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Abstract

Strain localization is an important geotechnical problem related to large deformations and

the onset of failure such as slope failure. Therefore, it is necessary to clarify the mechanisms

of strain localization of geomaterials in order to predict large deformations of the ground which

induce serious disasters. The main purpose of this dissertation is to study the strain localization

of water-saturated clay by experimental, theoretical, and numerical work. In addition, an elasto­

viscoplastic constitutive model for clay is developed to accurately describe the time dependency,

the dilatancy characteristics, and the material instability of clay.

A linear instability analysis, using a gradient-dependent elasto-viscoplastic constitutive model,

is conducted to theoretically study the effects of permeability and strain gradients on material

instability. It is found that the growth rate of the fluctuation is greatly affected by the perme­

ability and that the strain gradient term acts as a stabilizer in the material system. The strain

localization of water-saturated normally consolidated clay is numerically studied under plane

strain conditions by a soil-water coupled finite element analysis based on the finite deformation

theory. A weak form of the dynamic yield function is formulated in order to obtain a second

order gradient for the viscoplastic strain. The effects of permeability and gradient parameters on

the strain localization obtained from the numerical analysis are consistent with the theoretical

considerations given by the instability analysis. In addition, the effects of partially drainage

conditions and material heterogeneity on strain localization are studied.

Next, the elasto-viscoplastic model for normally consolidated clay is extended to overcon­

solidated clay. The proposed model can effectively reproduce the dilatancy characteristics of

both normally consolidated clay and overconsolidated clay. The instability of the model under

undrained triaxial creep conditions is analyzed in terms of the accelerating creep failure. Then,

a finite element analysis of the deformation of water-saturated clay is presented with focus on

the numerical results under plane strain conditions. From the numerical analysis, it is found

that dilatancy, permeability, strain rates, and material instability prominently affect the strain

localization behavior.

In order to grasp the strain localization behavior of clay under three-dimensional condi­

tions, a series of undrained triaxial compression tests using rectangular clay specimens with

different shapes and strain rates is conducted for normally consolidated and overconsolidated

reconstituted clay samples. The shear strain distribution localized by compression is success­

fully observed with an image analysis of digital photographs showing two sides of the specimens.

Bifurcation phenomena, e.g., the formation and the progress of various three-dimensional shear

bands, failure with buckling, etc., are observed. It is seen that the shapes of the specimens,

strain rates, and the dilatancy characteristics affect the shear band formations of clay.

Finally, the triaxial compression tests using rectangular clay specimen are numerically sim-



ulated with the finite element method using an elasto-viscoplastic model considering structural

changes. The simulation can well reproduce the generation and the growing process of shear

bands. The distributions of strain, stress, and pore water pressure inside the specimens are given

in the simulation results. A comparison between experimental and simulation results offers new

findings regarding the strain localization of clay under three-dimensional conditions.
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Chapter 1

Introduction

1.1 Background and Objectives

It has been widely recognized that the strain localization of granular media is an important

problem since it is closely related to the onset of failure. The failure of slopes is a typical

localization problem in which deformation occurs in a narrow zone. The problem of strain

localization in such geomaterials as soil and rock has been studied in the context of experimental,

theoretical, and numerical approaches over the last three decades. It has been found that the

onset conditions for strain localization, such as shear banding, can be captured by a bifurcation

analysis (e.g., Rudnicki and Rice 1975 and Rice 1976). As such, many researchers have tried

to numerically simulate shear banding in various engineering materials, including metals and

geological materials. Through these numerical studies, it has been realized that instability and

ill-posedness are sometimes encountered when using a rate-independent elasto-plastic model in

the numerical analysis.

In general, there are three methods which can be used to overcome the above-mentioned

instability. One method is to introduce the rate dependency of the material through the use of

an elasto-viscoplastic model or regularization in the numerical analysis (Cormeau 1975; Hughes

and Taylor 1978; and Simo and Hughes 1997). The second method is to introduce higher order

strain gradients into the constitutive model (Aifantis 1984, 1987; Miihlhaus and Aifantis 1991;

Vardoulakis and Aifantis 1991; and Hutchinson 2001). The third approach is to incorporate a

Darcy type of soil-fluid interaction which can alleviate the problem of instability by delaying

the onset of material instability (Rice 1975, 1976; Loret and Prevost 1991; Oka et al. 1995; and

Schrefler et al. 1996).

The present study deals with the behavior of clay in which the aspect of rate dependency

comes naturally into the modeling. Constitutive models for clay used in this study are based on

an elasto-viscoplasticity theory, which was originally proposed by Oka (1981) and Adachi and

Oka (1982). In addition, since the transport of water must be considered in the behavior of water­

saturated clay, the problem is formulated within the solid-fluid two-phase theory. Moreover, the

1



finite deformation theory is required since deformations in shear band are large (e.g., Yatomi et

al. 1989). Furthermore, a second order strain gradient is introduced into the elasto-viscoplastic

model in this study. It has been shown that the strain gradient-dependent model has several

advantages, such as its ability to predict the thickness of shear bands, to retrieve the ill-posedness

of boundary value problems with a local constitutive model, to consider the microstructure by

introducing the characteristic length scale etc. (e.g., Miihlhaus and Vardoulakis 1987; Zbib

and Aifantis 1989; Fleck and Hutchinson 1997; Oka et al. 2000a; Zhang and Schrefler 2000).

However, the role of strain gradients and the quantitative estimation of gradient parameters still

need to be determined.

Strain localization analysis using a soil-water coupled theory, based on the finite deformation

theory, has been numerically and analytically conducted by many researchers with particular

constitutive models, e.g., Yatomi et al. (1989), Oka et al. (1994, 1995), Asaoka et al. (1995),

Schrefler et al. (1996), Iizuka et al. (1998). Oka et al. (1994, 1995, 2000a, and 2000b) studied

strain localization problems pertinent to water-saturated clay using a viscoplastic model. In

particular, it was found that strain localization in the shear bands of water-saturated clay could

be simulated via a finite element analysis based on finite deformation theory using an elasto­

viscoplastic model with viscoplastic softening (Oka et al. 1995). However, the model used in

the analysis was limited to normally consolidated clay with negative dilatancy.

As for the experimental study, the strain localization of geomaterials has been discussed

mainly under plane strain conditions (Han and Vardoulakis 1991; Yoshida et al. 1994; and

Mokni and Desrues 1998). With respect to practical strain localization in the ground, shear

band formation is a three-dimensional problem such as the failure surface of a landslide. Thus,

it is necessary to deal with strain localization phenomena under three-dimensional conditions.

Asaoka et al. (1997), Alshibli et al. (2000), etc. studied three-dimensional strain localization

through triaxial tests using cylindrical specimens. However, some difficulties were encountered in

simulating the triaxial test conditions with cylindrical specimens in the three-dimensional com­

putation work, e.g., an axisymmetric assumption is needed. Kodaka et al. (2001) used rectan­

gular clay specimens for the undrained triaxial compression tests, and studied three-dimensional

strain localization with an image analysis of digital photographs taken during deformation. Us­

ing rectangular specimens, it is easy to set up the boundary conditions in a three-dimensional

analysis. In addition, a quantitative comparison is possible through the distribution of shear

strain obtained by the image analysis.

In the present study, the quasi-static strain localization of water-saturated clay is theo­

retically and numerically studied using an elasto-viscoplastic constitutive model. Theoretical

consideration is given by a soil-water coupled instability analysis using a simplified gradient­

dependent elasto-viscoplastic model in terms of the growth rate of the fluctuation. In the insta­

bility analysis, the effects of permeability and gradient parameters on the material instability are

discussed. As for the numerical study, the strain localization analysis by a soil-water coupled
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finite element method, based on finite deformation theory using an elasto-viscoplastic model

for water-saturated clay, is conducted under plane strain conditions. The elasto-viscoplastic

constitutive model is extended to describe the behavior of both normally consolidated clay

and overconsolidated clay. The instability of the proposed model is demonstrated in terms of

undrained triaxial creep conditions. The effects of dilatancy, the transport of water such as

permeability and drainage conditions, the strain rates, the material instability, and the inher­

ent material heterogeneity on strain localization are discussed. The role of strain gradients is

numerically examined for normally consolidated clay.

Moreover, in order to investigate the strain localization behavior of geomaterials under three­

dimensional conditions, undrained triaxial compression tests using rectangular specimens and

their simulation by a finite element analysis using an elasto-viscoplastic model are conducted. In

the experiments, both normally consolidated and overconsolidated clay samples are tested with

different shaped specimens and different strain rates in the same manner as that by Kodaka et

al. (2001). Using the distribution of shear strain obtained by the image analysis of digital pho­

tographs taken during deformation, the effects of the shapes of the specimens, the strain rates,

and dilatancy on strain localization are studied in detail. The method of numerical simulation is

a soil-water coupled finite element method which is based on the finite deformation theory, using

an elasto-viscoplastic model for water-saturated clay considering structural changes, proposed

by Kimoto (2002), Kimoto et al. (2004; to appear), and Kimoto and Oka (2003). The results

of the simulation include not only the distribution of shear strain on the surfaces of the speci­

mens, but also the distributions of strain, stress, and pore water pressure inside the specimens.

Through a comparison of the experimental results and the simulation results, the mechanisms

of strain localization are studied under three-dimensional conditions.

1.2 Scope and Organization

The present research is roughly divided into three parts, namely, a constitutive equation, exper­

imental work, and the instability and strain localization analysis. The outline of each chapter

is described below.

In Chapter 2, an elasto-viscoplastic constitutive model for normally consolidated clay, orig­

inally proposed by Adachi and Oka (1982), is derived. A second material function is introduced

into the model in order to address the material instability of clay (Adachi et al. 1987). Further­

more, a strain gradient-dependent model is demonstrated by the introduction of a second order

gradient of the viscoplastic volumetric strain into the static yield function (Oka et al. 1992).

In Chapter 3, a linear instability analysis is performed to explore the effects of permeabil­

ity and gradient parameters on the instability conditions using a simplified gradient-dependent

elasto-viscoplastic model in the context of a Biot type of mixture theory. Next, a finite element

formulation of the gradient-dependent elasto-viscoplastic model is described. In the FEM anal-
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ysis, a Biot type of two-phase mixture formulation and an updated Lagrangian scheme are used

for the water-saturated material. Then, the effects of the transport of water, namely, perme­

ability and partially drainage conditions, the strain gradient parameters, and the fluctuation of

material properties on the strain localization of clay are numerically studied under plane strain

conditions.

In Chapter 4, an extended elasto-viscoplastic model for both normally consolidated clay

and overconsolidated clay is proposed using a Chaboche type of viscoplasticity (1983), an over­

consolidation boundary (Oka 1982 etc.), and a stress history ratio (Adachi and Oka 1995, etc.).

The model can address both the positive and the negative dilatancy characteristics of clay, which

are important characteristics of soil.

In Chapter 5, the instability of the proposed model is examined under undrained triaxial

creep conditions. The difference in material instability between normally consolidated clay and

overconsolidated clay is discussed. A numerical simulation for both normally consolidated clay

and overconsolidated clay under plane strain conditions is conducted to investigate the effects

of dilatancy, permeability, the strain rates, and material instability on strain localization.

In Chapter 6, the three-dimensional strain localization behavior of clay is studied through

undrained triaxial compression tests using rectangular reconstituted clay specimens. An image

analysis of digital photographs taken during deformation provides the distribution of shear strain

on the surfaces of the specimens. Three-dimensional shear band formations are estimated, and

the effects of the shapes of the specimens, the strain rates, and dilatancy on strain localization

are investigated.

In Chapter 7, a numerical simulation of the undrained triaxial compression tests using

rectangular specimens are conducted by a soil-water coupled finite element method based on the

finite deformation theory using an elasto-viscoplastic model for water-saturated clay considering

structural changes proposed by Kimoto (2002) etc. The distributions of strain, stress, and pore

water pressure obtained from the simulation results and a comparison between the test results

and the simulation results clarify the mechanisms of the three-dimensional strain localization of

clay.

In Chapter 8, the conclusion of this dissertation and recommendations for future work are

given.
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Chapter 2

Gradient-dependent

Elasto-viscoplastic Constitutive

Model for Normally Consolidated

Clay

2.1 Introduction

It is generally known that clay shows such time-dependent behavior as strain rate sensitivity,

creep, stress relaxation, and secondary compression. Taking into account these characteristics,

Adachi and Oka (1982) proposed an elasto-viscoplastic model for water-saturated normally

consolidated clay based on a Perzyna type of viscoplasticity theory (Perzyna 1963) and the

Cam-clay model. In addition, Adachi et al. (1987, 1990) introduced a second material function

into the viscoplastic flow rule in order to describe material instability such as acceleration creep

and strain softening. In this chapter, an elasto-viscoplastic constitutive model for normally

consolidated clay with a second material function proposed by Adachi and Oka (1982) and

Adachi et al. (1987, 1990) is demonstrated.

In the present study, we introduce a second order gradient of viscoplastic volumetric strain

into the present model. It has been shown that the strain gradient-dependent model has advan­

tages, such as its ability to predict the thickness of shear band, to retrieve the ill-posedness of

boundary value problems, to consider the microstructure by the introduction of a characteristic

length scale and the scale effects of deformation, etc. (e.g., Mlihlhaus and Vardoulakis 1987;

Zbib and Aifantis 1989; Mlihlhaus and Oka 1996; and Fleck and Hutchinson 1997). Gradient­

dependent models with higher order strain gradients have been proposed and used in post-failure

and/or strain localization analyses (e.g., Oka 1995 and Aifantis et al. 1999). Even now, how­

ever, the meaning of gradient parameters and the influence of strain gradients on shear band

problems are still need to be determined. In order to investigate these problems in this section,

we introduce a second order strain gradient into the elasto-viscoplastic model.
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2.2 Elastic Strain Rate

In the following, Terzaghi's effective stress concept is used for water-saturated soil because the

compressibility of the pore water is effectively small, i.e.,

(2.1)

where (Jij is the total stress tensor, (J~j is the effective stress tensor, U w is the pore water pressure,

and Oij is Kronecker's delta.

Furthermore, an additive decomposition of total strain rate tensor iij into elastic strain rate

tensor i'fj and viscoplastic strain rate tensor i~J is assumed such that

(2.2)

(2.3)

Elastic strain rate tensor i'fj is given by a generalized Hooke type of law, namely,

'e 1 S K,., 0
Cij = 2G ij ~ 3(1 + e)(J~ (Jm ij

where Sij is the deviatoric stress rate tensor, (J:n is the mean effective stress, G is the elastic shear

modulus, e is the void ratio, .K, is the swelling index, and the superimposed dot denotes the time

differentiation. Swelling index K, is determined by the slope of the volumetric loading-unloading

curve in a natural logarithmic scale.

Elastic shear modulus G is assumed to be proportional to the square root of (J:n as

G = Go) ~~ (2.4)
(JmO

where Go is the initial value of G.

2.3 Overstress Type of Viscoplastic Flow Rule

Adachi and Oka (1982) noted that clay never reaches its static equilibrium state at the end of

the primary consolidation even in cases of isotropic consolidation. This means that the natural

ground will continue to subside by its own weight at very small strain rates. Thus, the static

equilibrium state is defined as a state at which the deviatoric strain rate and the volumetric

strain rate become zero. According to this definition, any deformation process with a definite

strain rate is regarded as a dynamic state.

Perzyna (1963) indicated that the difference between the behavior of clay in the static state

and that in the dynamic state occurs from the material strain rate sensitivity; he defined this

behavior as viscoplasticity. Then, he proposed viscoplastic strain rate tensor i~J which can

describe the rate dependent behavior based on the associated flow rule, as follows:

(2.5)

(2.6)
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where I is a viscoplastic parameter, f is the dynamic yield function, and "'s is the work-hardening

parameter of the static yield function.

cI>1 is a function showing strain rate sensitivity; it is determined by the experimental results.

) is a Macauley's bracket as defined by the following relations:

(F:S 0)

(F> 0)
(2.7)

In Equation (2.7), F = 0 represents the static yield function. From Equations (2.5) and (2.6),

the following relations can be obtained:

1

f( VP) _ if.-1(TVP (Of of )-2)
(Jij, Cij - "'s - "'s'1'l 12 ~~

U(Jkl U(Jkl
(2.8)

where <1>"1 1(*) is an inverse function of cI>1 (*), and I~P = i~Ji~J is the second invariant of the

viscoplastic strain rate tensor.

