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Preface

In aerospace engineering and in vacuum engineering connected with various advanced tech-

nologies, the understanding of the behavior of low-density gas flows is one of the important |
research subjects. On the other hand, in connection with the recent remarkable progress in
micromechanical engineering, the control as well as the understanding of gas flows in mi-
croscales becomes increasingly important. The common feature of these two types of flow
is the fact that the molecular mean free path is not negligibly small compared with the
characteristic size of the systems, so that the states of the gas deviate from local equilibrium
states. Nonequilibrium states also arise in the gas flows with evaporation and condensa-
tion which are commonly encountered in various fields of engineering and science. To be
more specific, even when the molecular mean free path is negligibly small, the state of the
gas is nonequilibrium in the vicinty of the boundary (or interface) on which evaporation or
condensation is taking place.

For these nonequilibrium gas flows, the classical fluid or gas dynamics is not applicable,
and a microscopic approach based on kinetic theory of gases is required. Such an approach
is called the molecular gas dynamics or rarefied gas dynamics. Since the fundamental equa-
tion of the molecular gas dynamics, which is called the Boltzmann equation, is a nonlinear
integro-differential equation that is much more complicated than the equations of classical
fluid dynamics, its analysis is not an easy matter. Nevertheless, for single-component gases,
there is a rich accumulation of successful and useful results. For instance, a general the-
ory to describe the behavior of slightly rarefied gas flows (i.e., the gas flows in which the
molecular mean free path is relatively small) by the use of fluid-dynamic type systems has
been established by means of a systematic asymptotic analysis of the Boltzmann equation.
At the same time, the validity of the classical fluid dynamics was examined in the light
of this theory, and as a result an essential defect contained in the fluid dynamics was re-
vealed. Further, accurate numerical methods for solving the Boltzmann and related kinetic
equations have been developed, and various problems of fundamental importance have been
clarified for wide ranges of gas rarefaction. However, for multicomponent gaseous mixtures,

the accumulation of the results is much poorer because of more serious complexity of the



Boltzmann equation intrinsic to this case.

In the present study, therefore, we consider binary gas mixtures in nonequilibrium states
and try to clarify the behavior of the mixture in some problems that appear to be of basic
as well as of practical importance by means of asymptotic and numerical analyses of the
Boltzmann equation. The content of the present thesis is as follows.

In Chap. 1, we consider flows of a vapor caused by evaporation and condensation on
its two parallel plane condensed phases in the situation that another gas which neither
evaporates nor condenses (a noncondensable gas) is contained in the vapor. Our main interest
here is to clarify the behavior of the mixture in the continuum limit with respect to the vapor
(i.e., the limit where the mean free path of the vapor molecules vanishes). By means of a
systematic asymptotic analysis of the Boltzmann equation, it is shown that there are two
types of the continuum limit depending on the amount of the noncondensable gas contained
in the system. One of the limits exhibits a striking feature that an infinitesimal amount of
the noncondensable gas gives a substantial effect on the vapor flows. These results are also
confirmed by a numerical analysis of the Boltzmann equation using the direct simulation
Monte Carlo (DSMC) method.

In Chap. 2, we investigate the structure of a shock wave for a binary mixture, which
~is one of the most fundamental nonequilibrium flows. First, we develop an accurate finite-
difference method for the Boltzmann equation for hard-sphere molecules, in which a precise
method for the computation of the complicated collision integrals is devised. Then, applying
the method, we clarify the transition from the upstream equilibrium state to the downstream
one through the shock wave in the level of the molecular velocity distribution function for a
wide range of concentrations of the two components.

Finally in Chap. 3, we consider another fundamental problem, the problem of heat trans-
fer in a binary rarefied mixture between two parallel plates with different temperatures. We
analyze the problem numerically by using the finite-difference method developed in Chap. 2
and clarify the temperature and density distributions as well as the heat flow for typical
cases of small to large mean free path. The behavior of the molecular velocity distribution

function is also clarified.
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Chapter 1

Evapo"’ration and condensation between two par-
allel condensed phases in the presence of a non-
condensable gas:

1.1 Introduction

Vapor flows with evaporation and condensation on the boundary are one of the main subjects
in modern kinetic theory, and for single-component systems (composed of a pure vapor and its
own condensed phase) many successful results have been obtained. For instance, a new type
of gasdynamics (i.e., fluid-dynamic equations and their boundary conditions) describing such
flows around arbitrarily shaped boundaries in the continuum limit (the limit as the Knudsen
number tends to zero) has been established by means of a systematic asymptotic analysis of
the Boltzmann equation for small Knudsen numbers.2~¢ At the same time, its higher-order
correction due to the effect of gas rarefaction has also been obtained.2~* On the other hand,
various problems, such as an evaporating flow from a spherical or cylindrical condensed
phase’"1® and a vapor flow past a spherical condensed phase,'! have been investigated by
accurate numerical analyses for the entire range of the Knudsen number, and the detailed
structure of the vapor flows has been clarified.

Among these problems, the flow caused by evaporation and condensation between two
parallel plane condensed phases (say, the two-surface problem) would be one of the most fun-
damental problems. In spite of the fact that the problem appears to be very simple, it con-
tains some nontrivial features, such as the phenomenon of negative temperature gradient.!*2

122,13-23 4nd, as a result, some interest-

Therefore, it has been investigated by many authors,
ing behavior has been clarified. For example, in the continuum limit, the flow field becomes
uniform except in the vanishingly thin Knudsen layers adjacent to the condensed phases,
irrespective of the strength of evaporation and condensation.5?' Furthermore, this limiting

behavior cannot be described correctly by the linearized Boltzmann equation, however weak

the evaporation and condensation may be, and therefore a fully nonlinear treatment is always
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necessary.?!

In practical situations, however, evaporation and condensation often take place in the
presence of another gas that neither evaporates nor condenses (say, a noncondensable gas).
In the two-surface problem, in view of the above-mentioned behavior in the continuum limit
for the (much simpler) single-component system, some nontrivial and essentially nonlinear
behavior is expected in this limit when a noncondensable gas is contained in the vapor flow.
The two-surface problem in the presence of a noncondensable gas has also been investigated
in several papers.2*~3! However, only the case of weak evaporation and condensation has
been considered on the basis of linearized equations or weakly nonlinear approaches for
small Knudsen numbers. In addition, these works are mainly based on model Boltzmann
equations. In fact, various model equations have been employed because the models for a
mixture proposed so far are not so satisfactory as the BGK model3?—3* for a single-component
gas. Consequently, the fully nonlinear behavior of the vapor and of the noncondensable gas,
in particular, that in the continuum limit, has not been understood correctly.

The aim of this chapter is to obtain a clear understanding of the point mentioned above.
That is, we investigate the two-surface problem of evaporation and condensation for a mix-
ture of a vapor and a noncondensable gas in nonlinear situations on the basis of the Boltz-
mann equation. After the formulation of the problem in Sec. 1.2, we carry out an asymptotic
analysis of the problem for small values of the Knudsen number (associated with vapor-vapor
collisions) in Sec. 1.3, where the fundamental features of the continuum limit (with respect
to the vapor) are clarified. Then, in Sec. 1.4, the problem is analyzed numerically by means
of the direct simulation Monte Carlo method®*?® for a wide range of the Knudsen number.
Here, special attention is focused on the behavior of the system for small Knudsen numbers
and in the continuum limit, and the basic features clarified by the asymptotic analysis are

confirmed numerically.

The two-surface problem of evaporation and condensation (for the pure vapor case) is a
physical example of the so-called slab problem which has also been an important subject of
mathematical study3”—*° because it is the simplest boundary-value problem of the Boltzmann
equation. Notable progress has been achieved in this field, and the existence of a solution of

the (nonlinear) Boltzmann equation in a slab has been proved under some conditions.3340



1.2 Formulation of problem and basic equation
1.2.A Problem and assumptions

We consider a vapor in the gap 0 < X; < D between two parallel plane surfaces at rest of its
condensed phase, one located at X; =0 and kept at temperature 77 and the other located
at X3 = D (> 0) and kept at temperature 777, where X; is a space rectangular coordinate
system. We suppose that a noncondensable gas is also contained in the gap. We investigate
the steady flow of the vapor caused by evaporation and condensation and the behavior of
the noncondensable gas under the following assumptions.

(i) The behavior of the vapor and that of the noncondensable gas are described by the
Boltzmann equation for a binary mixture.

(i) The molecules of the vapor and those of the noncondensable gas are hard (or rigid)
spheres, and all the collisions between the molecules are completely elastic:

(iii) The vapor molecules leaving each surface of the condensed phase are distributed
according to the corresponding part of the Maxwellian distribution describing the stationary
saturated state at the temperature of the surface (the complete condensation condition).

(iv) The noncondensable gas molecules are reflected diffusely on the surfaces of the con-

densed phase.

1.2.B Basic equations

Let & (or &) be the molecular velocity, F4(X,€) the velocity distribution function of the

vapor molecules, and FB(X;,€) that of the noncondensable gas molecules. The Boltzmann

equation in the present problem is written in the following form.*!42
oF* Ac( A o Ba( B o
& = JAX(F4 F®) + J°(F®, F*®), (= A, B), (1.1)
0X,
where, with « = A, B and § = A, B,
1 «
JP(F,G) = §(dﬁ°‘)2/[F(€fa)G(Eﬂ ) — F(£)G(é)]|a - V]dQ(a)dE,, (1.2)



£ = £+ (WP /m™)(a- V)a, (1.3a)
gie =¢, - (W*/mf)(a- Ve, (1.3b)
V=¢, ¢, ' (1.3c)
d?® = (d* + d%)/2, (1.3d)
1P = 2memP /(m® + mP). . (1.3¢)

Here, &, is the integration variable for §, « is a unit vector, d€, = d{,1d€.2dé:3, and dQ(a)
is the solid-angle element; m# and d* are the mass and the diameter of a vapor molecule,
and m® and dP are those of a noncondensable-gas molecule; the domain of integration with
respect to c is all the directions, and that with respect to £, is the whole space of &,.

The boundary conditions on the surfaces, the complete condensation condition for the

vapor and the diffuse reflection for the noncondensable gas, are, with a = A, B,

F® = o%(m®/2nKkTy)3? exp(—m°€2/2kT;), for & >0, at X; =0, (1.4)

of =ny, | (1.5a)
of = —(2nm®B/kTy)Y/? &FB(0,€)de, (1.5b)

&1<0

and

Fo = 6% (m®/2nkTy)%/? exp(—m®€2/26Ty;), for & <0, at X,=D, (1.6)
0'}41 =Ny, (17&)
ofy = (2em® [KTp)"? & FP(D,€)de, (1.7b)

&:i>0

where n; and n;; are the saturation number density of the vapor molecules at temperature T;
and that at témperature 171, respectively, « is the Boltzmann constant, and d€ = d€,d&>d&s.
Physically, the saturation Vapor pressure (or number density) is a function of the temperature
only, which depends on the substance of the vapor (the Clausius-Clapeyron equation®); thus,
ny and nj; are determined by 77 and Tj;, respectively. In the following, however, such a
relation is never used, and n; and nj; are assumed to be parameters independent of 77 and

TI[.



Now let us define the macroscopic variables of each component in terms of its velocity

distribution function as follows. With @ = A and B,

n® = /F“dﬁ, (1.8a)
u® = (1/n%) / £ Fede, (1.8b)
p® = kn®Te = (1/3) / me (& — u®6y )2 FOdE, (1.8¢)

where n4, v4 = (u4,0,0), p#, and T are the molecular number density, the flow velocity,
the pressure, and the temperature of the vapor, and n?, v® = (u%,0,0), p?, and T? are
the corresponding quantities of the noncondensable gas.** The domain of the integration
with respect to £ in Eqgs. (1.8a) — (1.8¢c) and in what follows is the whole space of & unless
otherwise stated. On the other hand, the molecular number density n, the density p, the
flow velocity v = (u, 0, 0), the pressure p, and the temperature T of the total mixture of the

vapor and the noncondensable gas are defined by

n= /(FA + FB)qe, - (1.92)
p= / (mAF4 + mBFB)dg, (1.9b)
u=(/p) [ &mAPt+mPFP)de, (1.90)
p=knT = (1/3) / (& — ub)2(mAFA + mPFB)de. (1.9d)

Therefore, théy are expressed in terms of the macroscopic variables of individual components

as follows.

n=n"+n?, (1.10a)
p=m"n*+mPn® (1.10b)
u = (1/p)(m*nu? + mPnfu®), (1.10c)
p=p* + m*nA(u? — u)?/3 + p® + mPnB(u® — u)?/3. (1.10d)

It should be noted that the solution to the boundary-value problem, Egs. (1.1), (1.4),
and (1.6), is not unique. In order to obtain a unique solution, we have to specify a quantity

associated with the amount of the noncondensable gas. Here, we choose the average number
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density

B — D" / B(X,)dX; = D~ / f FBagdX,, (1.11)

as the parameter to be specified.

Integrating both sides of Eq. (1.1) with respect to £ over its whole space, we obtain
nu® = /ﬁlF"‘dﬁ = const, (a = A, B), (1.12)

which expresses the mass conservation for each component. Since nfuf =0 at X; = 0 and

D because of the diffuse reflection condition for the noncondensable gas, we have
nfuP =0, (0<X; <D). (1.13)

1.2.C Nondimensionalization

We now introduce the following nondimensional variables. With oz = A and B,

z1 = X1/D, G =&(2kTr/mA)72, (1.14a)
F® = F (26T /m*)%/? /n, (1.14b)
A% =n%/n;, 4% = u®(26T;/mA)~V/2, (1.14c)
p* =p%/pr, T*=T%/Ty, (1.14d)
fn=mn/n;, p=p/pr, (1.14e)
i = u(2cTr/m*)™2, p=p/pi, (1.14f)

=T/Ty, (1.14g)

where p; = m“n; and p; = kn; Ty are, respectively, the density and the pressure of the vapor
in the saturated equilibrium state at rest at temperature 7. In what follows, the symbol ¢
is also used for ¢;.

The Boltzmann equation (1.1) is then nondimensionalized as follows.

dE*
Gy

%[CAQJAQ(FA, ) 4 ¢Be JPa(FB | fray) (a= A B), (1.15)
where, with a = A,B and 8 = A, B,

JeF, G (PGP — F(C)G(Q)le Vlda(amc*, (1.16)

=z |



¢ = ¢+ (P2 /x%) (e V), (1.17a)
¢ = ¢ = (72X (@ Ve, (1.17b)
V=¢, -¢, (1.17¢)
C44 =1, CP4=C*%=(1+d5/d*?/4, CBE = (dB/d*)? (1.17d)
P = 20208 /(X + X8), M =1, I =mB/mA, | (1.17¢)
k= (v7/2)Kn = (V7/2)(¢/D), (1.17f)
£ = [V2r(d*)*ng] . (1.17g)

Here, (, is the integration variable for ¢, d¢, = d(.1d(,2d(,3, the domain of integration with
respect to the unit vector a is all the directions, and that with respect to ¢, is its whole
space; £ is the mean free path of the vapor molecules in the equilibrium state at rest with
temperature 77 and molecular number density n;, and thus Kn is the Knudsen number based
on { and D.

The nondimensional form of the boundary conditions at z; = 0 and 1, corresponding to

Egs. (1.4) — (1.7b), is written as, with o = A, B,

Fo = 3250 (V)32 -3/2 exp (- \*T-1¢2), for Ga; > 0, (1.18)
G2 = fiy, (1.19a)
55 = —2/m(m® [m*) 2T/ / Ga:FPd¢, (1.19b)
¢ia;<0
where
Twy=1, fy=1 a=(1,0,0), at z; =0, (1.20a)
Tw = TH/TI, ’flw = 77,[[/71[, a; = (—1,0, 0), at x1 = 1. (120b)

The nondimensional form of the relations between the macroscopic variables and the

7



velocity distribution functions, Egs. (1.8a) — (1.10d), is given by

A% = / Fede, i = (p%) / GFede, (1.21a)
p* = pete = (2/3)\ /(Q — ”"‘5“)215"(1{, (1.21b)
i = / (B4 + FB)d¢ = a# + A5, (1.21c)
, cq , mP - 4, mB

P | FA 4 mBﬁB de = 5~ 1pAGA m® . p 1.91
4=p"" | Gf ' )¢ = p~ (4 +mnu), (1.21e)

AL 2 AmA N2, B mBAB “B _ ~\2
=P +§n (U —u) +p +—-T;L—TL (u —u) . (121f)

Here and in what follows, the domain of integration with respect to ¢ is its whole space

unless otherwise stated.
Equation (1.15) and boundary conditions (1.18) — (1.19b) contain the following nondi-

mensional parameters to be specified (cf. the second paragraph in Sec. 1.2.B).

TII nrr mB dB
—-—, —, k K —_— = 1.22
In addition, we have to specify the parameter
B 1
May _ / #Bdz,, (1.23)
ny 0

corresponding to Eq. (1.11), to obtain a unique solution of the problem. On the other hand,

from Egs. (1.12) and (1.13) , we have the following mass conservation relation,

~B

A494 = const and APaP =0, for 0<z; <1 (1.24)

n-u

Here, we mention other Knudsen numbers. Let us consider the equilibrium state at
rest with temperature 77 of the mixture of the vapor with number density n; and the
noncondensable gas with number density nZ. We denote by £84 the mean free path of the
vapor molecules with respect to their collisions with the noncondensable gas, by £4Z that of
the noncondensable-gas molecules with respect to their collisions with the vapor, and by ¢82

that of the noncondensable-gas molecules with respect to the collisions among themselves.
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Then, £84, (A and £B8 are given as

084 = [n(d*B)?nZ |7 mB ) (m* + mPB)]M/?, (1.25a)
048 = [ (d*B)n ] m? ) (m* + mP)]/2, (1.25b)
(BB = [v2r(dP)?nB 1. (1.25¢)

Therefore, if we introduce the following Knudsen numbers:
KnP4 = ¢B4/D, Kn*% =¢48/D, KnPP =¢B5/p, (1.26)

they are expressed in terms of the parameters in Egs. (1.22) and (1.23), namely,

5 d? mB /m
BA _ 4./o(Mav)-1 -2 1/2 '
Kn \/_(nI) (1+dA) (1+ Y ) /*Kn, (1.27a)
dB 1
AB _ 4v2(1 -2 1/2 i
Kn®® = 4v2(1+ —3) (7 57mA) " Ko, (1.27b)
KnP8 = (Efl)—l(ﬁ)—QK ' 1.27
n™ = (] 7 n. (1.27¢)

1.3 Asymptotic analysis for small Knudsen numbers

In this section, we investigate the asymptotic behavior of the gases for small Knudsen num-
bers (Kn or k£ < 1) with special interest in the continuum limit (Kn or & — 0).
1.3.A Hilbert expansion

To begin with, we seek a moderately varying solution F'4 and FZ of Eq. (1.15) [ie.,
OF{® |0z, = O(F4P)] by the simple power series expansion (Hilbert expansion), namely,

g = Fho+ Fik + Fpok® + -, (a=A4,B). (1.28)

If we substitute Eq. (1.28) for F** in Eqs. (1.21a)-(1.21f), we obtain the corresponding power
series expansions of the macroscopic variables of each component and of the total mixture,

namely,

@ = h%o + Aok + hSek? + - -, (a = A, B), (1.29a)
ha = hgo + hmk + heak® + - - -, (1.29b)
where h$; represents 1%, 4%, T;;, etc., hy represents fig, Gg, Ty, etc., and the subscript H

indicates the quantities corresponding to the moderately varying solution ﬁ}i‘;. Substituting

9



Eq. (1.28) into Eq. (1.15) and equating the coefficients of k™ (m = 0,1,...), we obtain a

sequence of integral equations for F'g _, i.e., with @ = A, B,

C’AajAa(ﬁ'f}o’ ~§0) + CBajBa(FI?O, A?Io) =0, (1.30)
= 2 ~ r a JBa( i fro 6ﬁam—
> (G A (Epyy Fi) + O TP (B, )] = G5 2=,
=0
(m=12,..). (1.31)

As is well known,**2 the solution of Eq. (1.30) is given by local Maxwellian distributions

. e Te _ @ A
Fio = 7T_3/2nﬂo(%) 32 exp (’TT(Ci - U%Ioéil)z), (a=4,B), (1.32)
HO

with the condition
Wby =48, =g, Thy,=TE, = Tno. (1.33)
On the other hand, Eq. (1.24) gives
b5, =0, (1.34)

which implies 15, = 0 or 45, = 0 (with 2§, # 0). We investigate these two cases separately.

