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Notations 

The following symbols are used in this thesis. 

A - crossMsectional area 

A - discretized vector for A 

11 state matrix in controller KR 

Ax - Ao + B2F 
Ay - Ao +LC2 
Ao - state matrix in generalized plant 

a opening area of gate 

aj - i-th decay coefficient 

B - incidence matrix 

B - control distribution matrix in controller KR 

BF stabilizing matrix for B 

Bl disturbance distribution matrix in generalized plant 

B2 - control distribution matrix in generalized plant 

b - algebraic equation to prescribe the boundary condition 

b - specified boundary value 

C solute concentration 

C - spatial position of channel bed 

6 observation output matrix in controller KR 

CA - constant in convergence condition of the NewtonMRaphson method 

CB - constant in convergence condition of the NewtonMRaphson method 

Cc constant in convergence condition of the Newton-Raphson method 

Cd - discharge coefficient 

Ch - numerical solution to solute transport equation 

Cr - interpolated C 

Cq solute concentration which q has 

Co constant in convergence condition of the Newton-Raphson method 

C1 - error output matrix in generalized plant 

Cgo function space 

v 
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C2 - observation output matrix in generalized plant 

c - dissipation parameter 

c" - constant in the 4-point Gauss quadrature rule 

D the diffusion tensor 

'D wetted part of cros&-section 

D - determinant 

D:r; - dispersion coefficient 

d - stochastic component of virtual inflow discharge 

d - the drift vector 

~ i-th component of d 

~j ij -component of D 

diag - diagonal matrix 

E - left hand side of the first algebraic Riccati inequality 

e - unitary vector to prescribe boundary condition 

e.L - unitary vector perpendicular to e 

F - stabilizing matrix for B2 

F - flux vector 

FM -
f -

flux of momentum 

friction force 

f - nonlinear function vector 

Ii - component of load vector 

G generator 

9 - any subset of JRNN 

Ga allowable storage domain 

Gij - matrix of compatible dimension 

G /J - allowable surface profile domain 

Go nominal generator 

9 - gravitational acceleration 

H transformed coordinate system 

HI - Sobolev space 

HJ - completion of C~ in HI 

h - water depth 

h - discretized vector for h and also stochastic variable in Markov process model 

ho - steady surface profile 
h+ hat t+ 

hi - i-th component of h which.is equal to i-th nodal value of h 

hd - water depth at the downstream node 
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hi. , nodal values of h at x~ 
hr: - nodal values of h at xi , 
hu - water depth at the upstream node 

hof i-th component of h deviated from ho under the k-th stochastic event 

I - ns-dimensional unit matrix 

In - n-dimensional unit matrix 

J(u) - functional to be minimized 

JR(u) functional to be maximized 

Js - reliability of surface profile 

Js lower bound of J s 

Kc anti wind-up controller 

KG - feed-forward controller 

KR - feed-back controller 

ki i-th load coefficient 

L - detecting matrix for C2 

li - lower bound of interval 

M - 1( (Q)')l 
1 + X In ADx dx 

Ms - number of elements of As 

Mq number of turnouts 

M mass vector of discretized continuity equations 

rns number of control structures 

NE number of elements 

NN - number of nodes 

NB - number of boundary nodes 

n Manning's roughness coefficient 

n outward unit normal vector 

ns - number of pools 

0 infinitesimal 

P - transition probability 
p - boundary of 1) 

Pe;, - local Peclet number 

p - probability density function 

p - pressure 

Q - discharge 

Q discretized vector for Q 
Q(k) - transformation matrix in Householder tridiagonalization 
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Qi - i-th component of Q which is equal to i-th elemental value of Q 

Q - extended Q 
q - unit-width lateral discharge 

q - discretized vector for q 

q - external disturbance vector 

qj - lateral discharge at j-th turnout 

R - hydraulic radius 

IRn - n-dimensional real Euclidean space 

r radius in the polar coordinate system 

Ti - upper bound of interval 

TO - divergence free part of A~ 
Q x 

Tl - divergence part of ADx 

r reference vector 

S - symmetric matrix 
s(le) - transformed matrix in Householder tridiagonalization 

Sf - friction slope 

SM - source of momentum 

S - source vector 

S boundary of V 

8 - frequency 

Si,j - ij component of S 

Bk - vector in Householder tridiagonalization 

T - terminal time 

Te - examination period 

t - time 

tf - specified final time 

ti - specified initial time 

tij ij -component of transformation matrix 

ti,j - time at the j -th stage of the i-th series of data 

t+ - time which is greater than t 

U - conserved vector 

Uad - set of admissible control 

Uk orthogonal matrix 

u deterministic component of virtual inflow discharge 

u - control variable 

u control variable vector 
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Uad - admissible control variable 

u E - perturbed control variable 

UI - nominal control variable vector 

V test domain 

Vh - finite dimensional space of piecewise linear functions 

v - absolute velocity of water 
(k) estimate of eigenvector Vi -

V" - proper velocity of S 

W contribution factor 

WD - orthogonal matrix 

WI - the first row of W 

W2 the second rows of W 

WI - first block of input disturbance vector 

W2 - second block of input disturbance vector 

W3 third block of input disturbance vector 

Wk - constant in the 4~point Gauss quadrature rule 
w'I - i-th constant weight to scale y as Za 1 

X - storage 

X - state variable vector 

Xc current storage 

X h - finite dimensional space of piecewise constant functions 

Xi'; - X at ti,j 

Xmax - allowable maximum storage 

Xmin - allowable minimum storage 

Xoo solution to the first algebraic Riccati inequality 

x - local curvilinear abscissa 

x the tangential vector of C in lR 3 

Z - unknown independent variable vector 

x~ 
1 - inferior of !l; 

X~ - superior of n: 1 

Xq - the spatial point on which the turnout T-5 is located 
Z{k) - k-th approximation to x 

Xl - upper bound of V on x 

X2 - lower bounds of V on X 

Yoo - solution to the second algebraic Riccati inequality 

y - reservoir reliability 

y - state variable 
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'Y - observation output vector 

YT - targeted value of y in a steady state 

Yo - specified initial value of y 

jj - targeted value of e.l . y 

y - targeted value of y 

z - vertical axis 

z - vertical upward unit vector 

Zb elevation of channel bed 

%1 - first block of error signal vector 

%2 - second block of error signal vector 

%3 - third block of error signal vector 

a - velocitYMdistribution coefficient 

at - scalar in Householder tridiagonalization 

aq - relaxation parameter 

f3 bilinear form 
pi - normalized bilinear form 

Pi - nonMdiagonal component of tridiagonal matrix 

13ft - contribution from n~iI' to i-th node 

r - boundary of n 
r - gamma function 

fl - first boundary of WB model 

r 2 second boundary of WB model 

t::..l!- - deviation parameter for U-j I 

t::..H Laplace operator in the H -coordinate system 

t::..ha - allowable deviation vector 

t::..h~ - i-th component of t::..ha 
s 

t::..~ - deviation parameter for ~ I 

t::..qj - absolute value of deviation of qj 

t::..t - temporal integration interval 

6.to - time increment 

6.1f - deviation parameter for the i-th component of u , 
6.x; - measure of Of 
t::..7J - difference between the water levels that bounds gate 

J - Dirac's delta function 

0; diagonal component of tridiagonal matrix 

oJB - contribution of u on the boundary to oJ(u) 
oJD - contribution of u in the domain to oJ(u) 



oJr - contribution of u at the initial time to oJ(u) 

.:Jk Jacobian matrix 

fJJT - contribution of y at the terminal time to fJJ(u) 

fJJr - contribution of y on the boundary to oJ(u) 

8Jn - contribution of y in the domain to oJ(u) 

fj - C - Ch at j-th node 

c positive real number 

7] - elevation of water surface 

7]u - elevation of upstream water surface 

7]d elevation of downstream water surface 

e - implicit parameter 

(}d - linkage parameter 

(}r:. angle between nf and n~:. 
~ ~ 

(}~ . angle between nf and ne I 
'J • K,j 

(} S - submergency 

Ow - down-windiness 

Kij element number of j-th element connected to the i-th node 

K!j element number of the j -th element connected to x~ 

Kij element number of the j-th element connected to xi 
Ak ()/) - diagonal matrix for ).,' 

set of indices i and j 

adjoint variable for the FPPDE 

adjoint variable for open channel unsteady flow equations 

any real number 
. f 111/Jllv 
ill 1 

1/JEHJ,1/J;t:D (In 1jJ2dx)"i 
i-th eigenvalue of D 

the first component of ~ 

A2 - the second component of ~ 

A2i - A2 value in ni 
A~i - estimated value of A2 at x~ 
A2i - estimated value of A2 at xi 

I-' - 1 - ~ (1, rldx) l 
number of elements connected to the i-th node 

the number of elements connected to x~ 

vi - the number of elements connected to xi 
vector function of h and Q 

xi 
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tv - probability density function for reservoir reliability 

p - density of water 

U - positive real number 

(Tic - scalar in Householder tridiagonalization 

". = scaled time 

4> - unknown vector in the heat equation 

~ - load vector 

<Pi - Sturm sequence 

rp - source term due to friction force which a hydraulic structure causes 

W - vector function of h and Q 
'ljJ - weighting function 

1jJf - weighting function for solute transport equation 

'lfJr - i-th basis of Vh 
x 'l/Ji - i-th basis of Xh 

n - domain 

Or - i-th element 

no - any domain which contains the origin 

o - null vector 

Prefix 

o = right hand derivative with respect to c 

Superscript 

e = value when US is chosen as the control variable 

Subscripts 

+ - time after tlt 

* - time between t and t+ 
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Chapter 1 

Introduction 

1.1 Background 

Water resources engineering plays a significant role in achieving prosperity of human 

society. Flood mitigation, land drainage, sewerage, are necessary means to protect life 

and property from being damaged. Irrigation technologies, from simple water harvest~ 

ing to modern piped distribution system, make a major contribution to food production, 

establishing sustainable use of limited fresh water resources. Hydroelectric-power and 

navigation are examples of the utilization of water for beneficial purposes. However, even 

if infrastructures such as dams, canals, and hydroelectric plants are complete, misman~ 

agement of them may cause serious disaster. Importance of systematic management of 

water resources is now increasing with the rapid development of human activities. 

Recent drastic advance in information technology enables theoretical and practical a~ 

proach to management of stock and flow of water. Hydraulic and hydrological investiga­

tion of phenomena on a mathematical basis is materialized with the help of a computer. It 

is remarked that there are two aspects in the computer-aided water resources engineering; 

one is "modeling", and the other one is "controlling". 

Modeling problems in water resources engineering include hydrodynamical modeling 

of water in motion, statistical modeling of water under uncertainty, and then numerical 

modeling of these mathematical models. Since water is regarded as continuous medium, 

a mathematical model is described in terms of partial differential equations (PDEs). A 

hydrodynamical model may comprise equations of continuity and motion such as Euler's 

equations, whereas a statistical model may be given as a Fokker-Planck partial differential 

equation (FPPDE) which represents a Markov process (Ito [37]). Such PDEs require 

accompanying algebraic equations to represent initial conditions, and external and/or 

internal boundary conditions so as to constitute a complete system. Then, the system 

represents a water resources system in a mathematical sense. An approximate solution 

1 
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to the PDEs with the algebraic equations is obtained using a numerical model that is 

implemented in a computer. A numerical model discretizes unknown functions or function 

spaces for unknowns into finite dimensional ones. Stability and accuracy of the numerical 

model depend on the discretization scheme, which should be suitable for the nature of the 

PDEs to be solved. Discretized PDEs turn algebraic equations which may be nonlinear. 

Nonlinear algebraic equations are solved using the Newton-Raphson method. However, 

the Newton-Raphson method requires certain functional regularity (See Appendix A), 

which is often violated without a special smoothing technique. 

Controlling water resources means formulating an optimal control problem on a mathe­

matical model as mentioned above. An optimal control problem in general comprises the 

following components (Lions [57]). 

1. A control variable constrained in a set of admissible control. 

2. A state variable which is given for a chosen control variable as the solution to an 

equation which describes the model of the controlled system. 

3. An observation variable of the state variable. 

4. A functional of the observation variable. 

The problem is to search a control variable that minimizes or maximizes the functional. 

The control variable in a water resources system is to determine operational strategy of 

hydraulic structures. The state variable is given by the unknowns of the mathematical 

model. The observation variable is taken as a function ofthe state variable and/or the con­

trol variable. The functional is the performance index to evaluate how much the behavior 

of the observation variable is suitable for an engineering purpose. Once an optimal control 

problem is formulated, conditions to optimize the control variable are investigated. The 

conditions may be given by inequalities. An optimization procedure is developed to search 

the control variable to satisfy the conditions and is mainly implemented by computer. 

1.2 Purpose and structure of this thesis 

This thesis focuses on water conveyance systems and water storage systems from among 

various water resources systems. These two systems are considered as generalization of 

canals and dams in an irrigation system, respectively. Thus, primary application in the 

real world shall be to design and management of large area irrigation systems which need 

stable supply of water, but other problems in water resources engineering can be discussed 

in the same framework. 
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In order to approach the water conveyance/storage systems, open channels in terms of 

hydraulics and reservoirs under stochastic environment are intensively researched. Clarifi­

cation of mathematical rationales of open channel flows and reservoir storages, especially 

when they are controlled under human will, is the main objective. Numerical techniques 

are elaborated to simulate states of the systems, to present optimization procedures, and 

to design optimizing controllers. 

Succeeding chapters are organized as follows. 

Chapter 2 introduces a mathematical model of open channel unsteady flows and presents 

a numerical model which is applicable to channels of network type. Governing PDEs, 

which are derived from physical conservation laws, are discretized using the finite element 

method and the finite volume method. General principle to introduce hydraulic struc­

tures such as sudden transition and gate is demonstratively shown. In addition to that 

numerical model for open channel unsteady flows, a scheme is proposed to solve the solute 

transport equation which governs water quality in open channels. This scheme compa­

tively uses the finite element method and the finite volume method so as to be applicable 

to any parabolic PDE such as FPPDE in Chapter 5. Although the numerical techniques 

developed in this chapter aim to be calculation tools in other chapters, combining the 

different two methods into one model is a novel approach in computational hydraulics. 

Chapter 3 considers optimal control problems of open channel flows in the framework 

of variational calculus. The observation variable is supposed to be the state variable, and 

the functional to be minimized is of quadratic type. A minimum principle in a general 

form is given using an adjoint system of the governing PDEs system of open channel 

flows. Gate stroking problems, which are to design external and/or internal boundary 

conditions such as gate motions to produce a predetermined flow, are approached. 

In contrast with Chapter 3 whose object is restricted to deterministic process, Chapter 

4 deals with open channels under stochastic environment. A statistical model of stochastic 

process in open channels is presented as FPPDE for multiple variable (Risken [79]), and 

applied to designing optimal surface profile, taking a reliability as the functional. 