Equation (2.8) shows that the dynamic yield function is dependent on work-hardening

parameter "'s and the second invariant of viscoplastic strain rate tensor 0.p
. Then, we denote

dynamic yield function f as fd' The dynamic yield function loses its rate sensitivity only when

F = 0 (or f = "'s). At this state, f will be denoted by fs. Furthermore, based on the critical

state theory proposed by Roscoe et al. (1963), static yield function fs and dynamic yield function

fd are assumed to be as follows:

'(s)

fs = i}*(s) + Mj In (Jr; = "'s
(JmO

'(d)
f -*(d) M* I (Jm
J d = "7 + f n -,- = "'d

(JmO

(2.9)

(2.10)

Superscript (s) indicates the static state, while (d) indicates the dynamic state. (J~ is the mean

effective stress and (J~o is the unit mean effective stress. In Equations (2.9) and (2.10), i}* is

a relative stress ratio (Sekiguchi & Ohta 1977), which represents the stress ratio of anisotropic

consolidated clay, namely,

-* {( * *) ( * *) }%"7 = "7ij - "7ij(O) "7ij - "7ij(O)
* Sij(O)

"7ij(O) =~
m(O)

(2.11)

(2.12)

in which "7ij is the stress ratio tensor, Mj is the value of "7* = V"7ij "7ij at failure, and subscript

(0) denotes the values of the parameters at the end of the primary consolidation.

"'s and "'d are the strain-hardening parameters and are defined respectively as

'(s)
(Jmy"'s = In -,­
(JmO

(2.13)

11



O"~~ and O"~~ are the hardening parameters, and hardening parameter O"~~ is related to the

incremental of inelastic volumetric strain dvP through the following equation:

d 1(8)
dvP _ A - /'l,. 0"my

- 1 + e 1(8)
O"my

(2.14)

where compression index A is determined by the slope of the volumetric loading curve in a natural

logarithmic scale. Integrating the previous equation under the initial conditions of O"~~ = O"~~i

and vP = vf, we obtain

1(8)
v P _ vI! = A - /'l, In O"my

t 1 + e 1(8)
O"myi

(2.15)

in which, vf indicates the initial value of the plastic volumetric strain and O"~~i indicates the

initial value of the strain-hardening parameter. Figure 2.1 shows the strain-hardening rule

defined by Equation (2.14). Line-I is the infinite time consolidation line, and the hardening

parameter will change with increases in the plastic volumetric strain according to this line.

1(8) 1(8) a'(d)
amy; amy my

In 0"'m

vf ··········1·······················6

vP

(Compression)

, 1(8)
v P - vI' =~ In amy

, 1 + e 1(8)
amy,

Figure 2.1 Relationship between the static-hardening parameter and viscoplastic volumetric

strain

The form of function <1>1 (F) in Equation (2.5) is exponential in which the hardening pa­

rameters of the dynamic state and the static state are used based on experimental data from

strain-rate constant triaxial tests (Adachi and Okano 1974), that is,

(2.16)

(2.17)

where Co and m' are parameters of the time dependent behavior of clay and can be obtained

from laboratory test results. For simplicity, superscript (d) will be disregarded in the following.

When vP is defined as the increment in initial value vf, Equation (2.15) will lead to

1(8) 1(8)

1
00my 100myi 1+e P

n-, - = n-, - + -,--v
O"mO O"mO A - /'l,
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Substituting the dynamic yield function in Equation (2.10) and the static yield function

Equation (2.17) into Equation (2.16) will yield

(2.18)

It is found that this function can be determined only if the value for (J~~i is given. However,

it is practically impossible to determine this value since it takes an infinite amount of time to

obtain Line-I. Therefore, Equation (2.18) yields the following:

(2.19)

(

'(8) )
C = Coexp -m'ln (Jrr;Yi

(Jme
(2.20)

where (J~e is the initial consolidation stress.

By defining parameter C, as shown in Equation (2.20), parameter C can be determined from

laboratory tests; it is no longer necessary to acquire the initial value for hardening parameter
'(8)

(Jmyi'

2.4 Second Material Function

Granular materials, including clay, exhibit material instability due to microstructural changes

such as creep failure and strain softening. However, this behavior cannot be expressed by the

Perzyna type of constitutive model as has been previously pointed out (Adachi et al. 1987,

1990).

Overstress F is given by the following one-dimensional form:

Viscoplastic strain rate i VP can be obtained from the following equation as

i VP = g(F)

(2.21)

(2.22)

By differentiating the viscoplastic strain rate with respect to time, the rate of viscoplastic strain

rate with time will become

.;up _ og of
c - oF8t
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In cases where function 9 is monotonically increasing function corresponding to F, og/oF will

always be positive. When considering viscoplastic strain hardening, therefore, the differential of

f with respect to EVP will become

of > 0
OEvP -

As a result, since stress a will be constant during the creep process, this will yield

of = _ of iVP < 0ot fJcvp -

which will lead to,

(2.24)

(2.25)

(2.26)

This means that, during the creep process, the viscoplastic strain rate will monotonically de­

crease and the accelerating creep behavior cannot be represented. On the contrary, when con­

sidering viscoplastic.strain softening, the differentiation will become

(2.27)

in which t-VP > 0 and the accelerating creep behavior can be represented. Since the Perzyna

type of constitutive equation is a strain-hardening type of model, the model itself is not able

to represent the softening behavior. This means that the model cannot give the accelerating

creep behavior. As such, Adachi et al. (1987) extended and improved the model by introducing

a second material function into the model. The flow rule for the viscoplastic strain rate tensor

with a second material function, <1>2, can be given by

i~J = 'Y (<1>1 (F)) <1>2(~)::.
ZJ

(2.28)

~ is an internal state variable which controls the failure of the material structure, and the second

material function was introduced to describe the failure state. At the critical state, it is known

experimentally that the material does not show strain rate sensitivity behavior. This means

that the failure conditions do not depend on the strain rate. The second material function was

defined in consideration of such a point. The second material function is assumed to satisfy the

following conditions.

• When ~ become infinity, <1>2 will also become infinity

•. ~ is positive

Similar to Equation (2.8), the dynamic yield function is defined as follows.

1

f( VP) -1( ~P (of of)-2
aij, Eij - 1\;8 = 1\;8<1>1 'Y<1>2(~) oa~l aa~l )

If <1>2 become infinity, Equation (2.29) will become
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Herein, the term ~P will disappear and the rate dependency of the yield function will vanish.

To express the accelerating creep behavior, the internal variable and the second material

function are assumed as the following evolutional equations. For the isotropically consolidated

clay, <1>2 is given by

M*2
i: f·*
<" = G2(Mj - 'rJ*) 'rJ

* J2J2'rJ =-­
a'm

(2.31)

in which t = 0, e(O) = 0, and 'rJ*(0) = 0 at the initial state, and G2is a softening parameter.

(2.32)

(2.33)e= { * (* * )}G* M* _ 'rJmn 'rJmn - 'rJmn(O)
2 f ij*

The second material function will increase as the critical state is approached. Until the state

approaches failure, therefore, the material behavior can be expressed by <1>1 (F) which has already

been described.

Under anisotropic consolidation conditions, by employing ij*, where ij* is the relative stress

ratio given by Equation (2.31), the integrated form of the evolutional equation of the internal

state variable eis extended as

Mjij*

Since af / aa~j is calculated as

(2.34)

The derived constitutive model can express both strain rate dependency and accelerating

creep behavior. Using Equations (2.28) and (2.34), deviatoric viscoplastic strain rate e~J and

volumetric viscoplastic strain rate E;~1 can be expressed as follows:

(2.35)

'VP=c [,(ij* 1 a~ _l+e p )]m. (C){M*- 'rJkl('rJkl-'rJkl(O))}
Ckk exp m M* + n, , v 'l'2 <" f -*fame /\-/'i, 'rJ

(2.36)

2.5 Strain Gradient-dependent Elasto-viscoplastic Constitutive

Model for Clay

It has been experimentally found that the shear strength and the deformation characteristics

of clay depend on the volumetric strain. The volumetric plastic strain is used as a hardening

parameter in the well-known Cam-clay model. The volumetric inelastic strain associated with
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(2.37)

both consolidation and dilatancy is a measure of the deterioration of granular materials. On

the other hand, Oka (1995), Miihlhaus and Oka (1995), Miihlhaus and Oka (1996), Oka et al.

(1998) demonstrated that the higher order gradients may be attributed to the fact that the soil

is discrete. Frantziskonis (1993) also showed that material inhomogeneity can be described by

a constitutive model with higher order strain gradients. Thus, in the present paper, we have

introduced the second order gradient of the volumetric viscoplastic strain into the constitutive

model to describe more accurately and sufficiently the deformation of clay by considering the

non-local and the viscoplastic effects of the material (Oka et al. 1992). In particular, the yield

function, shown in Equation (2.10), includes the Laplacian of the viscoplastic volumetric strain

and is proposed as follows:

-* ,
f = !l- + In am - a \l2E;vP = 0

M* a' 3 vf my

where f is dynamic yield function, a~y is the hardening parameter, E;~P is the viscoplastic

volumetric strain (=1 i~~dt), a3 \l2E;~P is the gradient term with a3 defined as a material constant,

ij* is the relative stress ratio defined by Equation (2.11), Mj is the strain ratio invariant at

failure, and a~ is the mean effective stress.

Using the strain gradient-dependent yield function, material function <PI by which rate sen­

sitivity is taken into account is given in the same manner as that in Equation (2.18), in other

words,

(

'(8) ), am i
C = Coexp -m In----!-

ame

(2.38)

(2.39)

in which m' and Care viscoplastic parameters and gradient coefficient a3 is assumed to be

constant. a~e is the initial value of a~, a~~i is the initial value of the hardening parameter, A

is the consolidation index, /'i, is the swelling index, and e is the void ratio.

The viscoplastic flow rule, the second material function, and the elastic strain rates are given

by Equations (2.28), (2.32) and (2.33), and (2.3), respectively.

2.6· Summary

In this chapter, we reviewed an elasto-viscoplastic model for normally consolidated clay, based on

a Perzyna type of viscoplasticity and a Cam-clay type of yield function. This model can express

rate sensitivity and such material instability as creep failure. In addition, we introduced a higher

order strain gradient into the model for normally consolidated clay in order to investigate the

effects of strain gradients on material instability and strain localization in next chapter.
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Chapter 3

Instability and Strain Localization

Analysis for Fluid-saturated

Gradient-dependent Viscoplastic

Geomaterials

3.1 Introduction

The effects of pore fluid on the localization problem have been analyzed by several researchers

in the context of a two-phase mixture theory, such as Biot's theory (1956). Loret and Prevost

(1991), Schrefler et al. (1995, 1996), and Ehlers and Yolk (1998) numerically studied the localiza­

tion problem of water-saturated geomaterials with the rate independent constitutive model. Oka

et al. (1994) have been dealing with the localization problem of water-saturated clay through

the use of viscoplastic constitutive equations because of the rate-dependent nature of cohesive

soil. Zhang and Schrefler (2000) investigated the interaction between permeability and gradient­

dependent parameters with a one-dimensional instability analysis and a numerical simulation

in the context of dynamic strain localization of saturated and partially saturated porous media.

As for the experimental study, Finno et al. (1998) discussed the effects of drained conditions on

the strain localization in sand specimens.

In these studies, many points have been clarified such as the effect of dilatancy, permeability,

strain rates etc., for particular constitutive models. Loret and Prevost (1991) and Schrefler et

al. (1995) showed that strain localizes in a narrow zone in the case of higher permeability

levels. On the other hand, Oka et al. (1995) reported different results in which deformation was

more localized in the case of low permeability levels. Several problems remain which need to

be studied. One of them is to clarify the roles of permeability and drainage conditions in the

instability of the governing equations and the deformation patterning of non-local viscoplastic

materials, such as the higher order strain gradient-dependent model. The other problem is to

clarify the effects of the initial heterogeneity.
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Before conducting the numerical analysis of a water-saturated viscoplastic material, the ef­

fects of permeability and the strain gradient term on the growth rate of the fluctuation were

examined via the linear instability analysis. In the numerical analysis, the deformation behavior

of clay specimens, modeled as a viscoplastic model with a second order strain gradient during

shear, is analyzed by a soil-water coupled finite element method under both globally undrained

and drained conditions. It was found that the strain localization pattern and the stress-strain

curve greatly depend on the permeability and the initial non-homogeneous properties. In ad­

dition, the effects of the second order gradient on the consolidation problem were numerically

studied.

3.2 Instability Analysis of a Fluid-saturated Viscoplastic Mate­

rial by a Simplified Model

Loret and Prevost (1991) and Schrefler et al. (1995) studied the effects of permeability on the

strain localization analysis. Loret and Prevost (1991) stated that in the case of low permeability

levels, the instability may develop more slowly than in the case of high permeability levels.

On the other hand, according to the numerical results by Oka et al. (1995), strain may easily

localize in the case of a lower permeability coefficient. There seems to be a discrepancy between

the two cases. It is worth noting that the model used by Loret and Prevost (1991) is a dilatant

elasto-plastic material with softening in the context of a small strain dynamic analysis, while

Oka et al. (1995) used an elasto-viscoplastic model with negative dilatancy in the quasi-static

large strain analysis. It is likely that the different conclusions come from the different trends

of dilatancy. Hence, the question of how permeability affects the strain localization remains

unanswered. In order to more clearly discuss the effects of permeability on strain localization,

an instability analysis was carried out under two-dimensional conditions in the context of a small

strain theory for simplicity. An instability analysis has been conducted by Oka et al. (2001) in

which a simplified linear rigid-viscoplastic model was used. In the present study, we used both

a simplified linear elasto-viscoplastic model and a simplified linear rigid-viscoplastic model.

3.2.1 Perturbed Governing Equations

Constitutive Equations

A simplified elasto-viscoplastic model is used in this analysis. Strain rate tensor iij is broken

down into elastic strain rate tensor iYj and viscoplastic strain rate tensor i~!, namely,

(3.1)

The elastic strain rate is given based on the linear elasticity theory as

(3.2)
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or

(3.3)

where (J~j is Terzaghi's effective stress tensor, K is the elastic bulk modulus, G is the elastic

shear modulus, and bij (i = 1,2, j = 1,2) is Kronecker's delta.

A simplified viscoplastic constitutive model is given as

, - 2 .vp ~ 'vp 'f'. . 2G". . ~ K' f' ..
(Jij - f..lcij + 2cmmf..lkUtJ + CtJ + 2Cmm UtJ

or

.vp 1 [, 1", f' 2G" 1K" f' J
Cij = 2f..l (Jij - "2f..lk(Jkk Uij - Cij - "2 CkkUij

where ,
" f..lk

f..lk = 2f..l + f..l~

K" = 2(f..lK' - f..l~G")

2f..l+f..l~

(3.4)

(3.5)

(3.6)

(3.7)

in which f..l and f..l~ are parameters of the viscosity, G" and K' are viscoplastic hardening param­

eters, and the accumulated strain is defined by

vp J.vPdc" = c" ttJ tJ' (3.8)

(3.9)

When we introduce a second order gradient of the viscoplastic volumetric strain, Equations

(3.4) and (3.5) become

, _ 2 .vp ~ 'vp 'f'. . 2G" vp ~ vp K' f' .. _ ~ vp f' ..
(Jij - f..lcij + 2cmmf..lkUtJ + Cij + 2c mm UtJ 2a3c mm,nnUtJ

or

.vp __ ~ [ , _ ~ " , f' .. _ 2G" .. _ ~K" f'.. ~'vp f' ..J
Cij - 2f..l (Jij 2f..lk(JkkUtJ CtJ 2 ckkUtJ + 2 a3c mm,nnUtJ

, 2f..l
a3 = a3

2f..l+f..l~

where a3 is the gradient parameter.

Equations of Equilibrium

(3.10)

(3.11)

Let us consider the equilibrium equations, namely, undrained conditions in a perturbed config­

uration. The equilibrium equations can be written as follows

(JiJ' J' = (J~ . . + U w J·biJ·· = 0, tJ,J , (3.12)

where (Jij is the total stress tensor, U w is the pore water pressure and, as usual, the commas

denote differentiation with respect to spatial coordinates.
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Pore Fluid Flow

From the solid-fluid two-phase mixture theory, the governing equation of the pore fluid is given

by

. k 02
cmm = --v U w

IW

where k is the permeability coefficient and IW is the unit weight of the pore water.

