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Department of Mathematics, Faculty of Education, Gifu University
Gifu 501-1193, Yanagido 1-1, Japan

1 Introduction

In this paper we consider the dynamics of a one-dimensional elastic material. Let u = u(t, z)
be the displacement on the cylindrical domain Q(7T) := (0,T) x (0,1), where T > 0. As
discussed in [2] we can obtain the following initial boundary value problem which is a math-
ematical model for the dynamics.

et + Vibgzez — Hthgs — ke =0 in Q(T), (1.1)
£= in Q(T), - (12)
u(t,0) = z:(t, 1) =0, uzz(t,0) = uz(£,1) =0 for0<t<T, (1.3)
u(0, ) = up(z), u(0, ) = vo(x) for0<z <1, (1.4)

where v > 0, u > 0, & > 0, and up and vy are initial functions.v Here, ¢ indicates the
nonlinear strain (see [2]), and the equation (1.1) is the approximation of the kinetic equation
ug — k€; = 0. The modelling process for the above problem (P1) := {(1.1) ~ (1.4)}, is
discussed in [2, section 1], precisely. |

Moreover, in [2] the following free boundary problem (P2) including the liner strain is
proposed as the other mathematical model for the elastic material. The problem (P2) is to
find a curve £ = £(t), t € [0,T], and u = u(t,z) on Q(T), T > 0, where Q(T) = {(t,z)|0 <
z < £(t),0 <t < T}, such that ‘ |

Ugg + VUzgzzg — KUtz — Klgz = f in Ql(T)’
u(t,0) = up(£,0) =0 for0<t<T,
u(t, 6(2)) = £(t) — bo, Ugalt, £(£) =0 for0<t<T,

1'This work is partially supported by a grant in aid of JSPS ((C)16540146)
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u(0) = ug, u(0) = vp on [0, &y],
£'(t) = g(t) — rug (2, £(t)),
4(0) = £,£(0) = b,

where f and g are given functions, £, fo, ug and vy are initial functions.

In the next section we provide the precise definition of a solution of (P1) and a theorem
for the well-posedness. Also, in the final section we show a result concerned with the free
boundary problem (P2), which will be dealt with in author’s forthcoming paper [3].

2 Initial boundary value problem (P1)

In order to give results concerned with (P1) we use the following notations. We put H =
L?*(0,1), X = H}(0,1), and write X* as the dual space of X, (-,-) as the inner product
of H and (:,-) as the pairing between X* and X. Moreover, we set 8 : (—o0,1) — R,
R := (—00,00), B(r) = & for r < 1. Clearly, 3 is the maximal monotone graph on R x R
and 83(r) = B(r), where B(r) = —r — log(1 —7) if r < 1, = oo otherwise. We note that
f is proper, convex and lower semi-continuous on R. We quote the book by Brezis [4] for
definitions and basic properties of convex functions and subdifferentials.

Next, we define a solution of (P1) as follows:

Definition 2.1. Let u be a function on Q(T). We call that u is a weak solution of (P1)
on [0,T), T > 0, if the conditions (S1) ~ (S4) hold.

(S1) u € Sy(T), where S,(T) := W2%(0,T; X*) N W1(0,T; X) N L*(0,T; H3(0,1)) N
Wb2(0,T; H%(0,1)) N {uzz € L=(0,T; X)}.

(82) There exists a positive constant § such that 1 — u; > d§ on Q(T).

(S3) It holds that

(utt’ 7’) - 7(“::3::7 772) - l‘(utzz, "') + (ﬂ(uz)s 771:) =0forne X and ae. t € [0, T]

(S4) u(0, ) = up and u(0,-) = vp on (0,1).

Moreover, if u € S,(T) := Su(T) NW>2(0,T; H) N Wh*(0, T; H*(0,1))
NL*(0, T; H4(0,1)) nW12(0,T; H3(0,1)) and (1.1) holds a.e. on Q(T), then we say that u
is a strong solution of (P) on [0, T).

The next theorem guarantees the well-posedness of (P1)
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Theorem 2.1. LetT > 0, ug € H3(0,1) N X with ugzr € X and vo € H}(0,1). Then

there exists a positive constant ¢ independent of T such that if

1
I'UOI%I + %'uo“ﬁz +[ ,B(UOz)dx <g
0

then (P1) has a unique weak solution on [0,T) for any T > 0. Moreover, if ug € H*(0,1) and
vo € H?(0,1), then the weak solution is a strong solution.

We can prove the uniqueness under the more general assumptions.

Remark 2.1. If u; and u, satisfy the following (S1’), (S2’), (S3’) and (S4), then
%; = Uz On Q(T).

(S1) u,uz € L*(Q(T));

(S2’) 1 — u; > 0 a.e. on Q(T) and 1_1% € LY(Q(T));

(S3’) It holds that

| | ’ 1 1
/ u(nit + YNzzzz + Nntzz)dxdt + / ﬂ(uz)nzdxdt = / voﬂ(o)dﬂ? - / uoﬂt(o)dx
QT) Q(T) 0 0

for n € S,(T) with n(T) = n,(T) = 0.

' We can prove the existence by using Banach’s fixed point theorem and standard approxi-
mation method. Also, Remark 2.1 is proved by the dual equation method. The dual equation
method was already discussed in Chapter 3 of [5] and was applied to one-dimensional shape
memory alloy problem called Falk model in [1].