Chapter 5 considers reliability of a single reservoir. The mathematical model of the 

reservoir reliability is given as the FPPDE with one variable. An optimal control problem 

is formulated so as to maximize the reservoir reliability. A maximum principle is 0 btained 

in a similar manner to Chapter 3. Coefficients in FPPDE are determined from data 

observed at existing reservoirs, and strategies of release discharges are optimized. 

Chapter 6 is devoted to design of linear controllers which are applicable to open channel 

networks as well as reservoirs. In the preceding chapters, open-loop control systems 

which drive control variables without feed-back are used. The control system in this 

chapter includes linear controllers to feed-back observed quantities and is oriented toward 
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automatic control. The modern control theory is employed to construct a robust control 

SyStem, which has not yet beenestab1ished in water resources engineering. A virtual 

mathematical model where ,the observation vector is an error signal vector is considered 

instead of·~.·physicalmodel /:l.8 in the preceding chapters. The functional is. taken as an 

. Hoo norm, or the least upper bound of the maximum singular value on the imaginary axis, 

of a g®eralized plant in the frequency domain, and the controllers are designed using the 

algebraic design method . 

. Chapter 7giV'e8 :conc1usions to summarize this thesis. 

Thus,Chaptera 2 through 6 are related with each other by key words as shown in Figure 

1.1. 
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Deterministic process ..___----.-....... Chapter 3 

Chapter 4 
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Chapter 6 
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Figure 1.1: Structure of this thesis and relating key words 
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Chapter 2 

Modeling of Open Channel Flows 

2.1 Introduction 

Modeling of flows in an open channel network with hydraulic structures is an indispensable 

approach to water conveyance systems. A system of PDEs which describe the conservation 

laws of mass and momentum in continuous fluid is widely used as a mathematical model 

of flowing water. One-dimensional (ID) models are applied to conveyance systems where 

water flows along courses. In a ID model, the PDEs system represents states of unknowns 

such as flow depth and discharge in time and space, whereas hydraulic structures may 

be incorporated as external or internal boundary conditions which algebraic equations 

prescribe. 

Numerical models are developed to obtain an approximate solution to the PDEs system 

with the algebraic equations. Many numerical schemes have been developed to discretize 

the PDEs system, which is hyperbolic and nonlinear. Lax and Wendroff [53] investi­

gate finite difference schemes to capture discontinuity in a solution. The characteristic 

speeds are carefully considered in the finite volume method to represent transcritical flows 

(Garcia-Navarro et aI. [27]; Meselhe and Holly Jr. [63]; Meselhe et al. [64]) or dam break 

flows (Jha et al. [38]; Jha et al. [39]; Jin and Fread [40]). Finite element schemes based 

on the weak formulation of the PDEs also require special numerical technique to avoid 

oscillations as discussed by Anastasiadou-Partheniu and Terzidis [6], Hicks and Steffier 

[34], Alam and Bhuiyan [3], Munoz-Carpena [68], and Choi and Garcia [18]. Equalizing 

boundary values at junctions, the above discretization schemes are applicable to a channel 

network when it is simply connected so that any couple of points is connected along only 

one path (Misra et aI. [66]; Choi and Molinas [17]; Nguyen and Kawano [721; Blandford 

and Ormsbee [10] Naidu et al. [69]), but difficulty arises in a multiply connected chan­

nel network which has a couple of points that is connected along more than one path. 

Nguyen and Kawano [73] develop an iterative algorithm to combine simply connected 

7 
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channel networks into a multiply connected channel network. Jollffe [41] proposes an 

implicit finite difference scheme to handle multiply connected channels as a single unit. 

The Abbott-Ionescu scheme (Abbott and Basco [11), whose numerical solution method 

is given by Kutija [52], is a versatile one which evaluates water depth and discharge at 

different points. 
The algebraic equations which govern flow-discharge relationships of hydraulic struc­

tures are incorporated into numerical models of the PDEs system as external or internal 

boundaries (Husain et ai. [36J; Swain and Chin [85J; Kawachi and Itagaki [45]). However, 

such models are often unstable because functional regularity that the Newton-Raphson 

method, which is used for solving nonlinear algebraic equations, requires. 

In the numerical model presented here, the following innovations are included to handle 

multiply connected channel networks with hydraulic structures (Kawachi et al. [49J). 

1. A finite element scheme is used for the continuity equation, whereas a finite volume 

scheme is used for the momentum equation. 

2. Linkage parameters are introduced to modify the dynamic equations fulfilling func­

tional regularity at hydraulic structures. 

Upwind technique considering the characteristic speed is not employed in the discretiza­

tion procedure of the PDEs because it is assumed that flows are dominantly subcritical 

in water conveyance systems to be considered. However, this assumption may be vio­

lated at a finite number of points where hydraulic structures, and such points are handled 

as internal boundaries. Transitions and gates are especially focused on from among the 

hydraulic structures. 

In addition to the flow modeling, a discretization scheme for solute transport equations 

is proposed to analyze water quality in open channel networks. The scheme compatibly 

uses the finite element method and the finite volume method to be applicable to general 

parabolic PDEs including the governing equation of the reservoir reliability discussed in 

Chapter 5. 

2.2 Governing equations of open channel flows 

Unsteady flow in open channels are governed by continuity and dynamic equations. 

A course of water which flows on the terrestrial surface is defined as the following 

mathematical model after Afif [2J, as shown in Figure 2.1. 

l.A curve C is given in IR3, J.,dimensional real Euclidean space) to represent the spatial 

position of the channel bed on which water flows. The local curvilinear abscissa x 
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is established along C, and the tangential vector of C in IR3 is denoted by x. The 

vertical z-axis is taken originated at a horizontal datum. 

2. The geometry of the vertical cross-section of the course is given at each point of C. 

The wetted part of the cross-section is denoted by 'D, which is a time dependent 

2-dimensional bounded domain. The measure of 'D is the wetted cross-sectional 

area, which is denoted by A. Since a z-value determines an A-value at a point of C, 
A is given as A(z), which is a monotone increasing function of z. 

3. The water depth h is defined by the vertical distance from C to the free surface, 

which is the upper edge of 'D. 

z 

~-·X 

Figure 2.1: Definition sketch of water course 

The governing equations of open channel flows are derived from the physical conserva­

tion laws, which are applied to a test domain V. The test domain V, shown in Figure 2.2, 

is defined as 

(2.1) 

where Xl < X2, and subscripts 1 and 2 are used for referring to the Xl and the X2 sections, 

respectively. 
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x 

Figure 2.2: Test domain V 

2.2.1 Continuity equation. 

The conservation law of mass states that the temporal variation of the mass of the water 

contained in V is equal to the total mass flux entering into V. Since the relative velocity of 

the water entering into V is given by the difference between the absolute velocity of water 

and the proper velocity of the boundary of V, the conservation law of mass is represented 

as 

(2.2) 

where t ~ time, p .. delisity of water which is taken as a constant, 8 ~ boundary of V, 

v·= absolute veiocity of water, Vs = proper velocity of S, and n= outward unit normal 

vector. Note that Vs vanishes on S except the free surface where v" = v and that n is 

equal to -x and x on VI and V 2 , respectively. Assuming that the density p is a constant, 

the left hand side of Eqn.(2.2) is rewritten as 

~ r pdV = p~l· Z2 (r aD) dx =plz2 .(8A) dx 
dt Jv dt Zl . J'D Zl at (2.3) 
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whereas the right hand side is reduced to 

-1 p(v - Va) . ndS = -P(Q2 - Qd + p {Z2 q dx = _plJ;2 (aQ - q) dx (2.4) 
S iXl.:tl ax 

where Q = discharge defined as 

Q = h v·xd'D (2.5) 

and q = lateral discharge per unit-width given by 

q = k V· nd'P (2.6) 

where 'P = boundary of 'D. Since the conservation law of mass holds for arbitrary Xl and 

X2, the continuity equation 

(2.7) 

holds at any point of C. 

2.2.2 Momentum equation 

Next, the conservation law of momentum is applied to the same V to obtain the equation 

of motion. The temporal variation of the total momentum contained in V is equalized to 

the sum of the total momentuin flux entering into V, the contact force acting on S, and 

the inertial force acting in V. Assuming that the contact force consists of the pressure 

force and the friction force, the conservation law of momentum is represented as 

~ (pvdV=- r p(v-va).nvdS- r pnd8+1 fdS - f pgztiV (2.8) 
dt Jv Js is s iv 

where p = pressure, f = friction force, 9 = gravitational acceleration, and z = vertical 

upward unit vector. Each term of Eqn.(2.8) is rewritten as 
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= _ { p(v. n2)vdV - { p(v. Dl)vdV - r:2 

({ p(V' n) v dV) dx 
~ ~ ~ k 

. = _ p f vvdV + p f vvdV - p l xl 
( f V· D V dV) dx 

11)2 }1)I :1;1 11) 

-kpnrLS = - Iv VpdV = - i:2 (Iv Vpd:D) dx· (2.11) 

Is f rLS = 1~2 (k fdP) dx (2.12) 

_ f pg zdV = -p r l (f 9 zdV) dx = -p r 2 

gAz dx (2.13) k hI k hI 

where v = V· x, and the How direction of the lateral discharge q is assumed perpendicular 

to C. Thus, the momentum equation in vector form 

aa f vd1J + aa f vvdV + ~ f Vpd1J - ~ f fdP + gAz = 0 (2.14) 
t 11> x 11> P 11).. P 11' 

where 0 = null vector, holds at any point of C. In order to obtain a scalar equation, 

Eqn.(2.14) is projected onto the flow direction assuming that the pressure distribution 

is hydrostatic. This is achieved by taking the scalar product between Eqn.(2.14) and x, 
which is reduced for each term as 

a1 01 aQ - vd1J . x = - v . xdV = -at 1> at 1) &t 
(2.15) 

81 . ··a1 h ax -a vvcfD . x = - v(v· x)dV - vvdV . -x 1>. ax 1> 1> ax 

= - f v dV - { v x· -dV = - --a 2 2 ax a (o.Q2
) 

ax J1> J1> ax ax A 
(2.16) 

- VpdV· x = 9 V(1] - z). xd:D = gA - - - = gA- . 1 h 1 (81] aZb) ah 
p 1> 1> ax ax· . ax (2.17) 
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! { fdP· x = <p - gAS, (2.18) 
pJP 

A OZb 
g z· x = gA 8x (2.19) 

where Q' = velocity-distribution coefficient, Zb = elevation of channel bed, 71 = Zb + h 

= elevation of water surface, <p = source term due to friction force which a hydraulic 

structure, if any, causes, and S, = friction slope which is given by 

(2.20) 

where n = Manning's roughness coefficient, and R = hydraulic radius. Finally, the mo­

mentum equation in scalar form is obtained as 

which is rewritten as the conservative form 

8Q oFM 
-+-+SM=CP ot ox 

where F M and S M = flux and source of momentum given by 

and 

(h oA(z) OZb 
SM = SM(h, Q) = -g Jo ox dz + gA(h) ox + gA(h)SJ(h, Q) 

respectively. 

(2.21) 

(2.22) 

(2.23) 

(2.24) 

Determining A, FMl and SM uniquely, h and Q are taken as the unknown functions 

to be found. Thus, Eqns.(2.7) and (2.22), the governing equations of open channel flows, 

consist a hyperbolic PDE system of the first order in two different independent variables. 
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2.2.3 Initial and boundary conditions 

Generally speaking, the solution to a differential equation is not uniquely determined by 

the equation itself. The solution to an ordinary differential equation depends on arbitrary 

constants, which can often be taken as the initial values of the unknown function and its 

derivatives because the number of them should be equal to the order of the differential 

equation. The situation is similar for simultaneous PDEs such as the governing equations 

of open channel flows deduced above. The solution will depend on a number of arbitrary 

functions. 

Let the open channel network to be considered be a locally 1D open set which shall 

be referred to as the domain n. If the domain n is of infinite extent, a problem to solve 

the governing equations so that the unknown function takes specified value at the initial 

moment of time is known as a generalized Cauchy problem. The specified condition is 

called the initial condition or the Cauchy data. However, in engineering practice, the 

domain n may be of finite extent with the boundary r where the values of unknowns 

are prescribed at any moment of time. The prescribed condition is called the boundary 

condition and may be expressed as 

b(h, Q)I1' = b (2.25) 

where b = algebraic equation to prescribe the boundary condition, b = specified boundary 

value. 

2.3 Discretization of governing equations 

A numerical model of Eqns.(2.7) and (2.22) is obtained by means of the finite element 

method and the finite volume method. For the sake of simplicity, the lateral discharge 

flowing into or out of the stream is assumed to vanish almost everywhere in the channel 

and is given by a linear combination of Dirac's delta functions whose sources are located 

on finite number of spatial points. 

The channel network to be analyzed is divided into N E elements by N N nodes, so that 

any singular point falls on one of the nodes. The number of boundary nodes are denoted 

by NB • Given such a division, two finite dimensional spaces VA and Xh are defined. Vh is 

the NN-dimensional space whose generic i-th basis 1/Jf is given by 

{

I 
1/Jr = 0 

linearly interpolated 

( at the i-th node) 
( at other nodes) 

(in elements) 
(2.26) 
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as shown in Figure 2.3, whereas Xh is the NE-dimensional space whose generic i-th basis 
1/J; is given by 

1/;; = {01 (in the i-th element) 
( in other elements) 

as shown in Figure 2.4. 

i-th node 

Figure 2.3: Basis 1/JY and typical Vh-function 

i~th cle~.i _1/;_' __ • _. 

-: 

Figure 2.4: Basis 1/;f and typical Xh -function 

(2.27) 

, 

r 

The unknowns h and the bottom elevation z are assumed to be Vh -functions, whereas 

the unknown Q is approximated by an Xh-function. Being taken as primitive unknowns, 

hand Q are discretized as N N-dimensional vector h whose i-th component is 14, the i-th 

nodal value of h, and NE-dimensional vector Q whose i-th component is Qi, the i-th 

elemental value of Q, respectively. The vector Q is extended as (NE + NB)-dimensional 

vector Q whose (NE + i)-th component is the i-th boundary value of Q. 
The weak form of the continuity equation Eqn.(2.7) is written as 
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where '1fJ = any weighting function in HI, the Sobolev space which consists of functions 

whose first derivatives are square Lebesgue integrable, and supp = support of the set. 

Substituting'1fJf (i = ltv NN) results in the vector form 

dA -
-+BQ=q 
dt 

(2.29) 

where A = NN-dimenaional vector whose i-th component is equal to j A'1fJi dx, 

supp¢y 

and B = incidence matrix, which is of NN x (NE + NB) in size, q = NN-dimensional 

vector whose i-th component is equal to the intensity of q concentrated at the i-th node. 

Altman and Boulos [5] prove that the matrix B so obtained is full rank. 

