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Preface

In aerospace engineering and in vacuum engineering connected with various advanced tech

nologies, the understanding of the behavior of low-density gas flows is one of the important

research subjects. On the other hand, in connection with the recent remarkable progress in

micromechanical engineering, the control as well as the understanding of gas flows in mi

croscales becomes increasingly important. The common feature of these two types ·of flow

is the fact that the molecular mean free path is not negligibly small compared with the

characteristic size of the systems, so that the states of the gas deviate from local equilibrium

states. Nonequilibrium states also arise in the gas flows with evaporation and condensa

tion which are commonly encountered in various fields of engineering and science. To be

more specific, even when the molecular mean free path is negligibly small, the state of the

gas is nonequilibrium in the vicinty of the boundary (or interface) on which evaporation or

condensation is taking place.

For these nonequilibrium gas flows, the classical fluid or gas dynamics is not applicable,

and a microscopic approach based on kinetic theory of gases is required. Such an approach

is called the molecular gas dynamics or rarefied gas dynamics. Since the fundamental equa

tion of the molecular gas dynamics, which is called the Boltzmann equation, is a nonlinear

integro-differential equation that is much more complicated than the equations of classical

fluid dynamics, its analysis is not an easy matter. Nevertheless, for single-component gases,

there is a rich accumulation of successful and useful results. For instance, a general the

ory to describe the behavior of slightly rarefied gas flows (Le., the gas flows in which the

molecular mean free path is relatively small) by the use of fluid-dynamic type systems has

been established by means of a systematic asymptotic analysis of the Boltzmann equation.

At the same time, the validity of the classical fluid dynamics was examined in the light

of this theory, and .as a result an essential defect contained in the fluid dynamics was re

vealed. Further, accurate numerical methods for solving the Boltzmann and related kinetic

equations have been developed, and various problems of fundamental importance have been

clarified for wide ranges of gas rarefaction. However, for multicomponent gaseous mixtures,

the accumulation of the results is much poorer because of more serious complexity of the
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Boltzmann equation intrinsic to this case.

In the present study, therefore, we consider binary gas mixtures in nonequilibrium states

and try to clarify the behavior of the mixture in some problems that appear to be of basic

as well as of practical importance by means of asymptotic and numerical analyses of the

Boltzmann equation. The content of the present thesis is as follows.

In Chap. 1, we consider flows of a vapor caused by evaporation and condensation on

its two parallel plane condensed phases in the situation that another gas which neither

evaporates nor condenses (a noncondensable gas) is contained in the vapor. Our main interest

here is to clarify the behavior of the mixture in the continuum limit with respect to the vapor

(i.e., the limit where the mean free path of the vapor molecules vanishes). By means of a

systematic asymptotic analysis of the Boltzmann equation, it is shown that there are two

types of the continuum limit depending on the amount of the noncondensable gas contained

in the system. One of the limits exhibits a striking feature that an infinitesimal amount of

the noncondensable gas gives a substantial effect on the vapor flows. These results are also

confirmed by a numerical analysis of the Boltzmann equation using the direct simulation

Monte Carlo (DSMC) method.

In Chap. 2, we investigate the structure of a shock wave for a binary mixture, which

is one of the most fundamental nonequilibrium flows. First, we develop an accurate finite

difference method for the Boltzmann equation for hard-sphere molecules, in which a precise

method for the computation of the complicated collision integrals is devised. Then, applying

the method, we clarify the transition from the upstream equilibrium state to the downstream

one through the shock wave in the level of the molecular velocity distribution function for a

wide range of concentrations of the two components.

Finally in Chap. 3, we consider another fundamental problem, the problem of heat trans

fer in a binary rarefied mixture between two parallel plates with different temperatures. We

analyze the problem numerically by using the finite-difference method developed in Chap. 2

and clarify the temperature and density distributions as well as the heat flow for typical

cases of small to large mean free path. The behavior of the molecular velocity distribution

function is also clarified.
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Chapter 1

Evaporation and condensation between two par
allel condensed phases in the presence of a non
condensable gas 1

1.1 Introduction

Vapor flows with evaporation and condensation on the boundary are one of the main subjects

in modern kinetic theory, and for single-component systems (composed of a pure vapor and its

own condensed phase) many successful results have been obtained. For instance, a new type

of gasdynamics (i.e., fluid-dynamic equations and their boundary conditions) describing such

flows around arbitrarily shaped boundaries in the continuum limit (the limit as the Knudsen

number tends to zero) has been established by means of a systematic asymptotic analysis of

the Boltzmann equation for small Knudsen numbers.2- 6 At the same time, its higher-order

correction due to the effect of gas rarefaction has also been obtained.2- 4 On the other hand,

various problems, such as an evaporating flow from a spherical or cylindrical condensed

phase7- 10 and a vapor flow past a spherical condensed phase,u have been investigated by

accurate numerical analyses for the entire range of the Knudsen number, and the detailed

structure of the vapor flows has been clarified.

Among these problems, the flow caused by evaporation and condensation between two

parallel plane condensed phases (say, the two-surface problem) would be one of the most fun

damental problems. In spite of the fact that the problem appears to be very simple, it con

tains some nontrivial features, such as the phenomenon of negative temperature gradient. 12,2

Therefore, it has been investigated by many authors,12,2,13-23 and, as a result, some interest

ing behavior has been clarified. For example, in the continuum limit, the flow field becomes

uniform except in the vanishingly thin Knudsen layers adjacent to the condensed phases,

irrespective of the strength of evaporation and condensation.5,21 Furthermore, this limiting

behavior cannot be described correctly by the linearized Boltzmann equation, however weak

the evaporation and condensation may be, and therefore a fully nonlinear treatment is always
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necessary.21

In practical situations, however, evaporation and condensation often take place in the

presence of another gas that neither evaporates nor condenses (say, a noncondensable gas).

In the two-surface problem, in view of the above-mentioned behavior in the continuum limit

for the (much simpler) single-component system, some nontrivial and essentially nonlinear

behavior is expected in this limit when a noncondensable gas is contained in the vapor flow.

The two-surfa~e problem in the presence of a noncondensable gas has also been investigated

in several papers.24- 31 However, only the case of weak evaporation and condensation has

been considered on the basis of linearized equations or weakly nonlinear approaches for

small Knudsen numbers. In addition, these works are mainly based on model Boltzmann

equations. In fact, various model equations have been employed because the models for a

mixture proposed so far are not so satisfactory as the BGK mode132- 34 for a single-component

gas. Consequently, the fully nonlinear behavior of the vapor and of the noncondensable gas,

in particular, that in the continuum limit, has not been understood correctly.

The aim of this chapter is to obtain a clear understanding of the point mentioned above.

That is, we investigate the two-surface problem of evaporation and condensation for a mix

ture of a vapor and a noncondensable gas in nonlinear situations on the basis of the Boltz

mann equation. After the formulation of the problem in Sec. 1.2, we carry out an asymptotic

analysis of the problem for small values of the Knudsen number (associated with vapor-vapor

collisions) in Sec. 1.3, where the fundamental features of the continuum limit (with respect

to the vapor) are clarified. Then, in Sec. 1.4, the problem is analyzed numerically by means

of the direct simulation Monte Carlo method35,36 for a wide range of the Knudsen number.

Here, special attention is focused on the behavior of the system for small Knudsen numbers

and in the continuum limit, and the basic features clarified by the asymptotic analysis are

confirmed numerically.

The two-surface problem of evaporation and condensation (for the pure vapor case) is a

physical example of the so-called slab problem which has also been an important subject of

mathematical study37-4o because it is the simplest boundary-value problem of the Boltzmann

equation. Notable progress has been achieved in this field, and the existence of a solution of

the (nonlinear) Boltzmann equation in a slab has been proved under some conditions.38,4o
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1.2 Formulation of problem and basic equation

1.2.A Problem and assumptions

We consider a vapor in the gap 0 < Xl < D between two parallel plane surfaces at rest of its

condensed phase, one located at Xl = 0 and kept at temperature T1 and the other located

at Xl = D (> 0) and kept at temperature Tn, where Xi is a space rectangular coordinate

system. We suppose that a noncondensable gas is also contained in the gap. We investigate

the steady flow of the vapor caused by evaporation and condensation and the behavior of

the noncondensable gas under the following assumptions.

(i) The behavior of the vapor and that of the noncondensable gas are described by the

Boltzmann equation for a binary mixture.

(ii) The molecules of the vapor and those of the noncondensable gas are hard (or rigid)

spheres, and all the collisions between the molecules are completely elastic.

(iii) The vapor molecules leaving each surface of the condensed phase are distributed

according to the corresponding part of the Maxwellian distribution describing the stationary

saturated state at the temperature of the surface (the complete condensation condition).

(iv) The noncondensable gas molecules are reflected diffusely on the surfaces of the con

densed phase.

1.2.B Basic equations

Let ~i (or e) be the molecular velocity, FA (Xl, e) the velocity distribution function of the

vapor molecules, and FB(Xl , e) that of the noncondensable gas molecules. The Boltzmann

equation in the present problem is written in the following form. 4l ,42

where, with a = A, Band f3 = A, B,

(a = A,B), (1.1)
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ef3o: = e + (p,f3O: / mO:) (a . V)a,

e~o: = e* - (p,f3O: /m(3 )(a . V)a,

V = e* -e,

df3o: = (dO: + d(3 )/2,

(1.3a)

(1.3b)

(1.3c)

(1.3d)

(1.3e)

Here, e* is the integration variable for e, a is a unit vector, de* = d~*ld~*2d~*3, and dO(a)

is the solid-angle element; m A and dA are the mass and the diameter of a vapor molecule,

and m B and dB are those of a noncondensable-gas molecule; the domain of integration with

respect to a is all the directions, and that with respect to e* is the whole space of e*.

The boundary conditions on the surfaces, the complete condensation condition for the

vapor and the diffuse reflection for the noncondensable gas, are, with a = A, B,

and

A_
aI - nI,

af = -(27rmB /KTI ) 1/2 r 6FB (O,e)de,
16 <0

(1.5a)

(1.5b)

A
all = nIl,

aA = (27rmB /KTIl )1/2 r 6FB (D,e)de,
16 >0

(1.7a)

(1.7b)

where nI and nIl are the saturation number density of the vapor molecules at temperature TI

and that at temperature TIl, respectively, K is the Boltzmann constant, and de = d6d6d6.

Physically, the saturation vapor pressure (or number density) is a function of the temperature

only, which depends on the substance of the vapor (the Clausius-Clapeyron equation43 ); thus,

nI and nIl are determined by TI and TIl, respectively. In the following, however, such a

relation is never used, and nI and nIl are assumed to be parameters independent of TI and

TIl.
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Now let us define the macroscopic variables of each component in terms of its velocity

distribution function as follows. With a = A and B,

nO/ = ! FO/de,

uO/ = (1/nO/)! 6 FO/de ,

pO/ = IwO/TO/ = (1/3)! mO/(~i - UO/bi1 )2FO/de,

(1.8a)

(1.8b)

(1.8c)

where nA, VA = (uA, 0, 0), pA, and T A are the molecular number density, the flow velocity,

the pressure, and the temperature of the vapor, and nB, VB = (uB, 0, 0), pB, and T B are

the corresponding quantities of the noncondensable gas.44 The domain of the integration

with respect to ein Eqs. (1.8a) - (1.8c) and in what follows is the whole space of eunless

otherwise stated. On the other hand, the molecular number density n, the density p, the

flow velocity V = (u, 0, 0), the pressure p, and the temperature T of the total mixture of the

vapor and the noncondensable gas are defined by

n = ! (FA + FB)de,

p= !(mAFA+mBFB)de,

u = (lip)! 6 (mAFA+ m BFB)de,

p = K,nT = (1/3)! (~i - Ubi1 )2(mAFA + mBFB)de.

(1.9a)

(1.9b)

(1.9c)

(1.9d)

Therefore, they are expressed in terms of the macroscopic variables of individual components

as follows.

u = (11 p)(mAnAuA + mBnBuB),

p = pA + mAnA(uA _ u)2/3 + pB + mBnB(uB _ u)2/3.

(1.l0a)

(1.l0b)

(1.10c)

(1.10d)

It should be noted that the solution to the boundary-value problem, Eqs. (1.1), (1.4),

and (1.6), is not unique. In order to obtain a unique solution, we have to specify a quantity

associated with the amount of the noncondensable gas. Here, we choose the average number
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density

(1.11)

as the parameter to be specified.

Integrating both sides of Eq. (1.1) with respect to eover its whole space, we obtain

(a = A,B), (1.12)

which expresses the mass conservation for each component. Since nBuB = 0 at Xl = 0 and

D because of the diffuse reflection condition for the noncondensable gas, we have

(0 ::; Xl ::; D). (1.13)

1.2.C Nondimensionalization

We now introduce the following nondimensional variables. With a = A and B,

Xl = XI/D, (i = Ei(2KTI/mAt l
/
2

,

PCi = F Ci (2KTI/mA)3/2/nI,

nCi = nCi/nI, flCi = UCi (2KTI/mA)-1/2,

fP = pci /PI, 1'ci = T Ci ITI,

n = n/nI, P= piPI,

fl = u(2KTI/mA)-1/2, p = plpI'

l' = T/TI,

(1.14a)

(1.14b)

(1.14c)

(1.14d)

(1.14e)

(1.14f)

(1.14g)

(1.15)(a = A,B),

where PI = mAnI and PI = KnITl are, respectively, the density and the pressure of the vapor

in the saturated equilibrium state at rest at temperature TI . In what follows, the symbol,"

is also used for (i.

The Boltzmann equation (1.1) is then nondimensionalized as follows.

(I ~~~ = ~[CACi jACi(pA, Pci) + CBCi jBCi(pB, Pci)],

where, with a = A, Band {3 = A, B,
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Cf3Q = C+ (p,f3Q/>,o.) (a .V)a,

C~Q = C* - (P,f3 0. / >.(3) (a .V)a,

V= C* - C,

CAA = 1, CBA = CAB = (1 + dB /dA)2/4, eBB = (dB /dA)2,

p,f3Q= 2>'0.>.f3 /(>'0. + >.(3), >.A = 1, >.B = mB/mA,

k = (V7f/2)Kn = (V7f/2)(R/D),

R= [V27l"(dA)2nIt l
.

(1.17a)

(1.17b)

(1.17c)

(1.17d)

(1.17e)

(1.17f)

(1.17g)

Here, C* is the integration variable for C, dC* = d(*ld(*2d(*3, the domain of integration with

respect to the unit vector a is all the directions, and that with respect to C* is its whole

space; R is the mean free path of the vapor molecules in the equilibrium state at rest with

temperature TI and molecular number density nI, and thus Kn is the Knudsen number based

on Rand D.

The nondimensional form of the boundary conditions at Xl = °and 1, corresponding to

Eqs. (1.4) - (1.7b), is written as, with a = A, B,

AA A
O'w = nw ,

a-~ = -2.;:i(mB/mA)I/2T;;I/2j (iaJi,BdC,
(jaj<O

where

Tw = 1, nw = 1, ai = (1,0,0), at Xl = 0,

Tw = TIl/T[, nw = nIl/nI, ai = (-1,0,0), at Xl = 1.

(1.19a)

(1.19b)

(1.20a)

(1.20b)

The nondimensional form of the relations between the macroscopic variables and the
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velocity distribution functions, Eqs. (1.8a) - (1.10d), is given by

(1.21a)

(1.21b)

(1.21c)

(1.21d)

(1.21e)

(1.21£)

Here and in what follows, the domain of integration with respect to " is its whole space

unless otherwise stated.

Equation (1.15) and boundary conditions (1.18) - (1.1gb) contain the following nondi

mensional parameters to be specified (cf. the second paragraph in Sec. 1.2.B).

k (or Kn),

In addition, we have to specify the parameter

(1.22)

(1.23)

corresponding to Eq. (1.11), to obtain a unique solution of the problem. On the other hand,

from Eqs. (1.12) and (1.13) , we have the following mass conservation relation,

(1.24)

Here, we mention other Knudsen numbers. Let us consider the equilibrium state at

rest with temperature T[ of the mixture of the vapor with number density n[ and the

noncondensable gas with number density n:v ' We denote by gBA the mean free path of the

vapor molecules with respect to their collisions with the noncondensable gas, by gAB that of

the noncondensable-gas molecules with respect to their collisions with the vapor, and by gBB

that of the noncondensable-gas molecules with respect to the collisions among themselves.
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Then, pBA, pAB, and pBB are given as

pBA = [1f(dAB)2n~vt1[mB /(mA + m BW/2,

pAB = [1f(dAB)2nrt1[mA/(mA + mBW/2,

pBB = [\1"21f(dB)2n~vt1.

Therefore, if we introduce the following Knudsen numbers:

KnBA ~ pBA / D, KnAB = pAB / D, KnBB = pBB / D,

they are expressed in terms of the parameters in Eqs. (1.22) and (1.23), namely,

n B dB mB/mA
KnBA = 4\1"2(~ )-1(1 +-t2( )1/2Kn,

nr dA 1 +mB/mA

KnAB = 4\1"2(1 + dB t2( 1 )1/2Kn
dA 1 +mB/mA '

nB dB
KnBB = (~)-1(_)-2Kn.

nr dA

(1.25a)

(1.25b)

(1.25c)

(1.26)

(1.27a)

(1.27b)

(1.27c)

1.3 Asymptotic analysis for small Knudsen numbers

In this section, we investigate the asymptotic behavior of the gases for small Knudsen num

bers (Kn or k ~ 1) with special interest in the continuum limit (Kn or k -+ 0).

1.3.A Hilbert expansion

AA ABTo begin with, we seek a moderately varying solution FH and FH of Eq. (1.15) [i.e.,

afr:,Blax1 = O(fr:,B)] by the simple power series expansion (Hilbert expansion), namely,

(a = A,B). (1.28)

If we substitute Eq. (1.28) for fra in Eqs. (1.21a)-(1.2lf), we obtain the corresponding power

series expansions of the macroscopic variables of each component and of the total mixture,

namely,

hH = hHO + hc;nk + hH2k2+ .. "

hH = hHO + hH1 k + hH2 k2 +. ",

(a = A, B), (1.29a)

(1.29b)

where hEr represents nEr , iJ/k, Tf}, etc., hH represents nH, UH, TH, etc., and the subscript H

indicates the quantities corresponding to the moderately varying solution frf}. Substituting

9



Eq. (1.28) into Eq. (1.15) and equating the coefficients of km (m = 0,1, ...), we obtain a

sequence of integral equations for Film' i.e., with a = A, B,

CAQJ~Aa(pA pa) + CBaJ~Ba(FB pa) - 0HO' HO HO' HO - ,
m ~

~[cAa jAa(FA . Fa ) + CBa jBa(FB Fa )] = ;- 8Film_l
L.J Hm-I' HI Hm-I' HI ':,1 8 '
1=0 Xl

(m = 1,2, ... ).

(1.30)

(1.31)

As is well known,4l,42 the solution of Eq. (1.30) is given by local Maxwellian distributions

(a = A,B), (1.32)

with the condition

(1.33)

On the other hand, Eq. (1.24) gives

(1.34)

which implies n~o =0 or u~o =0 (with n~o "¥= 0). We investigate these two cases separately.

1 The case of u~o = 0 with n~o "¥= 0

In this case, from Eq. (1.33), we have

(1.35)

Therefore, FAo and FRo are given by

(1.36)(a = A,B).
~ Q 2

F~a _ -3/2~Q (THO )-3/ 2 (_ A (i)Ho - 7f nHO \ a exp ~ ,
A THO

Now let us assume that n~o and THo take the following values on the surfaces of the condensed

phase.

at Xl - 0,~A 1n HO = ,

at Xl = 1.