1 The case of 45, = 0 with A5, #£ 0
In this case, from Eq. (1.33), we have
SA

Therefore, F'{, and Fg, are given by

xeq?
T
Ho

Fgy = W—3/2ﬁ%10(%2)_3/2 exp(— (0= A, B). (1.36)

Now let us assume that ﬁf}o and THO take the following values on the surfaces of the condensed

phase.
Ao =1, Tmo=1, at =0, (1.37a)
o = nir/ni,  Tho=Tir/Ty, at z; =1 (1.37b)

Then, F'4, and FB, of Eq. (1.36) satisfy boundary conditions (1.18) — (1.20b) at the order

of k. In order to determine 4,, #B,, and Ty in the gas, we need to proceed to the higher
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order in k. However, Egs. (1.35), (1.37a), and (1.37b) show the following behavior in the

continuum limit: As £k — 0,

iy — 0, ' (1.38)

and
ag—1, Tg—1, at 2 =0, (1.39a)
’fb;‘[ — nu/n,-, TH — TII/TI7 ’ at z;=1. (139b)

Since the condition Aif, # 0 corresponds to nf /n; # 0 irrespective of the values of k,
Eq. (1.38) shows the following important result: For any (non-zero) fixed value of nZ /n;,
evaporation and condensation stop in the continuum limit. In other words, the vapor flow
(44), which is controlled by the diffusion caused by the nonuniformity of A%,, 75, and
Tao, is of O(Kn) and becomes vanishingly small in this limit. It is seen from Eqs. (1.272) -

(1.27c) that, in this limit, all the Knudsen numbers Kn®4, Kn#Z, and Kn®” tend to zero in

proportion to k (or Kn).

2 The case of 75, =0

In this case, 4, is not identically zero, and Ff, and F§, are given by

N N — A 5.4)2
FI1{40 = 71'—3/2'&20 (Tf}o)—3/2 exp (—(i___g_gﬂ_zl)_.) , (1.40a)
Tizo
FE =0 (1.40D)
First, we show that F'B_ = 0 for any m. Let us assume that F2, ..., F§ | = 0. Then,

from Eq. (1.31) with o = B, we have
JAB(Fa BB ) =0. (1.41)
The solution to this equation is given by the form*
B SA s V2
("B m> (G — dodin)
_ _m- (6 T Une0u)” ) 1.42
Fg. = Cn(z1) eXp( AT (1.42)
where Cp,(z;) is an arbitrary function of z;. On the other hand, we have, from Eq. (1.24),

/ GFE . d¢=0. (1.43)

11



The substitution of Eq. (1.42) into Eq. (1.43) leads to Cr,(z1) = 0, ile., FE_ = 0. Therefore,
it follows from Eq. (1.40b) that

FE =0, (m=1,2,..). (1.44)

Next, we consider ﬁ‘f}‘m. As is seen from Eq. (1.40a), F4, does not fit to boundary
condition (1.18) with a = A. In order to obtain a solution satisfying the boundary condition,
we have to introduce the Knudsen layers, with thickness of the order of the mean free path,
adjacent to the surfaces of the condensed phase. The discussion about the Knudsen layers
being left in Sec. 1.3.B, let us suppose, for the moment, that we have obtained the k°-order
solution (for 4 and F'B) that satisfies boundary condition (1.18) at the order of k% and
coincides with Eqgs. (1.40a) and (1.40b) except in the Knudsen layers. Then, for the higher-
order terms, boundary condition (1.18) with a = A becomes (F4),, = 0 (Ga; > 0; m > 1),
where (F'4),, indicates the k™-order term of F*4. It should also be noted that Eq. (1.44)
satisfies boundary condition (1.18) with o = B at the order of k™. We are going to show
that A%y, T#,, and %, are constants and that F4,, = 0 (m > 1) is a consistent solution
except for a special case. With Eqgs. (1.40b) and (1.44), Eq. (1.31) is reduced to a sequence

of inhomogeneous linear integral equations for F4,, (m > 1), i.e.,

jAA(ﬁémv FI?O) + JAAA(FI‘?O’ ﬁ’;}m)

aFA‘I}?’H},—I = JAA (A A
=C1_a_z'c—1—— - ZJ (FHm—l7 FHl)’ (m = 1,2,...), (14:5)

=1

where 3)_, is understood to be zero. The homogeneous equation of Eq. (1.45) [i.e., Eq. (1.45)
* with the right-hand side being put to be zero] has the five independent nontrivial solutions
Ffo, FAG, and Ff(2.%8% Therefore, the inhomogeneous term of Eq. (1.45) should satisfy

the following solvability condition to have a solution:

/ (1,¢1,¢)[RHS of Eq. (1.45)]d¢ = 0, (1.46)
which reduces to
dF4
[a.6.¢aE=tae <o (147

And the solution of Eq. (1.45) is expressed as

Fitm = Fiio(Com + CimGi + C4mCJ?) + ¥, (1.48)
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where Cop,, Cipm, and Clyy, are undetermined functions of z;, and ¥,, is a particular solution
of Eq. (1.45) orthogonal to F4,, Fi(i, and F#,(2. Here, we have taken into account the
fact that we are looking for the solution which is even in {; and (3 (note that the X, and
X3 components of v# are assumed to be zero). From Eq. (1.40a) and Eq. (1.47) with
m = 1, it follows that A%y, T4y, and @f, are all (undetermined) constants (this corresponds
to the compressible Euler equations®). Therefore, Eq. (1.45) with m = 1 reduces to the
homogeneous equation, and its solution is given by Eq. (1.48) (m = 1) with ¥; = 0. Using
this solution in Eq. (1.47) with m = 2, we obtain simultaneous, linear, and homogeneous
equations for dCo;/dz;, dC11/dz;, and dCy1/dx;. These equations give the (trivial) solution
dCo1/dz, = dCyy/dzy = dCy/dz1 = 0 (ie., Cp1, Ci1, and Cy are constants) if 4, #
+(5T4,/6)"%. When afy, = £(5T%,/6)/2, that is, the flow speed corresponding to 44, is
sonic, there exists a nontrivial solution for dCq; /dzy, dC11/dz,, and dCy; /dz;, and therefore
Co1, Ci1, and Cyy can take nonconstant values. Let us restrict ourselves to the case 44, #
+(57'4,/6)/2. If we assume that Cp; = Cy; = Cy = 0, that is, F4, = 0, then it satisfies
boundary condition (1.18) with oo = A at the order of k (see the fourth sentence in this
paragraph). Similarly, we can show that P4 = 0 (m > 2) is a solution to Eq. (1.45)
satisfying boundary condition (1.18) with o = A at the order of k™.

To summarize, Eq. (1.40a) (with 7%y, T4,, and %, being undetermined constants) and
Eq. (1.40b) are the k%-order solution except in the Knudsen layers adjacent to the surfaces
of the condensed phase; F B =0 (m > 1) is the k™-order solution satisfying boundary
condition (1.18) with a = B; furthermore, £f, = 0 (m > 1) gives the k™-order solution
satisfying boundary condition (1.18) with o = A when 4%, # (57%,/6)/2. Therefore, the
remaining task is to find the Knudsen-layer solution at the k° order which can be connected
to Eqs. (1.40a) and (1.40b) and satisfies boundary condition (1.18). The constants i, T4,,
and 44, are determined by this analysis.

Since FE_ =0 (m > 0), the noncondensable gas can exist only in the Knudsen layers. As
will be seen in Sec. 1.3.B, it can exist only in the Knudsen layer at the condensing surface.
Let us suppose that 7% is of the order of unity in the Knudsen layer. [This is confirmed

4748 which is equivalent

by the numerical analysis of the half-space problem of condensation,
to the problem of the Knudsen layer at the condensing surface (see Sec. 1.3.B).] Then, the

average number density nZ is estimated as nZ /n; = O(Kn) because the thickness of the
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Knudsen layer is of the order of £. In other words, if we consider the case of small Kn with
the condition nZ /n; = O(Kn), then all the amount of the noncondensable gas is confined
in the Knudsen layer at the condensing surface. From Egs. (1.27a) — (1.27c), it is seen that
Kn®4 = O(1), Kn*® = O(Kn), and Kn®Z = O(1) in this case.

1.3.B  Knudsen-layer analysis and determination of Ff, for the
case of Af, =0

In this section, we try to obtain the k%-order solution satisfying the boundary condition for

the case of A2, = 0 in Sec. 1.3.A. For this purpose, we assume that the physical quantities

undergo significant changes in the thin layers with thickness of the order of the mean free

path adjacent to the surfaces of the condensed phase. Let us denote the k%-order velocity

distribution functions in the layers by F({l and FB, introduce the stretched space coordinate

7, Le.,

n=z1/k, (for the layer adjacent to 71 = 0), or

n=(1-umz)/k, (for the layer adjacent to z; = 1), (1.49)

and assume that dF:42 /on = O(FMP) [or OFyB [0z, = O(E®/k)]. The Ff and Ff
are, respectively, supposed to approach Ff, and FB, (= 0) rapidly as 7 tends to infinity.
Then, from Eq. (1.15) and boundary condition (1.18), we obtain the equations and boundary

conditions for i and F}B, namely, for o = A4, B,

oFg oty A A o
Ciai_a‘ni = CAeJA(BS ) + OB JP(BY By, (1.50)
By = n7362 (0P PT 3 exp(=XT P), for (a; >0, at n=0, (1.51)
6 = fiy, (1.52a)
Goo = —2V/m(m® [m*) /2T / Ga:Fg (n = 0,¢)dg, (1.52b)
¢ia;<0 )
and
FA S Ff, FE—0, as n— oo, (1.53)
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where

a; = (1,0,0), T,=1, #,=1, (for the layer adjacent to z; = 0), (1.54a)
a; = (=1,0,0), T, =Ti/Tr, #iw=mn5/n;, (for the layer adjacent to z; = 1).
(1.54b)

This problem is nothing other than the problem of an evaporating or condensing flow in a
half space (the so-called half-space problem) in the presence of a noncondensable gas.

For the case of evaporation (@f,a; > 0), there is a solution to Egs. (1.50)—(1.53) only
when FB = 0. Physically, this means that, if there is a noncondensable gas in the Knudsen
layer, it cannot stay there and is blown away toward infinity by the vapor flow. An example
of such transition process is investigated in Refs. 49 and 50. Therefore, the problem is
reduced to that for a pure vapor studied in Refs. 51-54. In this problem, the solution exists

only when the parameters T, fiy, T4y, id,, and %, satisfy the following relation.

i _ (M) Ty _

< = .
M<1, P ha(3)’ 7 ho(M), (1.55)
where
M = (6/5) || (Tho) "2, (1.56)

which is the Mach number at infinity (i.e., the Mach number based on %, and T5,). The
numerical data of h;(M) and he(M) as well as the profiles of the macroscopic variables in
the Knudsen layer, obtained by an accurate numerical analysis of the BGK model, are given
in Ref. 54 (see also Ref. 8). The analytical form of these functions for M < 1 is obtained in
Ref. 51 (see also Ref. 55).

For the case of condensation (4§,a; < 0), the problem was studied in Refs. 47 and
48. In Ref. 47, by considering the case where the molecule of the noncondensable gas is
mechanically identical with that of the vapor, the problem was successfully decomposed into
two problems, one for the total mixture and the other for the noncondensable gas. The
former problem is identical with the half-space prdblem of condensation for a pure vapor,
which has extensively been investigated in the literature (e.g., Refs. 51,56-58,6, and 59-61).
For example, the condition that allows a steady solution has been clarified in a series of

analytical and numerical studies.!:5"58:6:61 Therefore, the above decomposition enables us to
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exploit the comprehensive results for the pure-vapor case obtained so far. Furthermore, this
approach not only reduces the necessary amount of computation drastically, but also gives
the clear understanding of the basic structure of the solution. According to Ref. 47, under
the above condition that the molecules of the two components are identical (i.e., m?/m4 =1
and d?/d* = 1 for hard-sphere molecules), the solution to Eqs. (1.50) — (1.53) exists only

when the parameters T}, 7y, THo, 7o, and G4, satisfy the following relation.

sA A A
DHo _ (ZEO-15 (M, 2R T, for M o<1, (1.572)
Ty Tw Tw
- A A : #A
o o Ly TR0 ) for M>1, (1.57b)
Thy w Tw
where
I'=(2/vm) (N nf ). (1.58)

Here, M is defined by Eq. (1.56); nd = Af,ns is the dimensional number density of the
vapor molecules corresponding to A4,; oo is the mean free path of the vapor molecules in
the equilibrium state at rest with number density n# and temperature Ty, = T4,T7; and NB
is the total number of the noncondensable-gas molecules per unit area of the surface of the
condensed phase (to be more precise, the total number included in the column perpendicular
to the surface whose base is a unit area on the surface). The I' is a parameter to be specified
and is a measure of the amount of the noncondensable gas contained in the half space. The
functions F, and F, were constructed numerically in Refs. 47 and 48, where the numerical
data of the corresponding functions for the pure-vapor case,®*®¢ obtained by using the
BGK model, were exploited, and additional computations were carried out by the use of
the model Boltzmann equation for a mixture proposed in Ref. 62.%% [It should be noted that
the I'-dependence of F, and 13}, is obtained explicitly. For the Knudsen-layer structure, see
Refs. 47 and 48, where 75 is seen to be of O(1) (cf. the last paragraph of Sec. 1.3.A).]

Let us consider the case where Ty < Tj; and ny < njj, that is, evaporation is taking
place on the surface at z; = 1 and condensation at z; = 0 (ie., 4%, < 0). Then, Eq. (1.55),
applied to the surface at z; = 1, gives

Ty
T7

R nr hi{(M ~
M<1, P = 'E}{E:_EM% Thy = =-hy(M), (1.59)

16



and Egs. (1.57a) and (1.57b), applied to the surface at z; = 0, give

o The = Fu(M, T4, T), for M<1, (1.60a)
T4y > Fy(M, TH,,T),  for M >1. | (1.60Db)

Equation (1.59) shows that a flow with M > 1 never occurs. In order to complete Egs. (1.59)
and (1.60a) [or (1.60b)], we need the relation between I' and our original parameters,
Egs. (1.22) and (1.23). Since £ = ¢(2kT7/m*)*/2/n; [instead of Eq. (1.17g) for hard-sphere
molecules] and £, = ¢(2xkT/m*)/?/n4, where c is a constant, for the model equations by
the use of which &, hg, and F, have been obtained, the relation nA £y, (Too)~1/2 = nyf(T7)~2/2
holds. Applying this relation to Eq. (1. 58) noting that N is given by nZ D in the original

two-surface problem, and making use of Eq. (1.59), we obtain

2 LypmBD TH
I‘—\/;‘_(THO) nle \/—[

This relation, in principle, completes Egs. (1.59) and (1.60a) [or (1.60b)]. Equation (1.61)
implies that nZ, /n; should be of O(Kn) because I' should be finite in Egs. (1.60a) and (1.60b).

—1/2Ma 1
ho(M)] 1/22{}2}{' (1.61)

Thus, we confirm the statement in the last paragraph of Sec. 1.3.A that nZ /n; = O(Kn) in

the present case. Taking this fact into account, let us put
ng,/nr = AKn, (1.62)

and consider A as a given parameter instead of n2 /n;. Then, from Eqgs. (1.61) and (1.62),

we have

= __2_[TII

VT T,

In the case of M < 1, eliminating i, T, and T from Egs. (1.59), (1.60a), and (1.63), we

ho(M)]"Y2A. (1.63)

obtain the following equation for M:

TII Tir

(M) = F‘S(M ho(M)]~Y2A). (1.64)

— ha(M), \/—[
That is, M is determined by Eq. (1.64) for a given set of the parameters (T7;/T7, nrr/ns,
A). Then, 74, and T4, are obtained from Eq. (1.59), and @4, from Eq. (1.56). On the
other hand, if we eliminate Af,, T4, and I from Egs. (1.59), (1.60b), and (1.63), we obtain

the condition for T7; /T, nyr/nr, and A for which a sonic flow (M = 1) occurs.
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Table 1.1: The constants 74y, T4y, @, and M for various values of the parameters Ty /T,
nrr/nr, and A when the molecule of the noncondensable gas is mechanically the same as
that of the vapor. The values are obtained on the basis of the BGK model and the model
in Ref. 62. The values in the parentheses are those obtained by the use of the conversion of

A, Eq. (1.67), assuming that A is given for hard-sphere molecules.

TH/T[ nn/m A ﬁ"fqm TIf}O —’ﬁém M

1 1.2 0 1.118 0.981 0.0423 0.0468

1 1.2 0.5 1.128 (1.131) 0.984 (0.984) 0.0367 (0.0351) 0.0405 (0.0387)
1 1.2 1 1.137 (1.142) 0.985 (0.986) 0.0321 (0.0298) 0.0354 (0.0329)
1 1.2 2 1.149 (1.154) 0.987 (0.988) 0.0259 (0.0233) 0.0285 (0.0257)
1 2 0 1.543 0.930 0.1564 0.1777

1 2 0.5 1.606 (1.622) 0.941 (0.944) 0.1318 (0.1257) 0.1489 (0.1417)
1 2 1 1.655 (1.679) 0.949 (0.953) 0.1136 (0.1048) 0.1278 (0.1176)
1 2 2 1.720 (1.747) 0.960 (0.964) 0.0902 (0.0810) 0.1009 (0.0904)
1.1 2 0 1.491 1.012 0.1858 0.2023

1.1 2 0.5 1.560 (1.577) 1.026 (1.029) 0.1570 (0.1499) 0.1699 (0.1619)
1.1 2 1 1.612 (1.639) 1.036 (1.041) 0.1359 (0.1253) 0.1463 (0.1345)
1.1 2 2 1.687 (1.718) 1.050 (1.055) 0.1068 (0.0954) 0.1142 (0.1018)
1.1 ) 0 2.781 0.919 0.3789 0.4331

1.1 5 0.5 3.158 (3.245) 0.960 (0.969) 0.2942 (0.2761) 0.3289 (0.3073)
1.1 5 1 3.411 (3.533) 0.985 (0.996)  0.2436 (0.2206) 0.2689 (0.2422)
1.1 5 2 3.743 (3.881) 1.014 (1.024) 0.1833 (0.1601) 0.1994 (0.1733)
1.1 10 0 4.614 0.854 0.5069 0.6009

1.1 10 0.5 5.686 (5.913) 0.926 (0.939) 0.3641 (0.3378) 0.4145 (0.3819)
1.1 10 1 6.336(6.632) 0.961 (0.976) 0.2921 (0.2620) 0.3265 (0.2906)
1.1 10 2 7.141 (7.470) 0.999 (1.013) 0.2138 (0.1847) 0.2344 (0.2010)
1.2 5 0 2.708 0.992 0.4144 0.4557

1.2 5 0.5 3.089 (3.178) 1.040 (1.050) 0.3225 (0.3028) 0.3465 (0.3238)
1.2 5 1 3.346 (3.470) 1.068 (1.080) 0.2675 (0.2427) 0.2836 (0.2559)
1.2 5 2 3.687 (3.827) 1.101 (1.113) 0.2017 (0.1764) 0.2106 (0.1832)
1.2 10 0 4.505 0.922 0.5468 0.6238

1.2 10 0.5 5.576 (5.804) 1.003 (1.018) 0.3940 (0.3658) 0.4309 (0.3972)
1.2 10 1 6.226 (6.526) 1.043 (1.059) 0.3171 (0.2846) 0.3402 (0.3030)
1.2 10 2 7.039(7.378) 1.085 (1.101) 0.2330 (0.2013) 0.2451 (0.2102)
1.2 20 0 7.731 0.858 0.6610 0.7818

1.2 20 0.5 10.46 (10.99) 0.979 (0.998) 0.4395 (0.4043) 0.4865 (0.4435)
1.2 20 1 11.94 (12.61) 1.028 (1.047) 0.3462 (0.3083) 0.3741 (0.3301)
1.2 20 2 13.73 (14.46) 1.076 (1.094) 0.2503 (0.2149) 0.2644 (0.2251)
1.5 100 0 3225 0.965 0.8968 1.0000

1.5 100 0.5 47.28 (50.24) 1.176 (1.205) 0.5720 (0.5233) 0.5777 (0.5221)
1.5 100 1 55.44 (59.03) 1.251 (1.280) 0.4450 (0.3958) 0.4358 (0.3833)
1.5 100 2 65.06 (68.96) 1.322 (1.347) 0.3207 (0.2761) 0.3055 (0.2606)
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The constants 74y, T4, and @4, thus obtained by using the numerical data of hi, hs,
and F, in Refs. 54,47,48, and 64 and interpolations are shown in Table 1.1 for various values
of T11/Ty, nyr/ny, and A, where the numbers in the parentheses are the results obtained
by the use of the conversion that will be explained in the last paragraph of this subsection.
(Note that we are considering the case where the molecule of the vapor is identical with that
of the noncondensable gas.)