The finite volume method is applied to the momentum equation Eqn.(2.22), which is 

integrated over a generic i-th element Or as 

(2.30) 

where x~ = inferior of n:, and xi = superior of Or. Using estimations given by 

(2.31) 

(2.32) 

and 

1 S dx = ~Xi ~ S ( 1 - Cit; h~ + 1 + Cit; h~ Q.) 
a M 2 L Wle M 2 ' 2 ' , , 

ni Ie=I 
(2.33) 

where ~Xi = measure of Or = xi-'- ~, h~and hi = nodal values of h at x: and xL 
respectively, and Wle and C/c (k = 1 IV 4)= constants in the 4-point Gauss quadrature ru1e 

as shown in Table 2.1, Eqn.(2.30) is reduced to the vector form 

! (rliag[L\xi1Q) + M = lot: cpdx 
• 

(2.34) 

where diag represents a diagonal matrix whose ii-component is given as the value between 

the brackets, M = NE-dimensional vector whose i-th component is equal to the sum 
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of the respective right hand sides of Eqns.{2.32) and (2.33). Then, from Eqns.(2.29) and 

Table 2.1: Constants Wk and Ck in the 4-point Gauss quadrature rule 
k 
1 0.3478548451 
2 0.6521451549 
3 0.6521451549 
4 0.3478548451 

-0.8611363116 
-0.3399810436 
0.3399810436 
0.8611363116 

(2.34) 1 (N N + NE)-dimensional simultaneous ordinary differential equations are obtained 
as 

where 8(h, Q) and w(h, Q) = vector functions of hand Q given by 

and 

8(h,Q) = [ A] 
diag[~xi]Q 

[ 

-BQ+q 1 
W{h,Q) = [ 

-M+ cpdx 
n~ • 

(2.35) 

(2.36) 

(2.37) 

respectively. Using the implicit scheme, Eqn.{2.35) is discretized in the temporal domain 

as 

where At = temporal integration interval, e = implicit parameter, and subscript + refers 

to the time after At. 
The boundary condition Eqn.(2.25) is incorporated into the model as NB algebraic 

equations. 

The total number of the equations obtained so far is equal to (NN + NE + NB), which 

is the same as that of components of the unknown vectors h and Q. Therefore, the 
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Newton-Raphson iterative procedure is applied for the simultaneous solution to these 

equations. 

2.3.1 Steady flow analysis 

Flow analysis in steady state is rather important for the determination of the physical di­

mensions of channels and the layout of hydraulic structures. Beffa [9] executes backwater 

computations for transcritical flows. Kawachi et ai. [48] and Kawachi et al. (44] ex­

hibit excellent solution performance in open channel networks using the Newton-Raphson 

method. 
The unknown vectors h and Q in steady flows may be obtained as the solution to 

W (h,Q) =0 (2.39) 

which represents the fixed point of Eqn.(2.35). 

2.4 Incorporation of hydraulic structures 

The governing differential equations are applicable to gradual transitions without any 

modification. 

The numerical scheme can be applied to sudden horizontal transitions where x~ = xi, 
because any zero division does not appear. Contrary to sudden horizontal transitions, sud­

den vertical transitions, as shown in Figure 2.5, require proper alteration of the dynamic 

equation because the assumption of hydrostatic pressure may be significantly violated. 

If hdl water depth at the downstream node, is so large that reverse flow occurs, 

Eqn.(2.30) holds without any change. When hd is small enough, hu, water depth at 

the upstream node, becomes critical depth, and the algebraic equation 

(2.40) 

governs the flow. Assuming that the distance between the upstream and the downstream 

nodes is infinitesimal, these two extreme equations are appropriately linked by 

(2.41) 

where Ii = (NN + i)-th component of the left hand side of Eqn.(2.38) (for unsteady flow 
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.... ,. 

.. ' 
'.~:." .. ""'.... -__ ~...,.,... ....... hu'" ....... ::::::., .... 

datum 

. .' .. ' .' 

.' 

Q 
:> 

Zu ... --~~~-...I-... -.,.....,..,..-

infinitesimal distance 

Figure 2.5: Definition sketch of sudden vertical transition 

analysis) or Eqn.(2.39) (for steady flow analysis), and (Jd = linkage parameter given by 

where submergency Os and down-windiness (Jw are respectively defined as 

() _ { !Jd~ZU 
8 - h" 

o 

(TJu ::; TJd) 
(zu < TJd < 1],;) 

(TJd ::; zu) 

1 (Fru ::; 0) 
1- Fr~ (0 < Fru < 1) 

o (1 ::; Fr.J 

(2.42) 

(2.43) 

(2.44) 

where 1]1.1 = Zu + hu = elevation of upstream water surface, and fJd = Zd + hd = elevation 

of downstream water surface. The left hand side of Eqn.(2.41), which has regularity up 

to the second derivatives with respect to hUl hdl and Q, satisfies the necessary condition 

of solution convergency in the Newton-Raphson iteration process. 

Other hydraulic structures may be modeled by compatible dynamic equations as well. 
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For gates, submerged flows is modeled as the algebraic equation 

QIQI - 2gC~a2 Al] = 0 (2.45) 

where Cd = discharge coefficient, a = opening area of the gate, and Al] = difference 

between the water levels that bounds the gate. The corresponding momentum equation 

in Eqn.(2.38) or Eqn.(2.39), which is used when the gate is fully open so that it does 

not affect the flow, is replaced by Eqn.(2.45) when the flow through the gate submerges. 

When the Bow through the gate is neither of the two cases, the two respective equations 

are linked by a regular parameter which is similar to the one used in Kawachi et al. [49J. 

2.5 Coupling of solute transport equation 

The importance of water quality analysis is increasing nowadays in both socioeconomicaI 

and environmental aspects (Lee et al. [55]). Kawachi et al. [43] applied an upwind 

finite element model of locally one-dimensional flow to unsteady analysis of saline water 

in a simply connected estuarine reservoir. Szymkiewicz [86] develops a six-point implicit 

finite element scheme for a transport equation and analyzes its accuracy and stability. The 

finite difference method is examined by Komatsu et al. [51]. The technique presented here 

compatibly uses: the finite element method and the finite volume method to be applicable 

to a parabolic PDE with dominating convection (Unami et at. [91]). 

In order to analyze water quality in open channel networks, a parabolic PDE which 

describes the conservation law of mass of the aolutant is solved. The solute transport 

equation, which governs the concentration, is stated as 

ac a ( ac) ac A--- ADa;-. +Q-=(C -C)q at ax ax ax q 
(2.46) 

where C = solute concentration, Dz = dispersion coefficient, and Cq = solute concentrar 

tion which q has. For the sake of simplicity, the following assumptions are made. 

1. The solute concentration C does not affect the flow field. 

2. A, D:r;, Q are constants in the temporal domain. 

2.5.1 Upwind discretization scheme 

Being a second order equation with a convection term, the solute transport equation 

requires a more sophisticated scheme than standard Galerkin scheme or simple finite 
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volume scheme. Thus, an upwind scheme is now introduced. A bilinear form {3(C,W) is 
defined as 

{3(C, w) = AD:c-- + Q-¢ dx 1 ( aCa1/! BC) 
n ax ax ax (2.47) 

for arbitrary C and 1/J in HI. A weak form of Eqn.(2.46) is written as 

where the path of integral is along the whole channel network. Using the local Peclet 

number Pei given by 

(2.49) 

a weighting function 1jJf is defined with a constant dissipation parameter c, as shown 

in Table 2.2, and substituted into 'IjJ in Eqn.(2.48). Note that this scheme approaches 

a standard Galerkin scheme if the Peclet number equals zero, and does a finite volume 

scheme if it diverges to infinity. 

Table 2.2: Definition of weighting function 1jJf 
x directs the node -x directs the node 

1 

Specification of a boundary condition at a boundary node is achieved by proper replace­

ment of the corresponding nodal equation, whichever the type of the boundary condition 

is. 

2.5.2 Consistency and dissipation parameter 

In order to verify the validity of the upwind scheme, consistency of the numerical solution 

with a weak solution is examined for the solute transport equation without the source 
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IP~I=O 
. '. 

• 
Figure 2.6: Weighting function ¢P 

term in steady state. The bilinear form P( 0, 1/J) is assumed to be bounded and coercive 

so that there exists a weak solution (See AppendiX B). 

Suppose that Ce Hl and the numerical solution Ok E Vh satisfy 

(2.50) 

for i = 1 f'V N N. Then,error is estimated in.terms of the equation 

(2.51) 

wh~~e 0 1 = the Vh -function whose nodal valu~· are equal to respective' those of 0, cis 
shown in Figure 2.7. 

Since O[ - Ok e Vh, the left hand side of Eqn.(2.51) is rewritten as 
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Figure 2.7: Interpolation of 0 

where €j = C - Ck at j-th node, and J3(1fJY,1fJf) is calculated as 

Vi 

2:J3ik 
k=l 

-J3fk 
o 

(i = j) 

(n~i" is bounded by the i - th and j - th nOdes) 
(otherwise) 

(2.53) 

where Vi = the number of elements connected to the i-th node, Kij = element number of 

j-th element connected to the i-th node, and J3fk = contribution from nlt;/e to i-th node 

as given in Table 2.3. Consistency of the numerical solution Ok with 0 is established if the 

Table 2.3: Representation of 13ft 

x in n~. directs the i-th node -x in ne. directs the i-th node 

left hand side of Eqn. (2.51) approaches to zero when C1 - C uniformly converges to zero, 

and it is guaranteed if all f3fk are positive because the rightest hand side of Eqn.(2.52) is 

rewritten for i such that €i is the maximum as 
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where indices j and k are appropriately taken, using the equality 

{3(?f;i,?ff) = - LP(?f;j,?ff) (2.55) 
j#i 

which is deduced from Eqn.{2.53). Thus, from the representation in Table 2.3, the in­

equality 

(2.56) 

is deduced for i = 1 rv NE , and the constraint of the dissipation parameter c 

Icl > 1 (2.57) 

is obtained. 

The effectiveness of the scheme is tested in a simple problem where ADz = 1, Q = 5 

and .6.Xi = 1 in the domain (0,10). The solutions under the boundary condition C(O) 
= 0 and C(10) = 1 are shown in Table 2.4. No stable solution is obtained when c = 0, 

whereas stability is established when c = 1 and c = 10. The solution when c = 1 is better 

than that when c = 10 in terms of closeness to the exact solution. 

. tIlc de 
Table 2.4: SolutIOns to - dx2 + 5 dx = 0 

x c=O c=1 c= 10 exact 
0.000 0.00000000 0.00000000 0.00000000 0.00000000 
1.000 -0.00069695 0.00000000 0.00000004 0.00000000 
2.000 0.00092927 0.00000000 0.00000029 0.00000000 
3.000 -0.00286524 0.00000000 0.00000196 0.00000000 
4.000 0.00598861 0.00000002 0.00001287 0.00000000 
5.000 -0.01467037 0.00000046 0.00008409 0.00000000 
6.000 0.03353391 0.00000854 0.00054933 0.00000000 
7.000 -0.07894274 0.00015794 0.00358821 0.00000031 
8.000 0.18350279 0.00292184 0.02343791 . 0.00004540 
9.000 -0.42887012 0.05405405 0.15309446 0.00673795 

10.000 1.00000000 1.00000000 1.00000000 1.00000000 
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2.6 Demonstrative examples 

2.6.1 Hypothetical channel of Wheatstone bridge type 

To demonstrate the applicability of the numerical model described above, a hypothetical 

open channel network model is prepared as shown in Figure 2.8, which displays finite 

element spacing as well. The channel reaches R~1 through 7, arranged in a Wheatstone 

bridge like fashion, have rectangular cross sections. Henceforth, this model shall be re· 

ferred to as the WB model. The bed elevation and the section width of each reach 

are shown in Figure 2.9. Gradual contraction of section is found in Reach R·2. The 

reaches R-2 and R-3 have sudden horizontal transitions, whereas the reaches R-5 and R~6 

have sudden vertical transitions. Velocity~distribution coefficient Q = 1.1 and Manning's 

roughness coefficient n = 0.015 are assumed constant along all the channel reaches in the 

network. A gate is installed across the reach R-4. Turnouts T-l through T-8 are located 

at 8 nodes to withdraw water from the network and modeled as the source points of the 

lateral discharge q. 

R-l R-7 

.: node 
T-i D : i-th turnout ~ : x-direction 0: gate 

Figure 2.8: Open channel network of Wheatstone bridge type 

First, the steady flow where Q = 30.0[m3 Is] at rb h = 2.0[m] at r2, the gate opening is 

equal to 2.0[m], and 2.5[m3 Is] of water is withdrawn from every turnout, is calculated. A 

trivial solution Q = O.0[m3 Is] and h + z = 5.0[m] is set up as a primitive initial estimate, 

and then the Newton-Raphson iteration process is performed. Solution convergency is not 

obtained when h at f2 is directly specified as 2.0[m], but the process is successful when 

5.0[m] is specified instead. 7 iterative cycles are needed to make the maximum absolute 

value of the left hand side of Eqn.(2.39) less than 10-11
. Prescribing the solution where h 

=5.0[m] at r
2 

for the initial estimate, solution for h = 2.0[m] at r 2 is successively obtained 
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after 10 iterative cycles. The flow at the gate is submerged, whereas the upstream depth 

of the sudden vertical transition in R-5 is critical. The calculated flow depth and discharge 

are shown in Figure 2.10. 

Next, unsteady Bow analysis for 24[hourJ is executed with At = 5[min1. The lateral 

discharge from each turnout is doubled as 5.0[m3 Is] from t = 6[hourJ to t = 18[hour]. The 

gate opening 2.0[mJ and the boundary depth h = 2.0[mJ at r 2 are fixed. The boundary 

discharge Q at r 1 is increased to 37.5[m3/s] from t = o [hour] to t = 24 [hour] . The 

calculated Bow depths and discharges at t = 1 [hour], 7[hour], 13[hour], 19[hourJ, and 

24[hourJ are shown in Figures 2.11, 2.12, 2.13, 2.14, and 2.15, respectively. The results 

represent the surge propagating with appropriate celerity and the water depths at turnouts 

being hollowed when water is withdrawn. The number of iterative cycles is not greater 

than 5 in any of the temporal steps. 

2.6.2 Environmental hydraulics 

The scheme for the solute transport equation is tested in another channel network model 

with 77 nodes which connect 116 elements. Such a braided channel network is found in 

an estuary. 

A steady state solution of flow is used for A and Q along the channel, whereas the 

mixing-length theory by FUjihara and Kawachi [26J is employed to determine the value of 

dispersion coefficient D;c from two other steady state solutions of flow under respective 

perturbed boundary conditions. 

Steady states are calculated using the dissipation parameter c = 0 and 1 under the 

same Dirichlet boundary condition as shown in Figures 2.16 and 2.17, respectively. The 

solution takes physically meaningless negative values for c = 0, whereas sharp fronts of 

solute concentration are satisfactory represented for c = 1. 

Setting the steady solution as the initial condition, unsteady simulation is executed for 

40 days under a different boundary condition. Figures 2.18 and 2.19 show the calculated 

solute concentration 1 day and 40 days after, respectively. The solute asymptotically 

infiltrates into the inside of the channel network. 

