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Abstract

We observe various conjugates and their biconjugacies of quasiconvex
functions. Especially, we give a sufficient condition which assures biconju-
gacy is satisfied for O-quasiconjugate.

1 Introduction
Throughout this paper, let $f$ be a function from $\mathbb{R}^{n}$ to. $(-\infty, \infty$], and assume
$f$ is proper, that is, its domain dom$f=\{x\in \mathbb{R}^{n}|f(x)<\infty\}$ is not empty.
Remember that $f$ is said to be convex if for all $x_{1},$ $x_{2}\in domf$ and $\alpha\in(0,1)$ ,

.
$f((1-\alpha)x_{1}+\alpha x_{2})\leq(1-\alpha)f(x_{1})+\alpha f(x_{2})$ ,

and its Fenchel conjugate function $f^{*}$ is defined as follows: for any $\xi\in \mathbb{R}^{n}$ ,

$f^{*}( \xi)=\sup\{\langle\xi, x\rangle-f(x)|x\in domf\}$ .

We know that $f^{*}$ : $\mathbb{R}^{n}arrow(-\infty, \infty$ ] is proper convex lower semicontinuous, and
also if $f$ is lower semicontinuous, then we have

$f=f^{**}$ ,

that is, lower semicontinuity and the biconjugacy are equivalent for any proper
convex function. It is well-known that this property plays very important roles
to consider dual problems of convex minimization problem.

Similar researches of conjugates of quasiconvex functions, have been observed,
see [1, 2, 3, 4, 5]. Various types of conjugates are introduced, and biconjugacies
of functions are investigated. In this paper, we give a sufficient condition which
assures biconjugacy is satisfied for a notion of conjugate, called O-quasiconjugate.
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2Conjugates of quasiconvex functions
Remember that $f$ is said to be quasiconvex if, for all $x_{1},$ $x_{2}\in domf$ and $\alpha\in(0,1)$ ,

$f((1- \alpha)x_{1}+\alpha x_{2})\leq\max\{f(x_{1}), f(x_{2})\}$ ,

or equivalently, for any $\alpha\in \mathbb{R}$ , its level set

$L_{\alpha}(f)=\{x\in \mathbb{R}^{n}|f(x)\leq\alpha\}$

is a convex set. Clearly, the notion of quasiconvexity is a generalization of con-
vexity. For quasiconvex functions, various conjugates have been defined. In this
paper, we treat $\lambda$-quasiconjugate, quasiconjugate, and R-quasiconjugate. At first,
we mention about $\lambda$-quasiconjugate.

Definition 1. For any $\lambda\in \mathbb{R}$ , the $\lambda$-quasiconjugate of $f$ is the functional $f_{\lambda}^{\nu}$ :
$\mathbb{R}^{n}arrow(\infty, \infty]$ defined as follows: for any $\xi\in R^{n}$ ,

$f_{\lambda}^{\nu}(x^{*})= \lambda-\inf\{f(x)|\langle x^{*},x\rangle\geq\lambda\}$ .

By Greenberg and Pierskalle, the normalized second quasiconjugate is intro-
duced. Note that this notion is not given by two-times iteration of the same
operation.

Deflnition 2. The normalized second quasiconjugate of $f$ is the functional .
$f^{\nu\nu}$ :

$\mathbb{R}^{n}arrow(-\infty, \infty]$ defined as follows: for any $x\in \mathbb{R}_{f}^{n}$

$f^{\nu\nu}(x)= \sup_{\lambda\in R}(f_{\lambda}^{\nu})_{\lambda}^{\nu}(x)$ .

Evenly quasiconvexity, defined as follows, assures biconjugacy.

Definition, 3. A subset $A$ of $\mathbb{R}^{n}$ is evenly convex if there exists a family of open
half space such that $A$ is equal to the intersection of the family of open half space.

Definition 4. A function $f$ is evenly quasiconvex if for all $\alpha\in(-\infty, \infty$], $L_{\alpha}(f)$

is evenly convex.

Theorem 1. If a function $f$ is evenly quasiconvex, then $f^{\nu\nu}=f$ .
Theorem 2. The followzng formula holds:

$f^{\nu\nu}= \max\{(f_{-1}^{\nu})_{-1}^{\nu}, (f_{0}^{\nu})_{0}^{\nu}, (f_{1}^{\nu})_{1}^{\nu}\}$.