(1.37a)

(1.37b)

Then, FAo and FRo of Eq. (1.36) satisfy boundary conditions (1.18) - (1.20b) at the order

of kO. In order to determine n~o, n"Zo, and THo in the gas, we need to proceed to the higher
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order in k. However, Eqs. (1.35), (1.37a), and (1.37b) show the following behavior in the

continuum limit: As k -+ 0,

at Xl = 0,

and

at Xl = 1.

(1.38)

(1.39a)

(1.39b)

Since the condition ni}o t= 0 corresponds to n~v/nI =1= 0 irrespective of the values of k,

Eq. (1.38) shows the following important result: For any (non-zero) fixed value of n~v/nI,

evaporation and condensation stop in the continuum limit. In other words, the vapor flow

(uA ), which is controlled by the diffusion caused by the nonuniformity of ni}o, ni}o, and

THO, is of O(Kn) and becomes vanishingly small in this limit. It is seen from Eqs. (1.27a) 

(1.27c) that, in this limit, all the Knudsen numbers KnBA
, KnAB

, and KnBB tend to zero in

proportion to k (or Kn).

2 The case of ni}o - 0

In this case, ui}o is not identically zero, and Fdo and FJ10 are given by

(1.40a)

(1.40b)

A

B
A

B
A

B
_

First, we show that FHm =0 for any m. Let us assume that FHO ' ... , FHm- 1 = O. Then,

from Eq. (1.31) with a = B, we have

(1.41)

(1.42)

The solution to this equation is given by the form45

FA B _ C () (_ m
B

((i - ui}obi1)
2

)
Hm - m Xl exp A AA '

m THO·

where Cm(xd is an arbitrary function of Xl' On the other hand, we have, from Eq. (1.24),

(1.43)
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The substitution of Eq. (1.42) into Eq. (1.43) leads to Cm(Xl) =0, Le., PRm =O. Therefore,

it follows from Eq. (1.40b) that

(m=1,2, ... ). (1.44)

Next, we consider PAm. As is seen from Eq. (1.40a), PAo does not fit to boundary

condition (1.18) with a = A. In order to obtain a solution satisfying the boundary condition,

we have to introduce the Knudsen layers, with thickness of the order of the mean free path,

adjacent to the surfaces of the condensed phase. The discussion about the Knudsen layers

being left in Sec. 1.3.B, let us suppose, for the moment, that we have obtained the kO-order

solution (for pA and pB) that satisfies boundary condition (1.18) at the order of kOand

coincides with Eqs. (1.40a) and (1.40b) except in the Knudsen layers. Then, for the higher

order terms, boundary condition (1.18) with a = A becomes (pA)m - 0 ((iai > 0; m ~ 1),

where (pA)m indicates the km-order term of PA. It should also be noted that Eq. (1.44)

satisfies boundary condition (1.18) with a = B at the order of km . We are going to show

that n~o, tOo, and u~o are constants and that PAm = 0 (m ~ 1) is a consistent solution

except for a special case. With Eqs. (1.40b) and (1.44), Eq. (1.31) is reduced to a sequence

of inhomogeneous linear integral equations for POm (m ~ 1), i.e.,

(m = 1,2, ... ), (1.45)

where l:~=l is understood to be zero. The homogeneous equation ofEq. (1.45) [i.e., Eq. (1.45)

with the right-hand side being put to be zero] has the five independent nontrivial solutions

POo, PAO(i, and POO(J. 46
,45 Therefore, the inhomogeneous term of Eq. (1.45) should satisfy

the following solvability condition to have a solution:

J(1, (1, (J)[RHS of Eq. (1.45)]dC = 0,

which reduces to

And the solution of Eq. (1.45) is expressed as
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where COm, Clm, and C4m are undetermined functions of Xl, and wm is a particular solution

of Eq. (1.45) orthogonal to Pdo' PdO(l, and Pdo(J. Here, we have taken into account the

fact that we are looking for the solution which is even in (2 and (3 (note that the X 2 and

X 3 components of vA are assumed to be zero). From Eq. (1.40a) and Eq. (1.47) with

m = 1, it follows that n~o, i'do, and u~o are all (undetermined) constants (this corresponds

to the compressible Euler equations5
). Therefore, Eq. (1.45) with m = 1 reduces to the

homogeneous equation, and its solution is given by Eq. (1.48) (m = 1) with WI = O. Using

this solution in Eq. (1.47) with m = 2, we obtain simultaneous, linear, and homogeneous

equations for dCoI/dxl' dCll/dxl' and dC4I/dxl. These equations give the (trivial) solution

dCOl/dxl = dCll/dxl = dC4I/dxl = 0 (Le" COl, Cll , and C41 are constants) if u~o #

± (5i'do/6) 1/2. When u~o = ±(5i'do/6)1/2, that is, the flow speed corresponding to u~o is

sonic, there exists a nontrivial solution for dCOl/dxl, dCll/dxl, and dC4I/dxl' and therefore

COl, Cll , and C4l can take nonconstant values. Let us restrict ourselves to the case u~o #

±(5i'do/6)1/2 . If we assume that COl = Cll = C4l = 0, that is, Pdl = 0, then it satisfies

boundary condition (1.18) with a = A at the order of k (see the fourth sentence in this

paragraph). Similarly, we can show that Pdm = 0 (m ~ 2) is a solution to Eq. (1.45)

satisfying boundary condition (1.18) with a = A at the order of km .

To summarize, Eq. (1.40a) (with n~o, i'do' and u~o being undetermined constants) and

Eq. (1.40b) are the kO-order solution except in the Knudsen layers adjacent to the surfaces

of the condensed phase; PBm - 0 (m ~ 1) is the km-order solution satisfying boundary

condition (1.18) with a = B; furthermore, Pdm - 0 (m ~ 1) gives thekm-order solution

satisfying boundary condition (1.18) with a = A when u~o #- ±(5i'do/6)1/2. Therefore, the

remaining task is to find the Knudsen-layer solution at the kOorder which can be connected

to Eqs. (1.40a) and (1.40b) and satisfies boundary condition (1.18). The constants n~o, i'do,

and u~o are determined by this analysis.

Since PBm =0 (m ~ 0), the noncondensable gas can exist only in the Knudsen layers. As

will be seen in Sec. 1.3.B, it can exist only in the Knudsen layer at the condensing surface.

Let us suppose that nB is of the order of unity in the Knudsen layer. [This is confirmed

by the numerical analysis of the half-space problem of condensation,47,48 which is equivalent

to the problem of the Knudsen layer at the condensing surface (see Sec. 1.3.B).] Then, the

average number density n~v is estimated as n~v/nI = O(Kn) because the thickness of the
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Knudsen layer is of the order of e. In other words, if we consider the case of small Kn with

the condition n:v/nI = O(Kn), then all the amount of the noncondensable gas is confined

in the Knudsen layer at the condensing surface. From Eqs. (1.27a) - (1.27c), it is seen that

Kn
BA = 0(1), KnAB = O(Kn), and KnBB = 0(1) in this case.

1.3.B Knudsen-layer analysis and determination of Filo for the
case of nz'o - 0

In this section, we try to obtain the kO-order solution satisfying the boundary condition for

the case of nJ}o = 0 in Sec. 1.3.A. For this purpose, we assume that the physical quantities

undergo significant changes in the thin layers with thickness of the order of the mean free

path adjacent to the surfaces of the condensed phase. Let us denote the kO-order velocity

distribution functions in the layers by Pt and Pf, introduce the stretched space coordinate

T), i.e.,

T)=xdk, (for the layer adjacent to Xl = 0), or

(for the layer adjacent to Xl = 1), (1.49)

and assume that aPt,B/aT) = O(Pt,B) [or aPt,B/aXI = o(Pt,B /k)]. The Pt and PI!

are, respectively, supposed to approach PAo and PHo (= 0) rapidly as T) tends to infinity.

Then, from Eq. (1.15) and boundary condition (1.18), we obtain the equations and boundary

conditions for Pt and PI!, namely, for a = A, B,

and

0-;;0 = -2.Ji(mB/mA)I/2i';;1/21 (iaiPI/(T) = 0, C)dC,
(jaj<O

(1.50)

(1.51)

(1.52a)

(1.52b)

as T) ~ 00, (1.53)
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where

ai = (1,0,0), Tw = 1, nw = 1, (for the layer adjacent to Xl = 0), (1.54a)

ai = (-1,0,0), Tw = TII/Tr, nw = nII/nr, (for the layer adjacent to Xl = 1).

(1.54b)

This problem is nothing other than the problem of an evaporating or condensing flow in a

half space (the so-called half-space problem) in the presence of a noncondensable gas.

For the case of evaporation (u]}Oal > 0), there is a solution to Eqs. (1.50)-(1.53) only

when Pf =O. Physically, this means that, if there is a noncondensable gas in the Knudsen

layer, it cannot stay there and is blown away toward infinity by the vapor flow. An example

of such transition process is investigated in Refs. 49 and 50. Therefore, the problem is

reduced to that for a pure vapor studied in Refs. 51-54. In this problem, the solution exists

only when the parameters Tw , nw , Tdo, n]}o, and u)}o satisfy the following relation.

where

M:::;l,
n)}o hl(M)
nw h2 (M)'

(1.55)

(1.56)

which is the Mach number at infinity (Le., the Mach number based on u)}o and Tdo)' The

numerical data of hl (M) and h2 (M) as well as the profiles of the macroscopic variables in

the Knudsen layer, obtained by an accurate numerical analysis of the BGK model, are given

in Ref. 54 (see also Ref. 8). The analytical form of these functions for M « 1 is obtained in

Ref. 51 (see also Ref. 55).

For the case of condensation (u)}Oal < 0), the problem was studied in Refs. 47 and

48. In Ref. 47, by considering the case where the molecule of the noncondensable gas is

mechanically identical with that of the vapor, the problem was successfully decomposed into

two problems, one for the total mixture and the other for the noncondensable gas. The

former problem is identical with the half-space problem of condensation for a pure vapor,

which has extensively been investigated in the literature (e.g., Refs. 51,56-58,6, and 59-61).

For example, the condition that allows a steady solution has been clarified in a series of

analytical and numerical studies.5l,57,58,6,6l Therefore, the above decomposition enables us to
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exploit the comprehensive results for the pure-vapor case obtained so far. Furthermore, this

approach not only reduces the necessary amount of computation drastically, but also gives

the clear understanding of the basic structure of the solution. According to Ref. 47, under

the above condition that the molecules of the two components are identical (Le., mB ImA = 1

and dB IdA = 1 for hard-sphere molecules), the solution to Eqs. (1.50) - (1.53) exists only

when the parameters Tw , nw , 1'110' n~o' and u~o satisfy the following relation.

where

for M < 1,

for M ~ 1,

(1.57a)

(1.57b)

(1.58)

Here, M is defined by Eq. (1.56); n~ = n~onr is the dimensional number density of the

vapor molecules corresponding to n~o; £00 is the mean free path of the vapor molecules in

the equilibrium state at rest with number density n~ and temperature Too = T11oTr ; and N B

is the total number of the noncondensable-gas molecules per unit area of the surface of the

condensed phase (to be more precise, the total number included in the column perpendicular

to the surface whose base is a unit area on the surface). The f is a parameter to be specified

and is a measure of the amount of the noncondensable gas contained in the half space. The

functions Fs and Fb were constructed numerically in Refs. 47 and 48, where the numerical

data of the corresponding functions for the pure-vapor case,57,58,6 obtained by using the

BGK model, were exploited, and additional computations were carried out by the use of

the model Boltzmann equation for a mixture proposed in Ref. 62.63 [It should be noted that

the f-dependence of Fs and Fb is obtained explicitly. For the Knudsen-layer structure, see

Refs. 47 and 48, where nB is seen to be of 0(1) (cf. the last paragraph of Sec. 1.3.A).]

Let us consider the case where Tr ~ TIl and nr < nIl, that is, evaporation is taking

place on the surface at Xl = 1 and condensation at Xl = 0 (i.e., u~o < 0). Then, Eq. (1.55),

applied to the surface at Xl = 1, gives

M~l,
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and Eqs. (1.57a) and (1.57b), applied to the surface at Xl = 0, give

for M < 1,

for M;:::: 1.

(1.60a)

(1.60b)

(1.61 )

Equation (1.59) shows that a flow with M > 1 never occurs. In order to complete Eqs. (1.59)

and (1.60a) [or (1.60b)), we need the relation between r and our original parameters,

Eqs. (1.22) and (1.23). Since £ = c(2r;,TI/mA )I/2 /nI [instead of Eq. (1.17g) for hard-sphere

molecules] and £00 - c(2r;,Too /mA )I/2/n~, where c is a constant, for the model equations by

the use of which hI, h2, and Fs have been obtained, the relation n~£oo(Too)-1/2 = nI£(TI)-1/2

holds. Applying this relation to Eq. (1.58), noting that NB is given by n:vD in the original

two-surface problem, and making use of Eq. (1.59), we obtain

r = ~(T;10)-1/2n:vD = ~[TIl h2(M)tl/2n:V~.
y'1r nIl y'1r TI nI Kn

This relation, in principle, completes Eqs. (1.59) and (1.60a) [or (1.60b)]. Equation (1.61)

implies that n:v/nI should be of O(Kn) because r should be finite in Eqs. (1.60a) and (1.60b).

Thus, we confirm the statement in the last paragraph of Sec. 1.3.A that n:v/nI = O(Kn) in

the present case. Taking this fact into account, let us put

(1.62)

(1.63)

and consider ~ as a given parameter instead of n:v/nI. Then, from Eqs. (1.61) and (1.62),

we have

r = ~[~: h2(M)tl/2~.

In the case of M < 1, eliminating n~o, 1';10' and r from Eqs. (1.59), (1.60a), and (1.63), we

obtain the following equation for M:

nIl TIl h (M) = F (M TIl h (M) ~[TII h (M)]-1/2~)
T Is 'T 2 'r;;; T 2 .nI I I V 7f I

(1.64)

That is, M is determined by Eq. (1.64) for a given set of the parameters (TIl/T!, nIl/nI,

~). Then, n~o and TAo are obtained from Eq. (1.59), and u~o from Eq. (1.56). On the

other hand, if we eliminate n~o, TAo, and r from Eqs. (1.59), (1.60b), and (1.63), we obtain

the condition for TIl/TI, nIl/nI, and ~ for which a sonic flow (M = 1) occurs.
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Table 1.1: The constants nJo, Tlio, u~o, and M for various values of the parameters TIl /Tr,
nIl/nr, and ~ when the molecule of the noncondensable gas is mechanically the same as
that of the vapor. The values are obtained on the basis of the BGK model and the model
in Ref. 62. The values in the parentheses are those obtained by the use of the conversion of
~, Eq. (1.67), assuming that ~ is given for hard-sphere molecules.

Tu/Tr nu/nr ~
~A

X
A ~A MnHO THO -uHO

1 1.2 0 1.118 0.981 0.0423 0.0468
1 1.2 0.5 1.128 (1.131) 0.984 (0.984) 0.0367 (0.0351) 0.0405 (0.0387)
1 1.2 1 1.137 (1.142) 0.985 (0.986) 0.0321 (0.0298) 0.0354 (0.0329)
1 1.2 2 1.149 (1.154) 0.987 (0.988) 0.0259 (0.0233) 0.0285 (0.0257)
1 2 0 1.543 0.930 0.1564 0.1777
1 2 0.5 1.606 (1.622) 0.941 (0.944) 0.1318 (0.1257) 0.1489 (0.1417)
1 2 1 1.655 (1.679) 0.949 (0.953) 0.1136 (0.1048) 0.1278 (0.1176)
1 2 2 1.720 (1.747) 0.960 (0.964) 0.0902 (0.0810) 0.1009 (0.0904)

1.1 2 0 1.491 1.012 0.1858 0.2023
1.1 2 0.5 1.560 (1.577) 1.026 (1.029) 0.1570 (0.1499) 0.1699 (0.1619)
1.1 2 1 1.612 (1.639) 1.036 (1.041) 0.1359 (0.1253) 0.1463 (0.1345)
1.1 2 2 1.687 (1.718) 1.050 (1.055) 0.1068 (0.0954) 0.1142 (0.1018)
1.1 5 0 2.781 0.919 0.3789 0.4331
1.1 5 0.5 3.158 (3.245) 0.960 (0.969) 0.2942 (0.2761) 0.3289 (0.3073)
1.1 5 1 3.411 (3.533) 0.985 (0.996) 0.2436 (0.2206) 0.2689 (0.2422)
1.1 5 2 3.743 (3.881) 1.014 (1.024) 0.1833 (0.1601) 0.1994 (0.1733)
1.1 10 0 4.614 0.854 0.5069 0.6009
1.1 10 0.5 5.686 (5.913) 0.926 (0.939) 0.3641 (0.3378) 0.4145 (0.3819)
1.1 10 1 6.336 (6.632) 0.961 (0.976) 0.2921 (0.2620) 0.3265 (0.2906)
1.1 10 2 7.141 (7.470) 0.999 (1.013) 0.2138 (0.1847) 0.2344 (0.2010)
1.2 5 0 2.708 0.992 0.4144 0.4557
1.2 5 0.5 3.089 (3.178) 1.040 (1.050) 0.3225 (0.3028) 0.3465 (0.3238)
1.2 5 1 3.346 (3.470) 1.068 (1.080) 0.2675 (0.2427) 0.2836 (0.2559)
1.2 5 2 3.687 (3.827) 1.101 (1.113) 0.2017 (0.1764) 0.2106 (0.1832)
1.2 10 0 4.505 0.922 0.5468 0.6238
1.2 10 0.5 5.576 (5.804) 1.003 (1.018) 0.3940 (0.3658) 0.4309 (0.3972)
1.2 10 1 6.226 (6.526) 1.043 (1.059) 0.3171 (0.2846) 0.3402 (0.3030)
1.2 10 2 7.039 (7.378) 1.085 (1.101) 0.2330 (0.2013) 0.2451 (0.2102)
1.2 20 0 7.731 0.858 0.6610 0.7818
1.2 20 0.5 10.46 (10.99) 0.979 (0.998) 0.4395 (0.4043) 0.4865 (0.4435)
1.2 20 1 11.94 (12.61) 1.028 (1.047) 0.3462 (0.3083) 0.3741 (0.3301)
1.2 20 2 13.73 (14.46) 1.076 (1.094) 0.2503 (0.2149) 0.2644 (0.2251)
1.5 100 0 32.25 0.965 0.8968 1.0000
1.5 100 0.5 47.28 (50.24) 1.176 (1.205) 0.5720 (0.5233) 0.5777 (0.5221)
1.5 100 1 55.44 (59.03) 1.251 (1.280) 0.4450 (0.3958) 0.4358 (0.3833)
1.5 100 2 65.06 (68.96) 1.322 (1.347) 0.3207 (0.2761) 0.3055 (0.2606)
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The constants n~o, TAo, and u~o thus obtained by using the numerical data of hI, h2 ,

and Fs in Refs. 54,47,48, and 64 and interpolations are shown in Table 1.1 for various values

of Tn/TI , nn/nI, and ..6., where the numbers in the parentheses are the results obtained

by the use of the conversion that will be explained in the last paragraph of this subsection.

(Note that we are considering the case where the molecule of the vapor is identical with that

of the noncondensable gas.)

It should be noted that, in the case of M < 1, the asymptotic solution for small k (or

Kn) has only the kO-order terms, i.e., the uniform solution PAo and Pllo(= 0) supplemented

by the Knudsen-layer solution PoA and Pf, and all the higher-order terms vanish. That is,

the noncondensable gas is confined only in the Knudsen layer at the condensing surface, and

except in the Knudsen layer at each surface, the vapor flow is uniform and is independent of

Knj only the thickness of the Knudsen layer is affected by Kn. The profiles of the macroscopic

variables in the Knudsen layer are similar in the sense that they are the same if expressed

in terms of the length scale of e [cf. Eq. (1.49)]. Consequently, as Kn tends to zero, the

Knudsen layers shrink, with the uniform flow of the vapor unchanged. In particular, in the

limit as Kn -+ 0, the Knudsen layers become vanishingly thin compared with the distance

D.