2.7 Conclusions 

The governing equations of open channel unsteady flows are deduced. The numerical 

model using the finite element and the finite volume method· is developed to solve the 

governing equations in a multiply connected open channel network with hydraulic struc­

tures. The dynamic equation is appropriately modified for sudden vertical transitions 

by a linkage parameter determined by submergence and down-windiness so as to ensure 
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functional continuity that the Newton-Raphson method requires. The upwind scheme for 

solute transport equations is added to the flow model to analyze water quality. Stability 

and versatility of the model are demonstrated in the example calculations from which 

highly satisfactory results are obtained. Thus, the model developed in this chapter is 

commonly used in Chapters 3, 4, and 6, where simulations of open channel flows are 

necessary. 
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Figure 2.18: Solute concentration after 1 day 
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Chapter 3 

Optimal Control of Open Channel 
Flows 

3.1 Introduction 

The ultimate purpose of hydraulic engineering is to provide information which is required 

in practical problems that arise in process of assessment, planning, design, and opera­

tion. Concerning water conveyance systems, researches ought to be focussed on not only 

simulating flows but also optimizing operational strategies, identifying channel parame­

ters, and so on. Indeed Burt and Gartrell [12] summed up the usage of irrigation canal 

simulation models and pointed out that hundreds of trials in such models could develop 

control algorithms and operational strategies. Nevertheless, the establishment of rational 

approaches to these problems is a matter of urgency. 

The gate stroking technique presented by Wylie [96] is to predetermine an operational 

strategy at the upstream discharge boundary in a single reach canal from prescribed initial 

and final conditions and downstream discharge boundary condition using the method 

of characteristics. Its practical application is reported by Falvey and Luning [25]. A 

finite difference scheme which is applicable to channel networks with branch junction 

is developed by Liu et al. [60]. This scheme is used for downstream control of canal 

systems (Liu et al. [61]; Liu et al. [62]). Other numerical procedures are compared by 

Bautista et al. [8]. The technique is interpreted mathematically as an exchange of time 

for space, where the original downstream. boundary condition serves the initial condition 

in the Cauchy problem. Although the procedure does not prevent the well-posed ness of 

the PDE in the sense of Petrovsky [75] because the PDE is hyperbolic, the operational 

strategy obtained may be of no practical use. 

Defects of the gate stroking technique should dissolve in optimal control theory. Kawachi 

et al. [46] develop an optimal control model for determining release discharges of irriga­

tion canals using the Pontryagin principle of maximum for ordinary differential equations. 

39 
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However, the control theory for linear PDE deduced by Lions [59J can be extended to com­

prehensive control theory for nonlinear PDE so that more straightforward approach to 

optimization is available. In this context, each of the problems under discussion should 

be formulated as an optimal control problem which intends to minimize a functional de­

tennined by the solution to PDE system that depends on a control variable in a set of 

admissible control. Such a problem is characterized by the minimum principle which 

includes the adjoint problem of the PDE system. From this point of view, the minimiza­

tion of residual from the targeted value in the solution of primitive Cauchy problem may 

take the place of the gate stroking techniques. Moreover, an identification problem is 

represented as an optimal control problem and efficiently solved with the use of adjoint 

problem, which Ligget and Chen [56] have already examined in the case of pipelines. 

3.2 Formulation of optimal control problem 

The governing equations of open channel network flows is rewritten in vector form as 

(3.1) 

where U = conserved vector, F . flux vector, S = source vector, and ~ = load vector, 

which are given by 

(3.2) 

F- - aQ2 h ( Q) ( Q ) 
- FM - 7+ g fo A(z)dz (3.3) 

s = ( s:)' = .(.' _ Ioh 8A(z) 0 OZb .) 
. . ,g 0 dz+gA~+gASJ 

',0 x vX 

(3.4) 

and 

~ = ( q )" 
-. cp (3.5) 
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respectively. A well-posed problem requires that Eqn.(3.1} is equipped with an initial 
condition 

Y=Yo (3.6) 

at t = 0 and a boundary condition 

e· Ylr = b (3.7) 

at t > 0, where y = state variable which is taken as ( ~ ), Yo = specified initial value 

of y, and e = ( ! ). Without loss of generality, e is assumed unitary. Henceforth, the 

system defined by Eqns.(3.1) through (3.7) shall be referred to as the state system. 

In the state system, the load vector ~, the boundary condition, and the initial condi­

tion are externally specified though subject to certain constraints. Therefore, the whole 

of these is considered as the control variable u which is constrained in a set of admissible 

control Uo.d1 and controls the state system. Conversely, the control variable u is decom­

posed into contributions from the load vector ~ in the domain, the boundary condition 

on the boundary, and the initial condition at the initial time. 

An optimal control problem is formulated as the minimization problem of an appro­

priate functional, which depends on u and thus denoted by J(u). A general form of the 

functional, which considers contribution of observation at the terminal time T, on the 

boundary, and in the domain, is given by 

J(u) = ~ In W(T) (y(T) - y(T)) . (y(T) - y(T)) dx + ~ loT [W(eol . y - y)2]r dt 

+~ fT f w (y - y) . (y - y) dx dt 
2 Jo In 

(3.8) 

where W = contribution factor which may depend on time and space, y = targeted value 

of y, y = targeted value of eol . y, and e.l = a unitary vector perpendicular to e. A control 

variable u that satisfies 

(3.9) 

is referred to as an optimal control. 
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3.3 Minimum principle and adjoint system 

The minimum principle which characterizes an optimal control is deduced in the frame­

work of the variational calculus. The set of admissible control Uad is assumed to be 

convex. A new variable, which is called the adjoint variable and denoted by A; is used for 

describing the minimum principle. 

Suppose that u is an optimal control. If u is replaced by another one u~ which is written 

88 

uE = U + c(Uad - u), Uad E Uad (3.10) 

where c = positive real number, then the functional to be minimized changes from J(u) 

to- J(uE
). Defining 6J(u), the right hand derivative of J(u) with respect to c, as 

oJ(u) = lim J(u
E

) - J{u) 
E-++O c (3.11) 

the inequality 

6J(u) > 0 (3.12) 

holds for any Uad E Uad because J(uE
) is not less than J(u). 

Let y be the solution of the state system under the optimal control u. If u is replaced 

by u E
, the state system should be also rewritten as 

aUE aFE SE .il:.E -+-+ ="£' at ax (3.13) 

with the initial condition 

(3.14) 

and the boundary condition 

(3.15) 

where superscript c refers to the value when uE is chosen as the control variable. Subtract­

ing Eqns.(3.1), (3.6), and (3.7) from Eqns.(3.13), (3.14), and (3.15), respectively, dividing 
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them by c, and passing the limit c to zero bring the partial differential equation 

with the initial condition 

and boundary condition 

am aoF 
-+-+oS=o~ at ax 

e· oyir = ob 

(3.16) 

(3.17) 

(3.18) 

where the notation a represents the right hand derivative with respect to c as similarly 

defined as Eqn.(3.11). 

The left hand side of Eqn.(3.16) multiplied by .\ is integrated by parts as 

on n x [0, T]. The rightest hand side of Eqn.(3.19) is equalized to the integral of the right 

hand side of Eqn.{3.16) multiplied by.\ as 

(3.20) 

where 

(au)T alI = In fly .\(o) . oYo dx (3.21) 
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·(8U)T &JT "':' In &y ~(T). &y(T) d:£ (3.22) 

(3.23) 

(3.24) 

_ rT r ((8U)T 8~ (8F)T 8~ _ (8S)T A)'& d:£ dt 
&In - io in &y at + &y ox By y 

(3.25) 

and 

(3.26) 

using Eqns.(3.17) and (3.18). 

Let the adjoint variable ~ be governed by the adjoint PDE 

(8U)T a~ (aF)T a~ (BS)T _ 
&y at + By ax - fJy ~ = - W(y - y) . (3.27) 

with the terminal condition 

T -

(~) .\ ~W(Y(T) - y(TJ r (3.28) 

and the boundary condition 

(3.29) 

This system is referred to as the adjoint system. Substituting Eqns. (3.27), (3.28), and 
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(3.29) into Eqns.(3.25), (3.22), and (3.24), Eqn.(3.12) is reduced to the minimum principle 

6J(u) = 6JD + 6Jl - 6JB ~ 0 (3.30) 

because 6J(u) is derived from the right hand side of Eqn.(3.8) as 

6J(u) = In W(T)(y(T) - yeT)) . 6y dx + loT [W(e.l. y - y)(e.l .6Y))r dt 

(3.31) 

which is equal to 6JT + 6Jr - 6Jn. 

It should be remarked that the adjoint variable A contains the whole information to 

judge whether the control variable u is an optimal one or not. Therefore, the adjoint 

problem to solve the adjoint system, as well as the simulation problem to solve the state 

system, holds significance for approaching the optimal control problem. 

3.4 Numerical scheme for adjoint system 

Eqn.(3.27) consists of two equations 

( 
8A(h) 8A8zb 8(ASJ)).x = -w ( -y) (3.32) 

- -g ax + 9 ah 8x + 9 ah 2 1 Y 

and 

8A2 8Al 2a:Q a.x2 A 88J \ _ _ TXT (y _ y-) _+_+-----g -1\2- 1't'2 
at ax A ax aQ 

(3.33) 

where Al and A2 = the first and the second components of A, and WI and W2 = the first 

and the second rows of W. The finite element and the finite volume methods are used 

for the resolution of Eqns.(3.32) and (3.33), respectively. The weak form of Eqn.(3.32) is 

written as 

d faA [( aQ
2

8A ) 1 - -Al1./Jdx+ ---+gA >'21/J 
dt ah A2 8h r 

IlUpp¢ 
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_ / (_ 8A(h) 8A 8zb + . 8(AS1)) ...\ nl. dx = J -w (y - y-) .1, dx 
9 8x + 9 8h 8x 9 8h 20/ 1 0/ 

~~ ~¢ 

(3.34) 

whereas Eqn.(3.33) .is integrated as . 

(3.35) 

over a generic i-th element nf. A numerical model is obtained in the same manner as in 

the state system but 8...\2 in Eqn.(3.35) has to be estimated in a special way. In order to ax 
do so, the values of ...\2 at the two boundaries of the i-th element is first estimated. by 

I 1 1 v . 
...\l2' = -...\2' + - ~ ·...\2 I cost1" 

t 2 • 2 ~ It;j J, 
j=l,lt~j=Fi 

(3.36) 

and 

1 1 vi 
...\2r. = -...\2' + - ~ ...\21tr cosr}:· • 2 J 2, £...:.' ;j tJ 

J=I,ltij=F t 

(3.37) 

where ...\2i = ...\2 value in nf, ...\~i = estimated value of ...\2 at xL A;i = estimated value 

of ...\2 at xi, vi = the number of elements connected to xL v[ = the number of elements 

connected to xi, Kfj == element number of the j-th element conIiected to~, K:ij = element 

number of the j - th element connected to xi, Of; = angle between Or and O~!,' and O~), = 
'J 

angle between n~ and n!~" but specified boundary values are used for boundary nodes. 
'J 

Then, the integration is performed as 

r 2crQ 8...\2 ( r l ) ~ Wk 
1m A ax dx = aQi ...\2i - A2i ~ (1 - Ck l 1 + Ck) (3.38) 
•. k=l A h, + . h'." .. 2 • 2· I 

using the 4-point Gauss quadrature rule .. 
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3.5 Applications to hypothetical open channels 

The numerical model is applied to the WB model shown in Figure 2.8. Setting the 

terminal time T as 24[hour], a boundary observation problem (Unami et al. [94]) and 

then a mixed observation problem are approached. A terminal time observation problem 

(Unami et al. [93]) in a different situation where the terminal time T is equal to 3[hour] 
is solved using an iterative procedure. 

3.5.1 Boundary observation boundary control problem 

An optimization problem that improves the operational strategy of release discharge Q 

at the discharge boundary r 1 is formulated. Thus the control variable u is defined as 
Qlrl and assumed to be constrained in the set of admissible control Uad = [0,50]. The 
functional J (u) is set as 

1 rT 
J(u) = 2 Jo (Q - 1O?1I'2 dt (3.39) 

to make the discharge Q at the water depth boundary r 2 close to 10.0[m3/s]. The initial 

condition is the steady flow state with Q = 30.0[m3/s], h = 2.0[m], and the lateral dis­

charge is equal to -2.5[m3/s] at every turnout. The gate is fully open so as not to affect 

the flow. The operational strategy is chosen as the same one as in the unsteady flow 

analysis in Chapter 2, where the control variable u is kept at 37. 5 [m3 Is] throughout the 

temporal domain (0, T). This primitive strategy is referred to as the strategy <8-1> and 

results in excessive Qlr2 as plotted in Figure 3.2. Since Eqn.(3.30) defines the contribu­

tion of u = Qlrl to oJ(u), the value of J(u) is expected to decrease when u decreases 

on a temporal subdomain where e· (::) T >.. at fb which is referred to as sensitivity, is 

positive and when u increases on a temporal subdomain where the sensitivity is negative. 

Referring to the sensitivity plotted in Figure 3.3, an improved strategy <S-2> can be 

given by changing u as shown in Figure 3.4, so that Qlr2 changes as shown in Figure 

3.5. That change of strategy actually decreases the value of J{u) from 19650 to 6640.0, 

though the strategy <8-2> is not an optimal control because the sensitivity for <8-2> 

depicted in Figure 3.6 does not satisfy the inequality Eqn.{3.30). Accordingly, the control 

variable u is changed again as the strategy <8-3> shown in Figure 3.7 and yields Qlr2 as 

plotted in Figure 3.8. The value of J(u) becomes as small as 4085.6, and the sensitivity 

is damped down as shown in Figure 3.9. Thus, the strategy <8-3> is considered close to 

an optimal control. 
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3.5.2 Mixed observation domain control problem 

Next, the control variable u is changed to 'P, which is dominated by the gate opening, 

and sensitivity becomes A2' The functional J(u) is also reset as 

1 f (1 0) 1 rT 
2 J(u) = 2" In 0 1 (y(T) - Yo) . (y(T) - Yo) dx + 2" Jo (Q - 10) Ir2 dt 

+~ r18
[hour) f ( 100J(x - Xq) 0) (y _ ( 2 )) . (Y _ ( 2 )) dx dt (3.40) 

2 16[hour) in a a a a 

where J = Dirac's delta function, and Xq = the spatial point on which the turnout T-5 is 

located, to formulate a mixed observation domain control problem. In this functional, two 

terms are added to the one in the previous problem in order to sustain the terminal value of 

y and the water depth at the turnout T-5 between 6[hourJ and 18[hourJ close to the initial 

value Yo and 2.0[m}, respectively. Sensitivity under the strategy <S-3> is shown in Figure 

3.10 and suggests that I(J should be smaller approximately between 5[hourJ and 18[hour]. 