Next, we define notions of quasiconjugate and R-quasiconjugate, which are
closely concerned with $(f_{-1}^{\nu})_{-1}^{\nu},$ $(f_{1}^{\nu})_{1)}^{\nu}$ and we state sufficient conditions to obtain
that each biconjugates are equal to $f$ .
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Definition 5 ([4]). Quasiconjugate of $f$ is the functional $f^{H}$ : $\mathbb{R}^{n}arrow(-\infty, \infty$ ]
defined by

$f^{H}(\xi)=\{\begin{array}{ll}-\inf\{f(\xi)|\langle x,\xi\rangle\geq 1\} if \xi\neq 0-\sup\{f(x)|.x\in \mathbb{R}^{n}\} if \xi=0.\end{array}$

The quasiconjugate of the function $f^{H}is$ called the biquasiconjugate of $f$ and
denoted by $f^{HH}$ .

Note that $f_{1}^{\nu}=1-f^{H}$ on $\mathbb{R}^{n}\backslash \{0\}$ .
Definition 6. We say that $f$ achieves the maximum value at the infinite if
$f(x_{n}) arrow\sup\{f(x)|x\in \mathbb{R}^{n}\}$ for any sequence $\{x_{n}\}$ such that 11 $x_{k}\Vertarrow\infty$ .
Theorem 3. Let $f$ be a lower semicontinuous quasiconvex function satishing

$f( O)=\inf\{f(x)|x\in\cdot \mathbb{R}^{n}\backslash \{0\}\}$ .

If $fachie_{\backslash }ves$ the maximum value at the infinite, then $f^{HH}=f$ .
Definition 7. R-quasiconjugate of $f$ is the $fi_{4}nctionalf^{R}$ : $\mathbb{R}^{n}arrow(-\infty, \infty$]
defined by

$f^{R}( \xi)=-\inf\{f(x)|\langle\xi,x\rangle\geq-1\}$ .
The R-quasiconjugate of the function $f^{R}$ is called the R-biquasiconjugate of $f$

and denoted by $f^{RR}$ .
Note that $f_{-1}^{\nu}=-1-f^{R}$ on $\mathbb{R}^{n}$ .

Definition 8. A subset $A$ of $\mathbb{R}^{n}$ is R-evenly convex if the intersection of a family
of open half spaces which closure do not contain $0$ .
Deflnition 9. A function $f$ is R-evenly quasiconvex if, $\cdot$

$L_{\alpha}(f)$ is R-evenly convex
for all $\alpha\in(-\infty, \infty$].

Theorem 4. If a function $f$ is R-evenly quasiconvex, then $f^{RR}=f$ .

3 Main theorem
Motivated by Theorems 1, 2, 3, and 4 in the previous section, we consider bicon-
jugacy for O-quasiconjugate.

Example 1. Let $f$ : $\mathbb{R}^{2}arrow \mathbb{R}$ defined by $f(x,y)=(x-1)^{2}+y^{2}$ . Then we can
calculate conjugate

$f_{0}^{\nu}(a, b)=\{\begin{array}{ll}-\frac{a^{2}}{a^{2}+b^{2}} \dot{j}fa<00 lfa\geq 0.\end{array}$
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Figure; graph and contour graph of function $f_{0}^{\nu}$ on $(-\infty, 0)\cross \mathbb{R}$ .

Let $g=f_{0}^{\nu}$ , then we have the conjugate $g_{0}^{\nu}$ as follows:

$g_{0}^{\nu}(x, y)=\{\begin{array}{ll}\frac{y^{2}}{x^{2}+y^{2}} if x>01 if x\leq 0.\end{array}$

Figure: graph and contour graph of jfunction $g_{0}^{\nu}$ on $(0, \infty).x\mathbb{R}$ .
$fi\}vm$ this, we have $(f_{0}^{\nu})_{0}^{\nu}\neq f$ . However, we can show $(g_{0}^{\nu})_{0}^{\nu}=.g$ .

Inspired the example, we give a sufficient condition for biconjugacy. To the
purpose, we show the following properties concerned with convex cone.

Lemma 1. If $K$ be a nonempty closed convex pointed cone in $\mathbb{R}^{n}$ , then intK“ $is$

not empty, where $K^{*}=\{x^{*}\in \mathbb{R}^{n}|\langle x^{*}, x\rangle\leq 0,\forall x\in K\}$ .