It should be noted that, in the case of M < 1, the asymptotic solution for small k¥ (or
Kn) has only the k%-order terms, i.e., the uniform solution F, and F'Z, (= 0) supplemented
by the Knudsen-layer solution F* and FiZ, and all the higher-order terms vanish. That is,
the noncondensable gas is confined only in the Knudsen layer at the condensing surface, and
except in the Knudsen layer at each surface, the vapor flow is uniform and is independent of
Kn; only the thickness of the Knudsen layer is affected by Kn. The profiles of the macroscopic
variables in the Knudsen layer are similar in the sense that they are the same if expressed
in terms of the length scale of £ [cf. Eq. (1.49)]. Consequently, as Kn ﬁends to zero, the
Knudsen layers shrink, with the uniform flow of the vapor unchanged. In particular, in the
limit as Kn — 0, the Knudsen layers become vanishingly thin compared with the distance
D.

The values of 74, T4y, and 4%, obtained on the basis of the model equations are to be
compared with the results of direct numericalianalysis of the original two-surface problem
for hard-sphere molecules in the next section. However, the way of comparison of the results
obtained by using different molecular models is not unique. Here, we introduce the following
conversion for the comparison. When the molecule of the vapor is identical with that of the
noncondensable gas, the mutual-diffusion coefficient D4Z for temperature T;, vapor number
density n;, and noncondensable-gas number density nZ, is given by*?

DAB= \/-7?

2K)TI nr
—2—’7 ( )1/ 2

m nr+nB " (1.65)

where m = m#4 = mP, and 7 is a constant depending on the molecular model, e.g., v =
0.764215339(= yxs) for hard-sphere molecules®®%® (this value is the one recomputed with
higher accuracy in the present study), and v = 1 for the collision model of Ref. 62. If we

suppose that D4 is a basic and common quantity and eliminate it from Eq. (1.65) for
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hard-sphere molecules and that for the model, we obtain the following conversion formula:

(O) Moder = Yrs(£)gs, or (Kn)mode = vus(Kn)gs, (1.66)

where ( )aoqer and ( )gs indicate the quantity corresponding to the model and hard-sphere
molecules, respectively. Since n2 /n; is an originally given quantity independent of the

molecular model, it follows from Eq. (1.62) that

(AKn)aodet = (AKn)gs, or (A)moser = (A)ms/vas, (1.67)

with vgs = 0.764215339. This gives the conversion formula for A between hard-sphere
molecules and the model, i.e., if A = g for hard-sphere molecules, then A = a/vys should
be used in Eqs. (1.63) and (1.64). The values of 7, T4, and 44, obtained by the use of

this conversion are shown in the parentheses in Table 1.1.

1.3.C Summary of the behavior in the continuum limit

The asymptotic analysis in Secs. 1.3.A and 1.3.B gives the following behavior in the contin-
uum limit as Ko (or k) — 0.

(i) In the limit with nZ /n; = ¢, where c is a nonzero constant, evaporation and conden-
sation of the vapor stop, and the entiré gas becomes stationary.

(ii) In the limit with n2 /n; = AKn, where A is a given constant, all the noncondensable
gas is confined in the Knudsen layer with a vanishingly small thickness (compared with D)
at the condensing surface, and the vapor flow becomes uniform. The uniform values of the
macroscopic variables depend on A.

If ¢ = 0 in the case (i) Jor A = 0 in the case (ii)], this corresponds to the continuum
limit in the pure-vapor case, in which there is a steady vapor flow.® Therefore, the limit (i)
is singular (discontinuous) at nZ /n; = 0 with respect to the parameter n2 /n;.

The limit in the case (ii) shows a striking feature that, although the average number den-
sity n2 of the noncondensable gas is vanishingly small compared with the reference number
density n; of the vapor, the vapor flow is still affected by the presence of the noncondens-
able gas. To appreciate the issue, let us consider the case where the vapor is water vapor,
Tr = 350 K, and D = 10 cm. Then the saturated vapof pressure p; corresponding to n;

(pr = kn;Ty) is about 300 Torr, and thus £ ~ 1075 cm, i.e., Kn ~ 1075, This situation is
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almost the (mathematical) continuum limit. Therefore, if a very small amount of a noncon-
densable gas corresponding to a partial pressure about 3 x 10~* Torr is contained in the gap,
it gives a finite effect on the vapor flow.

This fact might appear to be strange or unphysical because a vanishingly small amount
seems to give a finite effect. In this connection, one should realize that, in order to have a
finite effect, the local number density of the noncondensable gas in the Knudsen layer should
be as large as that of the vapor. If the total amount of the noncondensable gas is not sufficient
to-attain this situation, then its .effect on the vapor flow is ﬁegligible. But one should also
note that, even if the local number density of the noncondensable gas in the Knudsen layer
is high enough, its average number density nZ over the gap is vanishingly small compared
with n; (Note that the noncondensable gas can exist only in the Knudsen layer, which is
infinitely thin compared with the distance D between the two surfaces). To understand the
difference in the two cases (i) and (ii) more clearly, let us consider the following example.
Consider the gap with D ~ ¢ and suppose that the amount of the noncondensable gas in the
gap is of the same order as that of the vapor. If we let the distance D infinitely large (in
comparison with £) with the total amount of the noncondensable gas being fixed, then we
have the case (ii). On the other hand, if we inject the noncondensable gas with the increase
of D to keep its total amount of the same order as that of the vapor, we get the case (i).

In the present paper, in order to avoid the complexity of the parameters, we formulated
the problem on the basis of assumptions (ii) — (iv) in Sec. 1.2.A for the molecular model and
the boundary conditions.®” However, as is seen from the course of the asymptotic analysis,
these assumptions are not essential to the fundamental features of the continuum limit. To be
more specific, the limiting behavior, Egs. (1.38) — (1.39b), in the case (i) is true for the general
molecular model and for the general boundary conditions [i.e., any boundary condition for
the vapor which is satisfied by the stationary Maxwellian distribution whose temperature
and density are, respectively, the temperature of the surface and the saturation density of the
vapor at this temperature, and any boundary condition for the noncondensable gas (with the
impermeability condition) which is satisfied by the stationary Maxwellian distribution whose
temperature is that of the surface and whose density is arbitrary]. The limiting behavior
in the case (ii) is also true for the above general case; however, the values of the constants

%o, Thy, and @4, depend on the molecular model as well as the boundary conditions. The
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behavior in the cases (i) and (ii) will be confirmed numerically for hard-sphere molecules in

the next section.

1.4 Numerical analysis and results

In this section, we carry out direct numerical analysis of the original two-surface problem.
Since our main interest is to see the effect of the Knudsen number Kn and that of the
average number density of the noncondensable gas nB /n;, we fix all the other parameters
in Eq. (1.22) as

B dB

T
g P Moy % g, (1.68)

= =92 _
TI ’ nr " mA

The first two equations might appear to be inconsistent because T; = Ty implies ny =
nyr physically. However, if we consider the fact that, for many substances and for a wide
range of the temperature, a slight change in the temperature leads to a significant change
in the saturation vapor pressure (or density), we can justify the above parameter setting
as a physically reasonable one for our purpose. As the solution method, we adopt the
standard direct simulation Monte Carlo (DSMC) method by Bird.3>3¢ Since the method is
a straightforward extension of that explained in Ref. 68 to the case of a binary mixture, we
omit the description of the method and summarize the obtained results.

Let J be the mass-flow rate of the vapor from the evaporating to the condensing surface
(per unit time and per unit area of the plane X; = const) and J be its dimensionless form,

ie.,
J=—mAntu? and J=J/mAnp(2kT/m*)H? = —pAgA, (1.69)

Here, we note that n4u? (or A444) is independent of X; (or z;)[see Eq. (1.12) or (1.24)].
The nondimensional mass-flow rate J versus nB /n; is shown in Fig. 1.1 for various values
of Kn; Fig. 1.1(b) is a magnified figure of the part for 0 < n2 /n; < 0.25 in Fig. 1.1(a). The
values of J corresponding to Fig. 1.1 are given in Table 1.2. In Fig. 1.1(a), the dot-dash lines
are the curves that smoothly join the numerical data for the same Kn, and the dotted line for
Kn = oo indicates the result for the‘ free-molecular flow. As Kn decreases, the gradient of the
curve with constant Kn becomes steep at small values of nZ /ny, and except for this region

the mass-flow rate tends to vanish. In this way, as Kn — 0, the mass-flow rate approaches
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Figure 1.1: Nondimensional mass-flow rate of the vapor J [Eq. (1.69)] versus nB /n; for
various values of Kn in the case Ty;/Tr = 1, nyr/nr = 2, mZ/m# =1, and dB/d4 = 1. (a)
0<n8/n;r <1, (b) 0<n’ /n; <0.25. Here, M indicates the data for Kn = 10, A for 1, A
for 0.5, ¢ for 0.2, ¢ for 0.1, v for 0.05, ¥ for 0.02, o for 0.01, and e for 0.005. In (a), the
dot-dash line indicates a curve smoothly joining the data for the same Kn, and the dotted
line for Kn = oo indicates the result for the free-molecular flow. In (b), the dotted line is
the line joining the data for the same A [see the paragraph including Eq. (1.70)].
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Table 1.2: Nondimensional mass-flow rate of the vapor J [Eq. (1.69)] for various values of
nZ /nr and Kn. Here, the other parameters are fixed as Ty /Ty = 1, nyr/ny = 2, mB/mA = 1,
and d®/d* = 1.

Kn nB/n; J Kn nB/n; J

0.005 0 0.2406 0.1 0.02 0.2250
0.005 0.005 0.1765 0.1 0.05 0.2043
0.005 0.01  0.1396 0.1 0.1 0.1773
0.005 0.02 0.0983 0.1 0.2 0.1402
0.005 0.05 0.0520 0.1 04 0.0986
0.006 0.1 0.0293 0.1 05 0.0862

0.005 0.2 0.0155 01 1 0.0522
0.005 0.5 0.00646 02 0 0.2433
0.005 1 0.00329 02 0.1 0.2056
001 0 0.2409 02 0.2 0.1780

0.01 0.005 0.2040 02 04 0.1402
0.01 0.01 0.1770 02 05 0.1266
0.01 0.02 0.1394 02 0.8 0.0981
0.01 0.04 0.0984 02 1 0.0852
001 0.1 0.0520 05 0 0.2487
0.01 0.2 0.0294 05 0.1 0.2315
001 05 0.0126 0.5 0.2 0.2164

0.01 1 0.00660 0.5 0.25  0.2097
0.02 0 0.2408 0.5 0.5 0.1811
0.02 0.02 0.1766 05 1 0.1423
0.02 0.04 0.1394 1 0 0.2544
0.02 0.08 0.0980 1 002  0.2526
0.02 02 0.0522 1 01 0.2448
0.02 0.5 0.0240 1 02 0.2355
0.02 1 0.0126 1 05 0.2123
0.05 0 0.2406 1 1 0.1824
0.05 0.025 0.2037 10 0 0.2742

0.05 0.05 0.1766 10 0.1 0.2728
005 0.1 0.1395 10 0.2 0.2713
0.05 0.2 0.0983 10 0.5 0.2671

005 0.5 0.0522 10 1 0.2605
005 1 0.0291 00 0.2821
0.1 0 0.2412
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the singular limit [case (i)] described in Sec. 1.3.C, i.e., J — 0 for nB /n; = const(# 0), and
J — const(# 0) for nB /n; = 0.

The spatial distributions of the macroscopic variables for various Kn are shown in Fig. 1.2
for n2 /n; = 0.5 and in Fig. 1.3 for n2 /n; = 1. As Kn decreases from oo to 0.1 [Figs. 1.2(a)
and 1.3(a)], the vapor flow speed decreases, and the gradient of n# and that of n® increase in
the opposite directions. The limiting process of the case (i) in Sec. 1.3.C, which is expressed
by Egs. (1.38) — (1.39b), is seen in Figs. 1.2(b) and 1.3(b). That is, as Kn becomes small,
the vapor flow velocity u# tends to vanish; the vapor number density n4 approaches the
saturation number densities n 7 and ny; (= 2ny) at the condensing and evaporating surfaces,
respectively; and the temperature of the total mixture T tends to approach the surface
temperatures 77 and Ty (= Ty) at the condensing and evaporating surfaces, respectively.®®
In Fig. 1.4, the flow speed of the vapor at three points versus Kn is shown for small Kn in
the case nZ /n; = 0.5 and 1. The flow velocity tends to vanish in proportion to Kn as Kn
approaches zero, which is in agreement with Eq. (1.35) [or 44 = O(Kn)]. The above behavior
in the continuum limit can be explained physically as follows. In this limit, the vapor
molecules evaporated from the surface at X; = D are bounced back by frequent collisions
with the noncondensable-gas molecules and accumulate at the surface. Their number density
finally reaches the saturation density n;; (= 2n;), and evaporation stops. On the other hand,
at the surface at X; = 0, the vapor molecules are removed by condensation, but the removed
amount is not supplied because the flow of the vapor molecules toward the surface is blocked
by frequent collisions with the noncondensable-gas molecules. Consequently, the number
density of the vapor decreases to the saturation density n;, and condensation stops.

The process of approach to the limit of the case (ii) in Sec. 1.3.C, namely,
Kn —0, with n2/n;= AKn, (1.70)

(A is a given constant) is also included in Fig. 1.1 and Table 1.2. To be more specific, each
dotted line in Fig. 1.1(b) indicates the line joining the data with common A (A =1, 2, 4,
or 10), and therefore the data on it show the process of approach for A = 1, 2, 4, or 10.
As is also seen from the corresponding data in Table 1.2, the mass-flow rate J for a fixed A
and for small Kn is almost constant, and the constant values depeﬁd on A. The behavior

of the macroscopic variables in the limiting process for A = 0 (pure vapor case), 1, and 2
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are shown in Figs. 1.5, 1.6, and 1.7, respectively. The dotted lines in the figures indicate the
constant values 7%, T4, (= Tio), and @4, in the parentheses in Table 1.1, which correspond
to n/ny, T/Tr, and u?/(26T7/mA)Y/2, respectively. As shown by Fig. 1.6 (A = 1), the
noncondensable gas, which is distributed over the whole gap at Kn = 0.1, is confined near
the condensing surface (X; = 0) at Kn = 0.01, and except for this region and for the vicinity
of the evaporating surface (X; = D), the flow field of the vapor is uniform. At Kn = 0.005,
the nonuniform regions, i.e., the Knudsen layer at X; = 0, where the noncondensable gas is
confined, and that at X; = D, shrink, but the uniform flow of the vapor does not change.
Such behavior is in agreement with the result of the asymptotic analysis in Sec. 1.3 (see
the second paragraph from the last in Sec. 1.3.B). For larger A (Fig. 1.7), the vapor flow
speed is decreased because larger amount of the noncondensable gas is included in the gap
(or in the Knudsen layer) for the same Kn. It is seen from Figs. 1.5 — 1.7 that the constants
e, T4y (= Tro), and %, in the parentheses in Table 1.1, which are based on the model
Boltzmann equations and the conversion (1.67), yield excellent prediction of the uniform
state for hard-sphere molecules.

We now summarize the data concerning the simulation scheme used for the results pre-
sented in this section. The interval 0 < X; < D is divided into [V, cells of an equal size, where
N, =50 (0.2 < Kn < 10), 100 [Kn = 0.01 (0.2 < nB /n; < 1) and 0.02 < Kn < 0.1], 200
[Kn = 0.005 (0.1 < nZ /n; < 1) and 0.01 (0 < n2 /n; < 0.1)], and 400 [Kn = 0.005 (other
nZ /n;)]. The number of simulation particles N, corresponding to n;D is 10* (0.2 < Kn <
10), 2 x 10* [Kn = 0.01 (0.005 < nZ /n; < 0.1 and n8 /n; = 0.5) and 0.02 < Kn < 0.1}, and
4 x 10* [Kn = 0.005 and 0.01 (other nZ /n;)]. [Therefore, if A4 (= n*/n;) = c at a cell, then
the number of the particles representing the vapor molecules in the cell is ¢N,/N,. The total
number of the particles contained in the gap 0 < X; < D is larger than N, since A4 is greater
than unity; see Figs. 1.2, 1.3, and 1.5 — 1.7.] The total number of the particles representing
the noncondensable-gas molecules (i.e., the number of the particles corresponding to n2 D)
for the case of n2, /n; = ¢ is therefore given by ¢ N,. The time step At, which is the interval
between two successive times at which the collision processes are evaluated, is as follows:
DY(26T7/mA)2At [= (/7 /2)(Kn/ty) At, where t; is the mean free time corresponding to
£)is 1072 (Kn = 1 and 10), 5 x 1073 (Kn = 0.2 and 0.5), 2 x 1073 [Kn = 0.1 (n2,/n; = 0,
0.02, 0.05, and 0.4)], 1073 [Kn = 0.05 and 0.1 (other n2 /n;)], 4x 10~* (Kn = 0.02), 2x 10~*
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Table 1.3: Nondimensional mass-flow rate of the vapor .J [Eq. (1.69)] obtained by the test
computations (cf. Table 1.2) for nZ /n; = 0.01 and 1 in the case Kn = 0.005. Here, the
other parameters are fixed as Ty;/T7 = 1, nyr/nr =2, mB/mA = 1, and dB/d4 = 1.

n2 /n; = 0.01 nﬁ,/n; =1

N, N, J N, N, J
100 10¢ 0.13947 100 10° 0.003288
200 0.5 x 10* 0.13944 200 0.5 x 10* 0.003287
104 0.13983 10* 0.003303
2x10* 0.13971 2 x 10*  0.003300
4x10* 0.13941 4x10* 0.003287°
8 x 10¢  0.13959 400 4x10* 0.003296

400 4x10* 0.13963¢

¢ The data included in Table 1.2.

[Kn = 0.01 (nZ /n; = 0.005, 0.02, 0.04, 0.1, and 0.5)], and 10~ [Kn = 0.01 (other nB /n;)
and 0.005]. The data shown in Table 1.2 and Figs. 1.1 — 1.7 are the averages over more than
9 x 10°At in most of the cases for 0.2 < Kn < 10, more than 1.4 x 10%At¢ in most of the
cases for 0.01 < Kn < 0.1, and more than 2.5 x 10°At in most of the cases for Kn = 0.005
after steady states are judged to be reached.

As noted above, the mass-flow rate J of the vapor in Eq. (1.69) does not depend on X;
theoretically. However, the numerical result varies slightly with X; because of computational
error. Therefore, the average values over 0 < X; < D are shown in Table 1.2. The variation,
on the other hand, gives a measure of the error of the computation. The maximum relative
deviation, max|J — Juy|/Jaw, in the region 0 < X; < D, where J,, denotes the average of J,
is less than 1.02 x 1073 for the cases with 0.2 < J, less than 2.74 x 102 for the cases with
0.1 < J < 0.2, less than 5.07 x 102 for the cases with 0.05 < J < 0.1, less than 6.96 x 1073
for the cases with 0.01 < J < 0.05, and less than 2.72 x 1072 for the cases with J < 0.01.

In order to confirm the reliability of the results presented in this section, some additional
computations with different numbers of cells and particles are also carried out for typical
cases. In general, accurate DSMC computation becomes increasingly difficult as the Knudsen
number becomes small. Therefore, we give, in Table 1.3, some of the results of the mass-flow
rate obtained by such computations for small Kn (Kn = 0.005) (cf. Table 1.2). The accurate

computation of the mass-flow rate in the case of nZ /n; = 1 is particularly difficult because
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it is small.
The computations have mainly been carried out on DEC Alpha 600 5/333 and VT-Alpha
433AXP computers in the Section of Dynamics in Aeronautics and Astronautics, Department

of Aeronautics and Astronautics, Graduate School of Engineering, Kyoto University.