Perturbed Governing Equation

(3.13)

The perturbations of pore water pressure U w and velocities Vi are assumed to be of the periodic

form in two-dimensional form as

[~ j= [ ~ jexp[iq(nkxk) +wt], (3.14)

where the perturbed variable is indicated by tilde, q is the wave number (= 21f-jZ, Z: wave

length), w is the speed of the fluctuation growth, ni is the component of the unit vector n,

which is normal to the shear band, and superscript * indicates the amplitude of each variable.

The perturbed equilibrium equations are

- -I - s: 0
(Jij,j = (Jij,j + Uw,jUij = ,

the perturbed continuity equation is

": k 02-
cmm = --v U w ,

IW

(3.15)

(3.16)

(3.17)

and the perturbed constitutive equations are given by Equations (2.2), (3.3), and (3.5) as

,,:e ,,:vp
Cij + Cij

2~J/ij + ~ (3~ - 2~) JlkkDij

1 [-I 1 II-I s: a"- 1K "- s:]+ 2J-L (Jij - '5.J-Lk(Jkk Uij - 2 Eij - '5. CkkUij·

Using the following relations,

": 1 (_ _)c··-- v·,+v··
~J - 2 ~,J J,~

(3.18)

(3.19)

we can rewrite the equations of equilibrium and pore fluid flow and the constitutive equations

in a matrix form as

[A]{y}T = {O}
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in which

n1 0 n2 n1 0 0

0 n2 n1 n2 0 0

[A] =
0 0 0 A34 n1 n2

A 41 A 42 0 A 44 A 45 0

A 51 A 52 0 A 54 0 A 56

0 0 A 63 0 A 65 A 66

{y} = {O"~;, ,* ,* * v~, vD0"22' 0"12' Uw'

k.
A 34 = -'lq

ryw

The eigenvalue is obtained from the condition det[A] = 0 (see Appendix A).

( Gil)
W + ----;; (w

3 + a1w2 + a2w + a 3 ) = 0

where

a1 = 2rywf-t(2~ + f-t~) [2ryw { 3Kf-t + G(2f-t + f-t~) } + kq2f-t(2G + 3K) (2f-t + f-t~)]

a2 = 2 (2
1

') [6rywGK + kq2{3Kf-t(2G" +K')
rywf-t f-t + f-tk

+G(4f-t(G" + 3K) + f-t~(2G" + 3K))}]
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(3.22)

(3.23)

(3.24)

(3.25)

(3.26)

(3.27)

(3.28)

(3.29)

(3.30)

(3.31)

(3.32)

(3.33)

(3.34)

(3.35)



3.2.2 Instability of the Material System

In the following, we discuss the instability of the material system. If the growth rate of pertur­

bation w, which is the root of Equation (3.32), is positive, the material system is stable. On

the other hand, if w is negative, the material system is unstable. In order to investigate whether

w is negative or positive, we adopt the Routh-Hurwitz criteria. The roots of Equation (3.32)

have negative real parts when the coefficients of the characteristic polynomial satisfy

in which

ala2 - a3 = 4 2 2(~ , ) [12'Y~GK{3Kp, + G(2p, + p,U}
'YwP, P, + P,k

+2'Ywkq2{9K2p,2(2G" + K') + 18GK2p,(3p, + p,~)

+G2(2p, + p,U (2p,(2G" + 9K) + p,~(2G" + 3K)) }

+k2q4(2G + 3K)p,(2p, + J1~){3(2G" + K')Kp,

+G(4p,(G" + 3K) + p,~(2G" + 3K))}]

(3.36)

(3.37)

Since elastic moduli G and K and the parameters of viscosity p, and p,~ are positive, al > °
is always satisfied. The other conditions, a2 > 0, a3 > 0, and ala2 - a3 > 0, depend on

viscoplastic hardening parameter G".

Elasto-viscoplastic Model without a Gradient Term

Firstly, let us consider the model without a strain gradient term. In the case of G" > 0, i.e.,

viscoplastic hardening, a2 > 0, a3 > 0, and ala2 - a3 > °are satisfied, so that the material

system is stable.

In the case of G" < 0, i.e., viscoplastic softening, it is possible that a2, a3, and ala2 - a3 are

negative. Thus, the system can become unstable. In this case, when k is relatively larger, a2,

a3, and ala2 - a3 become negative more easily, namely, the possibility of instability is higher.

On the other hand, when k is relatively smaller, it can be said that the material system is less

unstable.

From the above results of the instability analysis using an elasto-viscoplastic model, it is

seen that the material system is stable in the strain-hardening range, while the material system

becomes unstable in the strain-softening regime. In addition, a material system with high

permeability levels becomes more unstable compared with a material system with lower values

of permeability.

Gradient-dependent Elasto-viscoplastic Model

Next, we will discuss the effects of the strain gradient on instability. The introduction of a

second order strain gradient into the model (Equation (3.10)) transforms viscoplastic hardening
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modulus K', namely,

(3.38)

since J-L, J-L~, and K' are positive, K' increases if gradient parameter as is positive. If as is

large enough, a2, as, and ala2 - as can become positive, even though Gil < O. Hence, the

strain gradient can make the material system less unstable or more stable even in the regime of

viscoplastic softening.

Rigid-viscoplastic Model without a Gradient Term

To study the instability of the material system more simply, we assume a rigid-viscoplastic

constitutive model that is achieved by

G -+ 00, K -+ 00

This assumption and det[A] = 0 yield (see Appendix A)

-(4G" + K')
w = ------,----'---0-----,------'-------,--,--

2,w/kq2 + (4J-L + J-L~)

(3.39)

(3.40)

In the case of Gil > 0, the viscoplastic-hardening case, w becomes negative. These results

are the same as those of the elasto-viscoplastic model, but further discussion can be done as

follows. When k is relatively smaller, Iw Ibecomes smaller. The system then becomes relatively

less stable. When k is relatively larger, however, Iw I becomes larger and the system becomes

relatively more stable.

In the case of viscoplastic softening, namely, Gil < 0, w becomes positive. In this case, when

k is relatively smaller, Iw I becomes smaller. The system then becomes relatively less unstable.

When k is relatively larger, however, I w I becomes larger, and the system becomes relatively

more unstable. These results obtained in the viscoplastic softening region are consistent with

those for the case of elasto-viscoplastic model.

An instability analysis using a rigid-viscoplastic model, disregarding the effects of elasticity

on instability, provided an additional conclusion that lower permeability levels lead to relative

instability in the strain-hardening range.

Gradient-dependent Rigid-viscoplastic Model

In the case of the gradient-dependent rigid-viscoplastic model, we have obtained a growth rate

of fluctuation w as

(3.41)
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A comparison between Equations (3.40) and (3.41) provides the same relation as in Equa­

tion (3.38). Even though Gil < 0, in the strain-softening regime, the numerator can be negative

when a3 > 0 is large enough and/or q is large, that is, the wave length is small enough. Namely,

the material system can be stable even in the case of Gil < 0 if the gradient term is large enough.

In any case, the gradient term can act as a stabilizer in the analysis as has been observed in

many analyses (see Oka et al. 1994, 2000).

3.3 Finite Element Formulation for a Strain Localization Anal­

ysis of Water-saturated Clay

A finite element formulation for two-phase mixtures based on the finite deformation theory is

shown in this chapter. Biot's (1956) two-phase mixture theory is adopted to give the governing

equations of the soil-water coupling problem. For simplified and practical formulations, both

the grain particles a~d the fluid are assumed to be incompressible.

Strain localization phenomenon is a geometrically nonlinear problem since deformation in

shear band is large. In addition, constitutive equation of clay used in this study is nonlinear

and defined as incremental form. In order to deal with such a nonlinear large deformation

problem using an incremental constitutive model, an updated Lagrangian method with the

objective Jaumann rate of Cauchy stress is used for the weak form of the rate type of equilibrium

equations. As for the element type, an eight-node quadrilateral isoparametric element with a

reduced Gaussian four points integration is used for the displacement in order to eliminate shear

locking as well as to reduce the appearance of a spurious hourglass mode. The pore water

pressure is defined by a four-node quadrilateral isoparametric element (see Figure 3.1).

In this section, direct notation is used for vectors and tensors, which are indicated by boldface

letters. A dot denotes a contraction of inner indices, e.g., aibi == a . b, so that AjBij == A : B.

• Displacement
Viscoplastic volumetric strain

--
o Pore water pressure

o

x

x

.--

x

x
X Gauss points

x

x

x

x

(2 x 2 reduced integration)

Eight-node quadrilateral isoparametric element
for the soil skeleton and the viscoplastic volumetric strain

(2 x 2 full integration)

Four-node quadrilateral isoparametric element
for the pore water pressure

Figure 3.1 Isoparametric elements for the soil skeleton and the pore water pressure
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df = sdSo u

Initial configuration:
reference configuration

(known)

df = tds

It = t+ ~tl
(unknown)

u=x-x

v6.t = x' - x

(a) Total Lagrangian formulation

Current configuration:
reference configuration

(known)

P(x) df = tds
v6.t = x' - x

(unknown)

(b) Updated Lagrangian formulation

Figure 3.2 Motion of body in stationary Cartesian coordinate system

3.3.1 Updated Lagrangian Formulation

Figure 3.2 shows the motion of a general body in a stationary Cartesian coordinate system, in

which X = Xi, X= Xi, and x' = x~, (i = 1,2,3), are coordinates of the point P at time t = 0,

t = t, and t = t + b..t, respectively. The configuration at time t = 0 is the initial configuration,

i.e., the body is not deformed yet; the configuration at time t = t is the current configuration,

i.e., the latest known configuration; and the configuration at time t = t + b..t is unknown. In

the present study, we deal with the incremental boundary value problem employing the rate

type of the equilibrium equations for solid-fluid mixture with incremental constitutive equations

and appropriate boundary conditions. Hence, the configuration at time t + b..t is provided by

solving the rate type of the equilibrium equations at the current configuration (t = t) with a

time increment b..t, i.e., linear approximation in terms of time. By iterating this procedure from
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t = 0, to tlt, 2tlt,"', approximate solutions of nonlinear equations can be obtained.

Finite element formulation used in this study is the updated Lagrangian method, which

is effective for strongly nonlinear problem inducing large deformation and rotation since the

reference configuration is always updated to the latest deformed configuration.

In the Lagrangian descriptions, the nodes, the elements, and the quadrature points move

with the material, so that constitutive equations are always evaluated at the same material

points, which is advantage for history-dependent materials such as soils. On the other hand,

Eulerian descriptions have not been used much in solid mechanics. Since Eulerian elements do

not deform with the material, they retain their original shape regardless of the magnitudes of

the deformation; hence, Eulerian descriptions are useful in problems with very large deformation

such as hydrodynamics (Belytschko et al. 2000).

Finite element discretizations with Lagrangian descriptions are commonly classified as up­

dated Lagrangian formulations and total Lagrangian formulations. By comparing these two

formulations, we can observe that they are quite analogous and that the only theoretical differ­

ence lies in the choice of different reference configurations (Tomita 1990; Jeremic 2002). The

reference configuration of the total Lagrangian formulation is the initial configuration (Figure

3.2(a)), hence, the rate type of the equilibrium equations and its weak form employ integrals

over the initial configuration. On the other hand, reference configuration of updated Lagrangian

formulation is the current configuration (Figure 3.2(b)); the rate type of the equilibrium equa­

tions and its weak form involve integrals over the current configuration. In addition, since the

reference configuration is updated at each iterative procedure, it is necessary for the updated

Lagrangian formulation to use an objective stress rate, which is a frame-invariant rate.

3.3.2 Definition of the Effective Stress of the Fluid-solid Mixture Theory

Based on Terzaghi's concept of effective stress, the total stress tensor and the time rate of stress

are given as

T=T'+uwI

'1'= T' +uwI

(3.42)

(3.43)

in which T denotes the total Cauchy stress tensor, T' denotes the effective Cauchy stress tensor,

U w denotes the pore water pressure, I is the second order identity tensor, and the superimposed

dots indicate a time differentiation.

3.3.3 Equilibrium Equations

Rate Type of the Equilibrium Equations

In the following, we will derive the rate type of the equilibrium equations by the material deriva­

tive of equilibrium equations in the current configuration. The following derivation procedure

is based on Yatomi et al. (1989) and Tamura (2000). Then, the weak form of the rate type of

the equilibrium equations is formulated.
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When we consider an arbitrary domain V with boundary av (see Figure 3.2), the conserva­

tion of linear momentum for the whole fluid-solid mixture in the current configuration is given

by the following equation:

gt fv pv dv = ffJD t ds + fv pbdv (3.44)

in which D / Dt is the material time derivative, p is the mass density, v is the velocity vector, t

is the surface traction vector, and b is the body force vector.

In this study, we deal with static and small scale problems, so that the acceleration and

body force can be assumed to be zero. Consequently, this assumption provides the equilibrium

equations resulting from Equation (3.44):

ffJD t ds = 0 (3.45)

Thus, the rate type of the equilibrium equations is expressed as follows:

(3.46)

The relation between the surface traction vector t and the Cauchy stress tensor T is defined

by Cauchy's stress theorem, namely,

(3.47)

in which n is the unit normal vector to ds.

When the traction force df = t ds is shifted to the initial configuration, Le., df = 8 dSo (see

Figure 3.2(a)), the nominal traction (Piola's traction) 8 is written as

8=nTN (3.48)

where n is the nominal stress (the first Piola-Kirchhoff stress) tensor and N is the unit normal

vector to dSo, that is, the surface area in the initial configuration. Note that the Cauchy stress

T is a symmetric tensor, while the nominal stress n is an asymmetric tensor.

Since Equations (3.47) and (3.48) provide following equation, Le.,

TTn ds = n T N dSo, (t ds = 8 dSo)

we obtain the relation between the Cauchy stress T and the nominal stress n as

in which we used Nanson's law:

(3.49)

(3.50)

(3.51)

where F is the deformation gradient tensor and J is the Jacobian determinant defined as J =
detF.

Combining Equations (3.46)"-'(3.50) gives the rate type of the equilibrium equations in the

initial configuration as

Din Din T-D 8 dSo = -D n N dSo = 0t fJDo t fJDo
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Since Nand dSo are not dependent on time, Equation (3.52) yields

i ·T
II N dSo = 0

81Jo
(3.53)

where iI is the material time derivative of the nominal stress, which is given by differentiating

Equation (3.50) with respect to time (see Appendix B):

iIT = J(T + TtrL - TLT)F-T (3.54)

where L is the velocity gradient tensor defined as L = FF-T . Therefore, replacing Equation

(3.53) by Equation (3.54) gives

f J(T + TtrL - TLT)F-TN dSo = 0 (3.55)
181Jo

Adopting Nanson's law, Equation (3.51), and the Gauss theorem provides the rate form of the

equilibrium equations in the current configuration as.
fv divSt dv = 0

in which the total nominal stress rate tensor St is defined as follows:

" TSt == T + TtrL - T L

Finally, we obtain the continuing equilibrium equations, namely,

divSt = 0

. I
The effective nominal stress rate tensor St is given by the following equations,

• I •
St = T ' + T/trL - T'LT

(3.56)

(3.57)

(3.58)

(3.59)

To obtain the relation between St and S/, substituting the definition of the effective Cauchy

stress and the effective Cauchy stress rate, Equations (3.42) and (3.43), respectively, into

Equation (3.57) gives,

· • I . T
St = St + uwI + trLuwI - uwIL

By letting U = trLuwI - uwILT , Equation (3.60) will become

• • I
St = St + uwI + U

Weak Form of the Rate Type of the Equilibrium Equations

(3.60)

(3.61)

When we consider the closed domain V at current time t = t, the weak form of the rate type of

the equilibrium equations is given as follows:

fv divSt· 8vdv = 0
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in which 8v is the virtual velocity vector. The boundary conditions for the fluid-solid mixture

are illustrated in Figure 3.3. A displacement boundary is denoted by {)'Du if the displacement

is prescribed; {)'Dt denotes a traction boundary if the traction is prescribed.

v = v on {)'Du (3.63)

(3.64)

in which v is the velocity vector, n indicates the unit normal to the body, St is the nominal

traction rate vector (see Appendix B), and the specified values are designated by a superposed

bar. The traction and the displacement cannot be prescribed at the same point; one of them

must be prescribed at each boundary point. This is indicated by

(3.65)

where {)'D denotes the whole boundary (Belytschko et al. 2000).

v = v on ()'Du

Figure 3.3 Boundary conditions for the whole fluid-solid mixture

Substituting relation

div(St8v) = divSt' 8v + St : grad(8v) (3.66)

into Equation (3.62) yields

l div(St8v) dv -l St : grad(8v) dv = 0 (3.67)

By taking the Gauss theorem and the compatibility condition, i.e., grad(8v) = 8L, Equation

(3.67) can be written as

J87J (St8v ). nds -l St : 8Ldv = 0 (3.68)

Substituting Equation (3.61) into the second term of Equation (3.68) and transform of the

first term by the following relations (see Appendix B), namely,

(3.69)
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and yields

r S/:8Ldv+ r uw tr8Ldv+ r U:8Ldv- r St. 8vds =0
Iv lv lv lovt

Since the stretching tensor D is defined as

1 T
D= "2(L+L ),

the following relation is obtained:

tr8L = tr8D

(3.70)

(3.71)

(3.72)

Substituting Equations (3.72) and (3.59), the effective nominal stress rate, into Equation

(3.70) gives

fv T' :8Ldv + fv (T'trD) : 8Ldv - fv (T'LT
) : 8Ldv + fv uw tr8Ddv

+ rU:8Ldv- r st· 8vds =0 (3.73)
lv lovt

From the symmetry of the effective Cauchy stress tensor,

(3.74)

is obtained.