The values of n~o, TAo, and u~o obtained on the basis of the model equations are to be

compared with the results of direct numerical analysis of the original two-surface problem

for hard-sphere molecules in the next section. However, the way of comparison of the results

obtained by using different molecular models is not unique. Here, we introduce the following

conversion for the comparison. When the molecule of the vapor is identical with that of the

noncondensable gas, the mutual-diffusion coefficient DAB for temperature TI , vapor number

density nI, and noncondensable-gas number density n:v is given by42

(1.65)

where m = m A = m B , and 'Y is a constant depending on the molecular model, e.g., 'Y =
0.764215339(= 'YHS) for hard-sphere molecules65,66 (this value is the one recomputed with

higher accuracy in the present study), and 'Y = 1 for the collision model of Ref. 62. If we

suppose that DAB is a basic and common quantity and eliminate it from Eq. (1.65) for
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hard-sphere molecules and that for the model, we obtain the following conversion formula:

(1.66)

where ( )Model and ( )HS indicate the quantity corresponding to the model and hard-sphere

molecules, respectively. Since n:v/nI is an originally given quantity independent of the

molecular model, it follows from Eq. (1.62) that

(1.67)

with 'YHS = 0.764215339. This gives the conversion formula for ~ between hard-sphere

molecules and the model, i.e., if ~ = a for hard-sphere molecules, then ~ = a/'YHS should

be used in Eqs. (1.63) and (1.64). The values of n~o, fifo, and u~o obtained by the use of

this conversion are shown in the parentheses in Table 1.1.

1.3.C Summary of the behavior in the continuum limit

The asymptotic analysis in Secs. 1.3.A and 1.3.B gives the following behavior in the contin

uum limit as Kn (or k) -+ O.

(i) In the limit with n:v/nI = c, where C is a nonzero constant, evaporation and conden

sation of the vapor stop, and the entire gas becomes stationary.

(ii) In the limit with n~/nI = ~Kn, where ~ is a given constant, all the noncondensable

gas is confined in the Knudsen layer with a vanishingly small thickness (compared with D)

at the condensing surface, and the vapor flow becomes uniform. The uniform values of the

macroscopic variables depend on ~.

If C = 0 in the case (i) [or ~ = 0 in the case (ii)], this corresponds to the continuum

limit in the pure-vapor case, in which there is a steady vapor flow. 5 Therefore, the limit (i)

is singular (discontinuous) at n:v/nI = 0 with respect to the parameter n:v/nI.

The limit in the case (ii) shows a striking feature that, although the average number den

sity n:v of the noncondensable gas is vanishingly small compared with the reference number

density nI of the vapor, the vapor flow is still affected by the presence of the noncondens

able gas. To appreciate the issue, let us consider the case where the vapor is water vapor,

TI = 350 K, and D = 10 em. Then the saturated vapor pressure PI corresponding to nI

(PI = K,nITI ) is about 300 Torr, and thus R ::::::: 10-5 em, i.e., Kn ::::::: 10-6• This situation is
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almost the (mathematical) continuum limit. Therefore, if a very small amount of a noncon

densable gas corresponding to a partial pressure about 3 x 10-4 Torr is contained in the gap,

it gives a finite effect on the vapor flow.

This fact might appear to be strange or unphysical because a vanishingly small amount

seems to give a finite effect. In this connection, one should realize that, in order to have a

finite effect, the local number density of the noncondensable gas in the Knudsen layer should

be as large as that of the vapor. If the total amount of the noncondensable gas is not sufficient

to attain this situation, then its effect on the vapor flow is negligible. But one should also

note that, even if the local number density of the noncondensable gas in the Knudsen layer

is high enough, its average number density n:v over the gap is vanishingly small compared

with nI (Note that the noncondensable gas can exist only in the Knudsen layer, which is

infinitely thin compared with the distance D between the two surfaces). To understand the

difference in the two cases (i) and (ii) more clearly, let us consider the following example.

Consider the gap with D ~ £ and suppose that the amount of the noncondensable gas in the

gap is of the same order as that of the vapor. If we let the distance D infinitely large (in

comparison with £) with the total amount of the noncondensable gas being fixed, then we

have .the case (ii) ~ On the other hand, if we inject the noncondensable gas with the increase

of D to keep its total amount of the same order as that of the vapor, we get the case (i).

In the present paper, in order to avoid the complexity of the parameters, we formulated

the problem on the basis of assumptions (ii) - (iv) in Sec. 1.2.A for the molecular model and

the boundary conditions.67 However, as is seen from the course of the asymptotic analysis,

these l;tssumptions are not essential to the fundamental features of the continuum limit. To be

more specific, the limiting behavior, Eqs. (1.38) - (1.3gb), in the case (i) is true for the general

molecular model and for the general boundary conditions [Le., any boundary condition for

the vapor which is satisfied by the stationary Maxwellian distribution whose temperature

and density are, respectively, the temperature of the surface and the saturation density of the

vapor at this temperature, and any boundary condition for the noncondensable gas (with the

impermeability condition) which is satisfied by the stationary Maxwellian distribution whose

temperature is that of the surface and whose density is arbitrary]. The limiting behavior

in the case (ii) is also true for the above general case; however, the values of the constants

n~o, 1':0' and u~o depend on the molecular model as well as the boundary conditions. The
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behavior in the cases (i) and (ii) will be confirmed numerically for hard-sphere molecules in

the next section.

1.4 Numerical analysis and results

In this section, we carry out direct numerical analysis of the original two-surface problem.

Since our main interest is to see the effect of the Knudsen number Kn and that of the

average number density of the noncondensable gas n~v/nI, we fix all the other parameters

in Eq. (1.22) as

mB
--1m A - , (1.68)

The first two equations might appear to be inconsistent because T1 = TIl implies nI =

nIl physically. However, if we consider the fact that, for many substances and for a wide

range of the temperature, a slight change in the temperature leads to a significant change

in the saturation vapor pressure (or density), we can justify the above parameter setting

as a physically reasonable one for our purpose. As the solution method, we adopt the

standard direct simulation Monte Carlo (DSMC) method by Bird.35,36 Since the method is

a straightforward extension of that explained in Ref. 68 to the case of a binary mixture, we

omit the description of the method and summarize the obtained results.

Let J be the mass-flow rate of the vapor from the evaporating to the condensing surface

(per unit time and per unit area of the plane Xl = canst) and j be its dimensionless form,

l.e.,

(1.69)

Here, we note that nAuA (or f1,AuA) is independent of Xl (or xI)[see Eq. (1.12) or (1.24)].

The nondimensional mass-flow rate j versus n~v/nI is shown in Fig. 1.1 for various values

ofKn; Fig. 1.1(b) is a magnified figure of the part for 0 ~ n~v/nI ~ 0.25 in Fig. 1.1(a). The

values of j corresponding to Fig. 1.1 are given in Table 1.2. In Fig. 1.1(a), the dot-dash lines

are the curves that smoothly join the numerical data for the same Kn, and the dotted line for

Kn = 00 indicates the result for the free-molecular flow. As Kn decreases, the gradient of the

curve with constant Kn becomes steep at small values of n~v/nI, and except for this region

the mass-flow rate tends to vanish. In this way, as Kn ~ 0, the mass-flow rate approaches
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Figure 1.1: Nondimensional mass-flow rate of the vapor j [Eq. (1.69)] versus n~v/n] for
various values of Kn in the case Tn/T] = 1, nn/n] = 2, mB/mA = 1, and dB IdA = 1. (a)
o:::; n~v/n] :::; 1, (b) 0 ::; n~v/n] ::; 0.25. Here, • indicates the data for Kn = 10, ~ for 1, ..
for 0.5, 0 for 0.2, • for 0.1, \l for 0.05, T for 0.02, 0 for 0.01, and. for 0.005. In (a), the
dot-dash line indicates a curve smoothly joining the data for the same Kn, and the dotted
line for Kn = 00 indicates the result for the free-molecular flow. In (b), the dotted line is
the line joining the data for the same ~ [see the paragraph including Eq. (1.70)].
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Table 1.2: Nondimensional mass-flow rate of the vapor j [Eq. (1.69)] for various values of
n:vlnr and Kn. Here, the other parameters are fixed as TnlTr = 1, nnlnr = 2, mB ImA = 1,
and dB IdA = l.

n:vlnr
x

n:vlnr
)(

Kn J Kn J
0.005 0 0.2406 0.1 0.02 0.2250
0.005 0.005 0.1765 0.1 0.05 0.2043
0.005 0.01 0.1396 0.1 0.1 0.1773
0.005 0.02 0.0983 0.1 0.2 0.1402
0.005 0.05 0.0520 0.1 0.4 0.0986
0.005 0.1 0.0293 0.1 0.5 0.0862
0.005 0.2 0.0155 0.1 1 0.0522
0.005 0.5 0.00646 0.2 0 0.2433
0.005 1 0.00329 0.2 0.1 0.2056
0.01 0 0.2409 0.2 0.2 0.1780
0.01 0.005 0.2040 0.2 0.4 0.1402
0.01 0.01 0.1770 0.2 0.5 0.1266
0.01 0.02 0.1394 0.2 0.8 0.0981
0.01 0.04 0.0984 0.2 1 0.0852
0.01 0.1 0.0520 0.5 0 0.2487
0.01 0.2 0.0294 0.5 0.1 0.2315
0.01 0.5 0.0126 0.5 0.2 0.2164
0.01 1 0.00660 0.5 0.25 0.2097
0.02 0 0.2408 0.5 0.5 0.1811
0.02 0.02 0.1766 0.5 1 0.1423
0.02 0.04 0.1394 1 0 0.2544
0.02 0.08 0.0980 1 0.02 0.2526
0.02 0.2 0.0522 1 0.1 0.2448
0.02 0.5 0.0240 1 0.2 0.2355
0.02 1 0.0126 1 0.5 0.2123
0.05 0 0.2406 1 1 0.1824
0.05 0.025 0.2037 10 0 0.2742
0.05 0.05 0.1766 10 0.1 0.2728
0.05 0.1 0.1395 10 0.2 0.2713
0.05 0.2 0.0983 10 0.5 0.2671
0.05 0.5 0.0522 10 1 0.2605
0.05 1 0.0291 00 0.2821
0.1 0 0.2412
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the singular limit [case (i)] described in Sec. 1.3.C, i.e., j -+ 0 for n~v/nI = const(# 0), and

j -+ const(# 0) for n~v/nI = O.

The spatial distributions of the macroscopic variables for various Kn are shown in Fig. 1.2

for n~v/nI = 0.5 and in Fig. 1.3 for n~v/nI = 1. As Kn decreases from 00 to 0.1 [Figs. 1.2(a)

and 1.3(a)], the vapor flow speed decreases, and the gradient of nA and that of nB increase in

the opposite directions. The limiting process of the case (i) in Sec. 1.3.C, which is expressed

by Eqs. (1.38) - (1.3gb), is seen in Figs. 1.2(b) and 1.3(b). That is, as Kn becomes small,

the vapor flow velocity uA tends to vanish; the vapor number density nA approaches the

saturation number densities nI and nIl (= 2nI) at the condensing and evaporating surfaces,

respectively; and the temperature of the total mixture T tends to approach the surface

temperatures T1 and TIl (= T1) at the condensing and evaporating surfaces, respectively.69

In Fig. 1.4, the flow speed of the vapor at three points versus Kn is shown for small Kn in

the case n~v/nI = 0.5 and 1. The flow velocity tends to vanish in proportion to Kn as Kn

approaches zero, which is in agreement with Eq. (1.35) [or u~ = O(Kn)]. The above behavior

in the continuum limit can be explained physically as follows. In this limit, the vapor

molecules evaporated from the surface at Xl = D are bounced back by frequent collisions

with the noncondensable-gas molecules and accumulate at the surface. Their number density

finally reaches the saturation density nn (= 2nI), and evaporation stops. On the other hand,

at the surface at Xl = 0, the vapor molecules are removed by condensation, but the removed

amount is not supplied because the flow of the vapor molecules toward the surface is blocked

by frequent collisions with the noncondensable-gas molecules. Consequently, the number

density of the vapor decreases to the saturation density nI, and condensation stops.

The process of approach to the limit of the case (ii) in Sec. 1.3.C, namely,

Kn -+ 0, with n~v/nI = b.Kn, (1. 70)

(b. is a given constant) is also included in Fig. 1.1 and Table 1.2. To be more specific, each

dotted line in Fig. 1.1(b) indicates the line joining the data with common b. (b. = 1, 2, 4,

or 10), and therefore the data on it show the process of approach for b. = 1, 2, 4, or 10.

As is also seen from the corresponding data in Table 1.2, the mass-flow rate j for a fixed b.

and for small Kn is almost constant, and the constant values depend on b.. The behavior

of the macroscopic variables in the limiting process for b. = 0 (pure vapor case), 1, and 2
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Figure 1.2: Profiles of the macroscopic variables nA , nB , p, T, and uA for various Kn in
the case n~vlnI = 0.5. Here, the other parameters are fixed as TIIITI = 1, nIIlnI = 2,
mBImA = 1, and dB IdA = 1. (a) Kn = 00, 10, 1, and 0.1. (b) Kn = 0.1, 0.01, and 0.005.
The dotted line for Kn = 00 in (a) indicates the result for the free-molecular flow.
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Figure 1.3: Profiles of the macroscopic variables nA , nB , p, T, and uA for various Kn in
the case n~vln[ = 1. Here, the other parameters are fixed as TIl IT[ = 1, nIlIn[ = 2,
m BImA = 1, and dB IdA = 1. (a) Kn = 00, 10, 1, and 0.1. (b) Kn = 0.1, 0.01, and 0.005.
The dotted line for Kn = 00 in (a) indicates the result for the free-molecular flow.
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are shown in Figs. 1.5, 1.6, and 1.7, respectively. The dotted lines in the figures indicate the

constant values fl;~·o, 1':0 (= THO)' and u~o in the parentheses in Table 1.1, which correspond

to nA/n[, T/T[, and uA/(2K,TI/mA)I/2, respectively. As shown by Fig. 1.6 (..6. = 1), the

noncondensable gas, which is distributed over the whole gap at Kn = 0.1, is confined near

the condensing surface (Xl = 0) at Kn = 0.01, and except for this region and for the vicinity

of the evaporating surface (Xl = D), the flow field of the vapor is uniform. At Kn = 0.005,

the nonuniform regions, i.e., the Knudsen layer at Xl = 0, where the noncondensable gas is

confined, and that at Xl = D, shrink, but the uniform flow of the vapor does not change.

Such behavior is in agreement with the result of the asymptotic analysis in Sec. 1.3 (see

the second paragraph from the last in Sec. 1.3.B). For larger ..6. (Fig. 1.7), the vapor flow

speed is decreased because larger amount of the noncondensable gas is included in the gap

(or in the Knudsen layer) for the same Kn. It is seen from Figs. 1.5 - 1.7 that the constants

ri~o, 1':0 (= THO), and u~o in the parentheses in Table 1.1, which are based on the model

Boltzmann equations and the conversion (1.67), yield excellent prediction of the uniform

state for hard-sphere molecules.

We now summarize the data concerning the simulation scheme used for the results pre

sented in this section. The interval 0 :::; Xl :::; Dis divided into Nc cells of an equal size, where

Nc = 50 (0.2 :::; Kn :::; 10),100 [Kn = 0.01 (0.2:::; n~v/nI :::; 1) and 0.02 :::; Kn :::; 0.1], 200

[Kn = 0.005 (0.1 :::; n~v/nI :::; 1) and 0.01 (0 :::; n~v/nI :::; 0.1)], and 400 [Kn = 0.005 (other

n~v/nI)]' The number of simulation particles Np corresponding to nID is 104 (0.2 :::; Kn :::;

10), 2 X 104 [Kn = 0.01 (0.005 :::; n~v/nI :::; 0.1 and n~v/nI = 0.5) and 0.02 :::; Kn :::; 0.1], and

4 x 104 [Kn = 0.005 and 0.01 (other n~v/nI)]' [Therefore, if riA (= nA/nI) = c at a cell, then

the number of the particles representing the vapor molecules in the cell is cNp / Nc. The total

number of the particles contained in the gap 0 :::; Xl :::; D is larger than Np since riA is greater

than unity; see Figs. 1.2, 1.3, and 1.5 - 1.7.] The total number of the particles representing

the noncondensable-gas molecules (Le., the number of the particles corresponding to n~vD)

for the case of n~v/nI = c' is therefore given by c'Np • The time step ..6.t, which is the interval

between two successive times at which the collision processes are evaluated, is as follows:

D-I(2K,TI/mA)I/2..6.t [= (Vi/2)(Kn/to)..6.t, where to is the mean free time corresponding to

£] is 10-2 (Kn = 1 and 10), 5 x 10-3 (Kn = 0.2 and 0.5), 2 x 10-3 [Kn = 0.1 (n~v/nI = 0,

0.02,0.05, and 0.4)], 10-3 [Kn = 0.05 and 0.1 (other n~v/nI)], 4 x 10-4 (Kn = 0.02), 2 x 10-4
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Table 1.3: Nondimensional mass-flow rate of the vapor J [Eq. (1.69)] obtained by the test
computations (cf. Table 1.2) for n:v/nr = 0.01 and 1 in the case Kn = 0.005. Here, the
other parameters are fixed as TIIITr = 1, nII/nr = 2, mB/mA = 1, and dB IdA = 1.

100 104 0.13947
200 0.5 x 104 0.13944

104 0.13983
2 x 104 0.13971
4 x 104 0.13941
8 x 104 0.13959

400 4 x 104 0.13963a

a The data included in Table 1.2.

100 104 0.003288
200 0.5 x 104 0.003287

104 0.003303
2 x 104 0.003300
4 x 104 0.003287a

400 4 x 104 0.003296

[Kn = 0.01 (n:v/nr = 0.005, 0.02, 0.04, 0.1, and 0.5)], and 10-4 [Kn = 0.01 (other n:v/nr)

and 0.005]. The data shown in Table 1.2 and Figs. 1.1 - 1.7 are the averages over more than

9 x 105.6.t in most of the cases for 0.2 :::; Kn :::; 10, more than 1.4 x 106 .6.t in most of the

cases for 0.01 :::; Kn :::; 0.1, and more than 2.5 x 106.6.t in most of the cases for Kn = 0.005

after steady states are judged to be reached.

As noted above, the mass-flow rate J of the vapor in Eq. (1.69) does not depend on Xl

theoretically. However, the numerical result varies slightly with Xl because of computational

error. Therefore, the average values over 0 :::; Xl :::; D are shown in Table 1.2. The variation,

on the other hand, gives a measure of the error of the computation. The maximum relative

deviation, maxlJ - Javl/ Jav , in the region 0 :::; Xl :::; D, where Jav denotes the average of J,

is less than 1.02 x 10-3 for the cases with 0.2 :::; J, less than 2.74 x 10-3 for the cases with

0.1 :::; J < 0.2, less than 5.07 x 10-3 for the cases with 0.05 :::; J < 0.1, less than 6.96 x 10-3

for the cases with 0.01 :::; J < 0.05, and less than 2.72 x 10-2 for the cases with J <0.01.

In order to confirm the reliability of the results presented in this section, some additional

computations with different numbers of cells and particles are also carried out for typical

cases. In general, accurate DSMC computation becomes increasingly difficult as the Knudsen

number becomes small. Therefore, we give, in Table 1.3, some of the results of the mass-flow

rate obtained by such computations for small Kn (Kn = 0.005) (cf. Table 1.2). The accurate

computation of the mass-flow rate in the case of n:vlnr = 1 is particularly difficult because
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it is small.

The computations have mainly been carried out on DEC Alpha 6005/333 and VT-Alpha

433AXP computers in the Section of Dynamics in Aeronautics and Astronautics, Department

of Aeronautics and Astronautics, Graduate School of Engineering" Kyoto University.