The proof of Theorem 2.1 is quite standard, so we omit it (see [2]). Here, we show the
proof of Remark 2.1

Proof of Remark 2.1. We assume that u; and u, satisfy (S1°), (S2’), (S3’) and (S4), and
put u = u; — up. Then it holds that

/ (Nt + YNzzzz + Uiz )dzdt + / (8 (W) — B(u1z))n.dzdt = 0
UT) QT)

for n € Sp(T) := {n € S,(T) : n(T) = n(T) = 0}. Here, we put
1 1

F= 1—uip1—uy, on Q(T)'_

Immediately, we have F' € L2(Q(T)) because of (S2’). Then (S3’) implies

/ U(Ner + Vzzzs + Witez)dzdt + Fugngdzdt =0 forne So(T). (2.1)
«T) Q(T)
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Here, we can take a sequence {F;} C C3°(Q(T)) such that F; — F in L*(Q(T)) as j — oo.
Let z € C§°(Q(T)) and for each j consider the following problem.

nj(t’ 0) = nj(t’ 1) = njzz(t’ 0) = Mizz(t,1) =0 for0<t<T,
ni(T) = 1;1(T) = 0.

It is easy to show the existence of a unique solution nj € So(T) of the above problem, since

{ Njtt + YNjzzzz + Ujtzz — (-F,‘inj:c)z =2z in Q(T):

F; and z are smooth.
As the next step we shall obtain some uniform estimates for n; with respect to j. By

putting #;(¢, z) = n;(T — t, z) for (t,z) € Q(T) we have
ﬁjtt + 7ﬁj.1:zzz - ﬂﬁjtzz - (,ﬁ,‘jﬁjz)z =2z in Q(T)3 | (22)
ﬁj(t.,O) = ﬁj(t, 1) = ﬁj,z(t, 0) = ﬁsz(t, 1) =0 for 0 <t< T,
7;(0) = 9;¢(0) = 0,

where F(t,z) = F(T — t,z) and %(t,z) = 2(T — t,z) for (t,z) € Q(T). We multiply (2.2) by
f)je and integrate it over (0,1). Then it yields that ' ’

3O + 3 el + ey
(2(2), 95e(2)) — (F5() (Ajz)(2), Djea(2))
SO+ 5O + Sl + 5B O

IA

IA

1,. 1. W, . 1 = .
1O + O + Sl + S OBl forac. te 0]
Clearly, we have
1d, . o2 74, B
?a—tlﬂjt(t)liz + ga—tinju(tl)lir + S )%
- 1 . N .
< OB + 5@ + ZIBOkN=0OF foraete0T).  (23)
Therefore, Gronwall’s inequality leads to the following estimate.
1, ) Lt
3O+ el + 5 [ ey
t . t
< ge([ @+ 2E@ R [1xnker frostsT.
0 0

Heﬁce, the set {7, } is bounded in L*(Q(T)).
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Accordingly, by using (2.1) we observe that
/ zudzdt = f (Mjtt + Mjzzze + Pjtzz — (FiNjz)z)udzdt
Q(T) AT
= - f ugF'njzdrdt + / Fjnjzuzdzdt for each j.
. T) : T
Therefore, it follows that

| o zud:cdtl < !F} - Fle(Q(T))qu|Loo(Q(T))]nj,_.ILz(Q(T)) for each ]
Jq
so that

/ sudzdt =0 for any z € C(Q(T)).
Q(T)

This is the assertion of Remark 2.1. °

3 Free boundary problem (P2)

The aim of this section is to provide a theorem on the well-posedness for the free boundary
problem (P2). Now, in order to consider the problem on the cylindrical domain Q(T) we
put 4(¢,z) = u(t,z) ~ 't—(%(l(t) — &) and w(t,y) = a(t,£(t)y) for (t,y) € Q(T). Then we
reformulate (P2) as the following problem:

. ) ) e — 2|2 o |
Wee + Y8 (E)Wyyyy — ps" (D)weyy = f + eoy(—“eg_‘—) + L(w) in Q(T), | (3.1)
£'(t) = g(t) — k(s(t)wy(t,1) +1 — Zf()%)_) for0<t<T, (3.2)
w(t,0) = w(t, 1) = wy(t,0) = wy(t,1) =0 for0<t<T, (3.3)
w(0,y) = uo(£(0)y), we(0,y) = vo(boy) + £'(O)yuoz(boy) forO0<y<1, (3.4)
£(0) = £, £'(0) = &, | | (3.5)

where s(t) = 1/£(t), L(w) = —s"byw, + (—|s'ty|* + ks + 2uss )y — §'lywy, + ps?s lywyy,
and f(t,y) = f(t, £(t)y). |
By using this function w we define a solution of (P2) in the following way.
Definition 3.1. We call {u,£} is a solution of (P2) on [0,T], T > 0, if the following
_properties (D1) ~ (D4) hold: Let w define as before. -
(D1) w € W(0,T; X) N L=(0, T; H3(0,1)) N W2(0, T; H?(0, 1)) N W22(0,T; X*) and
wyy(t) € X for a.e. t € [0,T].
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(D2) (3.4) and (3.5) hold.
(D3) For n € X and a.e. t € [0,T),

(wee(8), m) — 15 (£) (i (), 71y) — 152 (2) (g (8), )
oen — 2)p'|2

= (f(t)+ boy(———) + L(w)(¥), 7).
(D4) £ € W2%(0,T) and £ > 0 on [0, T,
2'(t) = g(t) — s(s(t)wy(t,1) +1 — Z%t’?) for a.e. t € [0,T).

Theorem 3.1. Assume~y >0, > 0, K > 0, f € L?(0,T; L?%(0,00)), g € L*(0,T),
b > 0, up € H"(O,Ko) ﬂH&(eo), Upzz € H&(O,eo), Vg € H‘(O,Ko), 'Uo(O) =0, 'Uo(fo) - 20 +
fouos(fo) = 0. Then, (P2) has a unique solution on [0, Tp)] for some Ty > 0.
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