For the discretization of the weak form of the equilibrium equation, the following relations

are defined:

v = [N] {v*} , 8v = [N] {8v*} (3.75)

in which {v} is the velocity vector in an element, {v*} is the nodal velocity vector, and [N] is a

shape function of the eight-node quadrilateral element.

D = {D} = [B] {v*} , 8D = {8D} = [B] {8v*} (3.76)

in which [B] is the matrix which transforms the nodal velocity vector to the vector form of

stretching tensor {D}.

L = {L} = [BM] {v*} , 8L = {8L} = [BM] {8v*} (3.77)

where [BM ] is the matrix which transforms the nodal velocity vector to the vector form of

velocity gradient vector {L}.

(3.78)

where {Bv } is the vector which transform the nodal velocity into the trace of D.

(3.79)

in which {uw } represents the pore pressure rate, {u~} represents the nodal pore pressure rate

vector, and {Nh } represents the four-node quadrilateral element shape function.
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(3.80)

Finally, by substituting Equation (3.74) into Equation (3.73), a weak form of the equilib­

rium equation can be obtained, as shown in the following equation:

Iv 8DT
: T'dv + Iv 8LT

: T'trDdv - Iv 8LT
: (T'LT

) dv + Iv tr8Duw dv

+ { 8LT : U dv - { 8vT . St ds = 0Jv J81J t

In this formulation, the finite deformation theory is used; thus, the Jaumann rate of effective

Cauchy stress tensor T' is adopted for the constitutive model. The Jaumann rate of effective

Cauchy stress tensor T' is the objective tensor and is defined as

T' = T'- WT' +T'W

where W is the spin tensor, namely,

(3.81)

(3.82)

The stretching tensor D is assumed to be a composition of elastic stretching tensor De and

viscoplastic stretching tensor DVP, that is,

(3.83)

The relation between elastic stretching tensor De and the Jaumann rate of Cauchy stress tensor

T' can be obtained as

(3.84)

where C e is the elastic tangential stiffness of the forth order tensor. Equations (3.83) and

(3.84) lead to the relation

A' A, e vp
T = c e

: (D - DVP) , Tij = Cijkl(Dkl - D kl ) (3.85)

From the flow rule in the last chapter, viscoplastic stretching tensor DVP can be obtained as

D~J = I (<PI (F)) <P2(~) :~.
~J

(3.86)

where I is a viscoplastic parameter.

Herein, the tangent modulus method (Peirce et al. 1984) is adopted in order to evaluate

viscoplastic stretching tensor D~J (see Oka et al. 1992a and Higo 2001). Next, the relation

between the rate of effective stress and the stretching tensor can be written in matrix form, as

shown in the following equation:

{T'} = [C] {D} - {Q}

Substituting Equation (3.81) into Equation (3.87) yields

{T'} = [C] {D} - {Q} + {W*}

(3.87)

(3.88)

where [C] is the tangential stiffness matrix, {Q} is the relaxation stress vector, and {W*} =
WT' - T'W is the vector related to the spin tensor.
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By all the matrix and vector relations obtained previously, and based on the theory of virtual

displacement, dividing Equation (3.80) by {8v*}T produces

[K] {v*} - k[B]T {Q}dv + k[B]T {W*}dv + [KL] {v*} + [Kv] {u~J = {F} (3.89)

in which

[K] = k[B]T[C][B] dv (3.90)

[KL] = k[BM]T[D~][BM] dv + k[BM]T[U][BM]dv + k[BM]T {T'} {Bv}T dv (3.91)

[Kv ] = k{Bv } {Nh } dv (3.92)

{F} = r [N]T {s} ds (3.93)JWt

In the above eejuations, the matrix form of (- T' L T
) and U are denoted as

-T'LT
= [D~][BM] {v*}

U = uwI (trL) - uwILT = [U][BM] {v*}

(3.94)

(3.95)

The relation between nodal velocity vector {v*} and nodal displacement increment vector

{~u*} can be obtained by using Euler's approximation as

{v*} = {~u*}
~t

Similarly, the pore water pressure can be obtained as

(3.96)

(3.97){ .*} = {u~h+ll.t - {u~h
uw ~t

Substituting Equations (3.96) and (3.97) into Equation (3.89), the weak form of the equi­

librium equations is obtained, that is,

[[K] + [KL]] {~u*} + [Kv ] {u~h+ll.t = ~t{F} + [Kv ] {u~h

+~tk[B]T {Q}dv - ~tk[B]T {W*}dv (3.98)

3.3.4 Continuity Equation

For describing the motion of pore water, a Biot's type of two-phase mixture theory (Biot 1956)

is used in the analysis with a v(velocity)-uw(pore pressure) formulation. The Darcy law and

the conservation of mass for the mixture give the continuity equation as

k 2
-V' uw +trD = 0
IW

(3.99)

where k is the coefficient of permeability, IW is the unit weight of the pore water, and D is the

stretching tensor.
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Considering the test function of uw , we can obtain the weak form of the continuity equation

as

~ r\72uwuw dv + rtrD Uw dv = 0 (3.100)
"1w Jv Jv

As shown in Figure 3.4, 1) demonstrates a closed domain. In a similar manner to that of

the boundary for the fluid-solid mixture, the boundary surface can be broken down into two

parts, namely,

(3.101)

in which (1)p is the boundary where the pore pressure is specified and (1)v is the boundary

where the flow of water is specified.

(3.102)

(3.103)
k
-\7uw = v on (1)v
"1w

in which the specified values are designated by a superposed bar, and v is the velocity of the

pore water through the boundary surface.

k
-'Vuw = v
"1w

Figure 3.4 Boundary conditions for the fluid phase

From the relation

(3.104)

Equation (3.100) can be rewritten as

~ r \7. (\7uwuw) dv - ~ r\7uw . \7uw dv + ruwtrD dv = 0 (3.105)
"1w Jv "1w Jv Jv

By applying the Gauss theorem to the previous equation and substituting Equation (3.103)

into Equation (3.105), the following equation can be obtained:

r v. nds - ~ r\7uw ' \7uw dv + ruwtrDdv = 0 (3.106)
Jovv "1w Jv Jv
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in which n is the unit normal vector of the body.

For the discretization, the following vectors and matrixes are used:

(3.107)

where {u~J is the nodal pore pressure vector and {Nh } is the shape function of the four-node

quadrilateral element.

(3.108)

in which [Bh ] is the matrix which transforms the nodal pore pressure into the spatial derivative

of the pore pressure.

(3.109)

(3.110)

where {Bv } is the vector which transforms the nodal velocity vector {v*} into the trace of the

stretching tensor. '

Substituting Equations (3.107), (3.108), and (3.109) into Equation (3.106) yields

{ {u~}T {Nh}T {v}T {n}ds - ~ { {u~}T [Bh]T[Bh]{u~}dv
JODv 'Yw J7)

+k{u~}T {Nh}T {Bv}T {v*} dv = 0

By taking the arbitration of the test function, dividing both sides of the previous equation

by {u~,}T gives

(3.111)

Using the same approximation of Equation (3.96), the discretization of the continuity equa­

tion is obtained as follows:

where

[Kh]= ~ ( [Bh]T[Bh]dv
'Yw J7)

[Kv]T = k[Nh]T[Bv]Tdv

. [V] = - { [Nh]T {v}T {n}ds
J81Jv

(3.112)

(3.113)

(3.114)

(3.115)

3.4 Finite Element Formulation of the Gradient-dependent Elasto­

viscoplastic Model

Higher order gradient terms have been introduced into the constitutive equations to simulate

localization problems. In the present study, a second order gradient of viscoplastic volumetric
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strain vP is used in the constitutive equation. Hence, the discretization of vP as an independent

variable by the eight-node quadrilateral element is needed (see Figure 3.1). In this section, we

assume the weak form of the dynamic yield function and define viscoplastic volumetric strain

vP at each node in a similar manner to that by Aifantis et al. (1999).

However, there are still difficult questions to be solved when we use a constitutive equation

with higher order gradient terms in relation to boundary value problems defined in the finite

domain. Miihlhaus and Aifantis (1991) and Vardoulakis and Aifantis (1991) pointed out the

importance of this and proposed variational principles to exact appropriate boundary condi­

tions. In the present study, we assume the related boundary conditions for the first gradient of

viscoplastic strain. For the first gradient of vP , we assume the following relation between the

flux Q associated with the internal structure change including the "VvP or "ViJP :

Q = "VvP or "ViJP (3.116)

To obtain the weak form of the dynamic yield function, we assume the simplified viscoplastic

model as follows (Oka et al. 1992b):

(3.117)

(3.118)

where EVP is the viscoplastic strain, al is the hardening parameter, f is the dynamic yield

function, and a3 is a gradient parameter.

The weak form of the dynamic yield function with boundary conditions can be written as

Iv (J - alvP - a3"V2vp
- g(iJP) )6vPdv + A f&1J (Q - "Vn VP ) 6vP • n ds = 0

in which 1) is a closed domain, ()1) is the boundary surface, vP is the viscoplastic volumetric

strain, "Vn is the normal gradient to the boundary, 6vP is the virtual viscoplastic volumetric

strain associated with virtual displacement during the deformation process and A is an arbitrary

scalar. In the present study, the viscoplastic strain rate is assumed to always occur.

When g(.) is linear with respect to vP , it is easy to employ the weak form of Equation

(3.118). However, if g(.) is non-linear with respect to vP , a problem arises. In such a case,

we need an iterative procedure to solve Equation (3.118). It is worth noting that a serious

difficulty is encountered in numerically solving it by the finite element method because of the

non-linearity of the field equation. In the case of the proposed constitutive model, function g(.)
is non-linear. In this case, we adopt a Taylor series expansion around the current state and

consider the first term to obtain the weak form. We can rewrite the dynamic yield function as

(3.119)

In the following, the stress tensor aij denotes the effective stress tensor without notice for

simplicity.

Expanding the viscoplastic volumetric strain rate in a Taylor series and disregarding the

second- and higher-order terms, we obtain a linearized dynamic yield function of the form

(3.120)
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where

f)G
Ga = -f) ,

O"ij

f)G
GvP = f)vP , (3.121)

Vb denotes the value of the volumetric strain rate at the current state. Using a Taylor series

expansion and truncating the first order term, we obtain the following expression for the total

strain rate tensor:

where [L*]-l denotes the inversion of the elastic compliance tensor and

(3.122)

f) .vpc;..
A=~f)vP ,

f) .vp
c··

A*=~
f)O"kl '

f) .vp
c·'A** ~J

f)("V2vp ) ,
(3.123)

where [i] is the total strain rate tensor, lib] is the viscoplastic strain rate tensor at the current

state and i~J is the viscoplastic strain rate tensor.

From Equation (3.122), stress rate tensor [0-] is obtained as

[0-] = [L][i] - [L][ib] - [L][A]vP - [L][A**]"V2vp

[L]-l = [L*r 1 + [A*]

Substituting Equation (3.124) into Equation (3.120) yield

HvP = jC + [Ga][L][i] + R"V2vp

where

H = 1 - GvP + [Ga][L][A]

.ib = Vb - [Ga][L][ib]

R = GfJ - [Ga][L][A**]

The weak form of Equation (3.120) with boundary conditions is given by

fv (R"V 2vP - HvP + jC + [Ga][L][i]) 8vPdv + A /81) (Q - "Vvp
) 8vp

• nds = 0

where A is an arbitrary scalar and 8vP is the virtual viscoplastic volumetric strain rate.

Since

Equation (3.130) becomes

fv R("V. (8vP"VvP ) - "V8vp
• "Vvp

) dv + fv 8vP (-HvP + jC + [Ga][L][i]) dv

+A /81) 8vPQ. nds - A/81) 8VP"VVP· nds = 0
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(3.125)

(3.126)

(3.127)

(3.128)

(3.129)

(3.130)

(3.131)

(3.132)



Using the divergence theorem for Equation (3.132), we have

Iv R\l8iJP. \liJPdv - Iv 8iJP(-HiJP + jC + [Go-][L][i]) dv - AJfJD 8iJPQ. nds

+(-R + A)JfJD 8iJP\liJP. nds = 0

In order for parameter A to be arbitrary, we set A = R.

(3.133)

Introducing the shape function, we can discretize the viscoplastic strain rate, and the corre­

sponding strain tensor by using the expression

iJP = [N*] {iJP*} , 8iJP= [N*] {8iJP*} (3.134)

where {iJP*} denotes the vector of the rate of the viscoplastic volumetric strain rates at the nodal

points and [N*] is a shape function of the eight-node quadrilateral element.

\liJP = [N*]' {iJP*}

[i] = [B] {u*}

(3.135)

(3.136)

where {u*} is the velocity vector at the nodal points, [B] is the strain rate-velocity matrix and

[N*J' = \l[N*].

Upon the substitution of the shape function into Equation (3.133), we get the following

equation since {8iJP*} is arbitrary:

Iv R[N*]'T[N*]'dv{iJP*} + Iv H[N*F[N*]dv{iJP*} - Iv[N*]T[Go-][L][B]dV{U*}

- Iv[N*]T jC dv - RJfJD[N*]T{Q}T {n}ds = 0 (3.137)

which can be written as

where

[K1] = Iv (R[N*]'T[N*]' +H[N*]T[N*]) dv

[K2] = - Iv [N*]T [Go-][L][B] dv

{F1} = Iv[N*]TjCdv + RJfJD[N*]T{Q}T {n}ds

In addition, using the following Euler approximation and Equation (3.96):

{ iJP*} = {~vP*}
~t '

Equation (3.138) becomes
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(3.141)
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It should be pointed out that, when we implement the proposed model into the FEM code,

we should specify the boundary of Q, which describes microstructure change flux Q at the

boundary, namely,

(3.144)

In this respect, we postulate that flux Q is zero at the boundary between the rigid or the elastic

material and the viscoplastic material. From a physical point of view, we could say that flux Q
never flows from the rigid or the elastic material, which will never deform plastically, and also

that flux Q never flows out from the viscoplastic material into the rigid or the elastic material.

At the boundary where the stress levels are specified like a free surface of the ground, flux Q
also assumed to be zero.

Finally, from Equations (3.98), (3.112), and (3.138), we can obtain the governing equations

used in the finite element analysis as follows:

[

~t{p} + [Kv]T {u~h + ~tfv [B]T {Q}dv - ~tfv [B]T {W*}dV]

= ~{n

~t{Fl}

(3.145)

(3.146)

3.5 Effects of Permeability on the Strain Localization Analysis

In Figure 3.5, the boundary conditions are shown for the plane strain problem used in the

numerical analysis, while the parameters used in the computation are shown in Table 3.1. The

gradient parameter, in principle, can be determined by the width of shear band, namely, the

wavelength of the localized pattern. The strain rate of compression is 1.0%/min. The horizontal

displacement of the top and the bottom of the specimen was fixed as a trigger of localization.

All of the boundaries are assumed to be impermeable, while the pore fluid is allowed to flow in

the specimen.

The average vertical stress vs. strain relations with different coefficients of permeability are

shown in Figure 3.6. In the early stage of loading, Le., in the hardening range, little difference

can be seen among these three cases. On the other hand, in the strain-softening range, the

material with a low permeability level of 1.54x10-12 (m/s) is less unstable because the average

stress is larger than those with higher permeability level of 1.54x 1O-6(m/s) and 1O-8(m/s).