1.5 Concluding remarks

In this chapter, we have investigated the effect of the presence of a noncondensable gas in the

two-surface problem of evaporation and condensation, which is one of the most fundamental

problems of a vapor flow caused by evaporation and condensation, by means of asymptotic

analysis of the Boltzmann equation as well as numerical analysis based on the DSMC method.

Our special attention is focused on the behavior in the continuum limit with respect to the

vapor (i.e., Kn ~ 0). As the result of the asymptotic analysis, it is shown that there are

two completely different types of behavior in the limit, the cases (i) and (ii) in Sec. 1.3.C,

depending on the amount of the noncondensable gas included in the system. In particular, in

the latter case, it is found that, although the average number density of the noncondensable

gas molecules is infinitesimally small compared with that of the vapor molecules (or the

saturation number density of the vapor molecules at a reference state), the noncondensable

gas gives a finite effect on the vapor flow. The process of approach to these two types of

continuum limit is demonstrated by the numerical result obtained by the DSMC analysis.
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Chapter 2

Shock-wave structure for a binary gas mixture 70

2.1 Introduction

The analysis of the structure of a normal shock wave in a single component gas is one of

the classical problems in modern kinetic theory and has been tackled by various methods,

including moment methods,71 model Boltzmann equations,72 and the direct simulation Monte

Carlo (DSMC) method,73 since the beginning of 1950's (see, e.g., Refs. 36, 45, 74, 75, and

their references). However, an accurate numerical result by means of a finite-difference (or

discrete-ordinate) analysis of the Boltzmann equation was reported only in 1993.76

The main difficulty in analyzing the Boltzmann equation by a finite-difference method is

to perform accurate computations of the complicated collision integrals. In 1989, Sone and

coworkers77 proposed an accurate and efficient method (numerical kernel method) for com

puting the collision integrals of the linearized Boltzmann equation for hard-sphere molecules.

The method has successfully been applied to the finite-difference analyses of various funda

mental problems of rarefied gas dynamics, such as the Knudsen-layer problems,77-79 the plane

Poiseuille flow and the thermal transpiration,80 the plane Couette flow,81 uniform flows past

a sphere,82,1l and the thermophoresis,83 and the results to be regarded as the standards for

these problems have been established. Subsequently, a similar method was developed for

the nonlinear Boltzmann equation by Ohwada in the above-mentioned work on the shock

wave structure,76,84 in which an accurate numerical result was obtained for relatively weak

to moderately strong shock waves. The method has also been applied to the analysis of heat

transfer between parallel plates.85,86

The problem of shock-wave structure for a binary gas mixture has also been a popular

subject and has been investigated experimentally87-89 as well as theoretically. The latter

approach includes approximate analyses based on moment methods9o,91 and fluid-dynamic

models,92,93 and numerical analyses based on kinetic models94,95 and the DSMC method.96,97
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(2.1c)

(2.1a)

(2.1b)

(See also Ref. 36 and its references.) In this chapter, we try to extend the method of

Ohwada76 to the case of a binary mixture of hard-sphere gases and investigate the structure

of a normal shock wave for the mixture by an accurate finite-difference analysis of the

Boltzmann equation. Our aim is to establish the result that can be the standard for the

problem. It should be mentioned that a numerical result by another direct method was

reported recently.98 However, only one case of a rather weak shock is analyzed, and no

information is given about the size and accuracy of the computation.

2.2 Problem and basic equation

2.2.A Problem

We consider a steady flow of a binary gas mixture (say, the mixture of A-component and

B-component) through a standing normal shock wave. Let us take the Xl axis of the space

coordinates Xi in the direction of the flow. The mixture is in a uniform equilibrium state with

speed U_, temperature T_, and molecular number densities n~ (A-component) and n~ (B

component) at upstream infinity (Xl = -00), whereas it is in another equilibrium state with

speed U+, temperature T+, and molecular number densities n~ (A-component) and n~ (B

component) at downstream infinity (Xl = 00). The conservations of the molecular number

of each component, the total momentum, and the total energy lead to the expressions of

the downstream parameters in terms of the upstream ones (the Rankine-Hugoniot relation),

which can be arranged in the following form:

na 4M2

n; = M':; 3' (a = A,B),

U+ M:+3
U_ - 4M': '

T+ _ (5M': - l)(M': + 3)
T_ - 16M':

Here M_ is the Mach number at upstream infinity defined by

M_ = U_/(5R_T_/3)1/2,

R_ = k/(mAx~ + mBx~),

(2.2a)

(2.2b)

where k is the Boltzmann constant, m A the mass of a molecule of the A-component, and

m B that of the B-component; x~ and x~ are the concentrations of theA-component and
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the B-component at upstream infinity, i.e.,

(a = A,B), (2.3a)

(2.3b)

(2.4)

It is seen from Eq. (2.1a) that the concentration of each component at downstream infinity,

x+ = n+/n+ (n+ = nt+n~), is the same as x~. Therefore, the Mach number at downstream

infinity is given by M+ = U+/(5R_T+/3)1/2 and is expressed as

~ ( M: + 3 )1/2
M+ - 5M: -1 '

with the aid of Eqs. (2.1b)-(2.2a).

We investigate the transition from the upstream to the downstream state through the

shock wave on the basis of the Boltzmann equation for a binary mixture under the assumption

that the molecules of each component are hard (or rigid) spheres.

2.2.B Basic equations

Let ~i (or e) be the molecular velocity, FA(Xl, e) the velocity distribution function of the

molecules of the A-component, and FE (Xl, e) that of the B-component. The Boltzmann

equation in the present problem is written in the following form. 41,42

where

(a = A,B), (2.5)

GJ3a[j,g] = (d~a)2 J!(X1,e~a)g(X1,eJ3a)Ja· VldO(a)de*, (2.6)

l/J3a[!] = (d~a)2 J!(Xl, e*) Ja .VldO(a)de*, (2.7)

J3a J3a
eJ3a = e + ~a (a . V)a, e~a = e* - ~J3 (a . V)a, V = e* - e, (2.8)

di!: = (d~ + d~)/2, jLJ3a = 2mamJ3j(ma+mJ3 ). (2.9)

Here, d~ and d~ are the diameter of a molecule of the A-component and that of the B

component, respectively; e* is the integration variable for e, a is a unit vector, de* =

d~*l d~*2d~*3, and dO (a) is the solid-angle element around a; the domain of integration is the

whole space of e* and all directions of a.
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The boundary condition at upstream infinity is

Fo. 0. ( mo. ) 3/2 (mo.[(6 - u_? + ~~ + ~l])
-+ n_ 27fkT_ exp - 2kT_ '

for 6 > 0 as Xl -+ -00,

and that at downstream infinity is

Fo. 0. ( mo. ) 3/2 (mo.[(6 - U+)2 + ~~ + ~~])
-+ n+ 27fkT+ exp - 2kT+ '

for 6 < 0 as Xl -+ 00,

with a = A and B.

(2.10)

(2.11)

Let nO. be the molecular number density, vi the flow velocity, po. the pressure, TO. the

temperature, piJ the stress tensor, and qi the heat-flow vector of a-component (a = A, B),

and let n be the molecular number density, p the density, Vi the flow velocity, p the pressure,

T the temperature, Pij the stress tensor, and qi the heat-flow vector of .the total mixture.

Then these macroscopic variables are defined as the moments of the velocity distribution

functions as follows:

nO. = J Fo.de, vf = (l/no.) J~iFo.de,

pO. = kno.To. = (1/3) J mo.(~i - vi)2Fo.de,

pij = J mo.(~i - vf)(~j - vj)Fo.de,

qf = (1/2) Jmo.(~i - vf)(~j - vj)2Fo.de,

n = J L Fo.de = L nO., P= J L mo.Fo.de = L mo.no.,
o.=A,B .00=A,B o.=A,B o.=A,B

Vi = ~ J ~i L mo.Fo.de = ~ L mo.nO.vf ,
P o.=A,B Po.=A,B

P = knT = ~ J (~i - Vi)2 L mo.Fo.de = L [po. + mo.no.(vf - Vi)2/3]'
o.=A,B o.=A,B

Pij= J(~i-Vi)(~j-Vj) L mo.Fo.de = L [pij+mo.no.(vf-vi)(vj-Vj)],
o.=A,B o.=A,B

qi = (1/2)J(~i - Vi)(~j - Vj)2 L mo.Fo.de
o.=A,B

= L [qf + pij(vj - Vj) + (3/2)po.(vf - Vi) + (1/2)mo.no.(vf - Vi)(Vj - Vj)2],
o.=A,B

(2.12)

(2.13)

where de = d6d6d6, and the integration with respect to e in Eqs. (2.12) and (2.13) extends

to the whole space of e. In the present problem, the X 2 and X 3 components of the flow
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velocities, those of the heat-flow vectors, and the nondiagonal components of the stress

tensors vanish, i.e., vi = Vi = qi = qi = 0 (i = 2, 3) and p'/j = Pij = 0 (i =I j) (see the

first paragraph of Sec. 2.3.B). It should be noted here that, in the literature, the pressure,

temperature, stress tensor, and heat-flow vector of each component are often defined in a

different way, Le., by the third to fifth equations of Eq. (2.12) with vi and vj replaced by

Vi and Vj' For this definition, the relations p = pA + pB (Dalton's law), Pij = pi] + pZ, and

qi = qf + qf hold instead of the expressions in the last three equations of Eq. (2.13).

2.2.C Dimensionless form

We now introduce the following dimensionless variables.

Xl = XI/L, (i = ~d(2kT_/mA)I/2,

FO = FO(2kT_/mA)3/2/n_,

(2.14a)

(2.14b)

where L is the mean free path of the molecules of the A-component when it is in an equi

librium state at rest with molecular number density n_ [Eq. (2.3b)], Le.,

(2.15)

(Note that L is independent of the temperature of the equilibrium state for hard-sphere

molecules.) In what follows, the symbol ( is also used for (i. Then the Boltzmann equation

(2.5) is recast to the following dimensionless form:

where

(a = A,B), (2.16)

(2.17)

(2.18)

(2.19)

(2.20)

Here, (* is the integration variable for (, and d(* = d(*ld(*2d(*3; the domain of integration

is the whole space of (* and all directions of a. The corresponding dimensionless forms of
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boundary conditions (2.10) and (2.11) are, with a = A, B,

FO --; (~O) 3/2 X" exp ( -rno [(1 - M- 6I: 5 A (3 (3) 2 + (~ + (i] ) ,
(3=A,B m x-

for (1 > 0 as Xl --+ -00, (2.21)

6 I: 5 A (3 (3) 2 + (~ + (i]) ,
(3=A,B m x-

for (1 < 0 as Xl --+ 00, (2.22)

where n+/nr:.., U+/U_, and T+/T_ are given by Eq. (2.1) and are determined by M_.

Since rhA = 1, rhB = mB /mA , e AA = 1, CAB = e BA = [1 + (d~/d;;J]2 /4, and eBB =

(d~/d~)2, and x~ and x~ are related as x~ +x~ = 1, it is seen that the boundary-value

problem, Eqs. (2.16), (2.21), and (2.22), is characterized by the following four dimensionless

parameters:

Bx-, (2.23)

We analyze the problem numerically for given values of these parameters.

2.3 Preliminary analysis

2.3.A Further transformation

We first transform Eq. (2.17). Let us decompose the relative velocity V into the components

perpendicular and parallel to a, Le.,

V=w+z, w = V - (a . V)a, z = (a· V)a. (2.24)

Then, ,(301. and '~OI. are expressed as

(2.25)

If we change the integration variablesfrom (a, ,*) to (w, z) noting that a and -a give the

same wand z, we obtain 'the following expression for Q(301.[j, g]:

Q(301.[j, g] = ~7f Jf (, + w + (1 -~;) z) 9 (, + ~: z) z-IdS(w)dz, (2.26)
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where z = Izl, dz = dz1dz2dz3 , and dS(w) is the surface element, around w, of the plane

perpendicular to z; the domain of integration with respect to w is the whole plane perpen

dicular to z, and that with respect to z is its whole space; the argument Xl in f and g is

omitted for simplicity.

On the other hand, the integration with respect to a in Eq. (2.18) can be carried out,

and we have

(2.27)

where the argument Xl in f is also omitted.

2.3.B Similarity solution

In the present problem, we seek the solution in the following form:

(a = A,B). (2.28)

The compatibility of this ,form of pa with the Boltzmann equation (2.16) is shown by direct

substitution. That is, the left-hand side (LHS) of Eq. (2.16) with Eq. (2.28) is obviously a

function of Xl, (1, and (r; on the other hand, its right-hand side (RHS) with Eq. (2.28) is,

as will be shown below, also a function of the same variables. [The latter fact is readily seen

from the rotational invariance of G,Ba[j, g] and D[f]. However, since we need the explicit

functional form of the RHS of Eq. (2.16) with Eq. (2.28) for numerical analysis, we derive

it below.] It is also obvious that Eq. (2.28) is compatible with boundary conditions (2.21)

and (2.22). It follows immediately from Eq. (2.28) that vr = Vi = qr = qi = 0 (i = 2, 3) and

pi} = Pij = 0 (i =I j).

Now let L((1, (r) and M ((1, (r) be arbitrary functions of (1 and (r (they may, of course,

depend on Xl)' We first derive, from Eq. (2.26), the explicit form of G,6a[L, M]. We express

<: in cylindrical coordinates as

(2.29)

and z in spherical polar coordinates as

Zl = Z cos (J, Z2 = z sin (J cos E,
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We further introduce two orthogonal unit vectors e' and e" on the plane perpendicular to z,

Le.,

Ie3 = CaSE,e~ = 0,

" . ()el = sm ,

and decompose w as

I •e2 = - SInE,

II ()e2 = - COS COS E,

w = w'e' + w"e".

II () •e3 = - COS sm E,

(2.31a)

(2.31b)

(2.32)

Then, noting that dS(w) = dw'dw" and dz = Z2 sin ()dzd()dE, we obtain the following expres

sion for G,Ba[L, M]:

.~ l 1r l 1r 100100 100

b..~a((I'(n z, (), COS(E - 'I,b), sin(E - 'I,b), w', w")
y 27l" 0 -1r 0 -00-00

X dw'dw"dzdEd()

1 l 1rl 1r 100100100

. M b..~a((1, (r, Z, (), cos l, sin l, w', w")
y 27l" 0 -1r 0 -00-00

X dw'dw"dzdld()

J2 {1r {1r roo100 100

b..~a((1, (r, z, (), COS l, sin l, w', w")
7l" Jo Jo Jo -00-00

x dw'dw"dzdld() , (2.33)

where

and

JI = (1 + w" sin () + (1 - p,,Ba jinP)z cos (),

(2.34)

(2.35a)

K I = (1 + (p,,Ba jiha)z COS (),

Kr = {[(p,,Ba jiha)z sin () + (r cos IF + ((r sin l?P/2.

In the last equality of Eq. (2.33), the property

A ,Ba(r r () (-)' (-) '") _ A ,Ba(r r () -' - , ")UG '::.1, '::.r, Z, ,COS -E ,SIn -E ,-w ,w - UG '::.1, '::.n Z, ,COS E, SIn E, w ,W,

has been used to reduce the range of integration with respect to l to [0, 71"].
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On the other hand, in Eq. (2.27), we express ,* in cylindrical coordinates as

(2.37)

and use Eq. (2.29) for ,. Then, we obtain the following expression for O[L]:

O[L] =

(2.38)

where

(2.39a)

(2.39b)

From Eqs. (2.33) and (2.38), it is obvious that the RHS of Eq. (2.16) with Eq. (2.28) is

a function of Xl, (1, and (r.

2.4 Numerical analysis

The method of analysis is the extension of the method developed by Ohwada76 for a single

component gas to the case of a binary mixture. The details will be given below.

2.4.A Finite-difference analysis

In this subsection we explain the finite-difference scheme and the solution procedure. In

the actual computation, we consider a finite range of Xl, i.e., -D ~ Xl ~ D, instead of

the infinite range and impose the condition (2.21) at Xl = -D for (1 > 0 and (2.22) at

Xl = D for (1 < O. As for the molecular velocity, we only restrict (1 to a finite range, i.e.,

-Zf ~ (1 ~ Zf' for the a-component (a = A, B) (as seen below, we do not need to restrict

the range of (r because of our solution method). The constants D, Zf, and Zl' are chosen in

such a way that the deviation of the velocity distribution pa from the upstream Maxwellian

(2.21) [or from the downstream Maxwellian (2.22)] is negligibly small at Xl ~ -D (or at

Xl ~ D) and that pa itself is negligibly small at (1 ~ -Zf and (1 ~ Zf'. The choice is to

be validated from the result of numerical computation. Now, let Xii) (i = -ND , ... , 0, ... ,

ND)be the lattice points in Xl (xi-ND
) = -D, xiO) = 0, XiND

) = D), and let ((f(j) , (~(k))
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(j = -N~, ... , 0, ... , N;; k = 0, 1, ... , Ho.) be the lattice points in the (l(r-plane for the

a-component ((~(-N~) = -Zf, (~(O) = 0, (~(N;) = Zf'; (~(O) = 0; as will be seen in the next

subsection, the lattice point (~(O) is not used in our practical computation). Then, we define

Fio.(n) ((1, (r) and Fiji
n

) as follows:

at the nth iteration step, (2.40a)

(2.40b)

When confusion is expected, the commas are placed between subscripts as Fi~~;,k in Eq. (2.41a)

below. The finite-difference scheme that we adopt is essentially the same as that in Ref. 76,

Le.,

( o.(j) (Fo.(n+1) _ Fo.(n+l))/( (HI) _ (i))
I HI,j,k ijk Xl Xl

_ '" c13o.(C13o.(n) _ hl3o.(n) Fo.(n+1) + c13o.(n) _ hl3o.(n) Fo.(n+1))/2
- L..J HI,j,k VHI,j,k HI,j,k ijk Vijk ijk ,

I3=A,B

( o.(j) (Fo.(n+1) _ Fo.(n+1))/( (i-I) _ (i))
I i-l,j,k ijk Xl Xl

_ '" c13o.(C13o.(n) _ hl3o.(n) Fo.(n+l) + c13o.(n) _ hl3o.(n) Fo.(n+I))/2
- L..J i-l,j,k Vi- 1,j,k i-l,j,k ijk Vijk ijk ,

I3=A,B

O- '" C13o. (G
h

l3o.(n) _ h13o.(n)Fho.(n+1))
- L..J ijk Vijk ijk ,

I3=A,B

where

(j > 0), (2.41a)

(j < 0), (2.41b)

(j = 0), (2.41c)

G
h13o.(n) _ Ghl3o.[F~(n)( r) F~(n)( r)] at ( r) = (o.(j) ro.(k))

ijk - z 1, ':,r, z 1, ':,r I, ':,r l' ':,r ,

f)z~(n) = f)[Ft(n) (I, (r)] at (1, (r) = (~(j), (~(k)).

(2.42a)

(2.42b)

The most complicated part in this scheme is the evaluation of C~~(n) and f)z~(n), which will

be explained in the following subsections. With this method for the evaluation, the process

of computation for the above finite-difference scheme is obvious. We first choose appropriate

initial distributions FijiO). Now, suppose that Fiji
n

) are known.

(.) C Ghl3o.(n) d hl3o.(n) • Fho.(n)
I ompute ijk an Vijk usmg ijk .

(ii) For j > 0, compute Fijin+l) successively from i = -ND +1 to i = ND from Eq. (2.41a)

using C~~(n), f)z~(n) and the boundary condition at Xl = -D.

(iii) For j < 0, compute Fijin+l) successively from i = ND -1 to i = -ND from Eq. (2.41b)

using C~~(n), f)Z~(n) and the boundary condition at Xl = D.

(iv) For j = 0, compute Fi~~n+l) for all i from Eq. (2.41c) using C~o~(n) and f)fo~(n).