This proof is omitted. The following lemma is important to show our main result.
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Lemma 2. Let $K$ be a nonempty closed convex pointed cone in $\mathbb{R}^{n}$ . If $x_{0}\not\in$

$K\backslash \{0\}_{f}$ then there exists $a\in \mathbb{R}^{n}$ such that $\langle a, x_{0}\rangle\geq 0>\langle a, x\rangle$ for all $x\in K\backslash \{0\}$ .

Proof. From the assumption, we have intK* $\neq\emptyset.from$ Lemma 1 and $K=K^{**}$ .
Since $x_{0}\not\in K^{**}$ , there exists $x^{*}\in K^{*}$ such that $\langle x_{0},x^{*}\rangle>0$ . By continuity of the
inner product, we can choose $r>0$ such that $y^{*}\in B(x^{*}, r)$ implies $\langle x_{0}, y^{*}\rangle>0$ .
Choose $z^{*}\in intK$“ such that $z^{*}\neq x^{*}$ , and let

$a= \frac{||x^{*}-z^{*}\Vert}{\Vert x^{*}-z^{*}\Vert+r}x^{*}+\frac{r}{\Vert x^{*}-z^{*}\Vert+r}z^{*}$ ,

then we can check $a\in B(x^{*},r)$ and $a\in intK$“. Hence we have ($a,x_{0}\rangle$ $>0$ and
$\langle a,x\rangle<0$ for$\cdot$ all $x\in K\backslash \{0\}$ ; 口

Lemma 3. The following formula holds

$f_{0}^{\nu}(0)= \max\{f_{0}^{\nu}(x^{*}).|.x^{*}\in \mathbb{R}^{n}\}$.

Proof. For any $x^{*}\in \mathbb{R}^{n}$ ,

$f_{0}^{\nu}(x^{*})=- \inf\{f(x)|\langle x^{*}, x\rangle\geq 0\}$ ,

and also
$f_{0}^{\nu}(0)=- \inf\{f(x)|\langle 0,x\rangle\geq 0\}=-\inf\{f(x)|\in x\in \mathbb{R}\})$

then we have $f_{0}^{\nu}(x^{*})\leq f_{0}^{\nu}(0)$ . 口

Theorem 5. Assume that $L_{\alpha}(f)\cup\{0\}$ is a closed convex pointed cone, or $\mathbb{R}^{n}$ ,
for all $\alpha\in \mathbb{R}$ . If $f( O)=\sup\{f(x)|x\in \mathbb{R}^{n}\backslash \{0\}\}$ , then $f=(f_{0}^{\nu})_{0}^{\nu}$ .

Proof. It is clear that $f\geq(f_{0}^{\nu})_{0}^{\nu}$ . Assume that there exists $x_{0}\in \mathbb{R}^{n}$ such that
$f(x_{0})>(f_{0}^{\nu})_{0}^{\nu}(x_{0})$ . By using Lemma 3 and $f( O)=\sup\{f(x)|x\in \mathbb{R}^{n}\backslash \{0\}\}$ , we
may assume $x_{0}\neq 0$ . Choose $\alpha\in \mathbb{R}^{n}$ satisfying

$f(x_{0})>\alpha>(f_{0}^{\nu})_{0}^{\nu}(x_{0})$

Since $x_{0}\not\in L_{\alpha}(f)\cup\{0\}$ , and $L_{\alpha}(f)\cup\{0\}is$ a closed convex pointed cone, then

$\exists a\in \mathbb{R}^{n}$ s.t. $\langle a, x_{0}\rangle\geq 0>\langle a,x\rangle,\forall x\in L_{\alpha}(f)$

by using Lemma 2. This shows

$x\in L_{\alpha}(f)$ $\Rightarrow$ $\langle a, x\rangle<0$ ,

or equivalently,
$\langle a,x\rangle\geq 0$ $\Rightarrow$ $f(x)>\alpha$ .

Hence.
$(f_{0}^{\nu})_{0}^{\nu}(x_{0})=- \inf\{f_{0}^{\nu}(x^{*})|\langle x^{*}, x_{0}\rangle\geq 0\}\geq-f_{0}^{\nu}(a)=\inf\{f(x)|\langle x, a\rangle\geq 0\}\geq\alpha$,

this is contraction. $\square$
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