1.5 Concluding remarks

In this chapter, we have investigated the effect of the presence of a noncondensable gas in the
two-surface problem of evaporation and condensation, which is one of the most fundamental
problems of a vapor flow caused by evaporation and condensation, by means of asymptotic
analysis of the Boltzmann equation as Well_ as numerical analysis based on the DSMC method.
Our special attention is focused on the behavior in the continuum limit with respect to the
vapor (i.e., Kn — 0). As the result of the asymptotic analysis, it is shown that there are
two completely different types of behavior in the limit, the cases (i) and (ii) in Sec. 1.3.C,
depending on the amount of the noncondensable gas included in the system. In particular, in
the latter case, it is found that, although the average number density of the noncondensable-
| gas molecules is infinitesimally small compared with that of the vapor molecules (or the
saturation number density of the vapor molecules at a reference state), the noncondensable
gas gives a finite effect on the vapor flow. The process of approach to these two types of

continuum limit is demonstrated by the numerical result obtained by the DSMC analysis.
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Chapter 2

Shock-wave structure for a binary gas mixture~

2.1 Introduction

The analysis of the structure of a normal shpck wave in a single component gas is one of
the classical problems in modern kinetic theory and has been tackled by various methods,
including moment methods,” model Boltzmann equations,” and the direct simulation Monte
Carlo (DSMC) method,™ since the beginning of 1950’s (see, e.g., Refs. 36, 45, 74, 75, and
their references). However, an accurate numerical result by means of a finite-difference (or
discrete-ordinate) analysis of the Boltzmann equation was reported only in 1993.7

The main difficulty in analyzing the Boltzmann equation by a finite-difference method is
to perform accurate computations of the complicated collision integrals. In 1989, Sone and
coworkers”” proposed an accurate and efficient method (numerical kernel method) for com-
puting the collision integrals of the linearized Boltzmann equation for hard-sphere molecules.
The method has successfully been applied to the finite-difference analyses of various funda-
mental problems of rarefied gas dynamics, such as the Knudsen-layer problems,”"~" the plane
Poiseuille flow and the thermal transpiration,®® the plane Couette flow,®' uniform flows past
a sphere,®21! and the thermophoresis,®® and the results to be regarded as the standards for
these problems have been established. Subsequently, a similar method was developed for
the nonlinear Boltzmann equation by Ohwada in the above-mentioned work on the shock-
wave structure,’®® in which an accurate numerical result was obtained for relatively weak
to moderately strong shock waves. The method has also been applied to the analysis of heat
transfer between parallel plates.8586

The problem of shock-wave structure for a binary gas mixture has also been a popular
subject and has been investigated experimentally®” =% as well as theoretically. The latter
approach includes approximate analyses based on moment methods®®®! and fluid-dynamic

models,*??3 and numerical analyses based on kinetic models®*® and the DSMC method.%%
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(See also Ref. 36 and its references.) In this chapter, we try to extend the method of
Ohwada™ to the case of a binary mixture of hard-sphere gases and investigate the structure
of a normal shock wave for the mixture by an accurate finite-difference analysis of the
Boltzmann equation. Our aim is to establish the result that can be the standard for the
problem. It should be mentioned that a numerical result by another direct method was
reported recently.”® However, only one case of a rather weak shock is analyzed, and no

information is given about the size and accuracy of the computation.

2.2 Problem and basic equation

2.2.A Problem

We consider a steady flow of a binary gas mixture (say, the mixture of A-component and
B-component) through a standing normal shock wave. Let us take the X; axis of the space
coordinates X; in the direction of the low. The mixture is in a uniform equilibrium state with
speed U_, temperature 7., and molecular number densities n# (A-component) and n? (B;
component) at upstream infinity (X; = —o0), whereas it is in another equilibrium state with
speed Uy, temperature T, and molecular number densities n4 (A-component) and n? (B-
component) at downstream infinity (X; = 00). The conservations of the molecular number
of each component, the total momentum, and the total energy lead to the expressions of
the downstream parameters in terms of the upstream ones (the Rankine-Hugoniot relation),

which can be arranged in the following form:

n 4M?

n_: =iy (a = A, B), (2.1a)
U. M?+3

7= a (2.1b)
T, (5M2 —1)(M2 +3)

7= 16]\/52 (2.1¢)

Here M_ is the Mach number at upstream infinity defined by
M_=U_/(5R_T_/3)"?, (2.2a)

R_ = k/(m*x2 +m"xZ), (2-2b)

where k is the Boltzmann constant, m# the mass of a molecule of the A-component, and

m?P that of the B-component; x4 and x?Z are the concentrations of the A-component and
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the B-component at upstream infinity, i.e.,

X =n/n_, (a = A, B), (2.3a)

n_=nt+nb (2.3b)

It is seen from Eq. (2.1a) that the concentration of each component at downstream infinity,
x5 = n%/nt (ny = n{+n?), is the same as x*. Therefore, the Mach number at downstream
infinity is given by M, = U, /(5R_T,/3)'/? and is expressed as

M?+3 )1/2

M. = (G (24)

with the aid of Egs. (2.1b)—(2.2a).
We investigate the transition from the upstream to the downstream state through the
shock wave on the basis of the Boltzmann equation for a binary mixture under the assumption

that the molecules of each component are hard (or rigid) spheres.

2.2.B Basic equations

Let & (or €) be the molecular velocity, F4(X;,£) the velocity distribution function of the

molecules of the A-component, and FZ(X,,€) that of the B-component. The Boltzmann

equation in the present problem is written in the following form.*1:*2
gl?ff = Z {GPe[FP, F*] — v [FFIF*} (e = A, B) (2.5)
aXl ? ) ? ?
Bf=A,B
where
Ba (dgza)2 Ba Ba |
Goif,g)= 2L [ £, €29(X,,6™)la - VidDUa)de., (2.6
Ba (dfna)2
vl = 2L [ 10, 60)la- Vida, (2.7

Bo Ba
¢ =¢+—a-Via, e=t-50a Ve, V=b-¢ (29

dfe = (2 +d2)/2, P =2mm? [(m® +mP). (2:9)

Here, d2 and d2 are the diameter of a molecule of the A-component and that of the B-
component, respectively; &€, is the integration variable for €, a is a unit vector, d§, =
d€,1d€,2d€,3, and d2(a) is the solid-angle element around a; the domain of integration is the

whole space of £, and all directions of a.
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The boundary condition at upstream infinity is

Fa_mc_y( me )”exp (_m“[(ﬁl—U—)2+€§+€§J),

2rkT_ 2KT_
for & >0 as X; — —o0, (2.10)

and that at downstream infinity is
a \3/2 @ 2 2 2
m m?[(& — Uy’ + & + &)
Fe @ -
=M (27rkT+> eXP ( T, !
for &1 <0 as Xy — oo, (211)

with = A and B.

Let n® be the molecular number density, v{* the flow velocity, p* the pressure, T® the
temperature, pf; the stress tensor, and ¢* the heat-flow vector of a-component (o = A, B),
and let n be the molecular number density, p the density, v; the flow velocity, p the pressure,
T the temperature, p;; the stress tensor, and g; the heat-flow vector of the total mixture.
Then these macroscopic variables are defined as the moments of the velocity distribution

functions as follows:
ne= [Fedg, up=(ne) [eFede,
p® = knT® = (1/3) / m®(& — v&)2Fede,

(2.12)
py= [ mee )G - o et
= 1/2) [ me6—o0)(6 - o5Fed,
nz/ Z Fedg = Z n%, pz/ Z meFedg = Z m*n®,
. a=A,B ' a=A,B 1 a=A,B a=A,B
vu==16& m*F%d§ = — m*nv,
p/ agf;,B p a=ZA,B
p=knT= / E—w) Y meFdE= 3 [+ menf — v)?/3)
’ a=A,B a=A,B (213)
pij = /(fi —v) (=) D, mEFedE = Y [p§ + mn*(vf - v;)(v§ —v;)],
a=A,B a=A,B
0= 0172) [(6 - wlg - vf T meFeds
a=A,B
= Z [g7 + pfs (v — v;) + (3/2)p%(vf — vi) + (1/2)m*n® (v — v;) (v — vj)2],
a=A,B

where d€ = d§;d€>d€s, and the integration with respect to € in Egs. (2.12) and (2.1‘3) extends
to the whole space of §&. In the present problem, the X, and X3 components of the flow
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velocities, those of the heat-flow vectors, and the nondiagonal components of the stress
tensors vanish, ie., vf = v; = ¢ = ¢ =0 (: = 2, 3) and p§; = p;; = 0 (i # j) (see the
first paragraph of Sec. 2.3.B). It should be noted here that, in the literature, the pressure,
temperature, stress tensor, and heat-flow vector of each component are often defined in a
different way, i.e., by the third to fifth equations of Eq. (2.12) with v and v replaced by
v; and v;. For this definition, the relations p = p* + p? (Dalton’s law), p;; = pf + pZ, and
g = g + ¢P hold instead of the expressions in the last three equations of Eq. (2.13).

2.2.C Dimensionless form
We now introduce the following dimensionless variables.

r=X/l_, (G =¢&/CkT_/m*)V?, (2.14a)
B = Fo(2kT_ /m*)3/? In_, | (2.14b)

where [_ is the mean free path of the molecules of the A-component when it is in an equi-

librium state at rest with molecular number density n_ [Eq. (2.3b)], i.e
= [V2r(d4)*n_]". (2.15)

(Note that [_ is independent of the temperature of the equilibrium state for hard-sphere
molecules.) In what follows, the symbol ¢ is also used for ¢;. Then the Boltzmann equation

(2.5) is recast to the following dimensionless form:

3]3’0‘_ o ABaf B o AT 18 o —_
G5 = =§A’)Bcﬁ {GPee, Fe) - sFF1Be}, (o= 4,B), (2.16)
where
&%(f,0)= = / - 5e) g - 70
,g]— W f(z1,¢.%)g(z1,¢"%)]a - V'|dQ(a)dC,, (2.17)

olf) = fﬂ [ f@i¢la Vi@, (2.18)

ﬂ N N
¢F=ctbo@ Ve, de=c-Li@ Ve, V=c-¢ W)
bo = (dBeydd)?, P =2memf/(m* +mP),  wm*=m/mA (2.20)

Here, ¢, is the integration variable for ¢, and d¢, = d(.1d(.2d(.s; the domain of integration

is the whole space of ¢, and all directions of a. The corresponding dimensionless forms of
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boundary conditions (2.10) and (2.11) are, with o = A, B,

~ o 3/2 2
Fo (_"_li) X° exp ¢ — > +E+E
T - (3235 };BTnﬂXﬁ 2 3 é

for (>0 as z; = —oo, (2.21)

\ 2

. T+)’1 Uy 5 2
xexp | —m* | = - —M_ + G+ )
P (T_ (Cl U 6 Zﬁ:A,B ’y ﬁXE G+

for (<0 as =z — o0, (2.22)

where n§ /n®, U /U_, and T /T_ are given by Eq. (2.1) and are determined by M_.

Since mA = 1, mP = mB/m4, CA4 =1, C4B = CB4 = [1+ (dB /dA))?/4, and CBB =
(dB/d4)?, and x? and x? are related as x* + x® = 1, it is seen that the boundary-value
problem, Egs. (2.16), (2.21), and (2.22), is characterized by the following four dimensionless

parameters:
mB/m4,  dB/d4, xB, M. (2.23)

We analyze the problem numerically for given values of these parameters.

2.3 Preliminary analysis

2.3.A Further transformation

We first transform Eq. (2.17). Let us decompose the relative velocity V into the components

perpendicular and parallel to a, i.e.,

~ ~

V=w+z, w=V - (a-V)a, z=(a-V)a. - (2.24)
Then, ¢® and ¢5* are expressed as
~Ba Lo
C"“=C+%;z, Cf"=C+W+<1—-“—ﬂ)z (2.25)

If we change the integration variables from (a, {,) to (w, z) noting that @ and —a give the

same w and z, we obtain the following expression for G#°[f, ik

GPelf, 9] = 712_;/]” <¢+w+ (1—-’1ﬁ—;) ) (c_:+ z> z 1dS(w)dz (2.26)
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where z = |z|, dz = dz1dzdz;, and dS(w) is the surface element, around w, of the plane
perpendicular to z; the domain of integration with respect to w is the whole plane perpen-
dicular to z, and that with respect to z is its whole space; the argument z; in f and g is
omitted for simplicity.

On the other hand, the integration with respect to a in Eq. (2.18) can be carried out,

and we have

e L _
ilfl = — / ¢, — CIF(C)de., (2.27)

where the argument z; in f is also omitted.

2.3.B Similarity solution

In the present problem, we seek the solution in the following form:
Fo=F21,0,G),  G=(G+@Y  (a=4,B). (2.28)

The compatibility of this form of #* with the Boltzmann equation (2.16) is shown by direct
substitution. That is, the left-hand side (LHS) of Eq. (2.16) with Eq. (2.28) is obviously a
function of z;, {3, and (,; on the other hand, its right-hand side (RHS) with Eq. (2.28) is,
as will be shown below, also a function of the same variables. [The latter fact is readily seen
from the rotational invariance of G#[f, g] and #[f]. However, since we need the explicit
functional form of the RHS of Eq. (2.16) with Eq. (2.28) for numerical analysis, we derive
it below.] It is also obvious that Eq. (2.28) is compatible with boundary conditions (2.21)
and (2.22). It follows immediately from Eq. (2.28) that v =v; = ¢ =¢; =0 (i = 2, 3) and
pi = pi = 0 (i # ).

Now let L((1,¢,) and M((y,¢,) be arbitrary functions of ¢1 and ¢, (they may, of course,
depend on z;). We first derive, from Eq. (2.26), the explicit form of G#*[L, M]. We express

¢ in cylindrical coordinates as
G=G, G=¢cosy, G = (rsinp, (2.:29)
and z in spherical polar coordinates as
2y = zcosb, 2o = zsinf cose, z3 = zsinfsine. (2.30)
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We further introduce two orthogonal unit vectors €’ and €” on the plane perpendicular to z,

ie.,

e; =0, e5 = —sine, €3 = COSE, (2.31a)

e] =sind, ey = —cos 0 cosce, e; = —cosfsine, (2.31b)

and decompose w as
w=uw'e +w'e". (2.32)

Then, noting that dS(w) = dw'dw" and dz = 22 sin 0dzdfde, we obtain the following expres-
sion for G#[L, M]:

GPelL, M] = ﬁ/ow/_:/ow/_:/_:Ag“(gl,cr,z,ﬁ,cos(e—v,/J),sin(e—zp),w',w")

x dw'dw"dzdedf
_ 1 iy m o0 o0 o ﬂa . , "
= ———\/5 AG*(C1, Gy 2,6, cos €, sin€, w', w")
T Jo - JO —00 J —00
x dw'dw" dzdedd

2 ™ T oc [els) 00
= ._\./__ / / / / / Aga(ChCr,Z, 0, COS €, sin E, wl’w”)
™ Jo Jo Jo .

xdw'dw"dzdedd, (2.33)

where
Ag"‘({l, ¢ry 2,0, co8 €, sin €, w', w") = L(Jy, J,)M (K1, K,)zsin 6, (2.34)
and
Ji =G +w'sinf+ (1 — 3P%/mP)zcos¥, (2.35a)
Jp = {(w' — ¢ sin&)? + [w" cos§ — ¢ cos & — (1 — 4P /mP)zsin 6]}/, (2.35b)
Ki = ¢ + (@P*/m*)z cos ¥, (2.35¢)
K, = {[(i%*/m*)zsin @ + (. cos €% + (- sin€)?}/2, (2.35d)

In the last equality of Eq. (2.33), the property
Ag“(cl, Cry 2, 8, cos(—€), sin(—€), —w', w") = Ag"((l, Cry 2,0, 08 €, sin €, w', w"), (2.36)

has been used to reduce the range of integration with respect to € to [0, ].
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On the other hand, in Eq. (2.27), we express ¢, in cylindrical coordinates as

Ge1 = Co1s Gz = Cur COS @, C+3 = Gur Sin @, (2‘37)

and use Eq. (2.29) for ¢. Then, we obtain the following expression for P{L]:

I?[L] = % /_00/0 /—77 AV(C].’ Cra C*l, C*T)COS(¢ - ¢))d¢dC*rdC*1
1 00 poo  pw o ‘
- 7—5 f—oo /0 /;ﬂ AV(Cla C’rv C*la C*’r; COos ¢)d¢d<.*1~d<*1, (238)
where
Ay (16 Gt Gury €08 @) = L(Gia, Gor)Viar,s (2.39a)
V = [(C*l - Cl)2 + Cfr + <T2 - 2€*1‘Cr Cos &]1/2- (239]:))

From Eqgs. (2.33) and (2.38), it is obvious that the RHS of Eq. (2.16) with Eq. (2.28) is

a function of z,, (3, and ¢,.

2.4 Numerical analysis

The method of analysis is the extension of the method developed by Ohwada’ for a single

component gas to the case of a binary mixture. The details will be given below.

2.4.A Finite-difference analysis

In this subsection we explain the finite-difference scheme and the solution procedure. In
the actual computation, we consider a finite range of z;, i.e., =D < z; < D, instead of
the infinite range and impose the condition (2.21) at z; = —D for {; > 0 and (2.22) at
z1 = D for (; < 0. As for the molecular velocity, we only restrict {; to a finite range, i.e.,
-7 < (1 < ZY for the a-component (o = A, B) (as seen below, we do not need to restrict
the range of ¢, because of our solution method). The constants D, Z%, and Z% are chosen in
such a way that the deviation of the velocity distribution £ from the upstream Maxwellian
(2.21) [or from the downstream Maxwellian (2.22)] is negligibly small at z; ~ —D (or at
z; ~ D) and that F itself is negligibly small at ¢; ~ —Z¢ and ¢; ~ Z{'. The choice is to
be validated from the result of numerical computation. Now, let xgi) (t=-Np, ..., 0, ...,

Np) be the lattice points in z; (:c(_ND) = —D, x§°) =0, ngD) = D)? and let (C?(j), f(k))
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(j =—-Ng, ..., 0, ..., N; k=0, 1, ..., H®) be the lattice points in the (;(,-plane for the
a-component (Cf‘ (=Nm) -Z7, Ca(o) =0, Ca(N ) =Z¥; ¢ © = 0; as will be seen in the next
subsection, the lattice point Cr ) is not used in our practical computation). Then, we define

FE™ (¢, ¢,) and ﬁ;‘;,(c") as follows:

E? ("')(Cl, ) = e (xﬁ"’, (1,¢) at the nth iteration step, (2.40a)
B = BP9, o). (2.40b)

When confusion is expected, the commas are placed between subscripts as F; +(1 )J « in Eq. (2.41a)

below. The finite-difference scheme that we adopt is essentially the same as that in Ref. 76,

ie.,
POESI - B )@l o))
= Y OGS — AR + G - 0RVEGIT) 2, (1>0), (241)
f"’(;;;i‘g;t;’ Fg) /@™ - af)
= Y OGN - oS + G — oW ERT )2, (5<0), (2.41b)
=A,B
0=Y" CP(GR" — W EGMY), (j=0), (2.41c)
B=A,B :
where

GE™ = GRAEE™ (0, &), BF™(GL, 6] at (G, &) = (Y, W), (2.42a)

o™ = o[FP™ (G, G at (G, &) = (¢, ¢e®). (2.42b)

ABa(n)

7o) and D™, which will

The most complicated part in this scheme is the evaluation of G; Dk

be explained in the following subsections. With this method for the evaluation, the process
“of computation for the above finite-difference scheme is obvious. We first choose appropriate
initial distributions F‘i‘;,(co). Now, suppose that FU,(C") are known.
(i) Compute G‘fji(") and 19(j (") using 13‘3,(6")

(i) For j > 0, compute F; (n+1) giccessively from ¢ = —Np+1to i = Np from Eq. (2.41a)

ik
using GZ k(" : ‘gi(n) and the boundary condition at z; = —D.
(iii) For j < 0, compute FZJ,C"H) successively from ¢ = Np—1to i = —Np from Eq. (2.41b)
using Gf]k("), “52( ") and the boundary condition at z; = D.