Repeat the steps (i)-(iv) for n = 0, 1, ... until Fiji
n

) converges.
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2.4.B Numerical computation of collision integrals

In order to complete the above finite-difference scheme, we need to express G~~(n) and f)~~(n)

in terms of Ptjin). For this purpose, we first express pt:(n) ((1, (r) in terms of Pi~kn). It is done

by the following three steps. First, we expand pti(n) ((1, (r) with respect to (1 using a set of

basis functions Wj((l), Le.,

N;
Pio(n) ((1, (r) = L ~o(n) ((f(j) , (r)Wj((l),

j=-NJ:.

(2.43)

where Wj((I) is assumed to have the following property: Wj((l) = 1 at (1 = (f(j) , and

Wj((l) =°at (1 = (f(l) (1 =I- j). In the practical computation, we use wj that is nonzero

only in a neighborhood (e.g., some lattice intervals) of (1 = (f(j). The explicit choice ofwj

will be made later. [Hereafter, we assume Eq. (2.43) for the whole range of (1; therefore, the

practical range of (1 becomes slightly wider than -Zf ::; (1 ::; Zf'.] Second, expecting that

~o(n) is a smooth and rapidly decreasing function of VihP(r , we assume the following form

of ~o(n) ((f(j) , (r):

F~ ?,(n) ((o(j) I" ) = ( _ mO
(;) ~1 c:.(n)L (~01"2)

2 l' ,>r exp 2 L....., a2Jm m m '>r ,
m=O

where Lm(y) is the Laguerre polynomial99 of mth order, which is defined by

and satisfy the relation

(2.44)

(2.45)

(2.46)

The system of functions exp(-y/2)Lm (y) (m = 0, 1, ... ) forms a complete orthonormal

system in L2(0, (0). Therefore, Eq. (2.44) means that, assuming Pio(n)((f(j),(r) to be a

rapidly decreasing function of mO(;, we expand it in terms of the orthonormal system and

truncate it at the HOth term. If we consider Eq. (2.44) at the lattice points (r = (~(k) (k = 1,

... , HO), we have

~ 0(1"0(k»)2 H"'-l

F~ ?:(n) = ( _ m ,>r ) ~ c:.(n)L (~0(1"0(k»)2)
2Jk exp 2 L....., azJm m m '>r •

m=O
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The coefficients aC:}::? (m = 0, ... , HCi. - 1) in Eq. (2.44) are expressed in terms of Fi~kn)

(k = 1, ... , HCi.) by solving the system of linear algebraic equations (2.47). [Equation (2.44)

with aijC;:? thus determined is equivalent to approximating exp (m,cx (;j2).F:Ci.(n) ((f(i) , (r) by the

HCi. -1 degree polynomial of mac; that takes the values exp(mCi.((~(k))2 j2)Fi~kn) at (r = (~(k)

(k = 1, ... , HCi.) (Lagrange interpolation).] Equation (2.44), arranged in the form of power

series of ma(;, can be written as

FiCi.(n)((f(j),(r) = exp ( _ m;(;) ~1Aij~)(mCi.(;)m,
m=O

(2.48)

where Aij~) are the constants depending explicitly on Fi~kn) and the lattice points (~(k)

(k = 1, ... , Ha) (Explicit expression of Aij~) will be given later for a special choice of

(~(k)). Finally, by substituting Eq. (2.48) into Eq. (2.43), we have the following expression

f F~Ci.(n)(r r)' f FACi.(n)a i ':,1, ':,r III terms a ijk:

Y,'(n) ((" (,) = exp ( _ "';(,') ~ ~1A~\::)Wj((1) w(,')m.
j=-N~ m=O

(2.49)

If we substitute Eq. (2.49) into Eq. (2.42), we obtain the desired expressions of G~~(n)

d AI3Ci.(n) .an lIijk ,l.e.,

where

Nt N; Hf3-1W'-1

G~~(n) = '"" '"" '"" '"" o{3ajkA~(n) A~(n)
~Jk L...J L...J L...J L...J pqab ~pa ~qb'

p=-N!:. q=-N~ a=O b=O

Nt Hf3-1

A~.Ci.(n) = '"" '"" A{3Ci.jkA~(n)
lI~Jk L...J L...J pa ~pa'

p=-N!:. a=O

(2.50a)

(2.50b)

0::1bk = G{3Ci.[w%((l)(m{3(;)aEf, W:((l)(mCi.(;)bE~] at ((1, (r) = ((f(j), (~(k)), (2.51a)

A%~jk = D[W%((l)(m{3(;)aEf] at ((1, (r) = ((f(j), (~(k)), (2.51b)

E~ = exp(-mCi.(;j2). (2.51c)

The 0::1: and A~C::jk are the universal constants in the sense that they do not depend on i

and n. Therefore, we can compute them beforehand once we have chosen the lattice points

in the (l(r-plane and the explicit form of Wj((l) (note that they depend also on mB jmA ,

but not on d~jd~). We call 0::1: and A%c::jk the numerical kernels of the collision integrals.
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In this way, the computation of the collision integrals has been reduced to the matrix

products of the numerical kernels and Aij~) that are determined by Ftjin ) and by the lattice

points (~(k). A convenient choice of (~(k) is,

(k = 1, ... , H), (2.52)

(2.53b)

(2.53a)

where Ha = H is assumed for simplicity, and Yk stands for the zeros (Yk < Yl for k < l) of

the Laguerre polynomial LH(y) of order H. Then, we obtain the following simple expression

of the solution aij~) of the system of algebraic equations (2.47):

H
a(n) _ ~ FAa(n)

aijm - L.....t Wmk ijk ,

k=l

Lm(Yk) exp(Yk/2)
wmk = H'

CH-1,H-1 L H-1(Yk) ITS=l(¥=k)(Yk - Ys)

where Cmn is the coefficient of ym in Ln(y) [see Appendix A for the derivation of Eq. (2.53)].

Equation (2.53a) leads to the concise expression of the coefficients Aij~) in Eq. (2.49) in

terms of FiJkn
) and Yk (Appendix A), i.e.,

(m> l),
(0 ~ m ~ l).

H H-1

Aa(n) _ ~~.M FAa(n)
ijm - L.....t L.....t mlWlk ijk ,

k=l 1=0

M ml = { °
Cml

2.4.C Numerical kernels of collision integrals

1 Basis functions

(2.54a)

(2.54b)

The number of the elements of the numerical kernels 0,::1: is still too large for precise

numerical computations because of its six-fold indices (j, k, p, q, a, b). However, by using a

uniform lattice system for (1 that is common to both components, i.e.,

ra(j) - r(j) - J·h
'::.1 - '::.1 - , (j = -Nm, ... ,O, ... ,Np ), (2.55)

(here N~ = Nm and N; = Np are assumed for simplicity) and by exploiting the basic proper

ties of G(3a and V, we can reduce the number of the independent elements of 0,::1: and A:~jk

significantly, as we will see below. Since Fa is expected to be a rapidly decaying function of

vimP(l, it is reasonable to use different lattice systems for individual gas components, such
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as (rW = jh/Jih,r:r·, rather than Eq. (2.55). But in this case, such reduction of the number of

the independent elements is not possible. We can perform much more efficient computation

with the lattice system (2.55).

To define the explicit form of the basis functions Wj((1) in Eq. (2.43), we introduce the

following Wj((1):

[(2£ - 2)h ~ (1 ::; 2£h],
[2£h < (1 ~ (2£ + 2)h],
(otherwise),

[2£h ~ (1 ~ (2£ + 2)h],
(otherwise) .

(2.56a)

(2.56b)

Then, in the computation of 0::1: and A~~jk, we use two different sets of basis functions

depending on the parity of j that are common to both components, i.e.,

for j = 2£ + 1. (2.57b)

W;((1) = Wp((1) = ~p((1)'

W;((1) = Wp ((1) = ~P-1((1 - h),

(p = 0, ±l, ±2, ...),

(p = 0, ±l, ±2, ...),

for j = 2£, (2.57a)

By this choice of the basis functions, Eq. (2.43) means that pt(n)((1,(r), as the function of

(1, is approximated by a piecewise quadratic function of (1 that takes the value ~a.(n)(dj
), (r)

at the lattice point (1 = dj
) (j = -Nm , ... , 0, ... , Np ). The piecewise quadratic function is

quadratic in the interval 2fh ::; (1::; 2(£+1)hforEq. (2.57a) and in (2£-1)h::; (1::; (2£+1)h

for Eq. (2.57b). [These statements are not true in a small neighborhood of the outermost

lattice point d-Nm
) or dNp

), where the value of ~a.(n)((1, (r) is negligibly small.] The use

of the two sets of basis functions is just for convenience that the lattice point dj
) under

consideration in the integrals in Eq. (2.51) is always at a node [d2
£) for Eq. (2.57a) and

d2H1) for Eq. (2.57b)] of the piecewise quadratic function. The ~P((l) defined above has

the property

- (2£) - -
Wp((l + (1 ) = Wp((l + 2£h) = Wp-U((l),

~P(-(1) = ~-P((l)'
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On the other hand, (]{3o. and Dsatisfy the following relations.

(]{3o.[f(C),g(C)](C) = (]{3o.[J(C + a),g(C + a)](C - a),

D[J(C)](C) = D[J(C + a)](C - a),

(]{3o. [J((1 , (r), g((1, (r)](O, (r) = (]{3o.[J(-(1, (r), g( -(1, (r)](O, (r),

D[J((l, (r)](O, (r) = v[J(-(1, (r)](O, (r),

(]o.o.[f(C),g(C)] = (]o.o.[g(C) , f(C)],

(]o.o.[J1 ((l)gl ((r), h((1)g2((r)] = (]o.o.[fI ((1)g2((r), h((l)gl ((r)],

(2.59a)

(2.59b)

(2.59c)

(2.59d)

(2.5ge)

(2.59f)

where f, g, etc. are arbitrary functions of the independent variables specified in the equa

tions, and the independent variables of (]{3o. and v in Eqs. (2.59a)-(2.59d) are shown in

the respective last parentheses. Equations (2.59a) and (2.59b) follow from Eqs. (2.17) and

(2.18), and Eqs. (2.59c) and (2.59d) follow from Eqs. (2.33) and (2.38). Equations (2.5ge)

and (2.59f) are essentially the same as the corresponding relation for a single-component gas,

the derivation of which is given in Ref. 76.

It follows from Eqs. (2.58a), (2.59a), and (2.59b) that

from Eqs. (2.58b), (2.59c), and (2.59d) that

n{3o.Ok = n{3o.Ok
pqab -p,-q,a,b l

and from Eqs. (2.5ge) and (2.59f) that

A{3o.Ok = A{3o.Ok
pa -p,a'

(2.60)

(2.61)

no.o.Ok _ no.o.Ok _ no.o.Ok
pqab - qpba - pqba' (2.62)

Equations (2.60) and (2.61) reduce the number of independent elements of 0,::1: from O(N6
)

to O(N5 ) and that of A~~jk from O(N4
) to O(N3

), where N is the representative number of

the lattice points of each molecular velocity component [i.e., N is of the order of Nm +Np +1

and of H].
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2 Numerical kernels

From Eqs. (2.33), (2.51a), and (2.57a), we obtain the following expression of n::~bk:

(2.63)

where

Jl = w" sin 8 + (1 - p,(3Ci /mP)z cos 8, (2.64a)

J;k) = {(w' - (~(k) sin €)2 + [w" cos 8 - (~(k) cos € - (1 - p,(3Ci /mP)z sin 8]2P/2, (2.64b)

K l = (p,(3Ci /mCi)z cos 8,

K;k) = {[(p,(3Ci /mCi)z sin 8 + (~(k) cos €]2 + ((~(k) sin €)2}1/2.

(2.64c)

(2.64d)

Because of the property (2.61), we only need n;:~bk for q > 0 and for q = 0, p ~ O. For these

p and q, Eq. (2.63) can be rewritten in the following form:

where

(q > 0),

(p ~ 0),

(2.65a)

(2.65b)

(2.66a)

(2.66b)

In Eq. (2.65a) we have omitted the part [11"/2, 11"] of the integration with respect to 8 because

~q is identically zero for the negative argument when q > O. In Eq. (2.65b), we have

reduced the integral with respect to 8 in Eq. (2.63) to that over [0, 11"/2]. This can be

done by splitting the integral into that over [0, 11"/2] and that over [11"/2, 11"], changing the

variables as w" = -w" and 8 = 11" - 8 in the latter, and taking into account the property

~p(-(d = ~-P((l)' As shown in Appendix B, Eq. (2.66b) can be integrated analytically.

Therefore, the final expression of n;:a~k contains triple integral with respect to z, €, and 8.

It is computed numerically by the Gauss-Legendre formula. loo (In the actual computation,
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we carry out the numerical integration using slightly different variables, i.e., z, €, and 0,

as shown in Appendix C.) When a = {3, e;a does not depend on z (Appendix B), and

thus the integration with respect to z in Eq. (2.66a) can be performed analytically (see

Appendix C). Hence, the final expression of n;:a~k contains double integral with respect to

f and (), which is computed numerically by the Gauss-Legendre formula. In the case of a

single-component gas, the numerical kernel for the gain term is essentially the same as n;~aobk

(Ref. 76). Therefore, only the double integral (with respect to € and 0) should be calculated

numerically to generate the numerical kernel. In the case of a binary mixture, one more

integration (with respect to z) should be carried out numerically.

On the other hand, the integration with respect to ~ in Eq. (2.38) can be carried out and

leads to the following expression for v[L]:

v[L] = 2)2I:100

[((*1 - (1)2 + ((*r + (r)2P/2en (((*1 _ (l~(:(((*r + (r)2)

x(*rL((*l, (*r)d(*rd(*l, (2.67)

where en is the complete elliptic integral of the second kind, Le.,

(2.68)

(2.69)

The two-fold integration with respect to (*1 and (*r in A:~Ok is carried out numerically by

the Gauss-Legendre formula.

2.5 Results of numerical analysis

In this section, we show the results of numerical analysis, choosing the point at which

n(Xl ) = (n_ + n+)/2 to be the origin Xl = 0 of the Xl coordinate.

2.5.A Macroscopic quantities

To show the profiles of the molecular number densities nO: and n, the flow velocities (in

the Xl direction) vI and VI, and the temperatures TO: and T, we introduce the following
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Figure 2.1: Profiles of molecular number densities, flow velocities, and temperatures for
M_ = 1.5, mB /mA = 0.5, and d~/d~ = 1. (a) X~ = 0.1, (b) X~ = 0.5, and (c) X~ = 0.9.
For this M_, the downstream values are n~ = 1.714n~, U+ = 0.5833U_, T+ = 1.495T_, and
M+ = 0.7157. Here, the solid lines indicate h, VI, and 'f for the total mixture, the dashed
lines h A, vf, and 'fA for the A-component, and the dot-dash lines hB, vf, and 'fB for the
B-component [see Eq. (2.70)].
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Figure 2.1: (continued from the previous page)
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Figure 2.2: Profiles of molecular number densities, flow velocities, and temperatures for
M_ = 3, mB /mA = 0.5, and d~/d~ = 1. (a) X~ = 0.1, (b) X~ = 0.5, and (c) X~ = 0.9.
For this M_, the downstream values are n+. = 3n~, U+ = U_/3, T+ = 3.667T_, and
M+ = 0.5222. See the caption of Fig. 2.1.
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Figure 2.3: Profiles of molecular number densities, flow velocities, and temperatures for
M_ = 1.5, mE/mA = 0.25, and d~/d~ = 1. (a) X~ = 0.1, (b) X~ = 0.5, and (c) X~ = 0.9.
For this M_, the downstream values are n+ = 1.714n~, U+ = 0.5833U_, T+ = 1.495T_, and
M+ = 0.7157. See the caption of Fig. 2.1.
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Figure 2.4: Profiles of molecular number densities, flow velocities, and temperatures for
M_ = 2, mB /mA = 0.25, and d~/d~ = 1. (a) X~ = 0.1, (b) X~ = 0.5, and (c) X~ = 0.9.
For this M_, the downstream values are n~ = 2.286n~, U+ = 0.4375U_, T+ = 2.078T_, and
M+ = 0.6070. See the caption of Fig. 2.1.
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Table 2.1: The distributions of the molecular number density n, flow velocity VI, and temperature T of the total mixture for
M_ = 1.5, mB/mA = 0.5, and d~/d~ = 1 (cf. Fig. 2.1).

n/n_ vI/(2kT_/mA)1/2 T/T_
XI/L X~ = 0.1 X~ = 0.5 X~ = 0.9 X~ = 0.1 X~ = 0.5 X~ = 0.9 X~ = 0.1 X~ = 0.5 X~ = 0.9
-00 1.000 1.000 1.000 1.405 1.581 1.846 1.000 1.000 1.000
-12 1.000 1.000 1.000 1.405 1.581 1.846 1.000 1.000 1.000
-9 1.002 1.003 1.002 1.402 1.577 1.842 1.003 1.004 1.003
-7 1.008 1.010 1.008 1.395 1.567 1.831 1.011 1.014 1.013
-5 1.028 1.033 1.030 1.367 1.534 1.793 1.042 1.046 1.045
-4 1.053 1.059 1.056 1.336 1.498 1.751 1.075 1.080 1.079

0') -3 1.094 1.102 1.098 1.285 1.442 1.685 1.127 1.131 1.131
0

-2 1.160 1.167 1.164 1.213 1.364 1.592 1.198 1.199 1.200
-1 1.250 1.255 1.253 1.126 1.269 1.479 1.277 1.274 1.277
0 1.357 1.357 1.357 1.037 1.173 1.366 1.349 1.343 1.347
1 1.462 1.458 1.459 0.962 1.090 1.270 1.404 1.398 1.402
2 1.549 1.543 1.545 0.908 1.029 1.198 1.441 1.436 1.439
3 1.612 1.606 1.607 0.872 0.987 1.151 1.464 1.460 1.462

4.5 1.668 1.663 1.664 0.843 0.952 1.111 1.481 1.479 1.480
6 1.694 1.691 1.692 0.830 0.935 1.092 1.489 1.488 1.489
9 1.711 1.710 1.710 0.821 0.925 1.080 1.493 1.493 1.494
12 1.715 1.714 1.714 0.820 0.923 1.078 1.494 1.494 1.494
00 1.714 1.714 1.714 0.820 0.922 1.077 1.495 1.495 1.495



Table 2.2: The distributions of the molecular number density n, flow velocity VI, and temperature T of the total mixture for
M_ = 3, m B /mA = 0.5, and d;;/d~ = 1 (cf. Fig. 2.2).

n/n_ vI/(2kT_/mA )I/2 T/T_
XI/L X~ = 0.1 X~ - 0.5 X~ = 0.9 X~ = 0.1 X~ = 0.5 X~ = 0.9 X~ = 0.1 X~ = 0.5 X~ = 0.9
-00 1.000 1.000 1.000 2.810 3.162 3.693 1.000 1.000 1.000
-6 1.001 1.001 1.001 2.807 3.158 3.688 1.008 1.009 1.009
-5 1.004 1.004 1.004 2.800 3.150 3.679 1.027 1.028 1.028
-4 1.012 1.013 1.013 2.778 3.125 3.649 1.084 1.087 1.088
-3 1.039 1.042 1.040 2.708 3.048 3.556 1.261 1.262 1.269
-2 1.127 1.134 1.131 2.501 2.821 3.281 1.748 1.732 1.758

0) -1.5 1.229 1.238 1.234 2.298 2.599 3.016 2.168 2.135 2.174
I--'

-1 1.400 1.409 1.406 2.019 2.294 2.654 2.659 2.607 2.656
-0.5 1.662 1.669 1.667 1.700 1.941 2.243 3.101 3.040 3.088