However, the sensitivity fluctuates after t = 22[hour] and does not clearly indicate the 

contribution of'P to the terminal value. Therefore, a revised strategy <S-4> is determined 

as shown in Figure 3.11. The strategy <8-4> anticipates the domain observation from t 
= 6[hour] at t = 5[hourJ. The terms of the functional, which are equal to 661.61, 4085.6, 

and 2545.5, respectively, in the strategy <S-3>, change to 658.12, 3869.0, and 635.06, 

respectively, in the strategy <8-4>. In total, the value of J(u) decreases from 7292.7 

to 5162.2. The calculated flow depths and discharges under the strategy <8-4> at t = 

l[hour], 7 [hour] , 13[hour], 19[hourJ, and 24[hour] are shown in Figures 3.13, 3.14, 3.15, 

3.16, and 3.17, respectively. In comparison with the results given in Chapter 2, which is 

under the strategy <8-1>, these results exhibit much unsteadiness in flow. 

3.5.3 Terminal time observation domain control problem 

A transient flow from the initial steady state to another is controlled using the functional 

(3.41) 

where YT = targeted value of y in a steady state, where no water is withdrawn from 

the 8 turnouts. The terminal time T is reset as 3[hourJ. The lateral discharges at the 8 

turnouts are iteratively revised to minimize the functional J( u). The iteration procedure is 

to adding the value of AI, the sensitivity in this case, multiplied by a relaxation parameter 

C¥q to the earlier value of q at each turnout. From the initial guess where q = 0 at all 
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turnouts, 20 iterations are executed with O!q =0.3. The hysteresis of the functional value 

is summarized in Table 3.1. In y obtained after 20 iterations, the errors from YT in 

water depth h and discharge Q are less than 0 133[m] and 1 590[ 3/] t' 1 Th . . m s, respec lve y. e 

strategy of q at each turnout, as shown in Figure 3.18, is skilled but practically realizable, 

Therefore, this iteration procedure is considered to give an efficient and effective approach 

to an optimal control. 

Table 3.1: Hysteresis of Functional Value 

Iteration number Value of J(u) 
o 318.8 
1 78.04 
2 56.46 
3 43.28 
4 35.02 
5 28.66 
6 23.92 
7 20.22 
8 17.35 
9 15.08 
10 13.29 
11 11.86 
12 10.71 
13 9.777 
14 9.019 
15 8.397 
16 7.882 
17 7.452 
18 7.090 
19 6.782 
20 6.517 

3.6 Conclusions 

Oomprehensive synthesis of optimal control problems in open channel flows is presented 

in the framework of the variational calculus. The minimum principle which characterizes 

an optimal control is described using the adjoint system. The numerical scheme is devel­

oped to solve the adjoint system introducing the special interpolation procedure for the 

discretized adjoint variable. The boundary observation boundary control problem, the 

mixed observation domain control problem, and the terminal time observation domain 



cOntrol ·problem, ate ~demonstr.a.tively :Bolved to- point out the assignment of the adjoint 

:sy$i;em.in ,.optimizatiort-procedure. 
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Chapter 4 

Reliability Analysis in Markov 
Process Model 

4.1 Introduction 

In a water conveyance system where the disturbance of water demand is not predictable 

and satisfactory operational strategy cannot be established, the steady flow analysis based 

on the discharge data obtained from the averaged water demand is the principal tool for 

the hydraulic design of the system. Then, the statistical characteristics of water demand in 

such a system raise an inverse problem, that is the question whether the steady flow surface 

profile for the mean value is sufficiently reliable if the water demanded stochastically is 

actually withdrawn from the turnout. 

Statistical approach that predicts the reliability of a system is just developing in the 

realm of irrigation engineering despite being the orthodox one in the drainage engineering 

(Easa [23]; Easa [24]; Gates and AI-Zahrani [28]; Gates and Al-Zabrani [29]; Zoppou and Li 

[99]). Gates et al. [30] propose an optimal design criterion of structural parameters in an 

irrigation delivery system under various environmental uncertainties such as precipitation, 

cross-section geometry, or management practices, where the optimizations are performed 

by the Monte Carlo simulations. This method is extended by Alshaikh and Taber [4]. 

Gupta et al. [32] assess the reliability of pipeline water distribution systems that depends 

on the pipe break and pump failure. This concept of reliability can be transplanted to 

the open channels, because these accidents are considered equivalents for disturbances, 

which are due to stochastic characteristics of lateral discharges, in the steady flow. 

The reliability of water conveyance system under uncertain water demand might be 

evaluated by the Monte Carlo simulations. However, demand patterns will be significantly 

many in a system with numerous turnouts. In this chapter, assuming that an averaged 

demand pattern determines an averaged steady flow surface profile, propriety of the steady 

state is discussed in the framework of theoretical statistics coupled with the unsteady flow 
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dynamics (Unami et al. [95]). The reliability is defined by the probability that surface 

profile disturbed from the steady state by the fluctuation of water demand remains in a 

prescribed allowable domain through a specified examination period. The knowledge of 

the interdependence of the reliability, the allowable domain, and the examination period 

is demonstratively applied to a hypothetical irrigation system so as to determine allowable 

surface domains warranted by a lower bound of the reliability. 

4.2 Markov process model 

The disturbance of the lateral discharge q causes deviation of the surface profile which is 

represented by h in the flow model. Therefore, the N N-dimensional vector h is assigned 

to the stochastic variable in the Markov process model. 

It is natural to assume that h as a function of t is a Markov process, Le., that 

P(t,h,t+,Q), the transition probability that h+ is found inside of Q, any subset of 

NN-dimensional real Euclidean space ]RNN, at time t+ provided h = h is observed 

at time t < t+, does not depends on h at any time before t. Under this assumption, the 

probability density function p = pet, h, t+, h+) defined by 

(4.1) 

satisfies the Chapman-Kolmogorov's equation 

(4.2) 

for h* at time t < t* < t+. Considering Eqn.{4.2) and the stochastic continuity equation 

the temporal difference quotient of p can be expanded as 

pet, h, t+, h+) - p(t*, h, t+, h+) 
t* - t 

(4.3) 

= t' 1 t (LNN p( t, h, t", h)"p( t', h', t+, h +)dh' - p(t', h, t+, h +) fJRNN p( t, h, t', h')dh') 

= t* 1 t jJRNN (p(t·, h., t+, h+) - p(t., h, t+, h+)) pet, h, t., h*)dh* 

. 1 . 
= t* _ t ~b.~bll~£ (p(t·, h\ t+, h+) - p(t·, h, t+, h+)) p(t, h, t*, h*)dh* 
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where 0 denotes infinitesimal and c is taken small enough. Thus, p is governed by the 
FPPDE 

(4.5) 

where ~j = ij-component of the diffusion tensor, which is denoted by D, and cit = i-th 

component of the drift vector, which is denoted by d , given by 

and 

di = cit(t, h) = lim -t 1 t { (hi -hdp(t,h,t"h*)dh* (4.7) 
t·~t * - J11ho-hll<e 

respecti vely. 

4.3 Reliability 

The surface profile is designed in terms of the reliability Js in the steady state which is 

realized under the averaged lateral discharge q. For ho in the steady state, the drift vector 

d can be discarded, and the diffusion tensor D is assumed independent of time. 

Now, the reliability Js is defined using the probability density function p as 

Js = { p( -Tel h, 0, ho)dh JGD 
(4.8) 

where Te = examination period where small disturbance around the steady state is ex-
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pected, and G B allowable surface profile domain given by 

G = {h E rn.NN lmax f4 - hOi < I} 
B i 6hf!-

I 

(4.9) 

where ll.h't = i-th component of an allowable deviation vector .6.h
Q 

which is in 1RNN
• 

Indeed it is difficult to evaluate Js directly, but a lower bound of Js can be found in 

the following manner. 

First, being a positive-semidefinite symmetric matrix, D is transformed into a diagonal 

matrix diag[ "\fl by an orthogonal matrix W D as 

diag [APJ = Wb'DWD (4.10) 

where Af = i-th eigenvalue of D. Second, the h-coordinate system is transformed into 

the H -coordinate system by 

h = W Ddiag [R] H + ho (4.11) 

and ij-component of WDdiag [R] is denoted by tij. Then, since d = 0, Eqn.(4.5) 

becomes equivalent to the heat equation 

(4.12) 

where ~ = ~(t, H) = pet, h, 0, ho) in the H-coordinate system, and .6.H = Laplace 

operator in the H -coordinate system. Since 

P(O, 0, 0, no) = Ina 4?(0, H)dH = 1 (4.13) 

holds for any domain no which contains the origin, it is deduced that ~ is the fundamental 

solution of the partial differential operator ! + ll. H, which is known as 

'{ 1 (II H 112) < 4?(t, H) = (2J_1rt)NN ex
p

, 4t, (t - 0) 

o (t> 0) 
(4.14) 

where NN is assumed to be equal to or greater than 3~ Third, an integral J'S to be a lower 

bound of J s is related to the magnitude of G /J as 
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Js = r ip( -Te, H)dH = r 1 exp (II H 112) dH 
JIIHII<e JIIHII<e (2v'_7rt)NN - 4Te 

- NN 2-1 1 lfP/4T
c - r (NN/2) 0 i I exp( -r)dr (4.15) 

where fl = positive real number which is chosen so that the linear transformation Eqn.(4.11) 

maps the open ball B(O, fl) in the H-coordinate system to a set which is contained by Gs 

in the h-coordinate system, r = gamma function, and r = radius in the polar coordinate 
system. Actually, fl is served by 

fl = min 
i 

4.4 Surface profile design 

ILlhil 
NN (4.16) 

L:ltijl 
j=1 

The theory developed in the previous section is applied to a design problem of surface 

profile with reliability, that is to decide the allowable surface profile domain Gs warranted 

by the lower bound of reliability Js. 
Provided that Js and the period Te are specified, there exists a unique fl which satisfies 

Eqn.{4.15} because the integral at the right hand side of Eqn.(4.15) is monotone increasing 

with respect to fl. Thus, reversing Eqn.(4.16), 

NN 
Llhi = (] L Itijl (4.17) 

j=1 

determines the allowable deviation vector Llha that prescribes G 4' 

Numerical approximation of the constant diffusion tensor D at the neighborhood ofho is 

performed by repetitive implementations of unsteady flow simulation during a finite time 

increment ~to. For that purpose, a simplified demand pattern model, that the deviation 

of lateral discharge at j-th turnout qj cannot but equal either .6.Qj or -.6.qj and that 

the sign of q' changes in ~to on average, is adopted. Then, when there are Mq turnouts _ J 

in total, 2~ stochastic events that prescribe q exist. Noting that both probabilities such 

that qj = ~qj and qj = -~qj are equal to ~, the ij-component of the diffusion tensor D 
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is approximated by 

(4.18) 

where ho~ = i-th component of h which is the simulation result at t = Ato under the 

k-th stochastic event specifying the initial condition h = ho. 

Sequential implementations of the Householder tridiagonalization, the bisection method, 

and the inverse iteration method are effective in numerical computations of the decom­

position Eqn.(4.1O) (See Appendix C). Then, tij for i,j = 1 tv NN are directly calculated 

from the eigenvalues and the eigenvectors. Thus, the allowable deviation vector Aha is 

decided by Eqn.(4.17) provided U for specified Js and Te is known. 

4.5 Application 

A test problem in the WB model as shown in Figure 2.8 is solved. The steady state to 

be examined is the same as in the Chapter 2. 

The 256 (= 28) water demand patterns that specify q are determined by.6.qj = O.5[m3/s] 

for j = 1 tv 8. After 256 runs of the unsteady flow model, the diffusion tensor D is obtained 

from Eqn.{4.18). Next, D is decomposed in accordance with Eqn.(4.10). 

The steady surface profile ho with the allowable domain Gs for (JS1 Te) = (0.95, 

180[minJ) is illustrated in Figures 4.1 through 4.3. The runs differ in the time incre­

ment tlto that is 5 [min] , 15[min], and 45[min] respectively. 

Although this numerical error should be allowed for, yet the results are considered to 

demonstrate quantitative details of G Sl which enlarges with 6.to, increases around the 

turnouts and is affected by the depth in the steady state. 

4.6 Conclusions 

The problem of reliability in the design of surface profile is reduced to solving the heat 

equation. The method developed here has an advantage that the reliability in a long period 

can be obtained through predetermined number (= 2~) of unsteady flow simulations in a 

much smaller period that is identical with the time increment tlto in the Markov process 

model. If a Monte Carlo model be utilized in the application problem, it would be needed 

to execute unsteady flow simulations throughout the period Te under plenty of water 

demand patterns that pseudo random numbers arrange. 

The proposed concept serves as a guide to the manager of irrigation systems where 
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the initiative of demand side should be esteemed. If the examination of steady state 

reveals that the reliability is too little, introducing water control systems that regulate 

unsteady flows or augmenting canal free boards should be discussed. Conversely, adequate 

reliability warrants the demand side that there is no restriction of withdrawal from the 

turnout. 

If there are no field data which are available to the estimation of the parameters Aqi 

and Ato in the demand pattern model, the distribution function of the water demand 

should be determined by detailed analysis of farm management .. That will be a pivotal 

point in applications to real world. 
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Chapter 5 

Maximization of Reservoir 
Reliability 

5.1 Introduction 

The irreversibility of information dominates fundamental approach to decision making 

problems in reservoir management. Being governed by stochastic characteristics of the 

water balance, the future variation in the storage of a reservoir is predicted only by 

making use of the probability. Therefore, a decision support model for the water storage 

system that consists of a reservoir and its stochastic environment should be developed to 

maximize a reliability which is mathematically well defined. 

Pegram [74J summarizes the fundamental concepts of the reservoir reliability and presents 

some methods to calculate the mean first passage time in terms of Markov chain. Yeh 

[97] reviews linear programming, dynamic programming, nonlinear programming, and 

simulation models developed for reservoir operations. These approaches are continuously 

expanding as in Nardini et al. [71], who integrates ri~k aversion and average-performance 

optimization, and Karamouz and Vasiliadis [42], who propose a Bayesian stochastic dy­

namic programming model. Buchberger et al. [11] applied the FPPDE that governs the 
probability density function of a continuous Markov process to the equilibrium storage 

analysis of a reservoir. For a management purpose, however, the reliability should be 

defined so as to deal with a non-equilibrium state to make an appropriate decision at any 

time no matter how the storage is. Mishchenko and Pontryagin [65] presented an optimal 

control problem of a Markov process with absorbing barriers, which is considered as a 

well defined reliability. Since the Markov process is governed by the FPPDE, which is a 

parabolic partial differential equation, the approach taken by Lions [58] gives the maxi~ 

mum principle which characterizes the necessary condition to optimize the reliability so 

defined. An optimization model of the reliability will serve 88 a decision support model. 

A finite element model is developed to solve the FPPDE that governs the reliability of a 
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reservoir and is applied to an irrigation tank without forced spill (Kawachi et al. [47]) and 

an irrigation dam (Unami et al. [88]). The model is proved applicable to multi-purpose 

reservoirs as well (Kawakatsu [50]). In this chapter, in order to establish a comprehensive 

decision support model for reservoir management in a non-equilibrium state, a spillway 

at a boundary of the storage space is modeled as a reflecting barrier (Unami et al. [89]; 
Unami et al. [90)). Then, the adjoint problem of reliability is formulated so as to describe 

the maximum principle that provides the necessary condition to maximize a functional. 

