$\frac{\alpha_{2}}{\alpha_{J}}(1-\frac{\gamma}{\beta_{1}})<\epsilon<\frac{\alpha_{2}}{(\alpha_{1}-\omega)(1_{\beta_{2}}-\lambda)}$ for $\alpha_{1}>\omega$ , (11)

$\epsilon>\frac{\alpha_{2}}{\alpha_{1}}(1-\frac{\gamma}{\beta_{1}})$ for $\frac{\omega}{k+1}<\alpha_{1}\leq\omega$ . (12)

On these cases, the invader prey succeed in invading and the extinction point of
the existent prey, $E_{5}$ , is unstable. Moreover, these conditions guarantee the strong
persistence of three species.

We choose parameter values satisfying persistence condition (10), and carry out$\cdot$

numerical simulations. Then we find out that populations of the system (2) have
a chaotic attractor. An example of thc chaotic attractor is shown in Figurc 3. We

Figure 4: $Pc_{I}$)$ulation$ fluctuations of the ex-
Figure 3: Chaos in the $y_{1}-y_{2}-p_{1)}h\prime asc^{\backslash }$ . istcnt prey(rcd), the invader prcy(green) and

the predator(blue)

have carried out the numerical simulation with parameters $\beta_{1}=21,$ $\epsilon=3$ ,

$k=0.2$ , $\alpha_{1}=\alpha_{2}=2$ , $\beta_{2}=5$ , $\gamma=1$ , and $\omega=2.35$ . (13)

Figure 4 show population fluctuations of three species when the system (2) has
the chaotic attractor (Fig.3). We want to notice the fluctuations’ patterns in Figure
4. Without the rcmaincd carcass effect, the invasion of invader preys make predators
increasing, and then existent preys must decrease. However, Figure 4 show that the
existent prey increases and never turn into decrease during the invader prey increase
even if the predator increase sharply. Moreover, the decrease of the existent prey
starts after the $dec1^{\cdot}e^{t}A^{\neg},C^{\backslash }$ of the invader prey. It shows that the invader prey is a
cooperator to the existent prey. We can also find out that the existent prey increases
more sharply where the predator increases sharply and even if the invader prey turn
into decreasing. Even if the invader preys start to decrease, total $\epsilon\prime lmotlnt$ of the
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remained $cal\cdot cass$ does not change very if the predators increase sufficiently. Thus
the existent prey can have enough amount of the remained carcasses to increase its
density. The predator and the existent prey have a symbiosis interaction.

3 Conclusions
In this paper, we have studied population dynamics of the two-prey, one-predator
model which describes the effect of remained carcasses. The simple two-prey, one-
predator Lotka-Volterra model has a globally asymptotic stable interior equilibrium.
Thus, the dynamics of the model always gocs to stablc coexistcnt equilibrium $p^{\backslash }oint$ .
However, we have shown that the remained carcass $effe\neg.t$ gives very complex dy-
namics under the strong persistent condition (10). Until now, many prey-predator
population models have been studied but usually, they did not consider the cxistence
of the remained carcass. It will be very important to consider the remained carcass
effect in the interactions of species, especially in multi-species models.
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