0 2.000 2.000 2.000 1.412 1.614 1.869 3.397 3.342 3.380
0.5 2.344 2.338 2.338 1.203 1.373 1.595 3.552 3.511 3.536
1 2.617 2.610 2.609 1.076 1.223 1.425 3.621 3.595 3.610

1.5 2.794 2.788 2.786 1.007 1.140 1.331 3.650 3.634 3.643
2 2.893 2.890 2.888 0.972 1.097 1.282 3.662 3.652 3.657
3 2.973 2.972 2.971 0.945 1.065 1.244 3.667 3.664 3.665
4 2.993 2.993 2.992 0.939 1.057 1.234 3.667 3.666 3.666
5 2.998 2.998 2.998 0.937 1.055 1.232 3.666 3.666 3.666

00 3.000 3.000 3.000 0.937 1.054 1.231 3.667 3.667 3.667



Table 2.3: The distributions of the molecular number density n, flow velocity VI, and temperature T of the total mixture for
M_ = 1.5, mB /mA = 0.25, and d~/d~ = 1 (cf. Fig. 2.3).

n/n_ vr/(2kT_/mA)I/2 T/T_
Xr/L X~ = 0.1 X~ = 0.5 X~ = 0.9 X~ = 0.1 X~ = 0.5 X~ = 0.9 X~ = 0.1 X~ = 0.5 X~ = 0.9
-00 1.000 1.000 1.000 1.424 1.732 2.402 1.000 1.000 1.000
-12 1.000 1.002 1.001 1.423 1.730 2.400 1.000 1.002 1.001
-10 1.001 1.005 1.003 1.422 1.726 2.396 1.002 1.006 1.004
-8 1.005 1.013 1.010 1.417 1.714 2.382 1.007 1.016 1.013
-6 1.017 1.036 1.030 1.401 1.685 2.342 1.024 1.042 1.039

-4.5 1.043 1.071 1.064 1.369 1.638 2.274 1.059 1.081 1.081
Q') -3 1.100 1.133 1.129 1.300 1.558 2.157 1.129 1.146 1.150tv

-2 1.165 1.195 1.193 1.229 1.484 2.050 1.197 1.203 1.209
-1 1.253 1.271 1.271 1.143 1.397 1.930 1.273 1.265 1.271
0 1.357 1.357 1.357 1.054 1.307 1.810 1.344 1.324 1.328
1 1.460 1.444 1.441 0.979 1.224 1.702 1.399 1.375 1.376

2.5 1.581 1.554 1.546 0.903 1.130 1.579 1.450 1.430 1.427
4 1.651 1.628 1.618 0.863 1.072 1.501 1.475 1.461 1.457
6 1.693 1.680 1.671 0.841 1.035 1.445 1.488 1.481 1.478
8 1.708 1.702 1.696 0.834 1.019 1.420 1.492 1.489 1.487
10 1.713 1.710 1.707 0.831 1.013 1.409 1.493 1.492 1.491
12 1.715 1.714 1.712 0.831 1.011 1.404 1.493 1.493 1.493
00 1.714 1.714 1.714 0.831 1.010 1.401 1.495 1.495 1.495



Table 2.4: The distributions of the molecular number density n, flow velocity VI, and temperature T of the total mixture for
M_ = 2, m B /mA = 0.25, and d;;/d~ = 1 (d. Fig. 2.4).

n/n_ vI/(2kT_/mA )I/2 T/T_
XI/L X~ = 0.1 X~ = 0.5 X~ = 0.9 X~ = 0.1 X~ = 0.5 X~ = 0.9 X~ = 0.1 X~ = 0.5 X~ = 0.9
-00 1.000 1.000 1.000 1.898 2.309 3.203 1.000 1.000 1.000
-8 1.001 1.002 1.001 1.897 2.306 3.200 1.001 1.004 1.002
-6 1.004 1.010 1.006 1.892 2.293 3.187 1.010 1.021 1.014
-4 1.026 1.050 1.037 1.857 2.232 3.107 1.065 1.098 1.087
-3 1.065 1.105 1.088 1.794 2.148 2.984 1.159 1.198 1.195
-2 1.157 1.211 1.195 1.658 1.992 2.749 1.347 1.366 1.381

0} -1.5 1.238 1.291 1.280 1.552 1.882 2.587 1.479 1.474 1.496
~

-1 1.348 1.392 1.386 1.426 1.753 2.404 1.620 1.588 1.613
-0.5 1.486 1.511 1.510 1.292 1.614 2.218 1.752 1.700 1.720

0 1.643 1.643 1.643 1.167 1.478 2.042 1.860 1.798 1.811
0.5 1.799 1.776 1.773 1.063 1.357 1.889 1.938 1.878 1.882
1 1.938 1.899 1.890 0.985 1.258 1.764 1.991 1.940 1.937
2 2.129 2.088 2.068 0.894 1.127 1.592 2.046 2.015 2.006
3 2.222 2.194 2.174 0.855 1.062 1.498 2.066 2.050 2.042
4 2.261 2.246 2.230 0.840 1.033 1.449 2.073 2.065 2.060
6 2.283 2.279 2.273 0.832 1.014 1.413 2.077 2.075 2.073
8 2.286 2.285 2.283 0.831 1.011 1.404 2.077 2.077 2.076

00 2.286 2.286 2.286 0.831 1.010 1.401 2.078 2.078 2.078



(2.70c)

(2.70a)

(2.70b)

quantities:

nOl - nOl n n
iiOl(XI ) = 01 ~ , ii(XI ) = - -,

n+ - n_ n+ - n_

-01(X ) _ vf - U+ - (X ) _ VI - U+
VI I - U__ U+ ' VI I - U_ - U+ '

tOl(X) = TOI -T_ t(X) = T-T_
I T+ _ T_ ' I T+ - T_'

where a = A, B. The distributions of these variables are shown in Figs. 2.1-2.4: Fig. 2.1

is for M_ = 1.5, m B /mA = 0.5, and d~/d~ = 1; Fig. 2.2 for M_ = 3, mB /mA = 0.5, and

d~/d~ = 1; Fig. 2.3 for M_ = 1.5, mB /mA = 0.25, and d~/d~ = 1; and Fig. 2.4 for M_ = 2,

m B /mA = 0.25, and d~/d~ = 1. The downstream values n~, U+, T+, and M+ are given

in the respective captions. The values of n(XI ), VI (XI), and T(XI ) of the total mixture,

which are obtained from the values at the lattice points by interpolation, are also shown

in Tables 2.1-2.4 for the cases corresponding to Figs. 2.1-2.4. The macroscopic variables

of the light component (B-component) start to deviate from their upstream uniform values

earlier than the corresponding variables of the heavy component (A-component). Then,

the number density nB and flow velocity vf of the light component reach their downstream

uniform values n~ and U+ earlier. However, the temperature of the heavy component T A

rises more steeply and exceeds that of the light component T B at a point inside the shock.

Then, the former approaches the downstream equilibrium temperature monotonically or once

becomes higher than the downstream temperature and then decreases to it [Figs. 2.2(c) and

2.4(c)]. These features appear more clearly when the mass ratio mB /mA is small (Figs. 2.3

and 2.4).

The aforementioned nonmonotonic distribution of the temperature T A of the heavy com

ponent manifests itself when the concentration of the light component X~ is large and the

shock wave is not weak. This phenomenon has already been shown by the computations in

the early stages92 ,96 and has been known as the temperature overshoot.36,97 As mentioned

at the end of Sec. 2.2.B, however, the following T::, which is different from our TOI, is often

adopted as the temperature of the individual components in the literature:

T:: = (3knOl )-1 JmOl(~i - ,!1I6il)2FOIde.

The comparison of T*OI with TOI is given in Fig. 2.5, where t:: is defined by
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Figure 2.5: Profiles of TCt and T:: (a = A, B) for d~/d~ = 1. (a) M_ = 3, mB /mA = 0.5,
X~ - 0.9, (b) M_ = 3, mB /mA = 0.5, X~ = 0.95, (c) M_ = 2, mB /mA = 0.25, X~ = 0.9,
and (d) M_ = 2, mB /mA = 0.25, X~ = 0.95. Here, the solid line indicates t A and t B [see
Eq. (2.70c)], and the dashed line t:-- and t! [see Eq. (2.72)].
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Figure 2.6: Distribution of the components PI1 and Pll of the stress tensors for X~ = 0.5
and d~/d~ = 1. (a) M_ = 1.5, mB /mA = 0.5, (b) M_ = 3, mB /mA = 0.5, (c) M_ = 1.5,
mB/mA = 0.25, and (d) M_ = 2, mB/mA = 0.25. Here, the solid line indicates (Pu - p)/p_,
the dashed line (pt1 - pA)/p_, and the dot-dash line (pfI - pB)/p_, where p_ = kn_T_.
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Figure 2.6: (continued from the previous page)
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Figure 2.7: Distribution of the components ql.and ql of the heat-flow vectors for X~ = 0.5
and d~/d~ = 1. (a) M_ = 1.5, m B /mA = 0.5, (b) M_ = 3, m B /mA = 0.5, (c)
M_ =:: 1.5, m B /mA = 0.25, and (d) M_ = 2, m B /mA = 0.25. Here, the solid line indi
cates -qIfp_(2kT_/mA)1/2, the dashed line -qf/p_(2kT_/mA)1/2, and the dot-dash line
-qp/p_(2kT_/mA )1/2, where p_ = kn_T_.

68



0.4 ,--------,----.---------r-----,

-qf

8 16
XI/L

-qf

-8 0

/' ,
/ /",

/ / "',
./ / "',oL--=,,",-:;.;;-.==-:t.:'::::.-:....-/__..I..--_--::..::::::=J:=-==--.J

-16

0.2

(c)

1.5,------,----.--------,------,

-qf

5 10
XI/L

-qf

o-5

1

OL-_~=_= .L__--2...:~=_ ___J

-10

0.5

(d)

Figure 2.7: (continued from the previous page)

69



As is seen from the figure, the overshoot is observed more clearly for T*A.

Finally, we show the distributions Ofpl.\ - pO< and Pn - P in Fig. 2.6 and those of qf and

qi in Fig. 2.7.

2.5.B Velocity distribution functions

Next we show the behavior of the velocity distribution functions. Figures 2.8-2.11

show the nondimensional velocity distribution functions po< (XI, (1, (r) [= (2kT_/mA)3/2n=I

po< (XI, ~I, ~r); ~r = (~~ + ~~)I/2] (a = A, B) as functions of (1 [= (2kT_/mA)-I/26] and (r

[= (2kT_/mA)-I/2~r] at several points in the gas for X~ = 0.5 and d!:t/d~ = 1; Figs. 2.8

and 2.9 are for M_ = 3 and mB /mA = 0.5, and Figs. 2.10 and 2.11 are for M_ = 2 and

mB /mA = 0.25. Here, in consistency with the figures and tables in Sec. 2.5.A, the posi

tions in the gas are indicated by using the dimensional coordinate Xl' The equilibrium

distributions at upstream infinity and those at downstream infinity are also shown in the fig

ures. Compared with the upstream Maxwellians, the downstream Maxwellians, the centers

of which are shifted (from U_ to U+ in the dimensional ~i space), have lower heights and

larger extents because of the increase of the temperature at downstream infinity. The figures

clearly demonstrate the transition of the velocity distribution functions from the upstream

to the downstream Maxwellians. In Figs. 2.8 and 2.9, corresponding to the peaks of the

upstream and downstream Maxwellians, two small lumps are observed both in pA and fi'B

in the transition region [Figs. 2.8(c)-2.8(e) and 2.9(c)-2.9(e)]. As is seen from Eqs. (2.21)

and (2.22) and from Figs. 2.8-2.11, smaller mass ratio mB/mA makes the height of fi'B lower

and its extent larger for a fixed X~.

In Figs. 2.12-2.15, we show fi'A and fi'B at (r = 0.15 as functions of (1 for several points

in the gas. Figs. 2.12-2.15 correspond to the cases of Figs. 2.1-2.4, respectively, but the

results for X~ = 0.95 are also included in the former figures.

2.5.C Comparison with the DSMC computation

We have also carried out the computation of the problem by means of the standard DSMC

method by Bird36 for hard-sphere molecules in several cases. We here give some comparisons

of the DSMC result with our present computation. Figure 2.16 shows the profiles of the

macroscopic variables corresponding to Figs. 2.2(b) and 2.4(b), i.e., M_ = 3, X~ = 0.5,
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Figure 2.8: Dimeusiouless velocity distribution function FA at eight points in the gas for
M- = 3, xl! = 0.5, mB /mA = 0.5, 3Ild d~/d~ = 1 [ef. Fig.2.2(b)J. (a) X,fL = -00, (b)
X,/L = -1, (c) X,fL = -0.2, (d) XI/l- = 0.3, (e) X,fL = 0.6, (f) X,fL = 0.9, (g)

X1/L = 1.4, and (h) XdL = 00.

71



Figure 2.9: Dimensionless velocity distribution functiou i'B at eight points in the gas for
M_ = 3, X~ = 0.5, mB /mA = 0.5, and d:;'/d{:, = 1 [d. Fig. 2.2(b)]. (a) X,/L = -00, (b)
X,/L = -1, (c) X,fL = -0.2, (d) X,fL = 0.3, (e) X,/L = 0.6, (f) X,fL = 0.9, (g)

X1/L = 1.4, and (h) XI/L == 00.
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Figure 2.10: Dimensionless velocity distribution function FA at eight points in the gas for
M_ = 2, X~ = 0.5, mB /mA = 0.25, and d~/d~ = 1 [cf. Fig. 2A(b)]. (a) XIiL = -00,

(b) XIiL = -2, (c) XI/L = -1, (d) XI/L = -0.2, (e) XI/L = 004, (f) XI/L = 1, (g)
XI/L = 2, and (h) XI/L = 00.
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Figure 2.11: Dimensionless velocity distribution function FB
at eight points in the gas for

M- = 2, X~ = 0.5, mB/mA = 0.25, and d'/,./d~ = 1 [ef. Fig.2.4(b)]. (a) X,/L = -00,

(b) X,/L = -2, (c) X,jL = -1, (d) X,jL = -0.2, (e) X,jL = 0.4, (f) X,/L = 1, (g)

Xt!L = 2, and (h) Xt!L = 00.
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Figure 2.12: Dimensionless velocity distribution functions FA and FB at (1' = 0.15 for
M_ = 1.5, mBImA = 0.5, and d~/d~ = 1. (a) FA, (b) FB.The FA and F B at several
points in the gas are shown for X~ = 0.1, x~ = 0.5, X~ = 0.9, and X~ = 0.95.
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Figure 2.13: Dimensionless velocity distribution functions pA and pE at (r = 0.15 for
M_ = 3, mE/mA = 0.5, and d~/d~ = 1. (a) PA, (b) PE. See the caption of Fig. 2.12.
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Figure 2.15: Dimensionless velocity distribution functions FA and FB at (r = 0.15 for
M_ = 2, mB/mA = 0.25, and d~/d~ = 1. (a) FA, (b) FB. See the caption of Fig. 2.12.
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Figure 2.16: Comparison with the DSMC results: Profiles of molecular number densities,
flow velocities, and temperatures. (a) M_ = 3, X~ = 0.5, mB /mA = 0.5, and d~/d~ = 1 [see
Fig. 2.2(b)], (b) M_ = 2, X~ = 0.5, m B /mA = 0.25, and d~/d~ = 1 [see Fig. 2.4(b)]. The
results obtained by the DSMC method are shown by the symbols. (fi, 'ih, and 'f), 0 (fiA,
vf, and 'fA), and D. (fiB, vf, and 'fB). The results by the present finite-difference method
are shown by the solid line (fi, VI, and 'f), dashed line (fiA, vf, and 'fA), and dot-dash line
(fiB, vf, and 'fB). The short vertical bar above the profiles indicates the standard deviation
of the samples for fi at the corresponding point, and that below the profiles 'the larger value
of the standard deviation for fiA and that for fiB.
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80



0.04 0.02

'«:

I" }: pA I
t:l:l

<~ <~

--;; - }: pB
0.02 0.01

(c) XI/L = 1.05

Figure 2.17: (continued from the previous page)

81



m B /mA = 0.5, and d~/d~ = 1 [Fig. 2.16(a)], and M_ = 2, X~ = 0.5, m B /mA = 0.25, and

d~/d~ = 1 [Fig. 2.16(b)]. In the figures, the DSMC results are shown by the symbols ., 0,

and ~, whereas the results of our present computation by the solid, dashed, and dot-dash

lines as in Figs. 2.1-2.4. On the other hand, Fig. 2.17 shows the comparison of the velocity

distribution function for the case of Fig. 2.16(a). To be more specific, the dimensionless

velocity distribution functions FA and FB at (r = 0.15 and 1.35 are shown as the functions

of (1 for three points in the gas. The DSMC results show good agreement with those of

the present computation for the velocity distribution function as well as for the macroscopic

variables. The data about the present DSMC computation are as follows: 400 cells of a

uniform size with length of O.lL are used, and the average number of simulation particles

per cell is about 250 for each component in Fig. 2.16(a) and about 200 for each component in

Fig. 2.16(b); the time step is O.OlL, where L = L(2kT_/mA)-1/2; after the steady state has

been established, the time average of 10,000 samples with sampling interval 0.5L is taken,

and the average is shown in Figs. 2.16 and 2.17. The short vertical bar above the profiles in

Fig. 2.16 indicates the standard deviation of the 10,000 samples for fi at the corresponding

point, and that below the profiles indicate the larger value of the standard deviation for fiA

and that for fiB.

2.6 Data for computation and its accuracy

In this section, we use the original Xl (or Xl) coordinate system, not the rearranged system

used in Sec. 2.5, unless the contrary is stated.

Table 2.5: Lattice systems in the molecular velocity space.

Nm Np h H d Nm ) dNp ) (a(l) (1) (a(H). (H)
r or r r or r

(M1) 26 34 0.25 14 -6.5 8.5 0.3158 6.6608
(M2) 44 56 0.15 14 -6.6 8.4 0.3158 6.6608
(M3) 60 73 0.15 14 -9.0 10.95 0.3158/Vma 6.6608/Vma

(M4) 66 81 0.15 14 -9.9 12.15 0.3158/Vma 6.6608/~
(M5) 44 56 0.15 18 -6.6 8.4 0.2796 7.6870
(M6) 60 73 0.15 18 -9.0 10.95 0.2796 7.6870
(M7) 44 56 0.15 14 -6.6 8.4 0.3158/~ 6.6608/Vma

(M8) 60 73 0.15 14 -9.0 10.95 0.3158/~ 6.6608/~
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2.6.A Lattice systems

We first summarize the lattice systems that are used in the actual computation. For the

molecular velocity space, the four lattice systems (M1), (M2), (M3), and (M4) given in

Table 2.5 are used [see Eqs. (2.52) and (2.55)]. The reason why the bar is put on M1 and M2

is that, in (M1) and (M2) systems, (r-Iattice points slightly different from those explained

in Sec. 2.4.B [cf. Eq. (2.52)] are used. That is, we assume the form

2 H-I

FiQ(n)((~(j),(r)= exp ( - ;) Laij~)Lm((;),
m=O

instead of Eq. (2.44) and use

(2.73)

(k = 1, ... , H), (2.74)

instead of Eq. (2.52). As a result, the forms of numerical kernels n::~bk and A:~Ok undergo

slight changes (In fact, n~~gk = nffq~gk holds and A:~Ok becomes independent of the labels a

and (3, which are the advantage of this choice). Since the changes are rather straightforward,

we omit them here. This choice works when the molecular masses mA and m B are not very

different (0.5 ;S mB /mA when mB < mA ). The edges of the domain in (1, Le., d-Nm
) and

dNp
), and the first and last lattice points in (r, Le., (~(l) and (~(H) (or (P) and dH

)), for the

systems (M1), (M2), (M3), and (M4) are also shown in Table 2.5. The computer memory

required for the numerical kernels corresponding to these four systems is: (M1): 263MB,

(M2): 720MB, and (M3): 1.4GB, and (M4): 1.7GB.