(iv) For j = 0, compute 2+ for all  from Eq. (2.41c) using G22™ and f/zﬂ oln)

Repeat the steps (i)—(iv) for n =0, 1, ... until Fa( n) converges.
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2.4.B Numerical computation of collision integrals

In order to complete the above finite-difference scheme, we need to express ng A ) and pPo™

ijk
in terms of F*™

ik - For this purpose, we first express Fi a(n) (¢1,¢;) in terms of F*™ Tt is done

ijk
by the following three steps. First, we expand ﬁ’ia(") (¢1,¢r) with respect to ¢; using a set of

basis functions ¥$((1), i.e

FRO(¢,6) = Z EFO(GD, 6w (@), (2.43)

j=—Ng

where ¥%((;) is assumed to have the following property: ¥%(¢;) = 1 at ¢ = ¢ 0) and
V(G)=0at ¢ = G ® (I # j)- In the practical computation, we use ¥¢ that is nonzero
only in a neighborhood (e.g., some lattice intervals) of (; = ({' U) The explicit choice of e
will be made later. [Hereafter, we assume Eq. (2.'43) for the whole range of (;; therefore, the
practical range of {; becomes slightly wider than —Z¢ < {; < Z%'.] Second, expecting that
£2™ i5 a smooth and rapidly decreasing function of v7®(, , we assume the following form

2

of EF™(D, ¢,):

‘ s 9 H*-1
Fon) (o0 ¢y = exp( r) > oW L(mec?), (2.44)
m=0

where L., (y) is the Laguerre polynomial® of mth order, which is defined by

Ln(y) = i L) (m) v (2.45)

and satisfy the relation

/0 " Lo (9) L) exp(=y)dy = b (2.46)

The system of functions exp(—y/2)L,(y) (m = 0, 1, ...) forms a complete orthonormal
system in L?(0,00). Therefore, Eq. (2.44) means that, assuming 2™ (¢79) . ¢,) to be a
rapidly decreasing function of m®(’, we expand it in terms of the orthonormal system and
truncate it at the H*th term. If we consider Eq. (2.44) at the lattice points {, = (- (k) (k =1,

., H*), we have

Fa(n) a(Ca(k) = aln) k
£ = exp (- PN LY S a0 o 29y, (2.47)
m=0
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The coefficients aZ™ (m =0, .., H* — 1) in Eq. (2.44) are expressed in terms of F o(n)

ijm

(k=1, ..., H*) by solving the system of linear algebraic equations (2.47). [Equation (2.44)
with a2 thus determined is equivalent to approximating exp(°¢2/2) E*™ (¢, ¢,) by the

1,_7m

H*—1 degree polynomial of m2¢2 that takes the values exp(m®(¢2)2/ Z)F‘g,(c") at ¢ = ¢¢®

(k=1, .., H °‘) (Lagrange interpolation).] Equation (2.44), arranged in the form of power

series of Mm®(*, can be written as
R . S a<2 Ho-1
F}a(n)(C?(J),Q) — exp( 5 ) 2 Az(rz)( agf)m’ (2.48)

where Az(m) are the constants depending explicitly on FZ‘;‘,(C") and the lattice points ¢F®

(k = 1, ..., H*) (Explicit expression of AZ(TZ) will be given later for a special choice of

¢**)). Finally, by substituting Eq. (2.48) into Eq. (2.43), we have the following expression
of E*™(¢1,¢,) in terms of £

ijk
. Aac Ny H=-1
EOG =en(-552) 3 Y Asesc)mee)m (2.49)
j=—Ng m=0
If we substitute Eq. (2.49) into Eq. (2.42), we obtain the desired expressions of Gzﬁ]k(n)
and VZ‘,IC("), e.,
Nf Ny mP-1H=-1
k
M= Y Y T Y A, (2.508)
p=—NE g=—N2 a=0 b=0
Ng mh
P = Z Y ALe Al (2.50b)
p——N'B a=0
where

QPesk = GPWA(()(MPCR) EP, U(G) (P YER] at (G, &) = (Y, ¢¢®), (2.51a)

‘pgab
ASedk = p[TB () (PP at (G, &) = (B, ¢°®), (2.51b)
EY = exp(~1*(2/2). (2.51c)

The Qg;‘jf and AS29* are the universal constants in the sense that they do not depend on i
and n. Therefore, we can compute them beforehand once we have chosen the lattice points
in the ¢;¢-plane and the explicit form of ¥%(¢;) (note that they depend also on m?/m?,

but not on d2/d4). We call Q52F and A2 the numerical kernels of the collision integrals.
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In this way, the computation of the collision integrals has been reduced to the matrix
products of the numerical kernels and AZJ + that are determined by F7 ") and by the lattice

ijk
points (2*®). A convenient choice of ¢2® is,

W = Vye/me,  (k=1, .., H), (2.52)

where H® = H is assumed for simplicity, and yj, stands for the zeros (yx < y; for k < [) of
the Laguerre polynomial Lg(y) of order H. Then, we obtain the following simple expression

of the solution a2™ of the system of algebraic equations (2.47):

ijm

o =3 5 | (255
o Lo (yx) exp(yx/2) (2.53b)

crr—1,5-1Lm-1(9e) TTe i) Uk — ¥s)

where ¢, is the coefficient of y™ in L, (y) [see Appendix A for the derivation of Eq. (2.53)].
Equation (2.53a) leads to the concise expression of the coefficients Aum in Eq. (2.49) in
terms of £2™ and yr (Appendix A), i.e.,

ijk
H H-1
A;(TZ) ZZ‘Mmlwth;ﬂ(c ), (2.54a)
k=1 [=0 .
_fo (m>,
M —{ e (0<m<0). (2.54b)

2.4.C Numerical kernels of collision integrals
1 Basis functions

‘The number of the elements of the numerical kernels Qﬁ;"jbk is still too large for precise
numerical computations because of its six-fold indices (4, k, p, g, a, b). However, by using a

uniform lattice system for {; that is common to both components, i.e.,
D=9 =jn,  (j=-Npm,.0,..,N,), (2.55)

(here N3 = Ny, and N} = N, are assumed for simplicity) and by exploiting the basic proper-
ties of GP* and », we can reduce the number of the independent elements of Qg;ff and Aﬂ“]k
significantly, as we will see below. Since F* is expected to be a rapidly decaying function of

V1he(y, it is reasonable to use different lattice systems for individual gas components, such
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as (7 0) = jh/v/7®, rather than Eq. (2.55). But in this case, such reduction of the number of
the independent elements is not possible. We can perform much more efficient computation
with the lattice system (2.55).

To define the explicit form of the basis functions ¥%((;) in Eq. (2.43), we introduce the
following Efj(Cl):

- [G — (26 = 1)} (G — (2 - 2)h] /2h2, [(2¢—2)h < G < 2¢R],

U2(G1) = { [¢r — (2¢+ 1)A][G — (26 + 2)h] /2R%, [2¢h < (1 < (20+2)R], (2.56a)
0, (otherwise), ‘

Uopa (G1) = { 6"(41 — 2k [G = (26+ 2)h) /A7, Eiiﬁefwﬁlsj @EFDRL (5 561)

Then, in the computation of Qg:jbk and AS29% we use two different sets of basis functions

depending on the parity of j that are common to both components, i.e.,

T2 (G) = Up(Gr) = Tp(G), (p=0,+1,%2,..), for j=2¢ (2.57a)

Ue(G) = 0p(G) = Tpa (G —h),  (p=0,£1L,%2,..), for j=2+1. (2.57b)

By this choice of the basis functions, Eq. (2.43) means that ﬁ‘f’(")(gl, ¢+), as the function of
(1, is approximated by a piecewise quadratic function of (; that takes the value ﬁf‘(”)(cl(j ), ¢r)
at the lattice point (; = fj) (j = =N, ..., 0, ..., Np). The piecewise quadratic function is
quadratic in the interval 2¢h < ¢; < 2(¢+1)h for Eq. (2.57a) and in (2{—1)h < (3 < (2¢+1)R
for Eq. (2.57b). [These statements are not true in a small neighborhood of the outermost
lattice point .l("N"”) or dN”), where the value of 13"2-"‘(")((1', ¢-) is negligibly small.] The use
()
1

of the two sets of basis functions is just for convenience that the lattice point (;”” under

consideration in the integrals in Eq. (2.51) is always at a node | 1(22) for Eq. (2.57a) and

sz”l) for Eq. (2.57b)] of the piecewise quadratic function. The ¥,(¢;) defined above has

the property

Ty (G + ¢ = 0, (¢ + 20h) = Tp_p(C1),  (2.58)
Tp(—(1) = ¥_p(G1)- (2.58b)
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On the other hand, G and # satisfy the following relations.

G(£(€), 9(ON(Q) = GP[f(¢ + @), 9(¢ + @))(¢ ~ a), )
PIFONQ) = 2[f (€ + )€ — a), )
GP£(61,60), 9(6, 60, &) = GP[f (=1, 6), 9(=C1, 610, 6),  (2.59¢)
PF(C &0, ) = B[F(=61, 60, 60), (2.594)
G1£(€), 90 = G**(9(0), FQ)), (2.59)
G £1(G1)g1(G), f2(C1)2(6)] = G[f1(¢1)92(Gr), £2(C)g1(Gr)), (2.59f)

where f, g, etc. are arbitrary functions of the independent variables specified in the equa-
tions, and the independent variables of G%* and » in Eqgs. (2.59a)-(2.59d) are shown in
the respective last parentheses. Equations (2.59a) and (2.59b) follow from Eqgs. (2.17) and
(2.18), and Egs. (2.59¢) and (2.59d) follow from Egs. (2.33) and (2.38). Equations (2.59¢)
and (2.59f) are essentially the same as the corresponding relation for a single-component gas,
the derivation of which is given in Ref. 76.

It follows from Eqs. (2.58a), (2.59a), and (2.59b) that

Bajk __ Balk ik __ A Balk
Qpgas = pmjig—saby Aggj =AM e (2.60)

from Egs. (2.58b), (2.59¢), and (2.59d) that

Balk __ Bclk 0k __ 0k
Qp;lab - Q_‘;H_q’a,b’ Agg - AE(;JI ) (2'61)

and from Egs. (2.59%) and (2.59f) that

aclk __ aalk __ yaalk
Qogab = gpba. = pgha - (2.62)

Equations (2.60) and (2.61) reduce the number of independent elements of Qgg‘jf from O(N°)
to O(N®) and that of AS%* from O(N*) to O(N?), where N is the representative number of
the lattice points of each molecular velocity component [i.e., N is of the order of N, +Np+1

and of H|.
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2 Numerical kernels

From Egs. (2.33), (2.51a), and (2.57a), we obtain the following expression of Qﬁ;fbk :

ﬂ:aobk“\/_/ // // Jl)‘Il Kl)(\/_J(k))Qa(\/_—K(k))Zb
((\/“_ J(’“))2+(\/~ <k>))

X exp zsin 0dw'dw"dzdedd,  (2.63)

where
Jy = w"sin@ + (1 — j@#*/mP)z cos b, (2.64a)
JE = {(w' — ¢*® sin&)? + [w" cos 8 — ¢*® cos & — (1 — 4P /mP)zsin 0]*}V/2, (2.64b)
K; = (§P*/m®)z cos ¥, (2.64c)
K® = {[(pP*/m®)zsin 0 + (2 cos &? + (¢® sin &)} /2, (2.64d)
Balk

Because of the property (2.61), we only need 2 for ¢ > 0 and for ¢ = 0, p > 0. For these

'pqad

p and ¢, Eq. (2.63) can be rewritten in the following form:

Qfed — V2 /m / waan(0:€)dEdd, (g > 0), (2.65a)
Qg ¥ / " / (8,8 +T% 00,6, 8)dedd,  (p>0), (2.65b)

where
Tk (0,8 = sinH/c>o 20, (K1) (Ve K®)? exp (—@) OF,(2,0,€)dz, (2.66a)

ek, (2,0,¢) / / o(J1) (VB J®)2 exp (—@—:—]ﬁ)—%) dw'dw". | (2.66Db)

In Eq. (2.65a) we have omitted the part [7/2, 7] of the integration with respect to 6 because
\'Ivlq is identically zero for the negative argument when ¢ > 0. In Eq. (2.65b), we have
reduced the integral with respect to 6 in Eq. (2.63) to that over [0, 7/2]. This can be
done by splitting the integral into that over [0, 7/2] and that over [7/2, 7], changing the
variables as w"” = —w" and @ = 7 — @ in the latter, and taking into account the property
@p(—gl) = \Tf_,,(gl). As shown in Appendix B, Eq. (2.66b) can be integrated analytically.
Therefore, the final expression of 0P% contains triple integral with respect to z, €, and 6.

pgab

It is computed numerically by the Gauss-Legendre formula.!® (In the actual computation,
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we carry out the numerical integration using slightly different variables, i.e., Z, €, and 6,
as shown in Appendix C.) When o = 3, ©;, does not depend on z (Appendix B), and
thus the integration with respect to z in Eq. (2.66a) can be performed analytically (see
Appendix C). Hence, the final expression of Q;‘;z contains double integral with respect to
€ and 0, which is computed numerically by the Gauss-Legendre formula. In the case of a

aalk

single-component gas, the numerical kernel for the gain term is essentially the same as 257}

(Ref. 76). Therefore, only the double integral (with respect to € and 6) should be calculated
numerically to generate the numerical kernel. In the case of a binary mixture, one more
integration (with respect to z) should be carried out numerically.

On the other hand, the integration with respect to ¢ in Eq. (2.38) can be carried out and

leads to the following expression for P[L]:

. _ S 00 _ 9 211/2 4C*rCr
R I A e R e e (e v b )

X C*TL(C*b C*r)dg*rdg*l, (2'67)

where &;; is the complete elliptic integral of the second kind, i.e.,
/2
Eur(z) = / (1—zsin?®)¥2d,  (0<z<1). (2.68)
0

From Egs. (2.51b), (2.57a), and (2.67), the numerical kernel A%2% is expressed by

a(k)
Ape® = 2v/2 / f + (G + GO 2En ( Aarkr )

2 4 (Cor + (2P)2

982 N\ ~
X G (G2 exp (= ) Ty (Co)dordGrr. (2:69)

The two-fold integration with respect to (,; and (,, in Aﬁ"‘(”c is carried out numerically by

the Gauss-Legendre formula.

2.5 Results of numerical analysis

In this section, we show the results of numerical analysis, choosing the point at which

n(X1) = (n_ +n4)/2 to be the origin X; = 0 of the X; coordinate.

2.5.A Macroscopic quantities

To show the profiles of the molecular number densities n* and n, the flow velocities (in

the X, direction) v¢ and v, and the temperatures 7* and T', we introduce the following
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-10 -5 0 5 10

Figure 2.1: Profiles of molecular number densities, flow velocities, and temperatures for
M_ =15 mP/mA = 0.5, and dB/dA = 1. (a) xB = 0.1, (b) xB = 0.5, and (c) xZ = 0.9.
For this M_, the downstream values are n¢ = 1.714n%, U, = 0.5833U_, T}, = 1.495T_, and
M, = 0.7157. Here, the solid lines indicate 7, ¢;, and T for the total mixture, the dashed
lines 744, o2, and T4 for the A—component, and the dot-dash lines 7%, 58, and T for the
B-component [see Eq. (2.70)].
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Figure 2.1: (continued from the previous page)
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Figure 2.2: Profiles of molecular number densities, flow velocities, and temperatures for
M_ =3, mP/m* = 0.5, and dB/d2 = 1. (a) xB = 0.1, (b) xB = 0.5, and (c) x& = 0.9.
For this M_, the downstream values are n§ = 3n%, U, = U_/3, Ty = 3.6677_, and
M, = 0.5222. See the caption of Fig. 2.1.
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Figure 2.2: (continued from the previous page)
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Figure 2.3: Profiles of molecular number densities, flow velocities, and temperatures for
M_ =15, m®/m# = 0.25, and dB /d4 = 1. (a) xB = 0.1, (b) x = 0.5, and (c) xB = 0.9.
For this M_, the downstream values are n§ = 1.714n%, U, = 0.5833U_, Ty = 1.495T_, and
M, =0.7157. See the caption of Fig. 2.1.
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Figure 2.3: (continued from the previous page)
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Figure 2.4: Profiles of molecular number densities, flow velocities, and temperatures for
M_ =2, mP/m* = 0.25, and d2/d4 = 1. (a) xB = 0.1, (b) xZ = 0.5, and (c) xZ = 0.9.
For this M_, the downstream values are n¢ = 2.286n%, U, = 0.4375U_, T}, = 2.0787_, and
M, = 0.6070. See the caption of Fig. 2.1.
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Figure 2.4: (continued from the previous page)
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Table 2.1: The distributions of the molecular number density n, flow velocity v;, and temperature T' of the total mixture for
M_ =15 mP/mA =05, and dB/d2 = 1 (cf. Fig. 2.1).

n/n_ vy /(2kT_ /mA)1/2 T/T-

Xi/l- xF=01 xB=05 xF=09 xF=01 xE=05 xZ=09 xF=01 xB=05 xE=09
—00 1.000 1.000 1.000 1.405 1.581 1.846 1.000 1.000 1.000
—12 1.000 1.000 1.000 1.405 1.581 1.846 1.000 1.000 1.000
-9 1.002 1.003 1.002 1.402 1.577 1.842 1.003 1.004 1.003
-7 1.008 1.010 1.008 1.395 1.567 1.831 - 1.011 1.014 1.013
~5 1.028 1.033 1.030 1.367 1.534 1.793 1.042 1.046 1.045
—4 1.053 1.059 1.056 1.336 1.498 1.751 1.075 1.080 1.079
-3 1.094 1.102 1.098 1.285 1.442 1.685 1.127 1.131 1.131
-2 1.160 1.167 1.164 1.213 1.364 1.592 1.198 . 1.199 1.200
-1 1.250 1.255 1.253 1.126 1.269 1.479 1.277 1.274 1.277

0 1.357 1.357 1.357 1.037 1.173 1.366 1.349 1.343 1.347
1 1.462 1.458 1.459 0.962 1.090 1.270 1.404 1.398 1.402
2 . 1.549 1.543 1.545 0.908 1.029 1.198 1.441 1.436 1.439
3 1.612 1.606 1.607 0.872 0.987 1.151 1.464 1.460 1.462
4.5 1.668 1.663 1.664 0.843 0.952 1.111 1.481 1.479 1.480
6 1.694 1.691 - 1.692 0.830 0.935 1.092 1.489 1.488 1.489
9 1.711 1.710 1.710 0.821 0.925 1.080 1.493 1.493 1.494
12 1.715 1.714 1.714 0.820 0.923 1.078 1.494 1.494 1.494
00 1.714 1.714 1.714 0.820 0.922 1.077 1.495 1.495 1.495
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Table 2.2: The distributions of the molecular number density n, flow velocity v;, and temperature T of the total mixture for
M_ =3, mB/m# =05, and dB /dA =1 (cf. Fig. 2.2).

n/n_ v1/(2kT_ /m*A)}/? T/T-

X1/l XFE=01 xZ=05 xP=00 x2=01 x2=05 x5=09 xZ=01 x5=05 xZ=09
—00 1.000 1.000 1.000 2.810 3.162 3.693 1.000 1.000 1.000
-6 1.001 1.001 1.001 2.807 3.158 3.688 1.008 1.009 1.009
-5 1.004 1.004 1.004 2.800 3.150 3.679 1.027 1.028 1.028
—4 1.012 1.013 1.013 2.778 3.125 3.649 1.084 1.087 1.088
-3 1.039 1.042 1.040 2.708 3.048 3.556 1.261 1.262 1.269
-2 1.127 1.134 1.131 2.501 2.821 3.281 1.748 1.732 1.758
-1.5 1.229 1.238 1.234 2.298 2.599 3.016 2.168 2.135 2.174
-1 1.400 1.409 1.406 2.019 2.294 2.654 2.659 2.607 2.656
-0.5 1.662 1.669 1.667 1.700 1.941 2.243 3.101 3.040 3.088

0 2.000 2.000 2.000 1.412 1.614 1.869 3.397 3.342 3.380
0.5 2.344 2.338 2.338 1.203 1.373 1.595 3.552 3.511 3.536
1 2.617 2.610 2.609 1.076 1.223 1.425 3.621 3.595 3.610
1.5 2.794 2.788 2.786 1.007 1.140 1.331 3.650 3.634 3.643
2 2.893 2.890 2.888 0.972 1.097 1.282 3.662 3.652 3.657

3 2.973 2.972 2971 0.945 1.065 1.244 3.667 3.664 3.665

4

5

00

2.993 2.993 2.992 0.939 1.067 1.234 3.667 3.666 3.666
2.998 2.998 2.998 0.937 1.065 = 1.232 3.666 3.666 3.666
3.000 3.000 3.000 0.937 1.054 1.231 3.667 3.667 3.667
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Table 2.3: The distributions of the molecular number density n, flow velocity v;, and temperature T' of the total mixture for
M_ =15, mB/m#? =025, and dB /d2 =1 (cf. Fig. 2.3).

n/n_ vy /(2kT_ /m*A)'/? T/T.