This behavior is consistent with the theoretical consideration mentioned in Section 3.2. After

an axial strain of 5%, however, the case of k = 1.54 x 1O-8(m/s) is smaller than the case of

k = 1.54 x 1O-6(m/s). These results do not agree with those of the instability analysis.

The calculations with coefficients of permeability k = 1.54 x 1O-8(m/s) and 1O-12(m/s)

diverged around 8% of the axial strain. The calculations with k = 1.54 x 1O-6(m/s) also
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Figure 3.5 Boundary conditions and the size of the specimen (undrained plane strain condition)

Table 3.1 Material parameters for the strain localization analysis with different permeability
coefficients

Compression index A 0.172

Swelling index /b 0.054

Initial void ratio eo 1.28

Initial mean effective stress a~e 200 (kPa)

Coefficient of earth pressure at rest K o 1.0

Viscoplastic parameter m' 21.5

Viscoplastic parameter C 4.5xlO-8 (l/s)

Stress ratio at failure M* 1.05f
Elastic shear modulus G 5500 (kPa)

Softening parameter G2 100

Gradient parameter as 0.0, 5.0, 30.0 (x 10-4 m2
)

1.54xlO-6 (m/s)

Coefficient of permeability kx=ky 1.54x10-8 (m/s)

1.54xlO-12 (m/s)
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Figure 3.6 Average vertical stress-strain relations with different coefficients of permeability

diverged around 11% of the axial strain. This is because the constraint conditions, i.e., no

lateral displacements at either the top or the bottom plates, induce numerical instability near

the top and the bottom of the specimen.

Figure 3.7 shows the deformed mesh at an average axial strain of 7% with different co­

efficients of permeability k. It is shown that the pore fluid has an apparent influence on the

formation of shear bands. It is found that a symmetrical deformation can be seen in all cases,

in particular, a clear shear band formed in the case of k = 1.54 x 1O-6(mjs).

In Figure 3.8, velocity vectors are shown in half of the specimen at an average axial strain

of 7% with different coefficients of permeability k. Discontinuous distributions of velocity fields

are found in all cases due to the formation of shear bands. The patterns of distributions of the

velocity vectors are consistent with the deformed mesh.

Figure 3.9 shows the distributions of accumulated viscoplastic shear strain "l at an average

axial strain of 3% and that of 7% with different coefficients of permeability k. ,P is defined as

follows:

d--vP = (de1?de1?)1/2
I tJ tJ (3.147)

where defj is the viscoplastic deviatoric strain-increment tensor. The localized patterns of the

figures for 3% are very similar to each other, but the maximum value for ,P is larger as the

coefficient of permeability k decreases. On the other hand, at an average axial strain of 7%, the

maximum value for ,P is larger in the case of higher coefficients of permeability than that of

lower coefficients of permeability. It can be said that materials with larger accumulated shear

strain are more unstable than those with smaller shear strain. Following this point of view,

when the average axial strain is small, i.e., in the viscoplastic-hardening area, materials with

lower permeability levels are rather unstable. On the other hand, when the average axial strain

becomes large, Le., in the viscoplastic-softening area, materials with higher permeability levels
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Figure 3.7 Deformed mesh at an average axial strain of 7%
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Figure 3.8 Distributions of the velocity vector at an average axial strain of 7%
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are relatively unstable. This tendency is also consistent with the results obtained in Section

3.2. In addition, a larger difference between the maximum and the minimum values for "l is also

seen in the case of higher permeability levels. This suggests that the strain localizes prominently

when materials have high permeability levels. It is interesting, however, that two shear bands

appear in the case of k = 1.54 x 1O-6(mjs), while the other cases have four shear bands and the

distance between two shear bands is larger in the case of small permeability compared with the

case of larger permeability.

Inclination angles of shear bands for all cases are 45 degrees at small axial strain of 3%. When

the axial strain becomes 7%, angles of shear bands with higher permeability become larger than

those of lower permeability. Oka et al. (1995) demonstrated that the preferred orientation of

shear bands is 45 degrees under plane strain locally undrained condition, i.e., k = 0, for the

Adachi and Oka viscoplastic model introduced in Chapter 2. The reason why the angles of

shear bands with lower strain is proximate to 45 degrees that materials with lower permeability

levels are similar to those under locally undrained conditions.

In Figure 3.10,'the distributions of pore water pressure are shown with different coefficients

of permeability k. When permeability k is smaller, the pore water pressure is more localized. In

Figures 3.11, 3.12, and 3.13 the distributions of mean effective stress, the second invariant of

deviatoric stress, and volumetric viscoplastic strain at an average axial strain of 7% are shown

with different coefficients of permeability k. They are all affected by the formation of shear bands

and are inhomogeneous. The mean effective stress inside the shear band becomes smaller than

that outside the shear band. The maximum values for the deviatoric stress and the volumetric

viscoplastic strain become larger with higher permeability levels.

Loret and Prevost (1991) showed that materials with higher permeability levels are more

unstable in the post-localization regime. The results obtained in this section and the last sec­

tion for the instability analysis are consistent with Loret and Prevost (1991) in the softening

area. Note that the numerical simulations done by Loret and Prevost (1991) are based on the

infinitesimal strain theory using a dilatant elasto-plastic model, while calculations in this study

are based on the finite deformation theory using a contractant elasto-viscoplastic model. Oka

et al. (1995), using basically the same analysis method, concluded that materials with higher

permeability levels are stable because the distribution of pore water pressure is rather moder­

ate. In this study, however, materials with higher permeability levels which show a relatively

moderate distribution of pore water pressure are more unstable because "l is more localized.

3.6 Effects of the Strain Gradient Parameter on the Strain Lo­

calization Analysis

Strain gradients, in principle, can describe the thickness of shear bands. In addition, it is found

in the instability analysis of Section 3.2 that strain gradients act as stabilizers. In this section,

the effects of the strain gradient parameter on the strain localization analysis are investigated.

The boundary conditions and the material parameters are the same as in the last section.
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Figure 3.14 depicts the distributions of accumulated viscoplastic shear strain ,P at an

average axial strain of7% with different gradient parameters. In this case, k = 1.54x lO-lO(m/s).

It can be found from the figure that the thickness, the spacing of the shear bands, and the extent

of the strain localization also depend on gradient parameter a3. The accumulated strain is more

localized when gradient parameter a3 is rather small. This suggests that the gradient term

makes the system more stable. The distance between shear bands will decrease with gradient

parameter a3, while the angles of shear bands are consistently 48 degrees.
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Figure 3.14 Distributions of ,P at an average axial strain of 7% (k = 1.54 x 10-10 m/s)

3.7 Effects of Partially Drained Conditions on the Strain Local­

ization Analysis

In this section, we will discuss the effects of partially drained conditions on strain localization.

Figure 3.15 shows the boundary conditions for the numerical analysis under partially drained

plane strain conditions. The top of the specimen was assumed to be a permeable boundary,

while the others were assumed to be impermeable. The gradient parameter a3 is zero and the

coefficient of permeability is k = 1.54 x 1O-8 (m/s). The other parameters are the same as those

shown in Table 3.1. A numerical analysis was performed with the displacement rate controlled

method using overall strain rates of O.Ol%/min, O.l%/min, l%/min and 10%/min. As for the

end conditions, friction coefficient J.L f between the specimen and the end plate is assumed to be

J.Lf = 0.025 to trigger the localization.

The relations between the average vertical stress and the strain with different strain rates

are shown in Figure 3.16. We can see that average stress-strain relations are strongly affected

by the strain rate associated with the consolidation of the specimen. In the case of a low strain

rate, the clay becomes stronger due to the increase in mean effective stress by consolidation.

Figures 3.17 and 3.18 show the deformed mesh and velocity the vector field at an overall axial

strain of 10%, respectively. It is easily seen that the deformation and the displacement vector,

at an average axial strain of 10%, are localized in the case of higher strain rates. In contrast,

specimens with low strain rates deformed homogeneously. The trend for cases with high strain

rates is similar to that for cases with low permeability levels because of the slow dissipation of

pore water pressure.
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3.8 Effects of Material Heterogeneity on the Strain Localization

Analysis

The boundary conditions are shown in Figure 3.19, while Table 3.2 shows material parameters

used in the analysis of this section. We assumed three cases of distribution for the stress ratio

at failure, Mi, as shown in Figure 3.20. The perturbation of Mj was obtained using a pseudo­

random number by the linear congruential method. In Figure 3.21, the stress-strain relations

for Cases 1 and 3 are obtained by the different ranges in perturbation of Mi, R; R = 0%, 0.5%,

1.0%, and 3.0%. R = 0 means a homogeneous clay sample. The applied strain rate is 1.0%/min.

Table 3.2 Material parameters for the strain localization analysis of homogeneous and hetero­
geneous types of clay

Compression index >. 0.372

Swelling index /'i, 0.054

Initial void ratio eo 1.28

Initial mean effective stress
,

600 (kPa )O"me

Coefficient of earth pressure at rest K o 1.0

Viscoplastic parameter m' 21.5

Viscoplastic parameter C 4.5x10-8 (lIs)

Stress ratio at failure M* 1.05f

Elastic shear modulus G 13210 (kPa)

Softening parameter G~ 100

Gradient parameter as 0.0 (m2
)

Coefficient of permeability kx=ky 1.16 XlO- 14 (m/s)

The effects of heterogeneity on the stress-strain relations are dependent on the initial distri­

bution of Aij. It can be seen in Case 1 that the average vertical stress of the non-homogeneous

clay is a little larger than that of the homogeneous clay, but that it becomes smaller at the

failure state. On the other hand, the heterogeneous clay in Case 3 shows softening behavior and

their average stress is smaller than that of the homogeneous clay. The axial strain at the failure

state is consistently smaller as the range of perturbation R is larger. Figure 3.22 shows the

deformed mesh and the distributions of ,P for homogeneous one and for Case1 with different R

at an average axial strain of 10%. Regarding the homogeneous case, deformation and distribu­

tion of ,P are uniform in the specimen. On the contrary, localized deformations are seen in the

non-homogeneous clay and the shear band of R = 3% is clearer than the others. We can also

observe in Figure 3.23 that different modes of deformation appear which are dependent on the

initial distribution of Mj. Similar results have been obtained by Ehlers and Yolk (1998). They

showed that a random distribution of the Lame constant within local deviations of ±0.5% pro­

vide apparent shear bands under plane strain conditions, although the homogeneous specimens

do not.

Next, we consider the frictional boundary as a trigger of the localized deformation shown in

Figure 3.24. Coefficient of friction f-lf is equal to 0.01. Figure 3.25 depicts distributions of
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,P for homogeneous clay and for three cases of heterogeneous clay with 2.0% of R at an average

axial strain of 8%. In the case of the homogeneous clay, the localized deformation from the

bottom left-hand side, where the displacement is fixed, can be observed due to the friction force

acting on the top and the bottom of the specimen. This type of localized pattern also appears

in the heterogeneous clay, in the distribution of ,P of Case 1 and Case 3. However, it displays

rather extensively localized deformation compared with the homogeneous case.

3.9 Summary

In order to study the effects of permeability on the instability of the material system, a soil-water

coupled instability analysis is conducted with a simplified gradient-dependent elasto-viscoplastic

model. In the hardening range, the growth rate of the perturbation is negative, namely, the

material system is stable. In contrast, the material system may become unstable in the softening

regime. It was confirmed that materials with higher permeability levels are more unstable than

those with lower permeability levels. An instability analysis using a rigid-viscoplastic model

gave an additional conclusion that the system is less stable in the hardening regime, when the

coefficient of permeability is rather small. In addition, the strain gradient term makes the system
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stable if gradient parameter a3 is large enough.

From the numerical study, it was found that in the range of small strain, Le., in the vis­

coplastic strain-hardening range, the viscoplastic material system with low permeability levels

is less stable. On the other hand, in the large strain, Le., in the strain-softening range, the

material system is less unstable. These trends are consistent with the theoretical results by the

instability analysis. As for the deformation pattern, permeability, namely, pore water transport,

has a great influence on the formation of shear bands. When gradient term a3 is large, the

accumulated shear strain is less localized. It was confirmed that the gradient term acts as a

stabilizer under globally undrained conditions. Under partially drained conditions, the materials

with lower strain rates show consolidation, while the materials with higher strain rates show lo­

calized deformation. Material heterogeneity causes strain localization, although the deformation

of homogeneous clay becomes uniform. The initial distribution of material parameters affects

the deformation pattern.
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Chapter 4

Elasto-viscoplastic Constitutive

Model for both Normally

Consolidated Clay and

Overconsolidated Clay

4.1 Introduction

It is well known that geomaterials such as soil show changes in volume during shear deforma­

tion, called dilatancy. Dilatancy is a typical property of granular materials such as soil and is

strongly related to changes in the microstructure. Normally consolidated clay exhibits negative

dilatancy or contractancy, namely, decreases in volume during shearing. On the other hand,

overconsolidated clay shows positive dilatancy, namely, increases in volume during shearing.

Figure 4.1 shows undrained triaxial compression test results for normally consolidated (NC)

and overconsolidated (OC) clay samples by Yashima et al. (1999). As shown in Figure 4.1(b),

the mean effective stress of normally consolidated clay decreases monotonically due to negative
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Figure 4.1 Stress-strain relations and stress paths of undrained triaxial tests on Osaka Pleis­

tocene clay (Yashima et al. 1999)
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dilatancy. On the other hand, the mean effective stress of heavily overconsolidated clay of OCR

= 3.5 increases due to positive dilatancy. Another characteristic of clay can be seen in the stress

paths (Figure 4.1(b)). The stress ratio of normally consolidated clay is always less than that

at the failure state. In contrast, the stress path of overconsolidated clay reaches a point over the

failure line, and then the stress ratio decreases toward the failure state. These two characteristics

should be taken into account in order to develop a constitutive model for overconsolidated clay.

In addition, strain-softening behavior can be seen in the stress-strain relations of NC clay and

OC clay (Figure 4.1(a)).

As for a constitutive model for overconsolidated clay, Adachi and Oka (1984) formulated an

elasto-plastic model in a similar manner to that of an elasto-plastic model for sand. An elasto­

viscoplastic model for OC clay was proposed by Oka (1982) based on Perzyna's theory. These

models successfully describe successfully the dilatancy characteristics of OC clay by assuming a

boundary surface between the NC region and the OC region. The former model, however, cannot

address the time-dependent behavior, and neither of them consider the material instability, such

as the second material function introduced in Section 2.4.

In the present study, an elasto-viscoplastic model for both normally consolidated clay and

overconsolidated clay with material instability is developed. The model can be seen as an

extension of the viscoplastic model for NC clay proposed by Adachi and Oka (1982). In order

to address the dilatancy characteristics of OC clay, the following extensions are adopted in the

NC model.

1. Non-linear kinematic hardening and a Chaboche type of viscoplasticity theory (Chaboche

and Rousselier 1983) is newly adopted. Two hardening parameters are used in the yield

function, namely, one depends on the deviatoric strain and the other depends on the

volumetric strain. This hardening rule achieves a double hardening model.

2. An overconsolidation boundary surface (Oka 1982) is introduced. The OC boundary sur­

face defines the boundary between the OC and the NC regions and controls the shape of

the plastic potential function. Even the plastic yielding inside the boundary surface, Le.,

the clay is overconsolidated, is addressed.

3. The second material function is extended using a stress-history ratio (Oka 1985; Adachi

and Oka 1995). The second material function defined by the stress ratio is available only in

. the region where the stress ratio is less than that of the critical state. In general, the stress

ratio of OC clay becomes larger than that of the critical state (see Figure 4.1(b)). Thus,

a new definition for the second material function using a stress-history ratio is adopted.

4.2 Overconsolidation Boundary Surface

In the model, it is assumed that there is an overconsolidation (OC) boundary surface that

delineates the overconsolidation region (fb < 0) from the normal consolidation region (fb 2: 0)
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(see Figure 4.2). In previous papers (Adachi & Oka 1984; Oka 1992; and Oka et al. 1999), a

similar OC boundary surface was used in an elasto-plastic model for sand and overconsolidated

clay. The overconsolidation boundary surface was introduced to control the shape of the plastic

potential function.

In order to describe the volumetric relaxation and/or the secondary compression under

isotropic stress conditions, it is assumed that the stress state of normally consolidated clay

is generally outside of the OC boundary surface and defined as

I

fb = fj* + M:'n In ~m = 0
(J"mb

(4.1)

where fj* is the relative stress ratio which is the same as that is Equation (2.11), "1ij is the stress

ratio tensor, M:'n is the value of "1* = V"1ij"1ij at maximum compression, and (J":n is the mean

effective stress. (0) denotes the state at the end of consolidation, in other words, the initial state

before deformation occurs.