Using an upwind finite element numerical scheme that stably calculates the reliability 

and the adjoint variable, the contribution of release strategy to the current reliability is 

quantitatively determined. 

5.2 Markov process model of reservoir storage 

The continuity of the water balance in a reservoir is written as the ordinary differential 

equation 

dX 
-=u+d dt (5.1) 

where X = storage, u = deterministic component of virtual inflow discharge, which con­

sists of the inflow discharge and the negative release discharge, and d = stochastic com­

ponent of virtual inflow discharge. Being driven by the stochastic component of virtual 

inflow discharge d,. the storage X is a random variable. FUrthermore, the storage X is 

a Markov process because Eqn.(5.1) implies that X does not depend on its hysteresis. 

Thus, FPPDE for I-dimensional stochastic variable is applicable to the storage X as 

(5.2) 

where the probability density function p is with respect to X. The practical condition 
that the storage X should satisfy is 

(5.3) 

where G a = allowable storage domain, Xmin = allowable minimum storage, Xma.x = al­

lowable maximum storage, and tf = specified final time. The reliability y = y(t, x, tf) for 

any storage X at time t ~ t f is defined as the probability such that X remains in G a until 

the final time t J provided that X = X EGa is observed at the time t. Note that another 
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probability density function w determined by 

(5.4) 

satisfies the FPPDE Eqn.{5.2) because it satisfies the Chapman-Kolmogorov's equation 

and the stochastic continuity equation in the domain Ga. Since the FPPDE is a linear 

equation, the reliability y which is an integral of w, a solution to the FPPDE, is also a 

solution to the FPPDE. Thus, the governing equation of the reliability y is 

(5.5) 

whose final condition is given by 

(5.6) 

because the probability such that X is found in G a at the final time t f provided that 

X = X EGa is observed at the same final time t f is clearly equal to 1. A Dirichlet 

boundary condition at X = X min 

ylX=Xmin = 0 (5.7) 

is posed because of the definition of the reliability, whereas a Neumann boundary condition 

at X =Xmax 

=0 ax X=Xmu 

ay 
(5.8) 

is prescribed to represent the forced spill. 

5.3 Optimal control of reliability 

The optimization problem that maximizes the reliability y at a specified initial time ti is 

formulated as an optimal control problem. The current storage Xc = X at ti is assumed 

to be observed. Since the deterministic component of virtual discharge u is considered as 

the control variable, the functional JR(u) defined by 

(5.9) 
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is to be maximized. 

A small variation in the control variable 'U, which is denoted by au, is supposed to 

induce ay, the small variation in the reliability y. These variations satisfy the partial 

differential equation 

(5.10) 

with the final condition 

(5.11) 

and the boundary conditions 

(5.12) 

and 

aoy 
ax =0 

X=Xmax 

. (5.13) 

. for the fixed final and boundary values. 

The maximum principle is obtained in a similar manner as in Chapter 3. The left hand 

side of Eqn.(5.10) multiplied by A, the adjoint variable for the FPPDE, is integrated by 

parts over the domain (t j , t f) x G a 88 

rtf rXmax (aoy 82ay 80y ay ) 
}fi }Xrain A at + dl1 aX2 + (d1 +u) ax + ax aU dXdt 

= j,Xrnu ([Aay]~ _ ltf aaAt OYdt) dX 
Xmin to 

and then reduced to the maximum principle 

(5.15) 
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if A satisfies the adjoint FPPDE 

(5.16) 

with the initial condition 

(5.17) 

and the boundary conditions 

(5.18) 

and 

(
a(dl1 A) ) 

ax - (d1 + U)A X=Xm&X = 0 (5.19) 

that comprise the adjoint system. Conversely, the necessary condition to maximize the 

functional JR(u) is that the control variable U is maximized or minimized in the subdomain 

where A :i is positive or negative, respectively. Thus, A:~ is considered as the the 

sensitivity which represents the contribution of U to JR(u). 

5.4 Decision support model 

5.4.1 Identification of coefficients in FPPDE 

If time series data of the storage are available, the diffusion coefficient dn and the drift 

coefficient d1 are estimated in each of the spatiotemporal subdomains which are properly 

partitioned allowing for the prescription of the operational manual of the reservoir. The 

estimation is performed as 

(5.20) 

and 

d _ 1 X iJ+l - XiJ 
1 - M L t· '+1 - t, . 

8 A. I,J I,J 

(5.21) 
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where ti'; = time at the j-th stage of the i-th series of data, Xi'; = X at ~.;, As = set 

(
X. '+1 + X·· t· '+1 - t· ') 

of indices i and j such that the spatiotemporal point l,J 2 l,J, lJ 2 ',J falls on 

the spatiotemporal subdomain, and Ms = number of elements of As· 

5.4.2 Numerical solvers for FPPDE and its adjoint equation 

In common with the solute transport equation Eqn.(2.46), FPPDE Eqn.(5.5) and its 

adjoint equation Eqn.(5.16) are 1-dimensional parabolic partial differential equations, 

which the upwind scheme developed in Chapter 2 can be applied. Using the calculated 

solutions of y and A by the upwind scheme, the sensitivity A :~ is obtained. Since an 

increment considering the sensitivity A :~ may revise the control variable u so as to 

maximize the functional JR(u), these numerical solvers serve as a decision support model 

to maximize the reservoir reliability. 

5.5 Applications to existing reservoirs 

Applicability of the decision support model is examined in two existing reservoirs of Y 

and K dams. The locations, the purposes, the irrigation areas, the operation periods, 

the maximum storages, and the periods of available water level data of these dams are 

summarized in Table 5.1. Using the water level-storage curves as shown in Figures 5.1 

and 5.2, the water levels are converted to the storages which are depicted in Figures 5.3 

and 5.4. 
Tables 5.2 and 5.3 show the division of subdomains, allowing for the seasonal variation 

of hydrolOgical characteristics, and identified coefficients. 

Eqns.(5.5) through (5.8) where the control variable u is specified as 0 are numerically 

solved so that the reliability is obtained as shown in Figures 5.5 and 5.6 for Y and K 

dams, respectively. The storage of Y dam is almost full at the beginning. of operation 

period in every year I but that of K dam is more indeterminate. 

Table 5.1: Key parameters of dams 

Dam Y K 
Location Shiga prefecture, Japan Okayama prefecture, Japan 
Purpose irrigation only irrigation, industry, electricity 
Irrigation area paddy fields of 2,760 ha paddy fields of 12,500 ha 
Operation period 16 April through 1 October throughout the year 
Maximum storage 7.691 [106 mS] 15.897 [106 m3] 

Available data 15 years of 1980 through 1994 38 years of 1957 through 1994 
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In order to increase the reliability at an initial time, decisions to improve the control 

variable u is taken in the spatiotemporal domain according to the sensitivity A ay which 

is numerically calculated when a certain current storage Xc is assumed to be ot~~ved at 

the initial time ti· The current storage Xc = 7.280 [106m3], which is the normal full water 

storage, at ti = 16th of April is assumed in Y dam, whereas the current storage Xc = 

7.450 [10
6 m3

] at ti = 1st of January is assumed in K dam. The calculated sensitivities, as 
illustrated in Figures 5.7 and 5.8, considerably decreases in spatiotemporal points where 

the probability of realization is small, and allowed for in the decisions made as follows . 

• For Y dam, u = 1 [rn3 Is] is prescribed if: 

- 3.640 [106m3
] < X < 7.280 [106m3] from 1st of June to 30th of June . 

• For K dam, u = 1 [m3 Is] is prescribed if: 

- 7.450 [106m3
] < X < 12.869 [106m3] from 1st of May to 15th of May, 

- 10.009 [106m3
] < X < 12.869 [106m3] from 15th of May to 31st of May, 

- 10.009 [106m3
] < X < 13.897 [106m3] from 1st of June to 14th of June, 

- 4.201 [106m3
] < X < 7.450 [106m3] from 4th of September to 30th of Septem-

ber, or 

- 0.000 [106m3
] < X < 4.201 [106m3] from 1st of October to 31st of October. 

The revised reliability under these u is depicted in Figures 5.9 and 5.10. The values of 

the functional JR(u) increase from 0.8054 to 0.9524 and from 0.2524 to 0.6577 in Y and 

K dams, respectively. 

Apart from the optimization procedure described above, the conceptual question of 

when to run the model is posed. If it is possible to anticipate occurrence of a certain 

storage at a future current time in advance, a decision assuming it can be made even in 

another earlier current time. However, it does not necessarily improve the reliability at 

the earlier current time. It is the reliability at a future imaginary current time that an 

anticipating release strategy improves. 

5.6 Conclusions 

The optimization problem of the reservoir reliability defined by the appropriate prob­

ability has been solved in terms of the sensitivity. Being parabolic partial differential 

equations, the governing equations are effectively solved using the upwind finite element 

scheme. The numerical model serves as a decision support model, and the demonstra­

tive example of application proves its validity as well as poses the question what is the 
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m~:of 'anticipating.lessproba.i>le events.' It is remarked that observation should 

be :rnacleObJectively thougb itiB' related to subjective current time in the mathematical 

formulation.' 

.. The Qoeflicients· dl1 ,andd1 are estimated from, time series data of the virtual inflow 

dis¢harge. Otherwise; the c::oefficientsare determined by the virtual inflow discharge ·data 
wbjch are.d~~ced from the runoff analysis and the demand prediction. The reliability of 

,the model itself depen&.on the coeffici(m1;s being estimated properly. 
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Figure 5.1: Storage-water level curve for Y dam 

Water level [m] 

o 500 1000 1500 
Storage [10 3 m3 ] 

Figure 5.2: Storage-water level curve for K dam 
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Figure 5.3: Storage variation in Y dam 
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Table 5.2: Division of subdomains and identified coefficients for Y dam: M3 (above)j d
ll 

(middle); d1 (below) 

Temporal 0.000 1.820 3.640 5.710 7.280 7.403 
sub domains '" '" '" '" "" IV 

Date (Day) 1.820 3.640 5.710 7.280 7.403 7.691 
4/16 ( 1) 71 26 23 

'" 9364 5366 10047 
4/22 ( 7) 0.03540 0.00359 -0.04977 
4/23 ( 8) 77 40 

'" 101410 12911 
4/30 ( 15) -0.97321 -0.01745 
5/ 1 ( 16) 16 72 13 

'" 151850 170460 11147 
5/7 ( 22) -1.40530 -0.59989 -0.07557 
5/ 8 ( 23) 21 68 16 

'" 165870 68184 9266 
5/14 ( 29) -0.39749 0.04270 -0.02215 
5/15 ( 30) 56 164 31 

"" 76407 117640 23391 
5/31 ( 46) -0.05696 -0.24651 0.08213 
6/ 1 ( 47) 62 128 18 

"" 307890 108720 31306 
6/14 ( 60) 0.26789 0.13767 -0.16649 
6/15 ( 61) 41 178 21 

"" 60969 149050 14210 
6/30 ( 76) 0.19146 0.41564 -0.12610 
7/ 1 ( 77) 33 156 19 

f'V 57238 39539 102100 
7/14 ( 90) -0.16022 0.00690 0.10641 
7/15 ( 91) 24 222 9 

'" 66243 49134 106460 
7/31 (107) -0.07986 -0.09020 0.20829 
8/ 1 (108) 14 31 165 

"" 20721 176320 161350 
8/14 (121) -0.07020 -0.79650 -0.75476 
8/15 (122) 17 114 124 

'" 66596 139700 488120 
8/31 (138) -1.14830 -0.57112 -0.39091 
9/ 1 (139) 34 96 20 

('oJ 123340 201090 10047 
9/lD (148) -1.6407 -1.10090 -0.65367 

9/11 (149) 26 89 179 21 
I'V 1015400 422410 635420 2233400 

10/ 1 (169) 0.57485 ·0.01904 0.03065 -0.38178 
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Table 5.3: Division of subdomains and identified coefficients for K dam: Ms (above); dl1 
(middle); dl (below) 

Spat\aJ BubdomaJus [lOllm~l 
TlImporaJ 0.000 4.201 7.450 10.009 12.869 13.897 15.136 

8ubdomalns ,.." ...... '" '" "" '" "" 
Date (Day) 4.201 7.450 10.009 12.869 13.897 15.136 15.898 
1/ 1 ( 1) 28 148 263 599 98 11 182 

rv· 22773 167230 203220 197150 156820 194050 26403 
1/31 ( 31) 0.15542 0.17455 -0.24956 -0.14340 0.33208 -0.18992 -0.09028 
2/1 ( 32) 11!8 353 411 86 ilo 

...... 166600 401360 393590 563410 783000 
2/29 ( 60) -0.10495 -0.22787 -0.07494 -0.21919 0.18437 
3/1(61) 178 320 559 115 :.!5 

'" 443100 624140 734850 886850 1161200 
3/31 (91) 0.52578 0.78730 0.43828 -0.06893 0.01960 
4/ 1 ( 92} 15 89 337 88 41 

"" 44747 5140]0 861110 1377700 730380 
4/15 (106) 0.33292 1.14230 0.83776 0.83489 -0.06941 
"/16 (107) 23 311 181 55 

"" 1686200 513010 957350 788800 
4/30 (121) 1.89430 0.61781 0.35930 0.06101 
5/ 1 (122) 166 278 126 

'" . 368100 380650 535680 
5/15 (136) 0.87126 0.44848 0.26683 
5/16 (137) 95 189 324 

N 104140 224920 189060 
5/31 (152) 0.46150 0.53279 0.42558 
6/1 {153) 22 46 436 

"" 132310 162580 108110 
6/14 (166) 0.63506 0.94407 0.34153 
6/15 (161) 8 46 187 

...... 4102000 348660 207970 
6/21 (173) -9.07000 -1.53940 -0.69227 
6/22 {I74)- 27 124 181 

'" 3361900 560400 349160 
6/30 (182) 1.39240 0.11096 -0.00840 
7/1 (183) 13 177 354 

...... 1139200 333800 316600 
7/15 (197) 1.28660 0.24177 -0.03110 
7/16 (198) 25 222 315 

"" 94931 96294 168980 
7 /31 (213) -0.84913 -0.26004 -0.07449 
8f 1(214) 33 1:'-'6 95 

..... 160640 126210 156100 
8/7 (220) -1.32040 -0.90610 -0.42770 
8/8(221) 20 244 226 132 

"" 15441000 1655200 1310700 463130 
8/24 (237) -1.55010 ·0.90681 -0.42588 -0.26207 
8/25 (238) 10 18 240 62 ~9 

N 356190 348320 556380 1707500 736650 
9/3(247-) -2.69560 -2.18570 -1.36850 -1.28780 -0.92048 
9f 4 (248) 27 24 :446 563 110 5t5 

fV 606380 216990 498590 739790 1335900 946740 
9/30 (274) 0.52117 -0.88691 -0.56437 -0.34695 0.05065 -0.68768 
10/1 (275) :tu 91 238 nu ti8 51 

'" 754250 455920 372020 235860 689780 101290 
10/31 (305) -1.38700 -0.14552 -0.00984 0.13160 -0.19892 0.08531 
11/1 (306) 38 82 246 568 1u8 36 

..... 534750 169530 50028 402080 154160 571270 
11/30 (335) .. -0.16188 -0.27541 -0.06148 0.1053-1 -0.16848 0.12707 
12/1 (S3G) -12 81 234 729 82 8 

rv 103270 179400 171280 107850 89559 301850 
12/31 (366) 0.66856 -0.20245 -0.26759- -0.18100 .0.11212 ·0.07033 
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Figur 5.5: Reliabili y in Y dam when u = 0 
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Figure 5.6: R liability in K dam wh n u = 0 
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Figure 5.7: Sensiti i in Y dam 
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Figur .8: Sensitivity in K dam 
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Figure 5.9: Reliability in Y dam when u is revised 
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Chapter 6 

Robust Control of Water Storages 

6.1 Introduction 

Automatic regulation of water resources system is a key subject to achieving its flexible 

and efficient management. In this chapter, the linear control theory is applied to a water 

storage model which describes reservoirs as well as open channel networks so that con­

trollable hydraulic structures are automatically regulated (Nakanishi et al. [70]; Unami 

and Kawachi [87]). 