The lattice system for the space coordinate Xl is defined by

(i = -ND , ..• ,0, ... , ND ), (2.75)

where

r;;;B A BV ffiAX- + X-
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and erf(x) is the error function defined by Eq. (Bll) (Appendix B). Equation (2.75) means

that the Xl coordinate is rescaled by hL and then the lattice points are set in the rescaled

coordinate XI!foL. This is because in the XI/hL coordinate, the shock thickness is less

sensitive to the change in the parameters mB /mA
, d;;/d~, and X~ than in the XI/L (or Xl)

coordinate. However, h is almost unity (0.973 < h < 1) for the values of the parameters

chosen in our computation. We use the following two systems for the computation:

(81): D' = 10y0f (= 17.7245), ND = 25, d' = 0.05y0f (= 0.088623),

(82): D' = 10y0f, ND = 50, d' = 0.05y0f.

The lattice interval is minimum at Xl = 0 [XiI) - xiO) = 0.177310 for (81) and 0.08863h

for (82)] and increases, with the increase of lXII, to the maximum value at the edge of the

domain, IXII = 17.724516 [XiND ) - XiND
-

I) = 2.264h for (81) and 1.13716 for (82)].

The data for (M_ = 1.5, mB /mA = 0.5) in 8ec. 2.5 are based on the (M2; 82) system,

those for (M_ = 3, mB /mA = 0.5) are based on the (M3; 82) system, and those for mB /mA =

0.25 are based on the (M4; 82) system. The (M1) and (81) systems are used for-accuracy

test. The computing time for one iteration [the steps (i)-(iv) in 8ec. 2.2.A] in a parallel

computation using ten CPU's on a VPP800 computer (see the last paragraph of 8ec. 2.7)

is as follows: 9 sec for (M1; 82) system; 46 sec for (M2; 82) system; 99 sec for (M3; 82)

system; and 142 sec for (M4; 82) system.

2.6.B Criterion for convergence

In order to save the number of iterations, we use the following initial distributions Fi~kO). For

X~ = 0.5, we first compute the corresponding numerical solution of the model Boltzmann

equation proposed by Garz6 et al. 62 by a finite-difference method and use the solution as

Fi~kO). Then we carry out the iteration process described in 8ec. 2.4.A to obtain the desired

solution for X~ = 0.5. For other values of X~, we use Fi~kO) obtained by suitable modification

of the solution (of the Boltzmann equation) for X~ = 0.5.

In the actual computation, however, even after the profiles of the macroscopic variables

seem to have converged, the profiles move by a small but almost constant value in each

iteration. This is due to the fact that the Rankine-Hugoniot relation, Eq. (2.1), is not

satisfied exactly because of the computational error. Therefore, we set the following criterion

for the convergence. Let us denote by n,(m)(XI) the dimensionless number density n(Xd/n-
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of the total mixture corresponding to the solution ~jkm) at the mth step of iteration, and

let us denote by Sm the Xl coordinate at which n(m) (Xl) takes"the value (1 + n+/n_)/2 [i.e.,

n(at mth iteration) = (n_ + n+)/2 at Xl = Sm]. That is, Xl = Sm is the center of the shock

wave at the mth iteration. Now we introduce the shift of the center in 20 steps, i.e.,

(1 = 1,2, ... ). (2.77)

Then, we examine the change of the profile of the number density relative to the center in

the 20 steps, i.e., we introduce the following quantity:

(~nhOI = mF {In(201)(x~i) + (~ShOI) - n(20(I-l))(x~i))1

at i = 0, ±5, ±1O ... (Iii < ND )} • (2.78)

Here, the values n(201)(x~i) + (~ShOI) are computed by means of interpolation. When the

condition (~nhOI < 10-5 is satisfied, we stop the iteration judging that the solution has

converged. Then, we regard the result of the last iteration as the desired steady solution.

The necessary iteration steps n*, the shift of the center (~S)n. in the final 20 steps, and

the difference 1(~S)n. - (~S)n.-2ol between the shift in the final 20 steps and that in the

preceding 20 steps in the cases of Figs. 2.1(b), 2.2(b), 2.3(b), and 2.4(b) are as follows:

n* = 280, (~S)n. = 2.80 X 10-3
, I(~S)n. - (~S)n.-201 = 4.83 X 10-5 for Fig. 2.1(b);

n* = 320, (~S)n. = 7.34 x 10-4, 1(~S)n. - (A.B)n.-201 = 1.90 x 10-6 for Fig. 2.2(b);

n* = 360, (~S)n. = 8.50 X 10-3
, 1(~S)n. - (~S)n.-201 = 7.36 X 10-5 for Fig. 2.3(b);

n* = 480, (~S)n. = 2.70 X 10-3
, 1(~S)n. - (~S)n.-201 - 1.45 X 10-5 for Fig. 2.4(b).

The initial distributions FijiO) are arranged in such a way that the center of the shock

at the final stage of iteration stays in the vicinity of the origin of the original coordinate

system. As a result, if we denote by Xl = Sn. the position of the center at the final stage,

ISn.1 is less than 0.6 for all the cases in Sec. 2.5.

2.6.C Accuracy of computation

The accuracy of computation can be estimated by comparing the macroscopic quantities

for the different lattice systems. Let cr(M,8) represent n, Vl, and T obtained by the use

of lattice systems (M, 8) (M= Ml, M2, and M3, and 8=81 and 82). We introduce the
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maximum difference of the two results based on two different lattice systems (M, 8) and

(M', 8') by

D(M', 8'; M, 8) = max (max la(M', 8') - a(M, 8) I) ,
u=n,vl,T Xl a(M, 8)

(2.79)

where la(M', 8') - a(M, 8) IIa(M, 8) is evaluated at about 2,000 uniformly distributed points

in the rearranged Xl coordinate system (see the first sentence of 8ec. 2.5) by means of

interpolation, and the maximum with respect to Xl is taken over these points. The values

of 0 for some test computations for mB ImA = 0.5, d~/d~ = 1, and M_ = 1.5 or 2 are given

as follows.

8.09 X 10-4 ,

1.97 X 10-3 ,

D(M1, 82; M2, 82) = 1.23 x 10-3,

6.57 X 10-4 ,

5.78 X 10-4 ,

D(M1, 82; M3, 82) = 1.30 x 10-3
,

D(M2, 82; M3, 82) = 4.17 x 10-\

D(M2, 81; M2, 82) = 1.46 x 10-3
,

(M_ = 1.5, X~ = 0.95),
(M_ = 2, X~ = 0.1),
(M_ = 2, X~ = 0.5),
(M_ = 2, X~ = 0.9),
(M_ = 2, X~ = 0.95),

(M_ = 2, X~ = 0.5),

(M_ = 2, X~ = 0.5),

(M_ = 2, X~ = 0.5).

Another measure of accuracy is given by the conservation laws. That is, by integrating

Eq. (2.5) (a = A, B), L:a=A,B[ma6 x Eq. (2.5)], and L:a=A,B[ma~J x Eq. (2:5)] over the

whole space of ~i respectively and by taking into account the fact that the gas is in the

equilibrium distribution (2.10) (for all 6) at upstream infinity, we have

Jft =!6Fade = nC:U_,

Jp =! L ma~~Fade = kn_T_ + p_U:,
a=A,B

JE = ~! L ma6~JFade = ~U_(5kn_T_ + p_U:),
a=A,B

(2.80a)

(2.80b)

(2.80c)

where p_ = L:a=A,B man~. Here, JM, Jp , and JE are, respectively, the flux in the Xl

direction of the particle of the a-component, that of the Xl component of the total momen

tum, and that of the total energy. The JM, Jp , and JE do not depend on Xl theoretically.

But, in the actual computation, the values of these fluxes deviate slightly from the RH8's

of Eq. (2.80) and vary with Xl because of the computational error. This deviation provides

a measure of accuracy of the computation. Let us denote by (JM)e, (JP)e, and (JE)e the
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fluxes JAi, Jp , and JE obtained by the numerical computation and by (JAi)e, (JP)e, and

(JE)e their exact values [i.e., RHS's of Eq. (2.80)]. Then, we introduce the following relative

difference:

(2.81)

where the maximum with respect to Xl is taken over the original lattice points. For the

results shown in Sec. 2.5, we give the estimate of E here. For mB /mA = 0.5 and d~/d~ = 1

(cf. Figs. 2.1, 2.2, 2.12, and 2.13),

1
4.55 X 10-4 , (M_ = 1.5, X~ = 0.1),

E < 1.7.7 x 10-\ (M_ = 1.5, X~ = 0.5, 0.9, 0.95),
- 2.12 x 10-\ (M_ = 3, X~ = 0.1, 0.5),

3.51 x 10-\ (M_ = 3, X~ = 0.9, 0.95),

and for mB /mA = 0.25 and d~/d~ = 1 (cf. Figs. 2.3, 2.4, 2.14, and 2.15),

{

5.71 x 10-\ (M_ = 1.5, X~ = 0.1, 0.5),
E ::; 3.72 x 10-\ (M_ = 1.5, X~ = 0.9, 0.95),

3.19 x 10-4
, (M_ = 2, X~ = 0.1,0.5, 0.9, 0.95).

Next, we give some information about the values of the velocity distribution functions at

(or near) the edges of the range of computation in Xl and 6 for the results given in Sec. 2.5.

For convenience, we use the nondimensional form in the following discussions. Let F::. ((1, (r)

and F'+((ll (r) denote the upstream Maxwellian [Eq. (2.21) for all (I] and the downstream

one [Eq. (2.22) for all (I], respectively. Then, the maxima of F::. and F.+ are, respectively,

(F::')max = 7r-3/2(in/~)3/2X~ and (F'+)max = 7r-3/2(ma)3/2X~(n+/n~)(T+/T_)-3/2. At the

edge of the computational range in (ll i.e., at (I = d-Nm ) and dNp
) (cf. Table 2.5), the

value of Fa are

FA/(FA) <{. 1.95 X 10-
12

,
- max - 4.35 X 10-19 ,

{

1.62 X 10-8,

FB /(F!)max ::; 1.10 x 10-6
,

8.08 X 10-7,

(M_ = 1.5,3, mB /mA = 0.5),
(M_ = 1.5, 2, mB /mA = 0.25),

(M_ = 1.5, mE/mA = 0.5, 0.25),
(M_ = 3, mE/mA = 0.5),
(M_ = 2, mB /mA = 0.25).

It is noted that the range in (r is not truncated in our computation. On the other hand, the

computational range in Xl is IXII ::; D (= 17.724515) (cf. Sec. 2.6.A). Let us introduce the

following maximum difference between Fa and F.+ and that between Fa and F::.:

(2.82)
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3.31 X 10-5,

2.60 X 10-4,

2.69 X 10-5,

For -D ::; Xl < -14.5Ja,

[M"l-:'O {

and for 14.5/0 < Xl ::; D,

[D..Fa ] < { 1.88 X 10-
3

,
+ - 2.67 X 10-3,

(M_ = 1.5, 3, mB ImA = 0.5),
(M_ = 1.5, mB ImA = 0.25),
(M_ = 2, mB ImA = 0.25),

(M_ = 1.5, 3, mB ImA = 0.5),
(M_ = 1.5, 2, mB ImA = 0.25),

where Xl is the original coordinate system.

Since the size of the present computation is quite large, we cannot perform the accuracy

test in a more systematic way. However, concerning the accuracy of the collision integrals,

we can obtain a measure of accuracy by computing the gain and loss terms numerically for

Maxwellian distributions and comparing the result with the exact values. If we insert F::
and F+ in the RHS of Eq. (2.16), each collision term G,Ba[it F±] - v[F~]F± vanishes, and

therefore, we have

(2.83)

(2.84a)

(2.84b)

The middle term v[F~]F± can be calculated exactly and gives the exact F~a((l' (r)' On

the other hand, the numerical values corresponding to the first and second terms, say G~jk

and v~jkF:±jk [F:±jk = F:±((ij\ (,?(k))] , can be computed from Eqs. (2.50a) and (2.50b) and

Eq. (2.54a) with Fi~kn) = F:±jk' We compare G~jk and v~jkF:±jk with F~a((l' (r) to get an

estimate of the accuracy. In this check, if we compare the values only for a fixed (r-lattice

point (,?(k) , we need to construct the numerical kernels n::aobk and A:c;°k only for the (,?(k) ,

so that a more variety of the lattice systems for the (1(r-plane can be checked. We consider

the lattice systems (M5), (M6), (M7), and (M8) in Table 2.5 in addition to (M1), (M2),

(M3), and (M4). The bar on (M5), etc., has the same meaning as in (M1) and (M2). Let us

introduce the following maximum difference relative to the maximum value of F~a:

G,Ba = max IC,Ba.. - F,Ba(r(j) ra(k)) II max F,Ba± . ±Jk ± ':,1 '':,r I" ±,
J .,1

L,Ba = max Iv,B~ Fa. _ F,Ba(r(j) ra(k))l/maxF,Ba± . ±Jk ±Jk ± ':,1 ''>r I" ± .
J .,1

In the case of d~/d~ = 1 and X~ = 0.1, 0.5, 0.9, and 0.95, the G~a and L~a for (,?(k) = (,?(1)

[or (~(k) = ($1)] (cf. Table 2.5) are estimated as follows:

G~a ::; 3.23 X 10-4,

G~a ::; 3.98 X 10-5 ,

L~a ::; 4.61 X 10-5,

L~a ::; 6.31 X 10-6 ,
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for M_ = 1.5 and mB /mA = 0.5;

G~O! ::; 3.93 X 10-5 ,

G~O! ::; 1.33 X 10-4,

for M_ = 3 and mB /mA = 0.5; and

L~O! ::; 5.28 X 10-6,

L~O! ::; 2.81 X 10-4 ,

[for (M3)],

[for (M7)],

[for (M4) and (M8)],

for M_ - 1.5 and 2 and mB /mA = 0.25.

2.7 Concluding remarks

In this chapter, we have investigated the structure of a normal shock wave for a binary gas

mixture on the basis of the Boltzmann equation for hard-sphere molecules. Extending the

numerical kernel method developed in Ref. 76 for a single component gas to the case of a

binary mixture, we have constructed an accurate method to compute the collision integrals

(Sees. 2.4.B and 2.4.C). Then, we have analyzed the problem by an accurate finite-difference

method in which the numerical kernel method is incorporated (Sec. 2.4.A). As a result,

the transition from the upstream to the downstream state was clarified for the velocity

distribution functions as well as for the macroscopic variables (Sec. 2.5). The accuracy of

the computation was also examined carefully (Sec. 2.6.C). The numerical kernels constructed

in this chapter can be applied to any problems in which the velocity distribution functions

are of the form of Eq. (2.28).

In the present method, the collision integrals are approximated by using the values of

the velocity distribution functions at the discrete lattice points in the molecular velocity

space. One of the important mathematical questions relevant to this type of method is

whether or not the approximated collision integrals converge to the real collision integrals

of the Boltzmann equation when the lattice interval in the molecular velocity space tends

to zero. For a single-component gas, a positive answer was given recently for some different

types of discretization of the collision integrapOl-103 In all of them, the discretization is

made in such a way that the mass, momentum, and energy are conserved exactly in each

collision. In this point, these conservative methods (or discrete velocity models) are different

from the methods of Ref. 76 and the present study, in which the conservation laws are not
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satisfied artificially but are satisfied approximately within the error of computation. In the

latter methods, therefore, the conservation laws can be used as a measure of accuracy (see

Sec. 2.6.C).

The present computation was carried out on Fujitsu VPP800/63 computer at the Data

Processing Center, Kyoto University, Fujitsu VPP800/12 computer at the Institute of Space

and Astronautical Science, and VT-Alpha 533 and 600 Workstations at the Section of Dy

namics in Aeronautics and Astronautics, Department of Aeronautics and Astronautics, Ky

oto University.
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Chapter 3

Heat transfer in a binary gas mixture between
two parallel plates 104

3.1 Introduction

The problem of heat transfer and temperature distribution in a rarefied gas between two

parallel plates with different temperatures is one of the classical problems in rarefied gas

dynamics, and a large number of theoretical and experimental works have been devoted to

this problem, especially in the case of single-component gases (see, e.g., Refs. 105-107,85

and the references cited in Refs. 107,85). Early theoretical works covering a wide range

of the Knudsen number were mainly based upon either moment and variational methods,

containing arbitrary assumptions on the form of the velocity distribution function, or nu

merical analysis using model Boltzmann equations. Only in 1989, Ohwada et al. 107 reported

an accurate numerical solution of the linearized Boltzmann equation for a hard-sphere gas

in the case of a small temperature difference between the plates. Their solution method

was a finite-difference method, in which the collision integral was computed efficiently as

well as accurately by the numerical kernel method developed by Sone et al. 77 Subsequently,

Ohwada extended the method to the collision integral of the full Boltzmann equation in his

shock-structure analysis76 and then applied it to the heat-transfer problem for a nonsmall

temperature difference between the plates.85,86

As for the case of binary gas mixtures, the accumulation of the results is not satisfactory,

though some analyses (by means of a moment method) as well as experiments were per

formed in 1970'S.108,109 In this chapter, therefore, we investigate the heat-transfer problem

for a binary mixture of hard-sphere gases on the basis of the full Boltzmann equation for a

large temperature difference, aiming to provide an accurate numerical solution that can be

regarded as a standard for the problem. In Chap. 2, we have extended Ohwada's numerical

kernel method for the nonlinear collision integral to the case of binary mixtures in the study

of shock wave structure.70 The same method is employed in the present analysis.
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3.2 Problem

Consider a rarefied mixture of two gases, say components A and B, in the domain 0:::; Xl :::;

D between two parallel plane walls at rest, where Xi is a rectangular coordinate system in

space. Let the wall at Xl = 0 be kept at temperature T1 and that at Xl = D at temperature

TIl' Investigate the steady behavior of the mixture (temperature distribution, heat flow,

etc.) on the basis of kinetic theory under the following assumptions:

(i) The molecules of each component are hard spheres, and the interaction between two

gaseous molecules is the complete elastic collision.

(ii) The molecules of each component are reflected according to the diffuse reflection condition

on the walls.

3.3 Basic equation

Let e= (6, 6, 6) be the molecular velocity and FO!(Xl , e) the velocity distribution function

of the molecules of a-component (a = A, B). The Boltzmann equation in the present

problem is written as

c aFO! = '"' Jf3O!(Ff3 Fa)
<,,1 aX

l
L..J "

f3=A,B
(a = A,B), (3.1)

f30!
ef3O! = e+ !:!:-(e. V)e,rnO!

dr;: = (d~ + dfn)/2,

(3.3)

(3.4)

Here, rnO! and d~ are the mass and diameter of a molecule of a-component; e* is the integra

tion variable for e, e is a unit vector, de* = df,*ldf,*2df,*3, and dO. is the solid-angle element

around e; the domain of integration is the whole space of e* and all directions of e.

The boundary condition on the walls (Xl = 0 and D) is expressed as follows: For e·n > 0,

(3.5)
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where

Tw=TI , n=(l,O,O), at Xl =0,

and Tw = Tn, n = (-1,0,0), at Xl = D,
(3.6)

(3.7)

and k is the Boltzmann constant.

If we rewrite the equation and boundary condition in a dimensionless form, we find that

the problem is characterized by the following five parameters: m B /mA , d~/d~, Tn/TI ,

n~v/n:v, and Kn. Here, n~v is the average molecular number density of a-component in the

domain °~ Xl ~ D, and Kn= lo/D is the Knudsen number, where lo = [J21l"(d~)2nav]-1 is

the mean free path of the molecules of A-component when it is in the equilibrium state at

rest with number density nav = n:V + n:V.