(J"~b .controls the size of the surface and (J"~bi is the initial value of (J"~b' which is defined as

the isotropic consolidation yield stress.

I _ I (1 + e vp )
(J"mb - (J"mbi exp A _ K, ckk (4.2)

where A is the compression index, e is the void ratio, and c%~ is the viscoplastic volumetric

strain.

(
* ) ( * )I _ I "1(0) _ I 1 + e vp "1(0)

(J"mc - (J"mb exp M:n - (J"mbi exp (A _K, Ckk) exp M:n (4.3)

in which (J":nc denotes the mean effective stress at the intersection of the overconsolidation bound­

ary surface and the (J":n axis. In Figure 4.2(b), "111(0)(= J3/2"1~1(0») stands for the anisotropic

consolidation history.
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4.3 Yield Function

Yield function fy with two nonlinear kinematic hardening parameters, namely, xij and y':n, is

given by

( ' )_* - * am *
fY="lx+M In-,--Ym =0

ama

-* {( * * ) ( * * ) } ~"lx = "lij - Xij "lij - Xij

(4.4)

(4.5)

where a:na is taken as the initial value of the mean effective stress and M* is a coefficient of

dilatancy given by Equations (4.13) and (4.14).

Herein, two strain-hardening parameters are used in the model, namely, xij, which depends

on the viscoplastic shear strain rate, and y':n, which is related to volumetric viscoplastic strain

E~~. The nonlinear eyolutional equations for xij and y':n are given by

d * - B* (A*d vp * d p)Xij - 1 1 eij - Xij I

d VP dVP 1dvP J:e·· = E·· - - Ekku'J'tJ tJ 3 0

* _1+e vp
dYm2 - -,--dEkk1\-'"

(4.6)

(4.7)

(4.8)

(4.9)

(4.10)

where Ai, Ai, Bi, and B2 are material parameters and Ai(= Mj) is the value of "l* at the

failure state.

In the case of this hardening model, we cannot define a scalar hardening parameter such

as in Equations (2.12) and (2.13). Hence, static yield function fy and dynamic yield function

fd cannot be formulated respectively. fy plays the role of overstress, i.e., fd - fs, and fy = 0

demonstrates a static yield function.

4.4 Plastic Potential Function

The plastic potential is given by the following equation, which is similar to the yield function

given in Equation (4.4):

-* {( * * ) ( * * ) } ~"lx = "lij - Xij "lij - Xij
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where a:np is a material parameter, herein taken to be equal to the initial value of a:n. M*
depends on the overconsolidation boundary surface given by Equation (4.1). In the OC region,

fb < 0; in the NC region, fb ~ 0 and M* is defined as follows:

(OC region);

(NC region);

(4.13)

(4.14)

in which a:nc is the mean effective stress at the intersection of the overconsolidation boundary

surface and the a:n axis given by Equation (4.3).

4.5 Second Material Function Based on a Stress-history Ratio

A second material function, <1>2, which is dependent on the internal state variables, is chosen to

control the failure state. In the same way as in the model for NC clay, it is assumed that <1>2

becomes infinite at failure, i.e.,

(4.15)

(4.16)

in which ~ is an internal variable.

In general, ~ follows an evolutional equation whose integrated form, satisfying the above­

mentioned failure requirement for the internal variable, is given by

Mjil;(o)
~ = ----:'-:---;-'--:-':----:-~

G* {M* _ 'fI:::n('fI:::n - X~n)}
2 f il;*

where G2 is a parameter for the second material function and Mj is the value of the stress

invariant ratio at failure and

-** {( ** * ) (** * ) } ~'fix = 'fIij - Xij 'fIij - Xij ,
S'!'·** tJ

'fIij = ~
m

(4.17)

-** {( ** * ) (** * ) } ~'fix (0) = 'fIij - Xij(O) 'fIij - Xij(O) (4.18)

where 'fIil is the stress-history ratio tensor, Sij and a~ are the deviatoric and the mean compo­

nents of stress-history tensor aij' respectively, and X;j(O) denotes the initial value of xij'

Furthermore, stress-history tensor aij is defined as

aij = ~ r exp (-(z - Z')/T) aij(z')dz',
T Jo O:S; z' < z (4.19)

(4.20)

where t is time, deij is the increment in deviatoric total strain, and T is a material parameter.

The stress-history tensor was advocated by Oka (1985) and Adachi and Oka (1995). In their

theory, both the yield and the hardening functions depend on the stress history rather than on

the real stress in order to describe the strain-softening behavior of geomaterials.

59



In the case of compressive shear deformation, that is, the stress ratio increases and is positive,

the stress-history ratio is always less than the stress ratio, s~ that when the stress history

approaches the critical state, the stress ratio will become larger than the stress ratio at failure.

Additionally, Equations (4.15) and (4.16) provide that <1>2 becomes infinity when the stress­

history ratio is close to the stress ratio at failure. From the assumption that the second material

function, <1>2, is a function of stress-history ratio tensor r/ij*' it becomes possible to describe the

material behavior in which the stress path can reach a point over the failure line. This type

of behavior is dominant for overconsolidated clay as was revealed in the experiments (see, for

example, Figure 4.1(b)).

4.6 Viscoplastic Flow Rule

A viscoplastic flow rule is given by

Col = 2b, Co2 = 3a + 2b

(4.21)

(4.22)

in which <> is the Macauley's bracket defined in Equation (2.7), Col and Co2 are viscoplastic

parameters, Cijkl (<1>1 (fy)) denotes a function for strain rate sensitivity, fy is the yield function,

fp is the plastic potential function, and <1>2 controls the failure state where deviatoric strain

becomes infinite.

In a similar manner to the model for NC clay (see Equation (2.16)), <1>1 is defined based on

the experimental results of the strain-rate constant triaxial tests, namely,

(4.23)

where m' is the viscoplastic parameter for a given degree of rate sensitivity.

Using the flow rule and the plastic potential function, we obtain the deviatoric viscoplastic

strain rates e~J and the volumetric viscoplastic strain rate E~1 as

[
'] (rt: o- x'!'o).vp , -* - * ()m * ~J ~J

eij = Col exp m {'fix + M (In -,- - Ym)} <1>2 (~) *
(}maO 'fix

(4.24)

(4.25)

From Equation (4.25), it is seen that the sign for the volumetric inelastic strain rate depends

on the stress state even inside the overconsolidation boundary surface. This is because the

volumetric strain depends on the value of £1* given by Equations (4.13) and (4.14), and inside

the overconsolidation boundary surface, £1* is a function of (}~c defined by Equation (4.3),
which is related to the shape of the overconsolidation boundary surface shown in Figure 4.2.
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Figure 4.3 Schematic figures of undrained triaxial test for NC clay
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Figure 4.4 Schematic figures of undrained triaxial test for OC clay
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The elastic strain rate tensor is the same as that introduced in Equation (2.3), and an

additive decomposition of the total strain rate into the elastic strain rate and the viscoplastic

strain rate is assumed.

Figures 4.3 and 4.4 schematically illustrate the stress paths of NC clay and OC clay, the

overconsolidation boundary surface fb = 0, and the plastic potential fp = 0 under undrained tri­

axial compression test conditions. No kinematic hardening, i.e., xij = 0, isotropic consolidation,

i.e., "7:j(O) = 0 and M:'n, = Mj are assumed. q is the deviator stress, O"~ is the mean effective

stress, M = J3/2M*, Mm = J3/2M:'n" and Mf = J3/2Mj. In the case of NC clay, the stress

ratio increases monotonically from the initial value of zero with isotropic hardening (Figures

4.3(a) and (b)). When the stress ratio approaches Mf (c), second material function <1>2 becomes

large, and then strain softening occurs (d).

Table 4.1 Material parameters used in the calculations

Parameter N.C. clay a.c. clay

Compression index A 0.172 0.172

Swelling index '" 0.054 0.054

Initial void ratio eo 0.72 0.72

Initial mean effective stress a~e 392 (kPa) 100 (kPa)

Parameter of a.c. boundary surface a:nbi 392 (kPa) 392 (kPa)

Viscoplastic parameter m' 21.5 21.5

Viscoplastic parameter Col 4.5x10-8 (lis) 4.5xlO-8 (lis)

Viscoplastic parameter Co2 4.5XlO 8 (lis) 4.5xlO 8 (lis)

Stress ratio (.,f'iJ;,lu'm) at failure M* 1.05 1.05f
Stress ratio (.,f'iJ;,lu'm) at maximum compression M* 1.05 1.05m

Elastic shear modulus C 5500 (kPa) 5500 (kPa)

Softening parameter c; 100 1

Kinematic hardening parameter m 0.0 0.5

Kinematic hardening parametert A; 0.0 0.0

Kinematic hardening parametert B2 0.0 0.0

Retardation parameter T LOx 10-3 0.2

t A; and B2 were not used in the present analysis.

In the case of OC clay, the initial stress state is inside the OC boundary surface, which

is pre-consolidated and unloaded isotropically. O":nbi is the initial value for O"mb, namely, the

consolidation yield stress is less than pre-consolidation stress O"~o (Figure 4.4(a)). As shown in

Figure 4.4(b), plastic potential fp is rather flat when stress state is in the OC region. Thus, the

deviatoric component of the viscoplastic strain increment is dominant due to the flow rule. On

the other hand, the volumetric component is smaller than the deviatoric one. Hence, changes in

the mean effective stress are small and the stress path goes on rather vertically. The shape of fp

becomes close to the OC boundary surface as the stress ratio becomes larger. Once the stress

state goes out of the OC boundary (Figure 4.4(c)), i.e., the NC region, M becomes a constant

value for M m so that fp is isotropically hardened with a similar shape to that of fb' The stress

ratio can become larger than M f, unless stress-history ratio "7**, always less than stress ratio,
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Figure 4.5 Stress-strain relations and stress paths of N.C. clay (aka et al. 2002)
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Figure 4.6 Stress-strain relations and stress paths of O.C. clay (aka et al. 2002)

becomes larger than MI' When rr approaches MI' as shown in Figure 4.4(d), the value of

the second material function becomes large and strain softening occurs.

Figures 4.5 and 4.6 show the stress-strain relations and the stress paths under undrained

triaxial compression conditions. Table 4.1 lists the sixteen material parameters, including two

parameters of the initial conditions, that were used in the analysis in which a linear kinematic

hardening equation is assumed for changes in the mean effective stress. Three parameters

are different for the overconsolidated clay and the normally consolidated clay. This means

that the magnitude of strain softening and kinematic hardening depends on the magnitude of

overconsolidation. Following the tradition of soil mechanics, compression is denoted as being

positive in the table and in the figures. Both the strain rate effect and the strain-softening

behavior are observed in Figures 4.5 and 4.6. From the stress paths, it is seen that the mean
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effective stress increases due to positive dilatancy for overconsolidated clay, while the mean

effective stress decreases due to negative dilatancy for normally consolidated clay.

4.7 Summary

In this chapter, an elasto-viscoplastic constitutive model for both normally consolidated clay

and overconsolidated clay was derived by extending the elasto-viscoplastic model for normally

consolidated clay introduced in Chapter 2. The newly-developed model is based on a Chaboche

type of viscoplasticity theory, uses the overconsolidation boundary, and includes the second

material function, which describes the material instability defined by stress-history ratio. The

material instability of this model will be discussed in the next chapter. The proposed model can

very well reproduce both positive and negative dilatancy characteristics, which are important

characteristics of soil, as well as the time-dependent behavior of clay.
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Chapter 5

Effect of Dilatancy on the Strain

Localization of Water-saturated

Elasto-viscoplastic Soil

5.1 Introduction

It is well known that geomaterials with a particulate microstructure, such as soil, show increases

in volume during shearing deformation; this is called dilatancy. Normally consolidated clay ex­

hibits decreases in volume, i.e., negative dilatancy or contractancy. Overconsolidated clay shows

increases in volume, i.e., positive dilatancy. Clay is referred to as "normally consolidated clay",

in the classical sense, if the present effective stress is the maximum stress it has ever experienced

in its entire history. The clay is called "overconsolidated clay" if it has been subjected to an

effective stress greater than the present one. Improvements to the classical definitions are such

that the present stress of overconsolidated clay is less than the consolidation yield stress, while

the present stress of normally consolidated clay is equal to the consolidation yield stress.

The above discussion prompts the following question. How do both positive and negative

dilatancies affect strain localization phenomena? The answer lies in a detailed study that must

include comprehensive comparisons between numerical predictions and experimental results. For

this purpose, an elasto-viscoplastic model for water-saturated clay has been proposed in the last

chapter based on a Chaboche type of viscoplastic theory (Chaboche 1983) and the kinematic

hardening rule with viscoplastic softening. The developed model can describe both negative and

positive dilatancy characteristics.

The strain localization problem was numerically studied for water-saturated normally con­

solidated clay by Oka et al. (1994, 1995). They found that strain localization is closely linked

to material instability, and can be simulated with a viscoplastic softening model. In previous

studies, a model which can reproduce only negative dilatancy, such as in the case of normally

consolidated clays, was used. In this study, the effects of dilatancy and permeability on strain
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localization are numerically studied using the newly developed elasto-viscoplastic model which

can be applied to both normally consolidated clay and overconsolidated clay. Numerical solu­

tions for the plane strain compression problems of water-saturated clay are obtained via the

finite element method in a similar manner to that in Section 3.3. In this chapter, firstly, the

instability of the model under undrained triaxial conditions is discussed. Secondly, a discussion

on the numerical results of the clay behavior under plane strain conditions, which highlights the

effect of dilatancy on strain localization, follows.

5.2 Instability of the Constitutive Model

aka et al. (1995) studied the instability of the viscoplastic model in terms of undrained creep

failure for normally consolidated clay. An instability analysis for both normally consolidated clay

and overconsolidated clay, considering structural changes has been conducted by Kimoto (2002)

in which undrained triaxial creep conditions were adopted. Furthermore, Kimoto et al. (2004;

to appear) have invi:lstigated strain localization problems using the structure change model.

In order to discuss the instability of the proposed viscoplastic model, we herein consider the

response of the model under conventional triaxial undrained creep conditions (see Figure 5.1)

using the method by aka et al. (1995) and Kimoto (2002). Under undrained creep conditions,

a constant deviatoric stress is maintained, although the mean effective stress may change due

to the undrained conditions that require a total of zero for the volumetric strain rate.

IJ'm

Failure line ~M - M
m - f

a.c. clay N.C. clay
r· ~----,

I I
fp = 0 I

I
I

Initial state

:/
Initial state

o

q

Figure 5.1 Stress paths of undrained creep for N.C. and O.C. clay samples under triaxial

conditions

Under the axisymmetric triaxial testing conditions (1J~1 > 1J~2 = 1J~3' lJ~j = 0 (i i: j)), the

deviator stress is expressed by q which is defined as

(5.1)

Since the total volumetric strain is zero, the following relation is obtained after integration,

that is:

(5.2)
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where CT:ne is the initial value of the mean effective stress.

Herein, the following variables are used under the triaxial conditions:

(5.3)

For simplicity, we assume that Mf = Mm = M (Mf = J3/2Mj and Mm = J3/2M!:n).

Under undrained triaxial conditions, and disregarding the deviatoric elastic strain rate, vis­

coplastic axial strain rate i~f becomes

(5.4)

Finally, the evolutional equations for the two hardening parameters, Xn and Ym, are given

by

xn = B(A - xn)i~f

. A .vp
Ym = Ym2 = 3ekk

where B = J3/2 B*, A

parameter given by

A
_ l+e

3 - , .
A-/'i,

J3/2A*

(5.5)

(5.6)

0, and A3 is the volumetric hardening

(5.7)

Let us calculate a rate of strain rate denoted by E~f. By examining the sign for the rate of

strain rate E~f, we can estimate the stability of the material system. For example, if the rate of

strain rate is positive, the material undergoes a creep failure.

Upon time differentiation of a viscoplastic strain rate without a second material function,

the rate of strain rate is obtained as

•.Vp _ '( ,vP)2en - -m a en

[
1 + e ), B ]

a = -('fl - M)('fl- --M) + -(A - xn)
M/'i, ),-/'i, M

In the above derivation, the stress dilatancy relation

and the undrained conditions

.,
.vp /'i, CTme ----­
kk - 1 + e CT:n

(5.8)

(5.9)

(5.10)

(5.11)

are introduced.