X/l x2=01 x2=05 xF=09 x2=01 xB=05 x2=09 xP=01 xB=05 xZ=09
—o0 1.000 1.000 1.000 1.424 1.732 2.402 1.000 1.000 1.000
—12 1.000 1.002 1.001 1.423 1.730 2.400 1.000 1.002 1.001
-10 1.001 1.005 1.003 1.422 1.726 2.396 1.002 1.006 1.004
-8 1.005 1.013 1.010 1.417 1.714 2.382 1.007 1.016 1.013
—6 1.017 1.036 1.030 1.401 1.685 2.342 1.024 1.042 1.039
—4.5  1.043 1.071 1.064 1.369 1.638 2.274 1.059 1.081 1.081
-3 1.100 1.133 1.129 1.300 1.558 2.157 1.129 1.146 1.150
-2 1.165 1.195 1.193 1.229 1.484 2.050 1.197 1.203 1.209
~1 1.253 1.271 1.271 1.143 1.397 1.930 1.273 1.265 1.271

1.357 1.357 1.357 1.054 1.307 1.810 1.344 1.324 1.328

1.460 1.444 1.441 0.979 1.224 1.702 1.399 1.375 1.376

1.581 1.554 1.546 0.903 1.130 1.579 1.450 1.430 1.427

1.651 1.628 1.618 0.863 1.072 1.501 1.475 1.461 1.457

1.693 1.680 1.671 0.841 1.035 1.445 1.488 1.481 1.478

1.708 1.702 1.696 0.834 1.019 1.420 1.492 1.489 1.487

1.713 1.710 1.707 0.831 1.013 1.409 1.493 1.492 1.491

1.715 1.714 1.712 0.831 1.011 1.404 1.493 1.493 1.493

1.714 1.714 1.714 0.831 1.010 1.401 1.495 1.495 1.495

e O
8Noooc34>m»—-o
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Table 2.4: The distributions of the molecular number density n, flow velocity v;, and temperature T of the total mixture for
M_ =2, mP/mA = 0.25, and dB /d4 =1 (cf. Fig. 2.4).

n/n_ vy /(2kT_ fmA)1/2 T/T_

X/l XBE=01 xP=05 xZ=09 xZ=01 xZ=05 xP=00 xP=01 x*=05 xZ =00
—00 1.000 1.000 1.000 1.898 2.309 3.203 1.000 1.000 1.000
-8 1.001 1.002 1.001 1.897 2.306 3.200 1.001 1.004 1.002
—6 1.004 1.010 1.006 1.892 2.293 3.187 1.010 1.021 1.014
—4 1.026 1.050 1.037 1.857 2.232 3.107 1.065 1.098 1.087
-3 1.065 1.105 1.088 1.794 2.148 2.984 1.159 1.198 1.195
-2 1.157 1.211 1.195 1.658 1.992 2.749 1.347 1.366 1.381
-1.5 1.238 1.291 1.280 1.552 1.882 2.587 1.479 1.474 1.496
-1 1.348 1.392 1.386 1.426 1.753 2.404 1.620 1.588 1.613
—-0.5 1.486 1.511 1.510 1.292 1.614 2.218 1.752 1.700 1.720

0 1.643 1.643 1.643 1.167 1.478 2.042 1.860 1.798 1.811
0.5 1.799 1.776 1.773 1.063 1.357 1.889 1.938 1.878 1.882
1 1.938 1.899 1.890 0.985 1.258 1.764 1.991 1.940 1.937
2 2.129 2.088 2.068 0.894 1.127 1.592 2.046 2.015 2.006
3 2.222 2.194 2.174 0.855 1.062 1.498 2.066 2.050 2.042

4 2.261 2.246 2.230 0.840 1.033 1.449 2.073 2.065 2.060

6

8

o0

2.283 2.279 2.273 0.832 1.014 1.413 2.077 2.075 2.073
2.286 2.285 2.283 0.831 1.011 1.404 2.077 2.077 2.076
2.286 2.286 2.286 0.831 1.010 1.401 2.078 2.078 2.078




quantities:

o n® —n? . n—n_

n (Xl) = W) n(Xl) = m’ (2.70&)
~a _w-U ~ _u-=Uy

0 (%) = 57— U, WXy = g—7- U (2.70b)
= T -1 ~ T-T_

T*(X1) = ﬁ"__—T_', (X)) = T, —T (2.70c)

where o = A, B. The distributions of these variables are shown in Figs. 2.1-2.4: Fig. 2.1
is for M_ = 1.5, m®/m# = 0.5, and d2/d4 = 1; Fig. 2.2 for M_ = 3, m¥/m* = 0.5, and
dB/d4 = 1; Fig. 2.3 for M = 1.5, m®/m# = 0.25, and dB /d4 = 1; and Fig. 2.4 for M_ =2,
m®/m# = 0.25, and dB/d2 = 1. The downstream values n%, Uy, T4, and M, are given
in the respective captions. The values of n(X3), v1(X1), and T'(X;) of the total mixture,
which are obtained from the values at the lattice points by interpolation, are also shown
in Tables 2.1-2.4 for the cases corresponding to Figs. 2.1-2.4. The macroscopic variables
of the light component (B-component) start to deviate from their upstream uniform values
earlier than the corresponding variables of the heavy component (A-component). Then,
the number density n? and flow velocity vZ of the light component reach their downstream
uniform values n% and U, earlier. However, the temperature of the heavy component T4
rises more steeply and exceeds that of the light component T2 at a point inside the shock.
Then, the former approaches the downstream equilibrium temperature monotonically or once
becomes higher than the downstream temperature and then decreases to it [Figs. 2.2(c) and
2.4(c)]. These features appear more clearly when the mass ratio m? /m4 is small (Figs. 2.3
and 2.4).

The aforementioned nonmonotonic distribution of the temperature 74 of the heavy com-
ponent manifests itself when the concentration of the light component xZ is large and the
shock wave is not weak. This phenomenon has already been shown by the computations in

92,9 and has been known as the temperature overshoot.3%°7 As mentioned

the early stages
at the end of Sec. 2.2.B, however, the following 7%, which is different from our 7%, is often

adopted as the temperature of the individual components in the literature:
e = (3kn®)~1 / m(€ — v16) FOdE. (2.71)
The comparison of ¢ with T is given in Fig. 2.5, where T is defined by

To = (I8 — T_)/(Ts — T-). | (2.72)
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Figure 2.5: Profiles of T® and T® (a = A, B) for dZ /d4 = 1. (a) M_ = 3, m®/m4 = 0.5,
xZ =09, (b) M_ =3, mB/mA = 0.5, xB = 0.95, (c) M_ =2, mB/m? =025, x® = 0.9,
and (d) M_ = 2, mB/m# = 0.25, xB = 0.95. Here, the solid line indicates 74 and 7% [see
Eq. (2.70¢)], and the dashed line T4 and T2 [see Eq. (2.72)].
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Figure 2.6: Distribution of the components p§; and pi; of the stress tensors for xB =05
and dB/dA = 1. (a) M_ = 1.5, mB/m4 = 0.5, (b) M_ = 3, mB/m# = 0.5, (c) M_ = 1.5,
mP /m4 = 0.25, and (d) M_ = 2, m®/m# = 0.25. Here, the solid line indicates (p;; —p)/p_,
the dashed line (pf, — p#)/p—, and the dot—dash line (p?, — p®)/p_, where p_ = kn_T_.
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Figure 2.6: (continued from the previous page)

67



Figure 2.7: Distribution of the components ¢® and q; of the heat-flow vectors for xZ = 0.5
and d2/di = 1. (a) M_ = 1.5, mB/m# = 05, (b) M_ = 3, mB/m* = 0.5, (¢
M_ = 15, mP/m* = 0.25, and (d) M_ = 2, m®/m? = 0.25. Here, the solid line indi-
cates —qi /p_(2kT_/mA)"/2, the dashed line —g{'/p_(2kT./m*A)'/2, and the dot-dash line
—qP [p_(2kT_ /m#)*/?, where p_ = kn_T_.
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Figure 2.7: (continued from the previous page)

69



As is seen from the figure, the overshoot is observed more clearly for TA.
Finally, we show the distributions of p{; — p* and p;; — p in Fig. 2.6 and those of ¢f and

2.5.B Velocity distribution functions

Next we show the behavior of the velocity distribution functiggé. Figures 2.8-2.11
show the nondimensional velocity distribution functions F*(zy,(,¢) [= (2kT- /mA)3/2n 1
F(X1,6,8); & = (& + €2)Y?] (a = A, B) as functions of i [= (2kT-/m*)~/2¢] and ¢,
[= (2kT-/m*)~1/2¢,] at several points in the gas for x® = 0.5 and dZ /d4 = 1; Figs. 2.8
and 2.9 are for M_ = 3 and m®/m# = 0.5, and Figs. 2.10 and 2.11 are for M_ = 2 and
mPB/m#? = 0.25. Here, in consistency with the figures and tables in Sec. 2.5.A, the posi-
tions in the gas are indicated by using the dimensional coordinate X;. The equilibrium
distributions at upstream infinity and those at downstream infinity are also shown in the fig-
ures. Compared with the upstream Maxwellians, the downstream Maxwellians, the centers
of which are shifted (from U_ to U, in the dimensional & space), have lower heights and
larger extents because of the increase of the temperature at downstream infinity. The figures
clearly demonstrate the transition of the velocity distribution functions from the upstream
to the downstream Maxwellians. In Figs. 2.8 and 2.9, corresponding to the peaks of the
upstream and downstream Maxwellians, two small lumps are observed both in F*4 and FB
in the transition region [Figs. 2.8(c)-2.8(e) and 2.9(c)-2.9(e)]. As is seen from Egs. (2.21)
and (2.22) and from Figs. 2.8-2.11, smaller mass ratio m? /m# makes the height of 75 lower
and its extent larger for a fixed xB.

In Figs. 2.12-2.15, we show FA and FB at ¢ = 0.15 as functions of (; for several points
in the gas. Figs. 2.12-2.15 correspond to the cases of Figs. 2.1-2.4, respectively, but the

results for x2 = 0.95 are also included in the former figures.

2.5.C Comparison with the DSMC computation

We have also carried out the computation of the problem by means of the standard DSMC
method by Bird®® for hard-sphere molecules in several cases. We here give some comparisons
of the DSMC result with our present computation. Figure 2.16 shows the profiles of the
macroscopic variables corresponding to Figs. 2.2(b) and 2.4(b), i.e., M_ = 3, xZ = 0.5,
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M_ =2, x2 =05 mB/mA =0.25, and d2/d2A = 1 [ef. Fig. 2.4(b)]. (a) X1/I_ = —o0,
(b) Xl/l— = _21 (C) Xl/l— = _17 (d) Xl/l— = _0'27 (e) Xl/l— = O4a (f) Xl/l— = 17 (g)
X1/l- =2, and (h) X;/l_ = o0.

73



4
i
i

Yoot
1111171111

T,
mmmuummmnmm
i mmmmmll
sttt
G
:ummummm:mmmuu:u4,m:nmmmmmmmmlmmmmmlmmn
I
LTS

7 7 11 %
e
e ettt
i

LTI 5Ps
(LTSI I
i
IIII/IIIIIIIIIII/IIIIIIIIIIIIIIIIIIIlIIIIIIIIIllIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIl

|

";w &fl"'

IIII
IS IEITITH IS,

iy

LT H ]
LSS RN

=

l

i
ﬂ[ [
Al llllllllllm"'r-,
7 ,,,,,,4,,;mzulll,l}},l}},f}}},lll!luuq,y,z%,%%ﬁ,

Oz
nnmm
iess ,:21’,72’,:::::::1/11////

2415113970
i

i oo
4 LI
e I AT e
e s
R
lllllllllllllIIIIIlIIIIllIIIIIIIIIIIIIIII/IIIIIIIII/IIIIIIIII{lIIIlllIlIIIIIIlI E
I O

if
LATHI ]

14
",-;,4;;,,,551/,',

7
unnul""ln"lll‘

1;/;1/1/”%”1

R
1T

i
S
hrise
l l i 2/ LI
IlllllIIlllllIllIllIIIlIIlllIIlllllllllllll"lllIJlIllllIIIl‘IIII‘I‘IIZI‘IllllllllllllllllIl

i
i
L L L L N I

:

y /‘,,,mtm
g mlmmm ! b

4

0

I
.

( /I/ Il
/ﬁl’ 114 ]441/””” Il’l’}l‘l,lflfffly[’ll i

i
P ;//,,,mll
%

iy

l l £11] l'llll
,,m# m’mmn mmml ,
mmlmumn i
I

UL

Al

Al

v

S
nn,ummul,',,lll ”
m”,,/,:,z/l,//,l/,l”/” ﬂll l

v

5:

B

2]
dxy ,
| 4'///;1[1!11111 nmu "l'n',. 0
” "//l’uu nmmmummnz’l,'lll/,z,"'.’f,"fs'f:é"'f'f'f’f‘«"?’ff’i%’?”'
-
-6

e nn”,,/lll
",’/mtl
lIlIIl
it
iy

it
L
Vo]
7 i, IIIIIIIIIIII

o

s o etre um:,::n:,m,”zn”nm"mmmmmnm

a7

AT

';n/
wessimiisay
R
I i
ml//ll/mmm”mmmmmnmmmun;/mm I I
/IIIIIIIIIIIIIIIIIll/IIIIIIIIIIIIIII”III
T

I

s/

e
A,
A III/IIIIIIIII/IIIIIIIIIIIIﬂllllllllllll

1: Dimensionle
= 0.5, mP/m

X..
= -2, (c

Figure 2.1
= 2,
(b) X1/l

M_
(b) X1/l
X /l- =2, and

ss velocity

) Xafl-

distribution fun

A = 0.25, and
_ 1, (d) Xa/l-=

= 0OQ.

0
4 mmmm,,, -

’ ll mnnmmmm
i

mﬂl’”mmmtm:mm: it

y
llllllll""lllllll llI 1T
T T T T
B e T T
4 ¢ 8

il
0
i
m‘ "l” i
4

g

27 lIIIllllIlllIIlllIlI/ LT TSI T

TSI T LTI T IIIIIIIIIIllIllIlIlIllllIIIIIIIIIIIIIIIIIIIIIII

IIII/IIIIIIIIIIIIIIIIIIIIIIII/lllIIIIIIIIIIIIIIII/I/IIIIIIIII/IIIIIIIllllllllII I
e L L L

s mmm
Lt m”
S

i IllIlIIllIllllllIlll : 4241
B m
IIII

s
i
It
L T

diariis
e
A
LI
e
I,

Yo
p
i ; I
B L

.u"
il
02z i /”,"IJIIII
il
/:5'/:':’,‘:',75’/”:” it Illl’
s et rradte i
n;..,,,”nun,mmmmuummlmmmmmmm B,
i
T T I T T PO AT LT AT O T
L T )
G
i 12

l m"'
’lllll
i ;""" i
'
Ill mlnmuﬂ,ZZZ” o
LS et
D
11117

I
LI,

ll.""n,'
" m” n,.
n;‘;';'};’},’,’,’,’,’,‘,‘}"lﬂm

Q
'} "l" s
” 'I’"'II,"" e
i iy i i
l’ (PELEEITIT
i

/

il

il
.

mmum:mm i
Illll ll ll HHEITIEETIEIIT T
ll ESETEIIN TN s
II LT 1 2

111 7
i,
IIIIIIIIIIIII i1/} IIIIIIII IIII/IIIII/IIIIIIIIII/

Vi

Vis

IEHIHTH T T
4 G

"mﬂl "lll""
1ty
""llm’,',h;,;,ﬂ,'.'.'.'/.'/:/,'/:/
mmu//n"’l e
i

i o . h
g0
,,;%}}%%ﬂm

P

1
i it

0 ','51"""'"'"""’",,,: ’,I;’ il
5 l
m;zmzzﬁ’: il i
"lllll"l lll Illlllllllllllllllll lllllllll (LEETEIIs:

i lllu"ll” wan
it
7
T T

IIIIIIIII/IIIIIIIIIIIII T
L 7
4

- . . . 't,he
ction F'B at eight points i
of. Fig. 2.4(b)}- (a) X1/l- =
7 = 04, () Xa/l-

dA =1
dB [dA, [(e) X

74

gas for
— m N

=1, (g)



(a) (b)

Figure 2.12: Dimensionless velocity distribution functions F4 and f‘B at ¢, = 0.15 for
M_ =15, mB/mA = 05, and d2/d4 = 1. (a) F4, (b) FB. The F4 and F® at several
points in the gas are shown for xZ = 0.1, xZ = 0.5, xZ = 0.9, and xZ = 0.95.
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Figure 2.13: Dimensionless velocity distribution functions FA and FB at ¢ = 0.15 for
M_ =3, mB/mA =05, and d2/d2 = 1. (a) F4, (b) FB. See the caption of Fig. 2.12.
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Figure 2.14: Dimensionless velocity distribution functions FA and FB at ¢, = 0.15 for
M_ =15, mB/mA = 0.25, and dB /d4 = 1. (a) F4, (b) F’B. See the caption of Fig. 2.12.
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(a) (b)

Figure 2.15: Dimensionless velocity distribution functions FA and FB at ¢ = 0.15 for
M_ =2, mP/m* =0.25, and d2/d4 = 1. (a) F4, (b) F'B. See the caption of Fig. 2.12.
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Figure 2.16: Comparison with the DSMC results: Profiles of molecular number densities,
flow velocities, and temperatures. (a) M_ =3, xZ = 0.5, m®/m4 = 0.5, and dB /d} =1 [see
Fig. 2.2(b)], (b) M- =2, xB = 0.5, mB/m4 = 0.25, and dZ/d2 = 1 [see Fig. 2.4(b)]. The
results obtained by the DSMC method are shown by the symbols e (7, @y, and T), o (74,
#4, and T4), and A (78, B, and TZ). The results by the present finite-difference method
are shown by the solid line (7, %, and T, dashed line (74, 2, and T4), and dot-dash line
(7B, ¥, and T®). The short vertical bar above the profiles indicates the standard deviation
of the samples for 7 at the corresponding point, and that below the profiles ‘the larger value
of the standard deviation for 44 and that for 7.
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0.06

0.03

0.04

0.02

(b) X:1/l_ = 0.55

Figure 2.17: Comparison with the DSMC results: Dimensionless velocity distribution func-
tions F4 and F'Z at ¢, = 0.15 and 1.35 for M_ = 3, x2 = 0.5, m® /m# = 0.5, and d /d4 = 1.
(a) X1 /l- = —0.45, (b) X;/I_ = 0.55, (c) X1/l- = 1.05. The results obtained by the DSMC
method are shown by e (F4) and o (F'B). The results by the present finite-difference method
by solid line (F4) and dashed line (F'F).
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0.04 . . T r ' ' 0.02

0.02

(C) Xl/l_ =1.05

Figure 2.17: (continued from the previous page)
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mPB/m4 = 0.5, and dB /d4 = 1 [Fig. 2.16(a)], and M_ = 2, x& = 0.5, m® /m4 = 0.25, and
dB/d4 =1 [Fig. 2.16(b)]. In the figures, the DSMC results are shown by the symbols e, o,
and A, whereas the results of our present computation by the éolid, dashed, and dot-dash
lines as in Figs. 2.1-2.4. On the other hand, Fig. 2.17 shows the comparison of the velocity
distribution function for the case of Fig. 2.16(a). To be more specific, the dimensionless
velocity distribution functions £4 and F'B at ¢, = 0.15 and 1.35 are shown as the functions
of (; for three points in the gas. The DSMC results show good agreement with those of
the present computation for the velocity distribution function as well as for the macroscopic
variables. The data about the present DSMC computation are as follows: 400 cells of a
uniform size with length of 0.1/_ are used, and the average number of simulation particles
per cell is about 250 for each component in Fig. 2.16(a) and about 200 for each component in
Fig. 2.16(b); the time step is 0.01¢_, where t_ = [_(2kT_/m*)~%/2; after the steady state has
been established, the time average of 10,000 samples with sampling interval 0.5¢_ is taken,
and the average is shown in Figs. 2.16 and 2.17. The short vertical bar above the profiles in
Fig. 2.16 indicates the standard deviation of the 10, 000 samples for 72 at the corresponding
point, and that below the profiles indicate the larger value of the standard deviation for 74

and that for AB.

2.6 Data for computation and its accuracy

In this section, we use the original X; (or z;) coordinate system, not the rearranged system

used in Sec. 2.5, unless the contrary is stated.

Table 2.5: Lattice systems in the molecular velocity space.