3.4 Numerical analysis

We first note that in the present problem we can seek the solution in the form FQ(XI , 6, "7),

where "7 = (~~ + ~~)1/2. We analyze Eqs. (3.1)-(3.6) numerically by means of an iterative

finite-difference method. The key issue in the analysis is an accurate and efficient compu

tation of the complicated collision integral J{3Q using the discrete values F{jl of FQ at the

grid points (Xii), ~f(j), "7Q (I») in the (Xl, 6, "7) space. For this purpose, we expand FQ at

Xl = X?) as

FQ(xi i
) , 6, "7) = exp ( - (17;)2) L a;Z(i)\J!j(~f)Ll((17:X)2),

j,l

~f = ~1(2kTdmQ)-1/2, 17Q = "7(2kTdmQ)-1/2,

where \J!j(~l) is a localized basis function that is sectionally quadratic, takes unity at ~1 =

~f(j)(2kTdmQ)-1/2, and is nonzero only in its neighborhood; Ll(y) is the Laguerre polynomial

in y of order l. The coefficients a;/i) are determined in such a way that Eq. (3.7) coincides

with FtJl at the grid point (~f(j), "7Q
(l)). If we substitute Eq. (3.7) into the collision integral

J{3Q (F{3, FQ), it is expressed as a linear combination of the collision integrals for the functions

of the form (17Q)2m\J!~. The latter collision integrals are independent of FtJl and therefore can

be computed beforehand (numerical collision kernel). Once the numerical kernel is prepared,

the computation of the collision integral in each iteration step is reduced to simple products

and sums of matrices. In this way, high efficiency in the computation of the collision integral

is attained (Ref. 76 and Chap. 2).

93



3.5 Result of analysis

The computation was carried out for TII/Tr = 2, (mB/mA, d~/d~) = (0.25,0.5) and (0.5,1),

n:v/n:v = 0.1, 1, and 10, and Kn= 0.1, 1, and 10. To show the result, we denote by nO.

the molecular number density of a-component (a = A, B) and by T and qi = (qI,O, 0) the

temperature and the heat flow of the total mixture, respectively [i.e., nO.= f Fo.de, (3knT,

2ql)=f(l, 6)leI2(mAFA+mBFB)de, where n = nA+nB and de=d6d6d6]. Note that the

flow velocity of each component vanishes identically and the heat flow ql is independent of

Xl in the present problem because of the conservation of mass and that of energy.

The values of ql in all the cases are shown in Table 3.1, where Po = knavTr is a reference

pressure. The numerical result of ql varies slightly with Xl because of numerical error. Its

average, say qlav, over 0 ::; Xl ::; D is shown as ql in the table. The maximum variation

of ql over 0 ::; Xl ::; D relative to qlav: ~ = max Iql - qlavl/lqlavl, which gives a good

measure of accuracy of the computation, is shown in percentage in Table 3.1. Figures 3.1

3.3 show the profiles of the number densities nA and nB and of the temperature T for the

case of mB/mA = 0.5, d~/d~ = 1: Fig. 3.1 is for nlfv/n:v = 0.1, Fig. 3.2 for nlfv/n:v = 1,

and Fig. 3.3 for n:v/n:v = 10. On the other hand, the corresponding figures for the case

of mB/mA = 0.25, d~/d~ = 0.5 are shown in Figs. 3.4-3.6: Fig. 3.4 is for n:v/n:v = 0.1,

Fig. 3.5 for n:v/n:v = 1, and Fig. 3.6 for n:v/n:v = 10. The smaller molecules (the molecules

of B-component) have a larger mean free path. Since Kn is based on the average number

Table 3.1: Heat flow qi = (ql' 0, 0) of the total mixture for TII/Tr = 2. Here, Po = knavTr
is the reference pressure.

0.1
0.1
0.1
1
1
1
10
10
10

Kn
0.1
1

10
0.1
1

10
0,1
1

10

mB /mA = 0.5, d~/d~ = 1

-0.184 0.45
-0.509 0.19
-0.656 0.049
-0.209 0.34
-0.589 0.15
-0.763 0.047
-0.245 0.34
-0.677 0.10
-0.871 0.038

94

mB /mA = 0.25, d~/d~ = 0.5
qd [Po (2kTr/mA) 172] ~ (%)

-0.207 0.72
-0.547 0.19
-0.693 0.047
-0.370 0.67
-0.814 0.13
-0.966 0.036
-0.659 0.19
-1.124 0.075
-1.244 0.014



1.4

0.8

o

T
Tr

Kn = 0.1 --} AI A. : n nav

-----;----}: nB In~v

0.5 1

Figure 3.1: Profiles of the number densities nA and nB and of the temperature of the total
mixture T for mB ImA = 0.5, d~/d~ = 1, and n~vln:v = 0.1. Here, - and --- indicate the
result by the finite-difference method, and. and 0 that by the DSMC method.
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--} Aj A. : n nav

-----;----}: nB jn~v

o 0.5
XI/D
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Kn = 0.1

0.5
XI/D

1

Figure 3.2: Profiles of the number densities nA and n B and of the temperature of the total
mixture T for m B jmA = 0.5, d~jd~ = 1, and n~v/n:v = 1. See the caption of Fig. 3.1.
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Kn = 0.1

0.5 1

Figure 3.3: Profiles of the number densities nA and nB and of the temperature of the total
mixture T for m B jmA = 0.5, d~jd~ = 1, and n~vjn:V = 10. See the caption of Fig. 3.1.
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1.4 Kn = 0.1
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--} AI A. : n nav

----~---- }: nBIn:V

o 0.5
XI/D

1

T
T[
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Kn= 0.1
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1

Figure 3.4: Profiles of the number densities nA and nB and of the temperature of the total
mixture T for m B /mA = 0.25, d~/d~ = 0.5, and n~vln:v = 0.1. See the caption of Fig. 3.1.
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1.4 Kn = 0.1
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XI/D
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1.5

Kn = 0.1
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Figure 3.5: Profiles of the number densities nA and nB and of the temperature of the total
mixture T for mB /mA = 0.25, d~/d~ = 0.5, and n~vln:v = 1. See the caption of Fig. 3.1.
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Figure 3.6: Profiles of the number densities n A and n B and of the temperature of the total
mixture T for mB ImA = 0.25, d~/d~ = 0.5, and n~vln:v = 10. See the caption of Fig. 3.1.
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density of the total mixture and on the diameter of the larger molecules (the molecules of

A-component), the effective Knudsen number at the same Kn is larger for larger values

of n:v/n:v. Therefore, the temperature jump on the walls at the same Kn is larger for

larger n:v/n:v. In Figs. 3.1-3.6, the corresponding result obtained by the direct simulation

Monte Carlo (DSMC) method36 is also shown for comparison. The DSMC result shows good

agreement with the finite-difference result.

The velocity distribution functions FO at two points near the walls in the cases cor

responding to Figs. 3.4-3.6 are shown in Figs. 3.7-3.9, respectively. That is, FO at

fJ(2kTI/m A)-1/2 = 0.15 and 1.35 are shown as functions of 6. In the case of free-molecular

gas (Kn = 00), the velocity distribution functions for any Xl are discontinuous at 6 = O.

For large Kn (Kn = 10), though the discontinuity vanishes because of the molecular collision,

the gradient near 6 = 0 is still very steep. The change around 6 = 0 becomes milder as the

Knudsen number decreases. The corresponding result by the DSMC method is also shown

in Figs. 3.7-3.9.

The data about grid systems are summarized here. Let us put c1 = (2kTI/mA) 1/2.

We divided the interval 0 ~ Xl ~ D into 100 uniform sections for Kn= 1 and 10 and

into 100 nonuniform sections (minimum size 4 x 10-6D at Xl = 0 and D; maximum size

0.0294D at Xl = D/2) for Kn= 0.1. We used uniform grids for 6: For Kn= 0.1 and 1,

the grid size is 0.15c1 and the range is restricted to -6c1 ~ 6 ~ 6c1 (mB /mA = 0.5)

or -8.7c1 ~ 6 ~ 8.74 (mB /mA = 0.25) for A-{;omponent and to -8.4c1 ~ 6 ~ 8Ac1

(mB /mA = 0.5) or -12c1 ~ 6 ~ 12c1 (mB /mA = 0.25) for B-component; for Kn= 10, the

grid size is 0.106c1 and the range is restricted to -5.73c1 ~ 6 ~ 4.454 (mB /mA = 0.5) or

-7.85c1 ~ 6 ~ 6.58c1 (mB /mA = 0.25) for A-component and to -7.85c1 ~ 6 ~ 6.58c1

(mB /mA = 0.5) or -10.82c1 ~ 6 ~ 9.55c1 (mB /mA = 0.25) for B-component. For fJ, we

used nonuniform 14 grid points defined by (2kTI/mO)I/2Vfjk (a = A,B) for Kn= 0.1 and 1

and (2kTI/mO)I/\/Yk/2 for Kn= 10, where Yk (k = 1, ... , 14) are the zeros of the Laguerre

polynomial L I4 (y) (Chap. 2).

Finally, we give information about the DSMC computational system. We used 50

(Kn = 10) or 100 (Kn = 0.1, 1) uniform cells in the interval 0 ~ Xl ~ D. Let

N° be the average number of simulation particles per cell for a-component. Then,

(NA , N B )=(1000, 100) for n:v/n:v = 0.1, (250, 250) for n:v/n:v = 1, and (100, 1000) for
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Figure 3.7: Velocity distribution functions FA and F B at two points near the walls for
m B!mA = 0.25, d!:t!d~ = 0.5, and nljv!n~v = 0.1 (cf. Fig. 3.4). (a) Kn = 0.1, (b) Kn = 1,
(c) Kn = 10. Here, - and--- indicate the result by the finite-difference method, and. and
o that by the DSMC method. The Fa at Xt/D = 0.095 and 0.905 are shown in (a) and (b),
while Fa at Xl!D = 0.09 and 0.91 are shown in (c).
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Figure 3.8: Velocity distribution functions FA and FB at two points near the walls for
mB /mA = 0.25, d~/d~ = 0.5, and n:v/n:v= 1 (cf. Fig. 3.5). (a) Kn = 0.1, (b) Kn = 1, (c)
Kn = 10. See the caption of Fig. 3.7.
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Figure 3.9: Velocity distribution functions FA and F B at two points near the walls for
mB /mA = 0.25, d~/d~ = 0.5, and n~v/n:v = 10 (cf. Fig. 3.6). (a) Kn = 0.1, (b) Kn = 1,
(c) Kn = 10. See the caption of Fig. 3.7.
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Figure 3.10: DSMC computations with two different numbers of simulation particles for
m B /mA = 0.25, d~/d~ = 0.5, Kn = 0.1, and n~v/n1v = 10. (a) Number density nA and
temperature T (cf. Fig. 3.6). (b) Velocity distribution function FA at Xr/D = 0.905 (cf.
Fig. 3.9). Here, - indicates the finite-difference result, 0 the DSMC result with (NA , N B ) =
(25, 250), and. that with (NA , N B ) = (100, 1000).
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n~/n:v = 10 [(NA , N B )=(2000, 200) for n:v/n:v= 0.1 and (200, 2000) for n:v/n:v= 10 in

the case of mB /mA = 0.25, d~/d~ = 0.5, and Kn = 10]. The average of 2 x 104 samples

taken at each 50 time steps is shown in Figs. 3.1-3.9. For small or large n:v/n:v, the total

number of simulation particles increases because sufficient particles are necessary for the

component with smaller number density (the same weight is used for both components in

the present computation). We also carried out the DSMC computation with fewer particles,

an example of which is shown in Fig. 3.10. That is, the result with (NA , N B )=(25, 250) of

the case mB /mA = 0.25, d~/d~ = 0.5, Kn = 0.1, and n:v/n:v= 10 is shown in the figure,

together with the result with (NA , NB)=(lOO, 1000). Although it is smooth, the profile of

nA with (NA , N B )=(25, 250) deviates recognizably from that by the finite-difference method

[Fig. 3.10(a)].
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Appendixes

A Derivation of Eqs. (2.53) and (2.54)

The Christoffel-Darboux formula99 for a system of orthonormal polynomials gives the fol

lowing relation for the Laguerre polynomials:

H-1
(x - y) L Ls(x)Ls(Y) = (CH-1,H-I/cHH)[LH(x)LH- 1(y) - LH(y)LH- 1(X)]. (AI)

s=o

Noting that LH(x) == CHH n~l(X - Yl), where Yl are the zeros of LH(x), we put Y = Yk in

Eq. (AI). Then, using the continuity of polynomials, we have

H 1 H-1
IT (x - Yl) = L () L L1(Yk)L1(x),

1=1 (#) CH-1,H-1 H-1 Yk 1=0
(k = 1, ... , H), (A2)

for all x > O.

Now let us consider Eq. (2.44) with Ha = H and suppose that (~(k) = VYk/ihP [or

ma((~(k))2 = Yk] [Eq. (2.52)]. For simplicity, let us put

A et/"2

FA et(n) (/"et(j) /") (m '3r) - jet ( )
i '31' '3r exp -2- = ij X ,

A a(/"a(k))2
FAa(n) (m '3r ) _ FAa(n) (Yk) - jet

ijk exp 2 - ijk exp "2 = ijk'

Then, Eq. (2.44) is written as

H-1
f[j(x) = L a0}n) L1(x).

1=0
(A3)

On the other hand, from the choice of a0}~) [see Eq. (2.47) and the sentences below it], fij(x)

is expressed as

(A4)

By equating the RRS's of Eqs. (A3) and (A4) and using Eq. (A2), we obtain
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(A6)

(A7)

If we integrate Eq. (A5) multiplied by exp(-x)Lm(x) with respect to x from 0 to infin

ity, we have, from the orthogonality relation (2.46), the following expression of aij~), i.e.,

Eqs. (2.53a) and (2.53b):

H

a0~) = Lfijk Lm(Yk1 .
k=l CH-I,H-ILH-I(Yk) TIS=1 (#)(Yk - Ys)

By the use of Eq. (2.53a), Eq. (A3) is written as

H-I H
fij(X) = L: (LWlk~;in))LI(X).

1=0 k=l

Using the expression L1(x) = E~=o CmlXTn and changing the order of summations, we obtain

H-I H H-I
fij(X) = L (L:Fi;i

n
) LCmlWlk)Xm.

m=O k=l l=m

The comparison of Eq. (A8) with Eq. (2.48) gives

H H-I
Ao:(n) _ '" F~o:(n) '"'ijm - L..J ijk L..J CmlWlk,

k=l l=m

which is equivalent to Eqs. (2.54a) and (2.54b).

B Integration of Eq. (2.66b)

(A8)

(A9)

Let us introduce the following integral:

- 100100

( (ylfnftJ(k))2)e~l(xo,XI,Z,o,€) = -00 -00 Jfu(JI;xo,XI)(VriJiJ$k»)2a exp - 2 r dw'dw",

(B1)

where

U(t. x x) = { 1 (xo < t < Xl)' (B2)
, 0, I 0 (otherwise).

Then, e;a(z, 0, €) in Eq. (2.66b) is expressed by a linear combination ofe~l(xo, Xl, z, 0, f), (l =

0, 1, 2). For example, e~a is expressed as follows:

(B3)

(B4)

Therefore, the calculation of Eq. (2.66b) is reduced to that of Eq. (B1). The integration of

Eq. (B1) can be carried out analytically and gives the following expression of e~l:

(

8- k2 ( II -) ) ( y-k2 )a XO,XI,Z,u,€ a
: kl - _ - k - kl8 a (XO,XI,Z,O,€) -B Ya ,
e- kO( II -) y-kOa XO,XI,Z,u,€ a
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where

o
sinO

COS2 0
o

o ) (1 2(~(k) COSt

o 0 1
1

cosO 0 0

(

1 2y';fiJ8(3Cl-,L
smO

X 0 ~

o 0

(l = 0, 1,2),

z· = x· cot () - (Cl(k) cos t _ 8(3Cl_
Z

_
t t r sin ()' (i = 0,1).

(B6)

(B7)

(B8)

(B9)

Here, (~) = 1; Es(x) is defined by

Es(x) = l x

t S exp(-e/2)dt,

and has the following recursion formula:

Es(x) = _xs- 1 exp(_x2/2) + (8 - I)Es- 2(x),

Eo (x) = ;:;72 erf(x/Vi), E1 (x) = 1 - exp(_x2/2),

where

2 (X
erf(x) = y'ir Jo exp(-t2 )dt,

is the error function; and gs is defined by

gs = I: t2s exp(_t2/2)dt,

namely,

(BI0)

(Bll)

(BI2)

gs = (28 - 1)(28 - 3) .. ·5·3·1· go, go = y!2;.

When (3 = CY, e~l in Eq. (Bl) does not depend on z because both of J1 and J~k) are

independent of z [ef. Eqs. (2.64a) and (2.64b)]. In this case, Eqs. (B4)-(B9) are reduced to

the following:

(B13)
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o
sinO

COS2 0
o

2Vii1P(::(k) COS l

vmOl

o

(1 = 0,1,2),

(B14)

(B15)

(B16)

C Integration of Eq. (2.66a)

Let us consider the following integral:

f':~m(XO, Xl, Yo, YI, (}, l) = sin (}100

zKlU(KI;Xo, XI)(vmOl KJk))2b

(
(VmOl K(k))2)_

x exp - 2 r e~m(yO' YI, z, (}, l)dz. (C1)

Then, r~qab(B, l) in Eq. (2.66a) is expressed by a linear combination of f'~tm (1, m = 0,1,2).

Therefore, the computation of r;qab is reduced to that of f'~tm. The f'~tm can be expressed

in the following form.

(
- k22 - k21 - k20

) =A
k

(

X k32 X k31 X k30

).ab ab abr ab r ab r ab X k22 X k21 X k20
f'k12 f'kll - klO ab ab ab (C2)ab ab r ab Xkl2 Xkll XklO
f'k02 f'kOI - kOO ab ab ab

ab ab r ab Xk02 XkOI Xkoo
ab ab ab

where

( ) COO"
0

1,)
-k_ 1 _mOl ((::(k)sinl)2 sin3 0

coso
A - ([L{301)2 exp 2 ~ sin2 0

0

xU
-3vmOl(::(k) cos l 3mOl ((::(k) cos l? _ (mOl )3/2 ((::(k) cos l)3

) , (C3)~ - 2mOl(::(k) cos l (mOl )3/2 ((::(k) cos l)2

0 mOl - (mOl )3/2(::(k) cos l

b

X k1m = '"'" (b) (vmOl(OI(k) sin l)2r X jjkmab LJ r r a,2(b-r)+I'
r=O

(1 = 0,1,2,3; m = 0,1,2), (C4)

l
~Zl

-km -s -2 - km - -Pas = z exp(-z /2)8a (Yo, Yl, z, (), f..)dz,
~Zo

_ mOl (~_ OI(k) _)
z - A {3 • B r;::;:: (r cos f.. ,

J1, 0< sm v mo<
Zi = Xi tan B+ (~(k) cos l, (i = 0,1).
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The integration with respect to z in Eq. (C5) is carried out numerically. Then, the double

integral with respect to € and 0 in Eq. (2.65) is computed numerically.

When f3 = a, Eq. (Cl) is reduced to the following form, since e~m is independent of z.

where

r-klm( 0 -) r-kl( 0 -) e-km( 0 -)ab XO,Xl,YO,Yl, ,t: = b XO,Xl, ,t: X -a YO,Yl, ,t:, (C8)

We can carry out this integration analytically to obtain the following expression of til:

(ClO)

b

Xkl - '" (b) (Jmara(k) sin €)2r X p-kb - L...J r ':>r 2(b-r)+l'
r=O

Zi = Xi tan 0 + (~(k) cos €,

(1 = 0,1,2,3),

(i = 0,1).

(Cll)

(C12)

(C13)

Here, .A:k is given by Eq. (C3) with p,f3a = mao With this expression of til, we carry out the

double integration with respect to € and 0 in Eq. (2.65) numerically.
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