We will discuss the instability of the model using Equations (5.8) and (5.9) and the as­

sumption that the last term is small, since A-xn ~ 0 near the failure state. Firstly, we consider
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the case of undrained creep for normally consolidated clay in which TJ < M. In this case, the

following conditions prevail:

A
--M - TJ > 0 and A - Xn > 0 .A-K, , (5.12)

Since a > 0, the rate of strain rate is negative, which leads to the conclusion that the material

system is structurally stable in terms of Liapunov.

Next, we will consider the second material function for normally consolidated clay. The

second material function is simplified with the assumption that the initial value of xn(o) is zero;

i.e., xn = O. Thus,

G2(M - TJ) + MTJ
G2(M - TJ)

(5.13)

in which G2 = J2/3G'2 .

..vp _ , (.vP)2
En - -rna En (5.14)

(5.15)

In contrast to cases without a second material function, it is found that when a second

material function is included, the rate of strain rate E~l may become positive before TJ reaches M,

since the first term of Equation (5.15) increases with a negative sign. Hence, the introduction of

a second material function is inevitable for describing the creep failure of normally consolidated

clay in the case of a monotonically increasing hardening function (see Figure 5.2). This is

consistent with previous results of tests on the instability of normally consolidated clay obtained

by Adachi et al. (1990) and Oka et al. (1995).

Failure line

13'm

~ , Stress path

I
I
I
I
I
I
I

DC boundary

fb=O~
o

q

Figure 5.2 Unstable region of N.C. clay under undrained triaxial conditions (Undrained creep

for N.C. clay with <P2(e))

Next, we will discuss the stability of the model in the region where TJ > M. This condition

corresponds to the undrained creep tests which can be achieved by applying deviator stress q
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with a small initial mean effective stress located in the overconsolidated region. When there is no

second material function, term a becomes positive in region M < TJ < AM/(A -ti), as shown in

Figure 5.3. In this region, the material becomes unstable due to the fact that E~l > O. On the

other hand, when second material function <1>2 is introduced, the stability cannot be evaluated

with Equation (5.15) in the region where TJ > M. This is because ~(= (MTJ)/[G2 (M - TJ)])
becomes negative due to a simplification which involves the replacement of TJil, defined by the

stress-history tensor, with TJij based on the stress tensor.

From the above considerations, it becomes evident that the model can simulate the instability

associated with "undrained creep failure" in the specific stress regions. It is worth noting that

in the region where TJ > M, the model can be unstable even if a second material function is not

included.

Failure line

Unstable region

I
I OC boundary

I fb=O~

a'm

q

Figure 5.3 Unstable region of O.C. clay under undrained triaxial conditions without a second

material function (Undrained creep for O.C. clay without <1>2(~))

Using an isotropic hardening viscoplastic model, aka et al. (1994) found that the material

model developed by Adachi and aka (1982) is always stable without a second material function,

Le., <1>2 = 1., in the normally consolidated region. From the above consideration, however, it

becomes evident that overconsolidated clay becomes unstable in region ( TJ > M) even for models

without a second material function.

5.3 Finite Element Analysis of Strain Localization by an Elasto­

viscoplastic Model

In this chapter, the same finite element formulation as in Chapter 3 is used. An eight-node

quadrilateral element with a reduced Gaussian (2x2) integration (see Figure 3.1) is used to

eliminate shear locking and to reduce the appearance of a spurious hourglass mode. On the other

hand, the pore water pressure is defined at four corner nodes. A weak form of the continuity

equation is integrated with a (2x2) full integration (see Figure 3.1).

Figure 5.4 shows the size of the specimen and the associated boundary conditions. As a

trigger for strain localization, horizontal displacements on both top and bottom surface edges are
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Table 5.1 Material parameters used in the calculations

Parameter N.C. clay O.C. clay

Compression index ,\ 0.172 0.172

Swelling index '" 0.054 0.054

Initial void ratio eo 0.72 0.72

Initial mean effective stress a:ne 392 (kPa) 100 (kPa)

Parameter of O.C. boundary surface
,

392 (kPa) 392 (kPa)G rnbi

Coefficient of earth pressure at rest Ko 1.0 1.0

Viscoplastic parameter m' 21.5 21.5

Viscoplastic parameter Col 4.5xlO 8 (l/s) 4.5x 10 8 (l/s)

Viscoplastic parameter C o2 4.5xlO-8 (l/s) 4.5xlO-8 (l/s)

Stress ratio at failure M* 1.05 1.05f
Stress ratio (,.j2J;/ (J"rr,) at maximum compression M* 1.05 1.05Tn

Elastic shear modulus G 5500 (kPa) 5500 (kPa)

Softening parameter G; 100 1

Kinematic hardening parameter Br 0.0 0.5

Retardation parameter T LOx 10-3 0.2

1.54x 10-6 (m/s) 1.54xlO-6 (m/s)

Coefficient of permeability k 1.54x 10-8 (m/s) 1.54x 10-8 (m/s)

1.54xlO-1O (m/s) 1.54xlO-lO (m/s)

---- --I

40cm

l l l

Impermeable
~ boundary

1
20cm

Compelled displacement

0.1 %/min, 1 %/min

Top and bottom edges
are fixed as a trigger of

strain localization

10x20=
200elements

I~ .<:Q11 : Horizontally fixed

A. :Vertically fixed

A. :Fixed

Figure 5.4 Size of the specimen and the boundary conditions (undrained plane strain condition)
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constrained. The relaxation of this constraint through the introduction of a frictional boundary

will be discussed later. The material parameters used in the analysis are listed in Table 5.1

with the coefficient of permeability and the K o values. In the analysis, the time increment is

determined by the increment of average strain ~cll = 0.01%.

5.3.1 Effects of Dilatancy on the Strain Localization Analysis

The compression of a clay specimen is simulated under globally undrained plane strain condi­

tions. The compression is performed under displacement control with average strain rates of

O.l%/min and l%/min. Figure 5.5 shows the average stress-strain relations; it is clearly seen

that the strain rate influences the associated stress-strain responses. Figure 5.6 shows the

simulated results for normally consolidated clay and overconsolidated clay with a permeability

coefficient of 1.54 x 1O-8 (m/s).

It can be seen from Figure 5.6 that the deformed meshes of normally and overconsolidated

clay specimens display a localization of the deformation at an average axial strain of 8% and

6%, respectively. The appearance of a shear band at a larger strain levels in the N.C. clay is

consistent with the stress-strain curves with gradual softening. The occurrence of localization at

an early stage of deformation in the case of overconsolidated clay is consistent with the average

stress-strain relations shown in Figure 5.5. This tendency has been observed in the experiments

(e.g., Richer et al. 1994).
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Figure 5.5 Average stress-strain relations (k = 1.54 x 10-8 m/s)

Figure 5.7 shows accumulated viscoplastic shear strain "l, namely,

, P= Jd,P, d,P = (de~!de~nl/2 (5.16)

in which de~! is the viscoplastic deviatoric strain increment tensor. In the case of overconsoli­

dated clay, strain localization starts near the edges of the top and the bottom plates, and finally,

four shear bands appear. In contrast to the case of overconsolidated clay, only two shear bands

are seen for normally consolidated clay, with shear bands clearly developing just beneath the

edges of the top and the bottom plates. As for the distribution of viscoplastic volumetric strain

magnitude, it is seen from Figure 5.8 that a decrease in viscoplastic volumetric strain (vis­

coplastic volume expansion) occurs along the shear bands for overconsolidated clay, while only
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viscoplastic compression is seen in the case of normally consolidated clay. The tendency of the

distribution of viscoplastic volumetric strain is, in fact, related to the changes in mean effective

stress since calculations are carried out under globally undrained conditions. Figure 5.9 shows

the distribution of mean effective stress with the progress of the average axial strain. In the

case of overconsolidated clay, the mean effective stress generally increases in the specimen from

its initial value, i.e., lOO(kPa). Along the shear bands, however, mean effective stress levels are

lower than those in the other regions of the specimen. In the case of normally consolidated clay,

the mean effective stress decreases from its initial value of 392(kPa) due to negative dilatancy.

The extent of the decrease in mean effective stress is larger in shear bands. On the other hand,

increases in mean effective stress due to consolidation can also be observed at the top and the

bottom of the specimen.

In general the distribution of mean effective stress is related to pore fluid motion. Hence,

it is necessary to evaluate the effects of the permeability coefficient in order to examine the

distribution of mean effective stress. Figure 5.10 shows the distributions of mean effective

stress and viscoplastic volumetric strain for overconsolidated clay with a permeability coefficient

as low as 1.54 x 10-10 (m/s). In this case, the mean effective stress along the shear bands

is relatively higher than that in the regions between them. This tendency is in contrast to

that found in the numerical results obtained for the high permeability case shown in Figure

5.9. The reason for this difference is that pore water can easily move within a material with

high permeability. Hence, an increase in mean effective stress due to positive dilatancy can

be cancelled by the inflow of pore water toward the shear bands. Figure 5.11 displays the

distribution of pore water pressure. Comparing the distributions of mean effective stress and

plastic shear strain, it is seen that the distribution of pore water pressure is rather homogeneous

for both normally consolidated clay and overconsolidated clay. However, higher levels of pore

water pressure develop for normally consolidated clay. The relatively homogeneous distribution

of pore water pressure within the specimen is considered to be due to the migration of pore

water.
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Figure 5.6 Deformed meshes of N.C. and G.C. clay samples (O.l%/min, 1.54 x 1O-8(m/s))
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5.3.2 Effects of Permeability on the Strain Localization Analysis

Figure 5.12 displays the stress-strain relations and the distribution of accumulated viscoplastic

shear strain 'YP with different permeability coefficients. The average vertical stress with lower

permeability is larger than that with higher permeability in the both cases of both normally

consolidated clay and overconsolidated clay. It can be seen in the distribution of 'YP that the

appearance of four shear bands is clear for the cases of lower permeability levels. In addition,

the figure shows that the distance between the shear bands is wider than that in the cases of

higher permeability levels. A possible reason for the larger number of shear bands in the over­

consolidated clay than in the normally consolidated clay is that the strain softening associated

with dilation may cause a reduction in the mean effective stress. Consequently, the adjacent

regions can easily deform so as to lead to the occurrence of a larger number of shear bands. The

average stress is higher for cases with lower permeability levels (k = 1.54 x lO-lOmjsec). As

pointed out by Loret and Prevost (1991), materials with low permeability levels are more stable

than those with high permeability levels. This tendency of the stress-strain response is similar

to the effect of the strain rate. Inclination angles of shear bands with lower permeability levels

are smaller than those with higher permeability levels in the case of normally consolidated clay

and in small axial strain range of overconsolidated clay.

As mentioned above, the effects of permeability on strain localization and the stress-strain

response of normally consolidated clay are consistent with the results obtained in Section 3.5

with different material parameters.

5.3.3 Effects of the Strain Rates on the Strain Localization Analysis

Stress-strain relations and the distribution of 'YP for different average strain rates (O.1%jmin and

1%jmin) are shown in Figure 5.13; the strain rate sensitivities are clearly seen in the stress­

strain curves. It is seen that normally consolidated clay and overconsolidated clay are both more

stable with higher strain rates, since the average vertical stress is larger and the accumulated

shear strain is smaller. Two apparent 'shear bands are seen for the cases of normally consolidated

clay, while the appearance of four shear bands is clearly seen for the cases of overconsolidated

clay. In addition, the figure shows that the distance between the shear bands is wider than that

in the case of lower strain rate. The effect of strain rate on inclination angles of shear bands for

normally consolidated is very small, while those for overconsolidated clay with lower strain rate

is larger than that in the cases with higher strain rates.

5.3.4 Effects of Material Instability on the Strain Localization Analysis

Material instability has already been discussed by an instability analysis in Section 5.2. It is

found that second material function <1>2 (~) expresses material instability for normally consoli­

dated clay. On the other hand, overconsolidated clay exhibits material instability even without

<1>2 (~). In this section, a strain localization analysis without <1>2 (~) is conducted in order to

numerically investigate the material instability.
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Figure 5.14 shows a deformed mesh and the distribution of ,P at an axial strain of 10%,

and stress-strain relations are depicted in Figure 5.15. In this case, the strain rate is 0.1%/min

and permeability coefficient k = 1.54x 10-8m/ s. Normally consolidated clay without <1>2(~)

deforms homogeneously, while the deformation with <1>2(~) localized. We cannot see any softening

behavior in the stress-strain relation in the case without <1>2 (~). On the other hand, four shear

bands can be clearly seen in the figures for OC clay even if material function <1>2 (~) is not used. In

addition, the stress-strain relations both with and without <1>2(~) in Figure 5.15 display strain­

softening behavior. These findings suggest that the material system of normally consolidated

clay is stable unless the constitutive equation with <1>2(~) is used. In contrast, overconsolidated

clay is unstable even if the constitutive equation does not include <1>2(~)' These results are

consistent with the results of the instability analysis.
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Figure 5.14 Deformed mesh and distribution of ,P with and without <1>2(~) (axial strain: 10%,

strain rate: O.l%/min, k = 1.54 x 1O-8m/s)
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5.3.5 Mesh-size Dependency

In order to check the mesh-size dependency of the numerical results, simulations are performed

using various mesh sizes. Some numerical calculations with smaller elements (800 elements)

diverged after the peak stress since the top and the bottom of the specimen deformed extremely

due to the end constraints. In order to examine the effects of the end constraints, the "no lateral

displacements at top and bottom plates" was relaxed by instead using a frictional boundary with

a frictional coefficient ILl of 0.01. The frictional boundary conditions are shown in Figure 5.16.

Figure 5.17 shows the deformed meshes and the distribution of i P for different numbers of

elements. Since no noticeable mesh-size dependency is observed in Figure 5.17, the occurrence

of any numerical instability can only be the result of the imposition of strong constraints. The

mesh size has little influence on the stress-strain responses, as seen in Figure 5.18.

*Quarter of the specimen is
calculated for symmetry

Undrained plane strain conditions
(permeable between each element).

Compelled II
dlsPlacement

l
Frictional force

V$rtically
fixed
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Figure 5.16 Frictional boundary conditions and the size of the meshes
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Figure 5.18 Stress-strain relations with different numbers of elements

(strain rate: 0.1%jmin, k = 1.54 x 1O-8mjs, coefficient of friction: 0.01)

5.4 Summary

The obtained conclusions from this chapter are as follows. The instability of the model was

studied under undrained triaxial creep conditions. It was seen that the model with positive

dilatancy was more unstable than the model with negative dilatancy in terms of creep failure.

Even when a second material function was not included in the formulation, the model became

unstable with positive dilatancy. On the other hand, the model with negative dilatancy became

unstable only when a second material function was introduced. As for the numerical simulation

of the shear band development, using the elasto--viscoplastic model, it was found that the strain

localization pattern was strongly affected by dilatancy characteristics as well as by the perme­

ability and the strain rate. In addition, the effects of material instability on strain localization

are consistent with the results obtained from the instability analysis.
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Chapter 6

Experimental Study on the

Three-dimensional Strain

Localization of Rectangular Clay

Specimens

6.1 Introduction

In the natural ground, such strain localization phenomena as land slides involve three-dimensional

shear bands. In the case of triaxial compression tests using cylindrical soil specimens, we can

observe specific three-dimensional shear bands. In this way, the strain localization of geoma­

terials should be treated as a three-dimensional problem. However, it is mainly strain local­

ization problems under plane strain conditions that have been discussed. Investigations into

strain localization in plane strain compression tests for sand using some measurements of lo­

cal displacements have been done by Han and Vardoulakis (1991), Han and Drescher (1993),

Rechenmacher and Finno (2003), etc. Many visualization methods for strain localization have

been developed by various researchers. Yoshida et al. (1994) studied the shear band genera­

tion of sand specimens under plane strain conditions by calculating the displacements of lattice

points printed on a membrane. Similar observations using a printed membrane have been done

by Liang et al. (1997), Hayano et al. (1999), and Kodaka et al. (2001). In order to observe

strain localization inside specimens, X-Rays or X-Ray CTs have been used by many researchers,

e.g., Han and Vardoulakis (1991), Oda and Kazama (1998), Otani et al. (2000), and Alshibli

et al. (2000). Michalowski and Shi (2003) calculated the displacements of grains of sand using

an image analysis of sequential photographs by which the development of strain localization

has been investigated. The stereophotogrammetric method is an efficient method for analyz­

ing the development of shear bands used by Harris et al. (1995), Mokni and Desrues (1998),

Rechenmacher and Medina-Cetina (2003), etc. Some researchers have tried to observe strain

localization under triaxial conditions (Burland 1990, Rampello 1991, etc.), and Asaoka et al.