Nn. N, h H l(—Nm) Cl(Np) Cf}(l) or le) Cg(H) or C'I(‘H)
(MI) 26 34 025 14 -65 85 0.3158 6.6608
(M2) 44 56 015 14 -66 84 0.3158 6.6608
(M3) 60 73 015 14 —9.0 10.95 0.3158/v/m® 6.6608/v/me
(M4) 66 81 015 14 —9.9 1215 0.3158/v/me 6.6608/vme
(M5) 44 56 015 18 —66 84 0.2796 7.6870
M6) 60 73 015 18 —9.0 10.95 0.2796 7.6870
(M7) 44 56 015 14 —6.6 84 0.3158/v/me 6.6608/vme
) 60 73 015 14 —9.0 10.95 0.3158/v/m® 6.6608/v/me
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2.6.A Lattice systems

We first summarize the lattice systems that are used in the actual computation. For the
molecular velocity space, the four lattice systems (M1), (M2), (M3), and (M4) given in
Table 2.5 are used [see Egs. (2.52) and (2.55)]. The reason why the bar is put on M1 and M2
is that, in (M1) and (M2) systems, (,~lattice points slightly different from those explained
in Sec. 2.4.B [cf. Eq. (2.52)] are used. That is, we assume the form

OGO, 6) = exp (- ) Za:;‘:,?L (2.73)

instead of Eq. (2.44) and use

¢® = ¢c® = (k=1, ..., H), (2.74)
instead of Eq. (2.52). As a result, the forms of numerical kernels Q520" and A%2% undergo
slight changes (In fact, Q540% = QBB holds and AP2% becomes independent of the labels o

and (3, which are the advantage of this choice). Since the changes are rather straightforward,
we omit them here. This choice works when the molecular masses m# and m® are not very
different (0.5 < mB/m# when m® < m4). The edges of the domain in ¢, ie., (™) and

fN”), and the first and last lattice points in ¢, i.e., & @ and G (H) (or Qﬁl) and C,SH)), for the
systems (M1I), (M2), (M3), and (M4) are also shown in Table 2.5. The computer memory
required for the numerical kernels corresponding to these four systems is: (MI): 263MB,

(M2): 720MB, and (M3): 1.4GB, and (M4): 1.7GB.

The lattice system fof the space coordinate z; is defined by
9 = f£z0, (6==Np,...,0,.., Np), (2.75)

where

\ mAx mex? +x2
= , (2.76a)
! VEROA +2(B) /2 + (%) 6 o

70 = 0, [erf(3.5) — erf (3.5 « Mo = )} (D' - 50d")
ND D
(i=0,..,Np—1), (2.76b)
jg_ND) f— DI’ (2.76C)
27 = —z{9, (2.76d)
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and erf(z) is the error function defined by Eq. (B11) (Appendix B). Equation (2.75) means
that the X; coordinate is rescaled by fsl_ and then the lattice points are set in the rescaled
coordinate X;/fsl—. This is because in the X;/fsl_ coordinate, the shock thickness is less
sensitive to the change in the parameters m?/m#, d2 /d4 and xZ than in the X, /I_ (or ;)
coordinate. However, f; is almost unity (0.973 < f5 < 1) for the values of the parameters
chosen in our computation. We use the following two systems for the computation:

(S1): D' = 10+/7 (= 17.7245), Np = 25, d' = 0.05,/7 (= 0.088623),

(S2): D' = 103/7, Np = 50, d’ = 0.05,/7.

The lattice interval is minimum at z; = 0 [a:(ll) ~ $go) = 0.1773f5 for (S1) and 0.08863f;
for (S2)] and increases, with the increase of |z;|, to the maximum value at the edge of the
domain, |z;| = 17.7245f; [z"P) — £~V = 2.964; for (S1) and 1.137f; for (S2)].

The data for (M_ = 1.5, m®/m# = 0.5) in Sec. 2.5 are based on the (M2; S2) system,
those for (M_ = 3, m® /m# = 0.5) are based on the (M3; S2) system, and those for m® /mA4 =
0.25 are based on the (M4; S2) system. The (M1) and (S1) systems are used for -accuracy
test. The computing time for one iteration [the steps (i)-(iv) in Sec. 2.2.A] in a parallel
computation using ten CPU’s on a VPP800 computer (see the last paragraph of Sec. 2.7)
is as follows: 9 sec for (M1; S2) system; 46 sec for (M2; S2) system; 99 sec for (M3; S2)
system; and 142 sec for (M4; S2) system.

2.6.B Criterion for convergence

In order to save the number of iterations, we use the following initial distributions ﬁ’i‘;,(co). For
x2 = 0.5, we first compute the corresponding numerical solution of the model Boltzmann
equation proposed by Garzé et al.5? by a finite-difference method and use the solution as
FA‘;;,(CO). Then we carry out the iteration process described in Sec. 2.4.A to obtain the desired
solution for xZ = 0.5. For other values of xZ, we use E‘;,(CO) obtained by suitable modification
of the solution (of the Boltzmann equation) for xZ = 0.5.

In the actual computation, however, even after the profiles of the macroscopic variables
seem to have converged, the profiles move by a small but almost constant value in each
iteration. This is due to the fact that the Rankine-Hugoniot relation, Eq. (2.1), is not

satisfied exactly because of the computational error. Therefore, we set the following criterion

for the convergence. Let us denote by A(™(x;) the dimensionless number density n(X;)/n_
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Egim

let us denote by Sy, the z; coordinate at which A(™ (z;) takes the value (14 ny/n_)/2 [ie.,

of the total mixture corresponding to the solution at the mth step of iteration, and
n(at mth iteration) = (n- + n4)/2 at z; = Sp,,]. That is, z; = S, is the center of the shock

wave at the mth iteration. Now we introduce the shift of the center in 20 steps, i.e.,
(AS)zOl = S20l - 520(1_1), (l = ]., 2, ) (277)

Then, we examine the change of the profile of the number density relative to the center in

the 20 steps, i.e., we introduce the following quantity:

(Af)onr = max {Iﬁ(%l) @9 + (AS)a0) — A1) ()Y

at i =0, £5, £10... (Ji| <Np)}. (2.78)

Here, the values A% (2{" + (AS)40) are computed by means of interpolation. When the
condition (Af)sq < 107° is satisfied, we stop the iteration judging that the solution has
converged. Then, we regard the result of the last iteration as the desired steady solution.
The necessary iteration steps n,, the shift of the center (AS),, in the final 20 steps, and
the difference |(AS),, — (AS)n,—20| between the shift in the final 20 steps and that in the
preceding 20 steps in the cases of Figs. 2.1(b), 2.2(b), 2.3(b), and 2.4(b) are as follows:

n, = 280, (AS)n, =2.80 x 1073, |(AS)n, — (AS)n.-20] = 4.83 x 107° for Fig. 2.1(b);

*

A
n, = 320, (AS),, =7.34 x 107%, |(AS)n, — (AS)n, 20| = 1.90 x 107° for Fig. 2.2(b);

*

)
)
N, = 360, (AS)n, = 8.50 x 1073, |(AS),, — (AS)n,—20] = 7.36 x 107° for Fig. 2.3(b);
n, = 480, (AS),, = 2.70 x 1073, |(AS)n, — (AS)n. _20| = 1.45 x 107> for Fig. 2.4(b).

*

The initial distributions 13’;,(90) are arranged in such a way that the center of the shock
at the final stage of iteration stays in the vicinity of the origin of the original coordinate
system. As a result, if we denote by z; = 5,,, the position of the center at the final stage,

|S. | is less than 0.6 for all the cases in Sec. 2.5.

*

2.6.C Accuracy of computation

The accuracy of computation can be estimated by comparing the macroscopic quantities
for the different lattice systems. Let o(M,S) represent n, v;, and T obtained by the use
of lattice systems (M, S) (M= M1, M2, and M3, and S=S1 and S2). We introduce the
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maximum difference of the two results based on two different lattice systems (M, S) and

(M', §') by

', _ lo(M',8) — o(M, S)|
DM, S} M,S) = ,nax, (n;gx (LS) , (2.79)

where |o(M',S") — o(M, S)|/0(M, S) is evaluated at about 2,000 uniformly distributed points
in the rearranged X; coordinate system (see the first sentence of Sec. 2.5) by means of
interpolation, and the maximum with respect to X is taken over these points. The values
of D for some test computations for m®/m4 = 0.5, d2 /d24 =1, and M_ = 1.5 or 2 are given

as follows.

8.09 x 1074,  (M_ =15, xZ =0.95),
L 1.97x 1073, (M_=2, x2=0.1),
D(MI,S2; M2,52) = { 1.23x 1073, (M_ =2, xZ=0.5),

6.57 x 1074, (M_ =2, x2=0.9),
578 x 1074,  (M_ =2, x% =0.95),

D(M1, S2; M3,S2) = 1.30 x 1073, (M_ =2, x2=0.5),
D(M2, S2; M3,S2) = 4.17 x 1074, (M- =2, x2=0.5),
D(M2,51; M2,52) = 1.46 x 1073, (M_ =2, xB=0.5).

Another measure of accuracy is given by the conservation laws. That is, by integrating
Eq. (2.5) (@ = A, B), ¥4 plm*& x Eq. (2.5)], and },_, g[m*&} x Eq. (2:5)] over the
whole space of & respectively and by taking into account the fact that the gas is in the

equilibrium distribution (2.10) (for all &) at upstream infinity, we have

Jar =/£1F°‘d£ =n2U_, ' (2.80a)
Jp = / > megFede =kn_T_ +p_U?, (2.80b)
a=A,B
/ > me&EFedE = —U_(5kn T +p_ U2) (2.80c)
a=A,B
where p_ = ) _ A5 MoNZ. Here, Jg, Jp, and Jg are, respectively, the flux in the X;

direction of the particle of the a-component, that of the X; component of the total momen-
tum, and that of the total energy. The J5;, Jp, and Jg do not depend on X; theoretically.
But, in the actual computation, the values of these fluxes deviate slightly from the RHS’s
of Eq. (2.80) and vary with X; because of the computational error. This deviation provides

a measure of accuracy of the computation. Let us denote by (J§ )., (Jp)., and (Jg). the

86



fluxes J§;, Jp, and Jg obtained by the numerical computation and by (J§)e, (Jp)e, and
(JE). their exact values [i.e., RHS’s of Eq. (2.80)]. Then, we introduce the following relative

difference:

E=_max  (max|[()e~ (N)l/()el), (281)

J=J%;,JpJE X
where the maximum with respect to X; is taken over the original lattice points. For the
results shown in Sec. 2.5, we give the estimate of E here. For m®/m# = 0.5 and dZ /d4 =1

(cf. Figs. 2.1, 2.2, 2.12, and 2.13),

455 x 1074, (M- =15, x2=0.1),

1.77x 1074, (M- =15, x2=0.5, 0.9, 0.95),
2.12x 1074, (M- =3, xE=0.1,0.5),

3.51 x 1074, (M_ =3, x=0.9, 0.95),

and for m®/m#4 = 0.25 and dB /d4 =1 (cf. Figs. 2.3, 2.4, 2.14, and 2.15),
571x 1074, (M- =15, x2=0.1, 0.5),
E<

E<

3.72x 1074, (M- =15, xB =09, 0.95),
319x 1074,  (M_=2, x®=0.1, 0.5, 0.9, 0.95).

Next, we give some information about the values of the velocity distribution functions at
(or near) the edges of the range of computation in X; and & for the results given in Sec. 2.5.
For convenience, we use the nondimensional form in the following discussions. Let ﬁ’f((l, G)
and ﬁ’_,‘_"((l, ¢r) denote the upstream Maxwellian [Eq. (2.21) for all ;] and the downstream
one [Eq. (2.22) for all (1], respectively. Then, the maxima of F** and 13’_"_' are, respectively,
(F)max = 7210 2x2 and (F)mex = 7 %/2(m)%/2x (n% /n®)(T4/T-)"/2. At the
edge of the computational range in (i, ie., at §§ = l(_N"‘) and (1(N”) (cf. Table 2.5), the
value of F'® are

A4 1.95 x 10712,  (M_ =15, 3, m®/m#% = 0.5)

A A 3 3 Iy ’
F2J(F )max < { 435x 107 (M. =15,2, mB/m* = 0.25),
- 1.62 x 1078,  (M_ =15, m?/m% = 0.5, 0.25),
FBI(FB)pa <{ 110x 1078, (M_ =3, mP/m4 =0.5),

8.08x 1077, (M- =2, m®/m4=0.25).

It is noted that the range in ¢, is not truncated in our computation. On the other hand, the
computational range in z; is |z;| < D (= 17.7245f;) (cf. Sec. 2.6.A). Let us introduce the

following maximum difference between Fe and ﬁ‘f_‘ and that between F'® and F'®:

[AFs = max [P - F2l/ (P (282)
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For —D < z; < —14.5f;5,

A 3.31x107%, (M. =1.5,3, m®/m4 = 0.5),
[AF?]- 2.60 x 107, (M- = 1.5, mB/m# = 0.25),
2.69 x 107%,  (M_ =2, mP/m4 = 0.25),

and for 14.5f; < z; < D,

(AR, < 1.88 x 1073,  (M_ = 1.5, 3, m¥/m* = 0.5),
2.67x 103, (M_ =15, 2, mB/mA = 0.25),

where z; is the original coordinate system.

Since the size of the present computation is quite large, we cannot perform the accuracy
test in a more systematic way. However, concerning the accuracy of the collision integrals,
we can obtain a measure of accuracy by computing the gain and loss terms numerically for
Maxwellian distributions and comparing the result with the exact values. If we insert F®
and F¢ in the RHS of Eq. (2.16), each collision term G#2[Ff, F¢] — o[F2]F vanishes, and

therefore, we have
GPelFL, Fg] = o[FAFE = F(G, ). (2:83)

The middle term P[FZ]F® can be calculated exactly and gives the exact FA*((y, ().

the other hand, the numerical values corresponding to the first and second terms, say Gi ik
and ﬁf:?kFi]k [P, = F2(¢ ¢9, ¢2®)] | can be computed from Egs. (2.50a) and (2.50b) and
Eq. (2.54a) with Fa(") ijk We compare G2 4% and Ai?kF:l:]k with F5%(¢1,¢) to get an
estimate of the accuracy. In this check if we compare the values only for a fixed (,—lattice
point ¢(*® we need to construct the numerical kernels Qﬂ 0% and AB2% only for the ¢oe)
so that a more variety of the lattice systems for the ngr—pla,ne can be checked. We consider
the lattice systems (M5), (M6), (M7), and (M8) in Table 2.5 in addition to (M1), (M2),
(M3), and (M4). The bar on (M5), etc., has the same meaning as in (M1) and (M2). Let us

introduce the following maximum difference relative to the maximum value of F5%:

Gl = max G52, — Fi (¢, o)) /nta,x Fhe (2.84a)
1
L4 = max |05, P2, — FE* (7, )1/ max FE". (2.84b)

In the case of dB/d4A =1 and x& = 0.1, 0.5, 0.9, and 0.95, the G* and L2 for ¢ = ¢
[or (& ) = Cr(l)] (cf. Table 2.5) are estimated as follows:

Gl* <323x107%,  LA*<461x107%  [for (MI)],
Gl* <398x107%, 149°<6.31x107%  [for (M2), (M5), and (M8)],
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for M_ = 1.5 and m® /mA = 0.5;

Gl* <3.93%x107%, LA*<528x107%,  [for (M3)],

Gl <1.33x10™%, LA <281x107%,  [for (M7)],
for M_ = 3 and m®? /m# = 0.5; and
Gl* <3.93%x107%, LA*<5.28x107%  [for (M4) and (M8)],

for M_ = 1.5 and 2 and m®/m# = 0.25.

2.7 Concluding remarks

In this chapter, we have investigated the structure of a normal shock wave for a binary gas
mixture on the basis of the Boltzmann equation for hard-sphere molecules. Extending the
numerical kernel method developed in Ref. 76 for a single component gas to the case of a
binary mixture, we have constructed an accurate method to compute the collision integrals
(Secs. 2.4.B and 2.4.C). Then, we have analyzed the problem by an accurate finite-difference
method in which the numerical kernel method is incorporated (Sec. 2.4.A). As a result,
the transition from the upstream to the downstream state was clarified for the velocity
distribution functions as well as for the macroscopic variables (Sec. 2.5). The accuracy of
the computation was also examined carefully (Sec. 2.6.C). The numerical kernels constructed
in this chapter can be applied to any problems in which the velocity distribution functions
are of the form of Eq. (2.28).

In the present method, the collision integrals are approximated by using the values of
the velocity distribution functions at the discrete lattice points in the molecular velocity
space. One of the important mathematical questions relevant to this type of method is
whether or not the approximated collision integrals converge to the real collision integrals
of the Boltzmann equation when the lattice interval in the molecular velocity space tends
to zero. For a single-component gas, a positive answer was given recently for some different
types of discretization of the collision integral.!2=193 In all of them, the discretization is
made in such a way that the mass, momentum, and energy are conserved exactly in each
collision. In this point, these conservative methods (or discrete velocity models) are different

from the methods of Ref. 76 and the present study, in which the conservation laws are not
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satisfied artificially but are satisfied approximately within the error of computation. In the
latter methods, therefore, the conservation laws can be used as a measure of accuracy (see
Sec. 2.6.C).

The present computation was carried out on Fujitsu VPP800/63 computer at the Data
Processing Center, Kyoto University, Fujitsu VPP800/12 computer at the Institute of Space
and Astronautical Science, and VT-Alpha 533 and 600 Workstations at the Section of Dy-
namics in Aeronautics and Astronautics, Department of Aeronautics and Astronautics, Ky-

oto University.
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Chapter 3

Heat transfer in a binary gas mixture between
two parallel plates

3.1 Introduction

The problem of heat transfer and temperatufe distribution in a rarefied gas between two
parallel plates with different temperatures is one of the classical problems in rarefied gas
dynamics, and a large number of theoretical and experimental works have been devoted to
this problem, especially in the case of single-coniponent gases (see, e.g., Refs. 105-107,85
and the references cited in Refs. 107,85). Early theoretical works covering a wide range
of the Knudsen number were mainly based upon either moment and variational methods,
containing arbitrary assumptions on the form of the velocity distribution function, or nu-

1.197 reported

merical analysis using niodel Boltzmann equations. Only in 1989, Ohwada et a
an accurate numerical solution of the linearized Boltzmann equation for a hard-sphere gas
in the case of a small temperature difference between the plates. Their solution method
was a finite-difference method, in which the collision integral was computed efficiently as
well as accurately by the numerical kernel method developed by Sone et al.”” Subsequently,
Ohwada extended the method to the collision integral of the full Boltzmann equation in his
shock-struc_ture analysis™ and then applied it to the heat-transfer problem for a nonsmall
temperature difference between the plates.3%88

As for the case of binary gas mixtures, the accumulation of the results is not satisfactory,
though some analyses (by means of a moment method) as well as experiments were per-
formed in 1970%5.10810° In this chapter, therefore, we investigate the heat-transfer problem
for a binary mixture of hard-sphere gases on the basis of the full Boltzmann equation for a
large temperature difference, aiming to provide an accurate numerical solution that can be
regarded as a standard for the problem. In Chap. 2, we have extended Ohwada’s numerical

kernel method for the nonlinear collision integral to the case of binary mixtures in the study

of shock wave structure.”® The same method is employed in the present analysis.
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3.2 Problem

Consider a rarefied mixture of two gases, say components A and B, in the domain 0 < X; <
D between two parallel plane walls at rest, where X; is a rectangular coordinate system in
space. Let the wall at X; = 0 be kept at temperature Ty and that at X; = D at temperature
Tr;. Investigate the steady behavior of the mixture (temperature distribution, heat flow,
etc.) on the basis of kiﬁetic theory under the following assumptions:

(i) The molecules of each component are hard spheres, and the interaction between two
gaseous molecules is the complete elastic collision.

(ii) The molecules of each component arbe reflected according to the diffuse reflection condition

on the walls.

3.3 Basic equation

Let § = ({1, &2, &3) be the molecular velocity and F%(X3, §) the velocity distribution function
of the molecules of a-component (@ = A, B). The Boltzmann equation in the present
problem is written as

aFa _ ﬂa ﬂ o _ ’
€1_a_)(——ﬁ§BJ (F 7F )7 (a‘—A:B)1 (31)

752(5,9) = (P12 [1H(€)9(€) - F€)s(€)e- Vidode,, (32

Bo Ba
ghe—¢ 4 %;(e.V)e, ghe = ¢, - %B—(e-V)e, V=¢ ¢ (3.3)
de = (d2 +db)/2,  pP* =2m*mf/(m* +mP). (3.4)

Here, m* and d2, are the mass and diameter of a molecule of a-component; £, is the integra-
tion variable for &, e is a unit vector, d§, = d€.1d€,2d€.3, and dS) is the solid-angle element |
around e; the domain of integration is the whole space of £, and all directions of e.