Application of the linear control theory to mathematical open channel flow models 

such as in Corriga et ai. [21] is frequently discussed. Buyalski and Falvey [16] utilize 

the transient-response method and the frequency-response method to determine control 

parameters in a proportional integral system for canal check gates. These methods require 

unsteady flow simulations by the method of characteristics in advance. Classical linear 

control theory is investigated by many authors (Buyalski [13]; Buyalski [15]; Buyalski [14]; 

Clemmens and Replogle [19]; Schuurmans et ai. [84]; Hancu and Dan [33]; Rodellar et al. 

[80J; Clemmens et al. [20]; Molina and Miles [67]; Schuurmans et al. [83]). Balogun et 

al. [7] apply the linear quadratic regulator theory, which minimizes a performance index 

in the time domain, to a linearized and discretized hydrodynamical unsteady flow model. 

Further developments of the linear quadratic regulator in open channel flows are found in 

Reddy [76], Reddy et al. [781, and Reddy [77], where a Kalman filter is introduced into 

the system to handle canals subjected to external disturbances. 

The control system presented here essentially differs from the earlier works in the fol­

lowing three respects. In the first sense, derived from the global continuity equations, a 

water storage model gives a linear dynamical system model of flows in the open channel 

network which consists of several interacting pools connected with each other by regulat­

ing the controllable hydraulic structures. Thus, the system model does not involve any 

hydrodynamical eq~ation of motion and is applicable to reservoirs. In the second sense, 

89 
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the control errors are taken into account to prevent wind-up phenomena) or awkward ex­

pansion of a control variable. And in the third sense) the external disturbances are related 

to observable references by a generator) which is also represented by a linear dynamical 

model and may include modeling errors. In this context) three controllers are designed; 

one is a feed-forward controller to cancel out the external disturbances assuming that 

there is no modeling error in the generator, one is a controller for anti wind-up, and the 

other one is a feed-back controller to stabilize the control system under observation errors 

and to bound variations in storage volumes of the pools. Thus, the system is an exten­

sion of the two-degree-of freedom system which consists of a feed-back controller and a 

feed-back controller (Horowitz [35]; Unami et al. [92]). The robust control theory, which 

rigorously deals with the modeling errors as well as the external disturbances, is applied to 

designing the feed-back controller. The controllers designed are first tested in a reservoir 

operation problem and then incorporated into the hydrodynamical numerical simulation 

model of unsteady flows to demonstrate applicability to open channel networks. 

6.2 Water storage model 

Throughout the mathematical description of the control system, the same notation is used 

for representing a variable both in the time and the frequency domains. The frequency is 

denoted by s. 

A storage network that consists of ns pools and ms controllable hydraulic structures is 

modeled as the linear system which is described by the state equation 

with the observation equation 

ax 
-=Bu+q 
d". 

y=X 

(6.1) 

(6.2) 

where T = scaled time, X = ns-dimensional state variable vector which represents the 

scaled storage volume deviations of the pools, u = ms-dimensional control variable vector 

which represents the discharge deviations of controllable hydraulic structures, q = external 

disturbance vector, and y = observation output vector. The incidence matrix B is of 

ns x ms in size. 

The external disturbance vector q, which is the external inflow discharges into the 

pools, is assumed to be generated by a generator G from an observable ns-dimensional 

reference vector r. In practice, the generator G and the reference vector r may be a runoff 
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model and precipitation data. 

6.3 Errors in the model 

The modeling error in the generator G and the control error are taken into account in the 

controller design. 

The generator G, whose definite expression is hardly obtained, is perturbed from a 

nominal generator Go, which is written as 

Go = diag [~l 
s + O-i 

(6.3) 

where ki = i-th load coefficient, and O-i = i-th decay coefficient. In the true generator 

G, ki and ai are assumed to deviate as ki + ~r and O-i + 6.f with deviation parameters A~ 

and Ai whose maximum absolute values are prescribed. Then, the generator G as the 

transfer function from r to q is expressed as the block diagram shown in Figure 6.1. 

~I r diag[ki ] - q 
- s 

.... diag[ai] L-.- diag[~f] 

diag[8i] I---

Figure 6.1: Block diagram of gengerator G 

The control error is mostly due to the saturation of control variables. If a gate is 

fully open, the discharge cannot be controlled. Discharges given as boundary conditions 

are constrained, Thus, the control variable vector u is assumed to be multiplicatively 

perturbed from a nominal control variable vector Ul as 

U = (I + diag[AiD Ul (6.4) 

where I = ns-dimensional unit matrix, and ~f = deviation parameter for the i-th COID-
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ponent ofu. 

6.4 Design of controllers 

The Doyle's notation (Doyle et al. [22]) is used for the system matrix. For exam­

ple, [gl1~121 denotes the transfer matrix G21 (81 - Gurl Gl2 + G22 for matrices 
21 . 22] 

Gij (i, j = 1,2) of compatible dimensions. 

Let the reference vector r, the actual control variable vector tt, and the observation 

. output vector'll be known. In the control system whose block diagram is shown in Figure 

6.2, controllers KG, Kc, and KR are designed to determine the nominal control variable 

vector Ul which stabilizes the entire system. 

~I r 
G 

y 
J" s 

....L 
B 

-r--

'U 

KG diag[LlfJ KR 
"--,--

-

~-

'UI Kc 

-

Figure 6.2: Block diagram of control system 
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6.4.1 Controller KG 

The controller KG is chosen as 

(6.5) 

where BF = ma x na matrix which can be taken as BT, to cancel out the external 
disturbance if there is no error in the whole system. 

6.4.2 Controller Kc 

Extracting the control error characteristics as an Boo standard problem as shown in Figure 

6.3, the controller K c is determined to make the Boo norm of the closed-loop transfer 

function matrix, which is equal to diag[b..fl, less than unity. The class of such Kc is 

characterized by 

Kc = diag [~r 1 N(s) (6.6) 

where N(s) = any stable transfer function matrix whose Boo norm is less than unity. 

diag[~r] 

-

Kc 

Figure 6.3: Boo standard plant for Kc 

6.4.3 Controller KR 

The algebraic design method is employed to obtain the controller K R • An Boo standard 

problem is formulated as expressed in Figure 6.4 to bound the Boo norm of the closed-
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loop transfer function from an input disturbance vector [ :: 1 to an error signal vector 

[ =: ] taking the reference vector r as the input disturbance w 1 and using wf (i = 1 ~ n.), 

constant weights to scale the observation output vector 11 as the error signal %3. A state 

space representation of the generalized plant in the Hoo standard problem is obtained as 

[ ~~ ] d' [~r] 0 0 diag --'- - lag --
S + lli S + €li 

[ A! 1 d' [Ar 1 0 0 . [~ 
B1 

B, ] diag s +'ki 
- lag --

s + ki 
[0] 

1 d' [wfArl ~cliag [wf] -~cliag [wfl B 
[0] 

0 -- lag -- O2 [0] [0] 
S s +aj 

0 1 d' [A~ 1 !/ !B -- lag --
S s +ai 8 a 

[ -dr~l 0 0 

o 1 [J -J 01 [ i 1 
-diag [ail 0 0 / -/ 0 

0 0 diag [k;] 00/ 
0 0 -diag[ad o -/ 0 

-
[ diagt

rl 0 0 

~l 
(6.7) 

diag [~:] 0 [ 0 ] [ 0 ] 
0 diag[wf] 

[00/0] [ 0 ] [ 0 ] 

where Ao = 4n. x 4ns state matrix,B1 =.4ns x 3n, disturbance distribution matrix, B2 

= 4n, x rna control distribution matrix, 0 1 = 3na x 4na error output matrix, and O2 = 

na x 3na observation output matrix. 

Since all the components are zero matrix in the 2-2 block of the system matrix in Eqn. 

6.7, the class of all stabilizing controllers cannot be identified as in Glover and Doyle [31]. 

However, Sampei et al. [82] deduce an existence theorem and take an algebraic approach 

similar to Zhou and Khargonekar[98] as follows. 

A strictly proper controller stabilizes the system and makes the Hoc norm of the closed­

loop transfer function less than unity if and only if the following conditions are satisfied. 

1. There exists F such that there exists a positive definite solution Xoo to the algebraic 
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1 r ~ 
WI ~l :diag[k;J : ~1 

II I 1 II 

W2 
Idiag[aiJ I I. [ll.11 JI %1 

r lag i JI 

4iag[ll.~1: 
z:(. 

I W3 
B 

~diag(UlrJ: Z3 

-Bp(BBF )-ldiag [~] 
8+ ai 

Ul II 

KR 

Figure 6.4: Hoo standard plant for K R 

Riccati inequality 

(6.8) 

where Ax = Ao + B2F. 

2. There exists L such that there exists a positive definite solution Yoo to the algebraic 

Riccati inequality 

(6.9) 

where Ay = Ao + LC2 • 

3. The maximum singular value of (XooYoo) is less than unity. 

Moreover, one of such strictly proper controller is given by 

KR = [ ~ I! ] = [ Ax + EiEr X"" - Z (E; FTEi X"" - Y..;lLC2
) _Z:..;i L ] 

(6.10) 
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where Z = (y~l - X oo)-\ and E = - (XooAx + AIXoo + CiCl + XooBIB[ Xoc} A 

proof is given in Appendix D. Numerical solutions of the Riccati equations 

(6.11) 

and 

(6.12) 

determine Xoo and Y 00, respectively, in practical design. 

6. 5 Applications 

6.5.1 Reservoir operation in flood 

The controllers are applied to determining the release discharge of a single reservoir, 

where nB = mB = 1 and B = [1], when a flood wave enters into it. Two sets of data 

D-l and D-2 are observed at Y dam as summarized in Tables 6.1 and 6.2 and used for 

identifying the runoff model. Identification procedures using the least square method 
. 0.2012 0.0885 l' d D . I Th h yield the runoff models and lor D-l an -2, respectIve y. en, t e 

s + 6.899 8 + 3.506 
nominal generator Go is taken as 0.15 with the deviation parameters ~f = 0.10 and iJ.i 

8+5 

=3.4. Setting e = 10-', F = [ 0 .0 -5 0 j. and L = [ ~~ ], the controller KR i. 

obtained from Eqn.(6.10). 

Simulation runs are executed for 5 cases which include different combination of con­

trollers as shown in Table 6.3. Results for flood data D-l and D-2 are depicted in Figures 

6.5 and 6.6, respectively, and show that the controller Kc is necessary for settling the stor­

age volume after the saturation of the control variable occurs. The role of the controller 

K R is not dominant. 

6.5.2 Open channel network 

When controllable hydraulic structures such as gate or pump are installed in an open 

channel network to separate it into water pools, the network is regarded as a storage 

network no matter bow is tbe How dynamics in tbe pools. Applicability of the control 

system to such an open channel network is tested in the WE model. However, 4 gates 
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Table 6.1: Flood data D-1 

Time [hour] Precipitation[m/ day] Inflow discharge (1Qllm/day] 
1 0.168 0.51 
2 0.360 0.70 
3 0.480 1.35 
4 0.360 1.82 
5 0.648 3.12 
6 0.300 4.85 
7 0.420 5.76 
8 0.096 6.34 
9 0.000 4.97 
10 0.012 4.24 
11 0.060 3.73 
12 0.048 3.34 
13 0.024 2.83 
14 0.012 2.38 
15 0.000 2.25 
16 0.000 2.01 
17 0.000 2.25 

other than the one in the previous chapters are installed across the channel as shown in 

Figure 6.7, and drops are removed as shown in Figure 6.9. The gates G-1 through 5 and 

the boundaries fl and f2 are handled as the controllable hydraulic structures to separate 

the channel network into 4 pools. Thus, the open channel network is regarded as a storage 

network of 4 pools with 7 controllable hydraulic structures, as shown in Figure 6.8, and 

the 4 x 7 matrix 

B = [~ ~1 ~1 ~1 ~1 ~ ~] 
o a 1 1 0 -1 0 
o a 0 a 1 1 -1 

(6.13) 

becomes the incidence matrix B in Eqn.(6.1). 

The coefficients, deviation parameters, and weights are prepared as shown in Table 6.4 

to be used for designing controllers KG and KR• The deviation parameter Dar is supposed 

0;5 for every controllable hydraulic structure, and the free transfer function matrix N(s} 

in Eqn.(6.6) is specified as the 7 x 7 matrix diag[s + 1] to establish the controller Kc· 
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Table 6.2: Flood data ~2 

Time[hour] Precipitation!m/ day] Inflow discharge [106m/day] 

1 0.288 0.81 

2 0.720 1.98 

3 0.540 7.34 

4 0.192 7.59 

5 0.036 5.40 

6 0.072 4.37 

7 0.336 4.44 

8 0.060 5.18 

9 0.012 . 4.32 

10 0.120 3.77 

11 0.984 4.04 

12 1.524 7.89 

13 1.476 20.07 

14 1.512 23.96 

15 0.624 28.68 

16 0.204 19.01 

17 0.156 12.42 

18 0.084 12.82 

19 0.144 12.92 

20 0.120 10.57 
21 0.048 8.52 

22 0.012 8.39 

23 0.000 7.91 

24 0.000 6.26 

25 0.012 5.22 
26 0.000 5.72 
27 0.012 5.43 
28 0.000 4.33 
29 0.000 4.42 
30 0.000 4.17 
31 0.000 3.64 
32 0.000 3.32 

Setting' . 10-2
, F = [0 0 -150.8" 0], and L .. [-l~OI 1 t~ controller Kn i. 

,obtained from Eqn.(6.10) . 

. The, controllers are incorporated into the open channel flow model. The storage .volum~ 

of the pooh; are evaluated from the water d43pths at the boundary nodes and those at the 
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nodes which bound the gates. All components of the reference r are equally taken, and 

the discharges which are actually withdrawn from the turnouts in the pools are different 

from those which are expected from the reference r with the nominal generator Go, as 

shown in Figure 6.10. 