The boundary condition on the walls (X; = 0 and D) is expressed as follows: For £-n > 0,

P, =t (7)o ()

3.5
2rm® ( )

fo 1/2 o

92



where
T, =T, m=(1,0,0), atX;=0,
(3.6)
and Ty=Ty, n=(-1,0,0), atX, =D,
and k is the Boltzmann constant.

If we rewrite the equation and boundary condition in a dimensionless form, we find that
the problem is characterized by the following five parameters: m®/m#, d2/d4, Ti;/T;,
nZ /nd  and Kn. Here, nZ, is the average molecular number density of a~component in the
domain 0 < X; < D, and Kn= l/D is the Knudsen number, where Iy = [v/27(d4)?n,,] ! is

the mean free path of the molecules of A—component when it is in the equilibrium state at

rest with number density n,, = n4, + nZ.

3.4 Numerical analysis

We first note that in the present problem we can seek the solution in the form F*(X3,£&1,7),
where n = (€2 + £€2)*/2. We analyze Egs. (3.1)-(3.6) numerically by means of an iterative
finite-difference method. The key issue in the analysis is an accurate and efficient compu-
tation of the complicated collision integral J?¢ using the discrete values F% iz of F* at the
grid points (Xl(i), h (j),n"‘(’)) in the (Xi,&,n) space. For this purpose, we expand F* at
X = Xl(i) as

F(x®,m) = exp (- 1) )Zﬁ”wa(&l)u °P),

& = &(2kTr/m®)~ 1/2, 7* = n(2kTy/m*) /2,

(3.7)

where \If;'(ff') is a localized basis function that is sectionally quadratic, takes unity at £* =

¢29)(2k Ty /m®)=1/2, and is nonzero only in its neighborhood; L;(y) is the Laguerre polynomial

a(i)

in y of order I. The coefficients a;; "’ are determined in such a way that Eq. (3.7) coincides

with at the grid point (£, @) n*®). If we substitute Eq. (3.7) into the collision integral

zgl
JBe(FA F?), it is expressed as a linear combination of the collision integrals for the functions

of the form (7%)>™ W2, The latter collision integrals are independent of F%, and therefore can

15l
be computed beforehand (numerical collision kernel). Once the numerical kernel is prepared,
the computation of the collision integral in each iteration step is reduced to simple products
and sums of matrices. In this way, high efficiency in the computation of the collision integral

is attained (Ref. 76 and Chap. 2).
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3.5 Result of analysis

The computation was carried out for Ty /Ty = 2, (mB/mA, dB /d4) = (0.25,0.5) and (0.5, 1),
nZ /nd = 0.1, 1, and 10, and Kn= 0.1, 1, and 10. To show the result, we denote by n®
the molecular number density of a—component (o = A, B) and by T and ¢; = (g1, 0, 0) the
temperature and the heat flow of the total mixture, respectively [i.e., n®=[ F*d¢, (3knT,
2q1)=/ (1, &)|€|>(mAF4 + mBFEB)d¢, where n = n® +n®? and d€é=d& d&d¢&;). Note that the
flow velocity of each component vanishes identically and the heat flow ¢; is independent of
X in the present problem because of the conservation of mass and that of energy.

The values of ¢; in all the cases are shown in Table 3.1, where py = kn,, 1T is a reference
pressure. The numerical result of ¢; varies slightly with X; because of numerical error. Its
average, Say @140, over 0 < X; < D is shown as ¢; in the table. The maximum variation
of g1 over 0 < X; < D relative t0 qiap: A = max|¢1 — Giav|/|¢100], Which gives a good
measure of accuracy of the computation, is shown in percentage in Table 3.1. Figures 3.1-
3.3 show the profiles of the number densities n* and n® and of the temperature T for the
case of mP/m# = 0.5, dB/dA = 1: Fig. 3.1 is for n2 /n2 = 0.1, Fig. 3.2 for nZ /n4 =1,
and Fig. 3.3 for n2 /n4 = 10. On the other hand, the corresponding figures for the case
of mP/mA = 0.25, d2 /d4 = 0.5 are shown in Figs. 3.4-3.6: Fig. 3.4 is for nB /n4 = 0.1,
Fig. 3.5 for nZ /n4 =1, and Fig. 3.6 for n2 /n4 = 10. The smaller molecules (the molecules

of B—component) have a larger mean free path. Since Kn is based on the average number

Table 3.1: Heat flow g; = (¢1, 0, 0) of the total mixture for Ty;/T; = 2. Here, py = kng, 11
is the reference pressure.

mP/m”A =0.5,d5 /dA =1 m® /mA = 0.25, dZ /dZ = 0.5

Ng/Maw_Kn  a1/[poQkTy/m") "] A (%)  q/[pkT/m") 7] A (%)
01 01 —0.184 0.45 —0.207 0.72
01 1 —0.509 0.19 —0.547 0.19
0.1 10 ~0.656 0.049 —0.693 0.047
1 01 ~0.209 0.34 —0.370 0.67
1 1 ~0.589 0.15 - —~0.814 0.13
110 ~0.763 0.047 ~0.966 0.036
10 01 ~0.245 0.34 ~0.659 0.19
10 1 —0.677 0.10 ~1.124 0.075
10 10 —0.871 0.038 —1.244 0.014
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X./D

Figure 3.1: Profiles of the number densities n4 and n® and of the temperature of the total
mixture 7" for mZ/m# = 0.5, d8 /d4 = 1, and nZ /n4 = 0.1. Here, — and --- indicate the
result by the finite-difference method, and e and o that by the DSMC method.
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Figure 3.2: Profiles of the number densities n* and n? and of the temperature of the total
mixture T for m®/m# = 0.5, d2 /d4 =1, and nB /n2 = 1. See the caption of Fig. 3.1.
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Figure 3.3: Profiles of the number densities n* and n? and of the temperature of the total
mixture T for m®/m4 = 0.5, dB /d4 =1, and nZ /nA = 10. See the caption of Fig. 3.1.
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1.4+ Kn=0.1

Figure 3.4: Profiles of the number densities n4 and n? and of the temperature of the total
mixture T for m® /m#4 = 0.25, d2 /d2 = 0.5, and nB /n2 = 0.1. See the caption of Fig. 3.1.
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X,/D

Figure 3.5: Profiles of the number densities n* and n® and of the temperature of the total
mixture T for m®/m# = 0.25, dZ /d4 = 0.5, and nZ /nA = 1. See the caption of Fig. 3.1.
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Figure 3.6: Profiles of the number densities n* and n? and of the temperature of the total
mixture T' for m? /m4 = 0.25, dB /dA = 0.5, and nZ /n = 10. See the caption of Fig. 3.1.
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density of the total mixture and on the diameter of the larger molecules (the molecules of
A-component), the effective Knudsen number at the same Kn is larger for larger values
of nZ /n?. Therefore, the temperature jump on the walls at the same Kn is larger for
larger n? /nA . In Figs. 3.1-3.6, the corresponding result obtained by the direct simulation
Monte Carlo (DSMC) method® is also shown for comparison. The DSMC result shows good
agreement with the finite-difference result.

The velocity distribution functions F'® at two points near the walls in the cases cor-
responding to Figs. 3.4-3.6 are shown in Figs. 3.7-3.9, respectively. That is, F* at
n(2kT;/m*)~1/2 = 0.15 and 1.35 are shown as functions of &. In the case of free-molecular
gas (Kn = 00), the velocity distribution functions for any X; are discontinuous at & = 0.
For large Kn (Kn = 10), though the discontinuity vanishes because of the molecular collision,
the gradient near &; = 0 is still very steep. The change around &; = 0 becomes milder as the
Knudsen number decreases. The corresponding result by the DSMC method is also shown
in Figs. 3.7-3.9.

The data about grid systems are summarized here. Let us put ¢j = (2kT1/mA)1/2.
We divided the interval 0 < X; < D into 100 uniform sections for Kn= 1 and 10 and
into 100 nonuniform sections (minimum size 4 X 107D at X; = 0 and D; maximum size
0.0294D at X; = D/2) for Kn= 0.1. We used uniform grids for &: For Kn= 0.1 and 1,
the grid size is 0.15¢# and the range is restricted to —6cf < & < 6¢f (m®/m4 = 0.5)
or —8.7¢f < & < 8.7¢} (mP/m# = 0.25) for A~component and to —8.4cf < & < 8.4cf
(m®?/m# = 0.5) or —12cf < & < 12¢f (mP/m# = 0.25) for B-component; for Kn= 10, the
grid size is 0.106¢4 and the range is restricted to —5.73¢cf < & < 4.45¢f (mP /m4 = 0.5) or
—7.85¢f < & < 6.58¢f (mP/m# = 0.25) for A-component and to —7.85¢f < & < 6.58¢f
(mP/m* = 0.5) or —10.82¢f < & < 9.55¢f (mP/m# = 0.25) for B-component. For 7, we
used nonuniform 14 grid points defined by (2kT7/m*)Y/2, /g (a = A, B) for Kn= 0.1 and 1
and (2kTr/m®)2/yx/2 for Kn= 10, where yj, (k =1, ..., 14) are the zeros of the Laguerre
polynomial L4(y) (Chap. 2).

Finally, we give information about the DSMC computational system. We used 50
(Kn = 10) or 100 (Kn = 0.1, 1) uniform cells in the interval 0 < X; < D. Let
N be the average number of simulation particles per cell for a—component. Then,

(N4, NB)=(1000, 100) for nB /n4 = 0.1, (250, 250) for nZ /nd = 1, and (100, 1000) for

av
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Figure 3.7: Velocity distribution functions F4 and FP at two points near the walls for
m®B/mA = 0.25, dB /dA = 0.5, and n8 /nZ, = 0.1 (cf. Fig. 3.4). (a) Kn = 0.1, (b) Kn =1,
(c) Kn = 10. Here, — and --- indicate the result by the finite-difference method, and e and
o that by the DSMC method. The F* at X;/D = 0.095 and 0.905 are shown in (a) and (b),

while F® at X;/D = 0.09 and 0.91 are shown in (c).
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Kn = 10. See the caption of Fig. 3.7.
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Figure 3.9: Velocity distribution functions F4 and FB at two points near the walls for
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Figure 3.10: DSMC computations with two different numbers of simulation particles for
mP /mA = 0.25, dZ /dA = 0.5, Kn = 0.1, and n2 /n2 = 10. (a) Number density n4 and
temperature T (cf. Fig. 3.6). (b) Velocity distribution function F'4 at X;/D = 0.905 (cf.
Fig. 3.9). Here, — indicates the finite-difference result, o the DSMC result with (N4, NB) =

(25, 250), and e that with (N4, NB) = (100, 1000).
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nB /nA =10 [(N4, N¥)=(2000, 200) for nB /n2 = 0.1 and (200, 2000) for nZ /n2 =10 in
the case of mZ/m# = 0.25, d2 /d2 = 0.5, and Kn = 10]. The average of 2 x 10* samples
taken at each 50 time steps is shown in Figs. 3.1-3.9. For small or large n2 /nZ | the total
number of simulation particles increases because sufficient particles are necessary for the
component with smaller number density (the same weight is used for both components in
the present computation). We also carried out the DSMC computation with fewer particles,
an example of which is shown in Fig. 3.10. That is, the result with (N4, NB)=(25, 250) of
the case mZ/m4 = 0.25, d2 /dA = 0.5, Kn = 0.1, and nZ /n2 = 10 is shown in the figure,
together with the result with (N4, NB)=(100, 1000). Although it is smooth, the profile of
n? with (N4, NB)=(25, 250) deviates recognizably from that by the finite-difference method
[Fig. 3.10(a)].
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Appendixes

A Derivation of Egs. (2.53) and (2.54)

The Christoffel-Darboux formula® for a system of orthonormal polynomials gives the fol-

lowing relation for the Laguerre polynomials:
ZLS )Ls(y) = (ca-1,5-1/crm)La(@)La-1(y) — Lu(y)La-1(z)]- (A1)
s=0

Noting that Lg(z) = cgg Hf__l(z — 1), where y; are the zeros of Ly (z), we put y = y; in

Eq. (Al). Then, using the continuity of polynomials, we have

Il @-w= : ZLI w)li(z), (k=1, .., H), (A2)

ca-1,0-1Lm-1(yk)

for all z > 0.
Now let us consider Eq. (2.44) with H* = H and suppose that {; @) — W [or
me((2®)2 = y,] [Eq. (2.52)]. For simplicity, let us put

~ oln me 2 o
e =g, B “(’),Cr)exp( & ) = f2(@).

aC() Uk
o exp (T < B0 e (%) = £

Then, Eq. (2.44) is written as

Z a’z]l (A3)

On the other hand, from the choice of a,”(l ™) [see Eq. (2.47) and the sentences below it], f(z)

is expressed as

Z ijk H o b . (A4)

k=1 s=1 (k) Ik T Us
By equating the RHS’s of Eqgs. (A3) and (A4) and using Eq. (A2), we obtain

H
Z aZ(ln) ) = Z il;'k
k=1

1
ca-1,8-1L8-1(Yr) Hf:1 (#k) (Y& — ¥s)

ZL yk)Ls(z). (A5)
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If we integrate Eq. (A5) multiplied by exp(—z)Ln,(z) with respect to = from 0 to infin-

ity, we have, from the orthogonality relation (2.46), the following expression of a,](:l), ie.,

Egs. (2.53a) and (2.53b):
a('n,) fa Lm(yk)
Qijm ijk . (A6)
_ d ; ? CH—I,H—lLH—l(yk) Hf=1 (#k) (yk - 'ys)
By the use of Eq. (2.53a), Eq. (A3) is written as

Z (Zwk%é ) Li(a). (A7)

=0 k=1

Using the expression L;(z) = Ein—() cmz™ and changing the order of summations, we obtain

fi(z) = Z (ZFZ,E”) i: szwuc) ™. (A8)

m=0 k=1 l=m
The comparison of Eq. (A8) with Eq. (2.48) gives
H  H-l
AZ(:L) Z Ff;/(cn) Z Crnl Wik, (A9)
k=1 I=m

which is equivalent to Eqgs. (2.54a) and (2.54b).

B Integration of Eq. (2.66b)

Let us introduce the following integral:

. 00 oo v (k)
Ok (zy, 11, 2,0,€) =/ / JLU (Jy; 2o, 1) (VB J(F))2e exp( ( )’ ) dw'dw",
| (B1)
where

1 (LL’O <t< 1171),

U(t; @0, %1) = { 0 (otherwise). (B2)

Then, @’;a(z, 8, €) in Eq. (2.66b) is expressed by a linear combination of ©% (xo, 21, 2,0, &), (I =

0,1,2). For example, ©F  is expressed as follows:
OF (z,8,€) = [-6F2(0,2h, z,0,€) + 2nOF(0,2h, 2, 0,€)] /B2 (B3)

Therefore, the calculation of Eq. (2.66b) is reduced to that of Eq. (B1). The integration of

Eq. (B1) can be carried out analytically and gives the following expression of Ok
Ok2 (2o, 21, 2,6, €) A%
Ok (2o, 21,2,0,8) | = B* Ykl (B4)
Ok (x4, 21, 2, 0, €) Y;’“O
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where

o 1 (HE S D) (1 e G e
B 0 255 (1) 0 1 G cosE
0

et —-:?—2-
(m ) 0 cos 8 0 0 1
1 2vVmbsPe . f (802 2)°
x| 0 Vb mhohe = , (B5)
0 0 mp
8% = (P — )/ (m” + m®), (B6)
~ a a . -
Yc-zkl - ZO (’I‘) Ja—r X q§r+l’ (l =0,1, 2)7 (B7)
qf = E,(v mPZy) — Es(v ™h Zy), (BS)
Z; = z; cot 6 — () g oba_2_ ;=0,1).
Z; €O ¢ cos € ot (t=0,1) (B9)
Here, (J) = 1; E,(z) is defined by
Ey(z) = / #* exp(—t2/2)dt, (B10)
0
and has the following recursion formula:
Ey(z) = —z* texp(—2?/2) + (s — 1) E;_o(z),
Eo(z) = /n/2 erf(z/v2),  Ei(z)=1-—exp(-32°/2),
where
erf(z) = 2 /z exp(—t°)dt (B11)
VT Jo ’
is the error function; and g, is defined by
Gs = / %% exp(—t2/2)dt, (B12)

namely,
gs=(2s—-1)(25s—3)---5-3-1 go, Go = V2r.

When 8 = o, ©¥ in Eq. (B1) does not depend on 2z because both of J; and JE) are
independent of z [cf. Egs. (2.64a) and (2.64b)]. In this case, Eqgs. (B4)-(B9) are reduced to

(:)22 (x07 Iy, 07 g) . 3:/;1102
é’gl(a:o,xl,é’, E) = Bk Y;kl s (B13)

(:)’;O(:ro,xl,ﬂ, E) ﬁko

the following:

109



. 1 s 0 0 1 2vViet® cose  me(GR™ cose)?
Bf = 5 0 sin 8 0 0 [“‘ma man(k) COSE ’ (B14)
——1 ~
0 0 me

a

~ a\ . )
Yakl = Z (r) 9a—r X Q§r+la (=0,1,2), (B15)

r=0

@* = E,(Vme(z; cot 8 — ¥ cos€)) — E,(Vine(xocot 8 — (**) cos€)).  (B16)

C Integration of Eq. (2.66a)

Let us consider the following integral:

kzm(:co,xl,yo,%,ﬂ € = smﬂ/ zK{U(Kl;mmxl)(,/maKr(k))zb

0

( (Ve k)2
xXexp | ———m——

9 ) é’;m(ymyhzae’ E)dz (Cl)

Then, T* ,(6,¢) in Eq. (2.66a) is expressed by a linear combination of T¥™ (I,m = 0,1, 2).

pqab(

Therefore, the computation of T'f,, is reduced to that of T¥m_ The T'™ can be expressed

in the following form.
stz X:g1 Xkao

Fk22 Fk21 PkZO b b
k22 k21 k20
X X ab X ab

Fku ngl ];’2%0 = A Xk12 XK1 kw0 |0 (C2)
VY O 1
¢ X Xab Xa.b
where
cos? §
. . =L 0
~ 1 me (¢ ) gin €)2 sin3 6
k_ 8
A= Gy o (‘ 2 O
0 0 =5
=3Vt ® cose  3me (P cose)?  —(me)32(¢r®) cos )
x| 0 Ve —omet® eose  (me)¥2(PW cose)? |, (C3)
0 0 he —(m®)3/2¢®) cos e

b
kim _ b Ve ®® gin g)2r x pkm. 1=0,1,2,3; m=0,1,2), C4
ab r r a,2(b 7")+l

=l

Ve Zy ~
pay = / z° exp(—2°/2)0™ (yo, %1, 2, 0, €)dz, (C5)
me Zo
_ me 2 ak B
ﬂﬁa Sin0 ( /m_a C’r Cos 6) ’ (CG)
Z; = z;tan 0 + (*%®) cose, (i =0,1). (C7)
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The integration with respect to zZ in Eq. (C5) is carried out numerically. Then, the double
integral with respect to € and # in Eq. (2.65) is computed nuxherically.

When 8 = a, Eq. (C1) is reduced to the following form, since ©¥™ is independent of z.

f‘]ézm(wﬂa Z1,Y0,Y1, 07 E) = f‘llfl(xO’ Iy, 9) E) X ésm(ym y17 07 E)a (CS)
where
» e} A/ ho (k)\2
¥ (29, 11,0,8) = sine/ KLU (Ky; 2o, 1) (Ve K®)® exp (_i_m_;il_) dz. (C9)
0

We can carry out this integration analytically to obtain the following expression of f’gl:

Fk2 - Xps

:E‘b (.’L'(),.’L'l,e,f) - X]cZ
I (20,21,0,8) | = AF X,’;ﬂ , (C10)

Ffo(x(b T1s 07 E) XZ:O

b
S b - . nor o~
=3 (D) (AR g e (=012, (C1)
r=0

Pk = B,(VeZ,) — By(Vi®Zo), (C12)
Z; = x;tand + Cﬁ‘(k) COSE, (t=0,1). ‘ (C13)

Here, A is given by Eq. (C3) with 1% = /m®. With this expression of T}, we carry out the

double integration with respect to € and € in Eq. (2.65) numerically.
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