Simulation runs are executed for 4 cases which include different combination of con­

trollers as shown in Table 6.5. The scaled storage volumes of pools are calculated as in 

Figure 6.11. Nominal and actual discharge deviations of controllable hydraulic structures 

are depicted in Figure 6.12. The system drastically becomes stable in Case 4 where all the 

controllers are used, even though significant differences exist between the nominal and the 

actual discharge deviations. However, in contrast with the case of reservoir, contribution 

of the controller KR is more significant than that of the controller Kc. Indeed, removing 

the controller Kc from Case 4 results in minor change in system performance. 

6.6 Conclusions 

The robust control system which considers a generator and has three controllers is de­

signed. Robustness when the generator includes the modeling errors, robustness under 

the control errors, and bounded variations in storage volumes are guaranteed in the sense 

of the Hoc control problem and verified in the simulations. The system is applied to 

the reservoir, where the generator is the runoff model from precipitation to inflow into 

it, and then to the open channel network. The simulation results demonstrate excellent 

regulation performance in both cases. The observation errors are not explicitly evaluated 

but scarcely affects stability of the system. 
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Table 6.3: Combination of controllers for reservoir operation 

Case 1 No controller 
Case 2 KG 
Case 3 KG and Kc 
Case 4 KG and KR 
CaseS 'KG, 'Kc, and KR 

Table 6.4: Design ,data for controllers 

i ~. f:!J.'! , ai f:!J.f!-, w'!! • 
1 15 10 25 10 50 
2 20 10 50 20 50 
3 25 10 75 30 50 
4 30 10 100 40 50 

Table 6.5: Combination of controllers for open channel network operation 

Case 1 No controller 
Case 2 ,Kc 
Case 3 KG 
Case 4 KG, Kc, and KR 
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• : node 0 : gate 0 : turnout 

Figure 6.7: Open channel network of Wheatstone bridge type 

m : i-th controllable hydraulic structure CD: i-th pool 

Figure 6.8: Storage network 
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Conclusions 

In this thesis, optimization and control problems in water conveyance and water storage 

systems are studied as part of comprehensive synthesis of water resources management. 

The mathematical and numerical modeling techniques are prepared in Chapter 2 and 

used for examining applicability of optimization theories in the succeeding chapters by 

computer. The WB model, which is a model for a multiply connected open channel 

network, is consistently investigated in Chapters 2, 3, 4, and 6, where open channel 

network flows are considered. 

The optimal control problems are formulated in the framework of the variational cal­

culus for open channel unsteady flows and for reservoir reliability in Chapters 3 and 5, 

respectively. The minimum principle given in Chapter 3 comprehends all combination of 

observation and control, but only the boundary observation boundary control, the mixed 

observation domain control, and the terminal time observation domain control problems 

are demonstratively solved. An important practical example which is not discussed is a 

calibration problem of key parameters of channels such as roughness from measured water 

level data, which shall be a boundary observation domain control problem. The decision 

support model developed in Chapter 5 is an application of the terminal time (physically 

initial time) observation domain control problem formulation. A systematic optimization 

algorithm is not used except for the terminal time observation domain control problem 

in Chapter 3, where the iteration procedure yields the good convergent result. However, 

information obtained from the adjoint variables serves as a powerful tool to revise the 

control variables even by the manual procedures. 

The Markov process models are discussed in Chapters 4 and 5 using the FPPDEs. 

Allowing for spatial distribution of possible variation in free surface enables a tight design 

of an open channel. The FPPDE and its adjoint system are numerical solved in Chapter 

5 using the upwind discretization scheme developed for parabolic PDEs which may be of 

convection dominant in Chapter 2. The demonstrative examples use data observed at the 

109 
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existing reservoirs. The determination of the coefficients in the FPPDE shall be further 

investigated especially when a certain event can be anticipated in advance. 

Possibility of real time automatic control is discussed in Chapter 6. Open channels 

and reservoirs are inclusively investigated using the water storage model. The modern 

control theory is employed to design robust control systems. Since four zero components 

appear in the 2-2 block of the generalized plant, identification of the class of all stabi­

lizing controllers cannot be given for the time being. However, the stabilizing strictly 

proper controller obtained by the algebraic method proves excellent robust performance 

in example simulations. 

Computational efficiency is scarcely discussed throughout this thesis. The nonlinear 

equations are mostly solved by the Newton-Raphson method using numerical derivatives, 

which consume a huge amount of computational time. The Riccati equations in the de­

, sign of the robust controllers are obtained by a primitive numerical integration method. 

Sophistication of the computational algorithms is necessary for application to more com­

plicated cases. 
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Appendix A 

Newton-Raphson Method 

The Newton-Raphson method is an iterative procedure by successively calculating points 

that yields improved approximations to the solution to a system of n-algebraic equations 

for n-variables J(x) = O. The formula to obtain k-th approximated point z(k) from 
X(k-1) is 

where k = I, 2, 3, ... , and jk = Jacobian matrix defined by 8a
f The necessary 
z X=X(Io) 

and sufficient condition of convergence to the solution from an initial approximation z(O) 

is as follows (Saaty and Bram [81]). 

• The matrix jo has a nonvanishing determinant D 

• There exist constants C A and CB such that 

for k = 1, 2, 3, ... , and 

1 n 
max - '"" IA··I < CB . D L- "-, j=l 

where Ai; = the ij-cofactor of jo. 

• There exists a constant Cc such that 
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Appendix B 

Weak Solution of Steady Solute 
Transport Equation 

It is not self-evident that a weak solution to the solute transport equation in Chapter 2 

uniquely exists in steady state. A sufficient condition to guarantee the uniqueness and the 

existence of the solution is given by the Lax-Milgram's theorem (Lax and Milgram [54]), 

in which the bilinear form is assumed to be bounded and coercive. In this Appendix, 

these assumptions are briefly examined. 

Let Or be the class of all infinite times continuously differentiable functions which have 

compact support in the domain n. Completing Or in HI, a function space is obtained 

and denoted by HJ. The function space HJ is equipped with a norm II IIH6 defined by 

. r 808t/J 
for '¢ E HJ and an lDner product in 8x 8x dx for 0, 1/1 E HJ. 

Supposing that ADa; > 0, the bilinear form (3 is equivalently normalized as 

where {3' = normalized version of the bilinear form p. The bilinear form {3' is always 

bounded because of 

1{3(C,1/1)I= --+--'¢ dx ~ --dx + --'Ij;dx , 1 (8081/1 Q 80 ) 1808t/J 1 Q 8G 
n ax ax ADx ax n ax ax n ADx ax 
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~ ICIH61"'"H, + (J., (!J' dz) ~ IIClIH6 (J., ""dz) i 

< (1+ HJ., (!J' dz /) IICIINAII,,"IIH, = MIICIIH611"'IIH, 

h ' .. fi' b hi h . al t . f II¢IIHJ d' t th were A = a pOSltlVe mte num er w c IS equ 0 In 1 accor mg 0 e 
. 1/JEH6,¢"#O Un "p2dx) '2 

Poincare's inequality, and tbe bound M is taken as M = 1 + ~ (J., (!J' dz) t. 
A sufficient condition for the coerciveness of P' is given as follows. 

1. There exists a decomposition A~x = TO + Tl such that In To :~ dx = 0 for all TjJ E HJ. 

2. The decomposition A~a; = To+rl is supposed to be done so as to minimize (In T~dx ) t, 
and the bound J.L defined by 

is positive. 

Indeed, it is reduced that 

fJ'(t/J, t/J) = J., (:;:; + A~.:; t/J) dz = 1I"'"k, + J., TO! (~') dz + J., T1"':; dz 

= 11?jJ11~6 + in Tl"p :~ dx ~ 1I¢1I~6 - (In T~ch;) j (In TjJ
2
dx) ! 111/1IIH6 

under this condition, which is satisfied if !il: is nearly divergence free so that Tl is small 

enough. 



Appendix C 

Eigenvalues and Eigenvectors of 
Symmetric Matrix 

The eigenvalues and the eigenvectors of a n x n symmetric matrix S whose ij component 

is denoted by si,i are obtained by the following procedure. 

First, the Householder tridiagonalization is implemented. Let 8(0) be S. Matrices S(k) 

for k = 1, ... , n - 2 are transformed from S{k-l) as 

using matrices Q(k) defined by 

where In = n-dimensional unit matrix, and the scalar Qk and the vector Sk are chosen 

so as to eliminate all the ik components of S(k) for i = k + 2, ... , n. Such Qk and Sk are 

given by 

and 

o 

a 
Sk = Sk+l,k + Sign(Sk+l,k)Uk 

Sk+2,k 

Sn,k 
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n 
where Ulc = L Sr.k' The matrices Q{Ic) are diagonal because 

i=k+l 

Q{k)T Q(k} = (In - aksksk)(In - aksksD = In - 2a:kSkSk + a~sksk slesr 

= In - 2akslesf + aisk ((SHl.k + sign (Sk+l,k)Uk? + t S;'k) sf 
i=k+2 

= In - 2alc8ksf + a~sk (28ign(Sk+l'k)lTleSIe+l.k + lT~ + t si.k) sf 
i=k+l 

and thus the eigenvectors of 8(k) are unchanged by the transformation. Therefore, the 

resulting matrix 8(n-2) is a tridiagonal matrix which is written as 

61 {31 0 (31 62 (32 
8(n-2) = 

0 
{3n-2 6n- 1 {3n-l 

(3n-l 6n 

and has the same eigenvalues as S. 
Next, the eigenvalues of the tridiagonal matrix 8(n-2) are separated by the bisection 

method. The Sturm's theorem asserts that the number of the eigenvalues exceeding any 

real number )..' is equal to the number of sign variation in the Sturm sequence 

which are pricipal minors of the matrix )..' In - 8(n-2). Indeed, there exists an orthogonal 

matrix Uk such that 

al (31 0 (31 62 {32 
Ak ()..') = Uk )..'Ile - Uk1 

0 
{3k-2 61:-1 {3k-l 

(31e-1 6" 

is a diagonal matrix for every k = 1, ... n, and thus the number of sign variation in the 

Sturm sequence is equal to the number of negative components of the diagonal matrix 
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An(X), which conserves the numbers of negative components of)..' - s(n-2) according to 

the well known Sylvester's law of inertia. Therefore, an interval [Ii, Til which includes 

the i-tb eigenvalue is determined by repeatedly dividing a test interval in half and then 

checking which half the i-th eigenvalue belongs to. 

Finally, the i-th eigenvalue and the corresponding eigenvector are approximately cal­

culated by the inverse iteration method. The k-th estimate v~k) of the eigenvector is 

recursively given by 

starting with an initial guess v~O). This method for the matrix s(n-2) _ li ~ Tj In yields 

a sequence which converges to the eigenvector corresponding to the eigenvalue closest to 

zero. Thus, the i-th eigenvalue and the corresponding normalized eigenvector for the 
l (k) 

. Sen 2) • d b 1 i + Tj d Vi . 1 h h 
matrIX - are approxnnate y Ilv~k) II + 2 an IIv~k) II' respectIve y, w en t e 

difference between vik- 1
) and v~k} is small enough. 

This procedure is used for decomposing the diffusion tensor D in Chapter 4 as well as 

for checking the conditions imposed on the solutions of the algebraic lliccati equations in 

Chapter 6. 



Appendix D 

Existence Theorem of Controller 

The controller 

KR=[%-] 
used in Chapter 6 for the linear system 

is to stabilize the closed-loop system 

and to satisfy !lGcll oo < 1. All matrices are of compatible dimensions. Assuming that 

(Ao, B2) is stabilizable and that (C2 , Ao) is detectable, the following Theorem and Corol­

lary by Sampei et al. [82] guarantee the existence of such a controller. 

Theorem. There exi3ts a strictly proper controller K R which stabilizes the system and 

satisfies IIG clloo < 1 if and only if the following conditions are satisfied. 

1. There exists Foo such that there exists a positive definite solution Xoo to the algebraic 

Riccati inequality 
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2. There exists Koo such that there exists a positive definite solution Yoo to the algebraic 

~ccati inequality 

3. The maximum singular value of (XooYoo ) is less than unity. 

Corollary. Assume that the conditions of Theorem are satisfied. Then, one of such 

strictly proper controllers can be obtained by using Xoc)J Yoo, Fool and Koo in Theorem as 

where Z = (Y.;l_ Xoorl, and E = - (XooAx + AIXoo + C[Gl +XOOBlBfXoo). 

Note that E is positive definite if the first condition of Theorem is satisfied. 

Proof of the necessity 

The bounded real theorem by Zhou and Khargonekar [98] states that the existence of 

a positive definite matrix Xc which satisfies the ~ccati inequality 

is equivalent to the existence of such a K R as stated in the theorem. Decomposing Xc as 

where the dimension of Xu is the same as that of Ao, a state coordinate transformation 

matrix T x is defined by 
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where Ex = -x;lX~. Pre-multiplied by TI. and post-multiplied by Tx , the Riccati 

inequality in the Theorem is reduced to an inequality whose (1,1) block matrix satisfies 

is positive definite, Xl is also positive definite. Thus, the first condition of the theorem 

is satisfied when Foo = CEx and Xoo = Xl' Moreover, Xoo = (1 - e)XI also satisfies 

the Riccati inequality in the Theorem for sufficiently small c because its left hand side 

becomes continuous with respect to e. 

Another state coordinate transformation matrix T y is defined by 

v = [I -Ey 1 
y 0 I 

where Ey = XiiI X12 • Pre-multiplied by TJ and post-multiplied by Ty , the Riccati 

inequality in the Theorem is reduced to an inequality whose (1,1) block matrix satisfies 

where Ay = Ao + EyBC2 • Since Xu > 0 and thus XiiI> 0, 

holds. Thus, the second condition of the theorem is satisfied when Koo = EyE and 

Yoo = XiiI, 

From the above Xl! Xoo , and Yoo , 

is obtained, and the third condition of the theorem is satisfied. 

Proof of the sufficiency 
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It is enough to show that the matrix S defined by 

is negative definite for the controller in Corollary with a suitable Xc' Considering the 

definitions of Xoo and Yoo in the proof of the necessity, Xc is defined as 

and the coordinate transformation matrix. 

is introduced. Transforming Xc as 

T{X,Tx = [~'" y~' ~ X", 1 

shows that Xc is positive definite because of the first and the third conditions of Theorem. 

Obviously, S is negative definite if and only if ST = TfSTx is negative definite. Using 

and 

where 
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822 = Z-l (Ao + BIBTXoo) + (Ar + XooBTBl) Z-l + Z-lB1BTz-l- 2E 

- (XOOBIFoo + F~BrXoo - y~lKooC2 - CfK!;Xc;/) 

= -2E - y~l (YooA~ + AyYoo + BIBr + YooCfC1YOO ) y~l 

- (XooAx + AIxoo + cr C1 + XOOBIBr Xoo) 

for Ax and Ay in Theorem. Transforming the coordinate as 

8T is found to be negative definite because of the second condition of Theorem. Thus, 

8 < O. 