(1998) experimentally and numerically investigated the three-dimensional deformation behavior

85



of rectangular clay specimens. To the author's knowledge, however, the three-dimensional obser­

vation of shear bands has not been sufficient. As for the numerical studies of strain localization,

most have been conducted under plane strain conditions using a particular constitutive equation

(Loret and Prevost 1991; Schrefler et al. 1996; Oka et al. 1994; Zhang et al. 1999; Niivel and

Gudehus 2001; Oka et al. 2002; etc.).

Kodaka et al. (2001) have conducted triaxial compression tests using rectangular clay spec­

imens to quantitatively observe the strain localization behavior through an image analysis of

digital photographs. In the present study, triaxial compression tests using rectangular clay

specimens and a detailed observation of the shear banding process by an image analysis were

conducted, in the same manner as that by Kodaka et al. (2001), in order to investigate the

three-dimensional strain localization behavior of geomaterials. It is easy to observe strain lo­

calization with rectangular specimens, since the transverse section of the specimens does not

have many axes of symmetry compared to cylindrical specimens. In the case of cylindrical spec­

imens, we cannot acturately predict where the deformation will localize. On the other hand,

the localized deformation of rectangular specimens can be observed with certainty as long as

focus is placed on two of the surfaces. An image analysis of the digital photographs showing the

two surfaces of the rectangular specimens during shear deformation provides the distributions of

shear strain. Using the strain distributions of the two surfaces during the tests, the generation of

three-dimensional shear bands in the specimens can be very well observed. In addition, the set

up of boundary conditions for the numerical simulations of rectangular specimens is easier than

that of cylindrical specimens, so that we can conduct the simulations under the same conditions

as the triaxial test conditions for rectangular specimens. We have numerically simulated the tri­

axial compression tests rectangular specimens by FEM using the elasto-viscoplastic constitutive

equation that will be introduced in Chapter 7.

Takyu (2000) has studied the strain localization of reconstituted rectangular clay specimens,

and Satomura (2001) has discussed the strain localization behavior of reconstituted normally

consolidated Fukakusa clay. In addition, Satomura (2003) and Ichinose (2003) have studied the

strain localization of both normally consolidated and overconsolidated Fukakusa clays. In the

present study, the three-dimensional strain localization behavior has been studied in a series of

triaxial tests on rectangular specimens with different shapes and strain rates for the reconstituted

normally consolidated and overconsolidated Fukakusa clays by Satomura (2003) and Ichinose

(2003). In particular, focus has been placed on the effects of the shapes of the specimens,

dilatancy, and the strain rates.
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6.2 Undrained Triaxial Compression Tests for Clay Using Rect­

angular Specimens

6.2.1 Clay Samples

The clay used in the experiment is Fukakusa clay which is Pleistocene marine clay produced in

the southeastern part of the Kyoto Basin. Liquid limit WL = 62%, plasticity index I p = 33,

and the density of soil solid ps = 2.69 gjcm3 . Dried and powdered Fukakusa clay is used as the

building material, e.g., plaster. Reconstituted clay samples were prepared by remolding them

in slurry and then pre-consolidating them. The specimens were consolidated one-dimensionally

at a pre-consolidation pressure of 98 kPa. The pre-consolidated specimens were covered with

paraffin and not to be disturbed.

The clay specimens used in the triaxial tests were trimmed to rectangular shapes. Their

sizes are listed in Table 6.1 and they are illustrated in Figure 6.1.

Table 6.1 Sizes of the specimens

No. Size of the transverse section (cm) Height (cm)

A 4x4
B 4x4
C 4x2
D 4x4

12
8

8

4

/ /
f: Front surfaceflJ s: Side surface

IuIDS·:tLj
:~:~i i~i: i~:~i
i 4 em i 4 em i 4 em i·2 em i 4 em i 4 em

s
f

i
12em

.....1....
l~l~i
!4em!4em

A B c D

Figure 6.1 Sizes of the specimens

6.2.2 Testing Program

The photograph and the schematic figure of the triaxial test apparatus used in this study are

shown in Photo 6.1 and Figure 6.2, respectively. We used a lucid acrylic cell, so that the

behavior of each specimen during shear deformation could be observed from the outside of

the triaxial cell. The vertical load of the soil specimens was measured by the inner load cell set

between the loading rod and the top cap in the triaxial cell. The cell pressure was measured by a

87



Photo 6.1 Triaxial test apparatus

pressure gauge installed in the triaxial cell, and the excess pore water pressure was simultaneously

measured from the top and the bottom of each specimen. The axial displacement was measured

by a proximity tran~ducer for the range of low level axial strain (0.1% of axial strain) and by

an LVDT for the range of medium to high level strain. The volume changes in pore water were

measured by a differential pressure transducer.

Back pressure
o

@ Regulator

o Gauge

Cap LVOT
I Load cell

Porous stone
Proximity
transduce

Specimen Paper filter Target Refere
buret

Wat r se ice
Rubber tank ntial

membrane ure
I

~ Rubber ring
cer

Pedestal

Figure 6.2 Schematic figure of the triaxial test apparatus

The test cases are listed in Table 6.2. All specimens used in the present study were sat­

urated by the double vacuum method and were acted upon by 200 kPa of back pressure. The

normally consolidated clay specimens were isotropically consolidated to 200 kPa. The over­

consolidated clay specimens were isotropically consolidated to 300 kPa, and then isotropically

88



swelled to 50 kPa. Therefore, the overconsolidation ratio (OCR) is 6. The duration times for

both consolidation and swelling are listed in Table 6.3. They are determined for each specimen

height through a check by the 3-t method.

After the consolidation or the swelling procedure, axial pressure was applied under undrained

conditions by an axial loading device with an axial strain or displacement control system.

The three axial strain rates monotonically applied in the tests were 1%jmin, 0.1%jmin, and

0.01%jmin. The tests were stopped at an axial strain of 20%.

Table 6.2 Test cases

Normally consolidated clay Overconsolidated clay

cr:na = 200 kPa (Consolidation pressure)
cr:nc = 300 kPa (Pre-consolidation pressure),

cr:na = 50 kPa (Swelling pressure), OCR=6

No.t
Sizes Strain rate Initial void

No.t
Sizes Strain rate Initial void

(cm) (%/min) ratio ea* (cm) (%/min) ratio ea*

Awl 4x4x12 1 1.14 Ao-1 4x4x12 1 1.14

AN-2 4x4x12 0.1 1.14 Ao-2 4x4x12 0.1 1.07

Aw 3 4x4x12 0.01 1.13 Ao-3 4x4x12 om 1.15

Bw1 4x4x8 1 1.06 Bo-1 4x4x8 1 1.07

BN-2 4x4x8 0.1 1.04 Bo-2 4x4x8 0.1 1.12

Bw 3 4x4x8 0.01 1.09 Bo-3 4x4x8 0.01 1.14

Cw 1 4x2x8 1 1.18 Co-1 4x2x8 1 1.02

Cw2 4x2x8 0.1 1.02 Co-2 4x2x8 0.1 0.95

Cw3 4x2x8 0.01 0.95 Co-3 4x2x8 0.01 1.09

Dw1 4x4x4 1 1.16 Do -1 4x4x4 1 1.07

DN-2 4x4x4 0.1 1.08 Do-2 4x4x4 0.1 1.13

Dw 3 4x4x4 0.01 1.17 Doc3 4x4x4 0.01 1.08

t Subscripts Nand 0 denote normally consolidated clay and overconsolidated clay, respectively.

*Initial void ratio before the undrained triaxial compression tests.

Table 6.3 The duration times for consolidation and swelling

Height (cm)

12 (A)
8 (B, C)

4 (D)

6.2.3 Image Analysis

Consolidation (hour)

28
12.5

3

Swelling (hour)

25

6.5

2

We drew 2 mm square meshes on the rubber membranes covering the specimen. A digital

camera was used to take photographs of two surfaces of the specimens during the tests. Photo

6~2 and Figure 6.3 show a sample of the digital photographs taken through the triaxial cell

and a schematic figure of the photography, respectively. We took pictures from the front and

the side angles that were horizontally extended due to the refraction of the acrylic cell about
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1.21348 times. After correcting the effects of the refraction, we digitized the nodal coordinates

of the meshes. Using the coordinates at the initial state, i.e., before the undrained loading, and

those of each axial strain level, the nodal displacements were calculated. Adopting the B matrix

for the four-node isoparametric finite elements provides the strain of each element (see Figure

6.4).

Support pillar

s
(Side)

Triaxial cell"", :'.-.-..

• !_-

f (Front)

2 mm mesh

Photo 6.2 An example of the pho­

tographs taken through the acrylic cell
Figure 6.3 Schematic figure of the photography

{e} = [B]{u} (6.1)

in which

(6.2)

where e is the strain, u is the displacement, subscripts x and y denote horizontal and vertical

directions, and exy is the shear strain. The superscripted numbers (1 to 4) indicate the nodal

numbers of the isoparametric elements. The deviatoric strain is given as

(6.3)

where ev(= ex + ey) is the volumetric strain in a two-dimensional form.

Finally, we obtain the second invariant of deviatoric strain / as follows:

ry = . /e2 + e2 + 2e2
I Vx y xy (6.4)

The contours of / were drawn for each axial strain, and then we discussed the strain localization

during deformation. In the following, 'shear strain' indicates the second invariant of deviatoric

strain /.
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Figure 6.4 The four-node isoparametric element using in an image analysis

6.3 Experimental Results

Undrained triaxial compression tests for normally consolidated clay and overconsolidated clay

with different shaped specimens were performed for different strain rates. Figures 6.5"-'6.12

show the stress-strain relations, the effective stress paths, the distributions of the second invari­

ants of shear strain" and photographs taken after the tests for all of the cases (see Table 6.2),

respectively.

The stress-strain relations and the effective stress paths are shown in (a) and (b) of Figures

6.5,,-,6.12, respectively, with three different strain rates for each case. We can see that they

are affected by the strain rates and the shapes of the specimens. It is seen in the effective

stress paths that the effective stress of normally consolidated clay decreases from the initial

value. On the other hand, that of overconsolidated clay increases from its initial value. Namely,

normally consolidated clay and overconsolidated clay exhibit negative and positive dilatancy

characteristics, respectively.

The distributions of shear strain are shown in Figures 6.5(c)"-'6.12(c). In these figures,

's' and 'f' indicate the 'side surface' and the 'front surface' of the specimens, respectively (see

Figures 6.1 and 6.3). On the whole, strain localization starts at an axial strain of 8% and

shear bands are clearly seen at an axial strain of 12%. In addition, shear bands develop from

the edges of the top and the bottom of the specimens since the friction force generating between

the specimen and the top cap or the pedestal acts as a trigger of strain localization. As the axial

strain becomes large, apparent shear bands appear on the side surface of the front surface, and

develop with increases in the thickness of the shear bands. We can typically see this behavior

in the case of Bo-l. On both two surfaces, the formation of four shear bands can be seen at an

axial strain of 12%. Then, on the front surface, incorporating two shear bands from the top and

the bottom, two shear bands develop which finally intercross each other. On the other hand,

four shear bands develop less clearly on the side surface than on the front surface.
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Figure 6.6 Experimental results for the eases of Ao (Overeonsolidated clay, 4x4x12 (em))
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Figure 6.8 Experimental results for the eases of Bo (Overeonsolidated clay, 4x4x8 (em))
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Figure 6.13 Estimated shear bands and strain localization developing on the side surface

(Ao-3, photographs after the tests)
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Figure 6.14 Three deformation modes (distributions of shear strain, axial strain: 20%) (I)

"X" mode, (II) Buckling-like mode, and (III) Complicated mode
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In the case of Ao-1, shown in Figure 6.6(c), four shear bands can be seen at an axial

strain of 8% on both surfaces. However, only two shear bands on the side surface grow and

their thickness becomes large. We can see on the front surface that the intersection of the shear

bands appears at an axial strain of 12%. In general, these are not identified as shear bands.

Rather, this is a kind of strain localization due to the deformation mode, just like the buckling

of a column, as can be seen in the photographs. The same type of behavior can be seen on the

front surface of Co-2. On the side surface of Ao-3, BN-3, and Bo-3, we can see shear bands,

which are very sharp strain localization developing horizontally and are related to the shear

bands being generated on the other surfaces. In these cases, shear surfaces are formed in the

specimens just like shear bands under plane strain conditions. As shown in Figure 6.13, the

edges of the shear bands are developing symmetrically in the direction indicated by the arrows

which appear on the side surface.

6.3.1 Classification of the Strain Localization Patterns

We can classify deformation patterns into three types, as shown in Figure 6.14. The first one

is a deformation pattern in which two or four shear bands develop from the edges of the top

and the bottom of the specimens, as seen in all cases of specimen B and specimen D with the

rather small aspect ratios of 2 and 1, respectively. This mode is due to the material instability

induced by the frictional boundary conditions between the clay specimens and the top caps and

the pedestals. The two shear bands intercrossing each other are just like an "X", thus, we call

it the "X" mode. Figure 6.15 shows the schematics of the estimated process generating the

"X" mode. The four shear bands generated in the case of specimen B finally develop two clear

and thick shear bands.

The second deformation pattern can be seen in cases Awl, AN-2, Ao-1, Cw1, Cw 2, and

all cases of Co, in which two vertically symmetric shear bands appear on one of the surfaces,

while the deformations of the other surfaces are rather homogeneous, e.g., the front surface

of case CN-1, or show the intersection of shear bands as seen for case Co-2. These types of

behavior are similar to compressive buckling. This type of strain localization pattern is called

"the buckling-like mode". Figure 6.16 shows the schematic process of the shear band formation

of the buckling-like mode. The buckling-like mode is often seen in the case of A and C, and

is probably due to larger aspect ratios of 3 and 4, respectively. The geometric instability of

the specimens induces the buckling, in addition to the localized deformation from both edges

due to the frictional force. Shear bands then develop from the point where the buckling occurs

to the top and the bottom of each specimen with increased thickness which is attributed to

material instability. We can see on another surface, e.g., the front surface of case Ao-1, that the

intersection of the shear bands appears.

The last pattern is the complicated mode which includes the cases of specimen A and spec­

imen C which are not classified into the buckling-like mode, namely, Aw 3, Ao-2, Ao-3, and

Cw3. Figure 6.17 shows the schematics of the estimated process of the complicated mode. In

the cases of Aw 3, Ao -2, and Ao-3, a few shear bands form intricately. The shear bands of case

Aw 3 are seen in the lower part of the specimen. On the other hand, the shear bands of cases
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Figure 6.16 Schematics of the estimated process of the buckling-like mode (Cases Ao -1 and
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Figure 6.17 Schematics of the estimated process of the complicated mode (Cases Aw3 and

Cw3)

Ao-2 and Ao-3 appear in the upper part of the specimen. One possible reason for this behavior

is that after the "X" type of strain localization has occurred, a very small level of strain, which

is difficult to see, generates in both the upper and the lower parts of the specimen, like in case

Ao-1, and the upper or lower one becomes apparent. In the case of CN-3, we can see on the

front surface that two shear bands develop which intercross each other, namely, the "X" mode.

On the side surface, however, a few shear bands appear.

6.3.2 Three-dimensional Shear Bands

From the distributions of shear strain on the two surfaces, we estimated three-dimensional shear

bands in the same manner as that in Figure 6.13 for case Ao-3. Figure 6.18 displays the

estimated shear bands for the "X" mode of cases Bw3 and Do-2. The shear bands of case

Bw3 intersect each other. It is possible that similar shear bands also exist perpendicular to the

surfaces depicted in the figure, however, those are not apparent since the strain localization on

the side surface is more moderate than the other. The shear surfaces in case Do-2 also intersect

each other and exist at four corners. However, it is not clear that the shear bands of specimen

D penetrate the specimen, namely, the shear bands possibly appear only on the surfaces.
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Figure 6.18 Estimated shear bands for the "x" mode for BN-2 and Do-2

Figure 6.19 Estimated shear bands for the buckling-like mode for Ao-I and eN-I

s

Figure 6.20 Estimated shear bands for the complicated mode for Ao -2
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Figure 6.19 shows the estimated shear bands for cases Ao-1 and Cw1, namely, the buckling­

like mode. In this mode, it is easy to estimate that only two bands exist, as shown in the figure.

On the other hand, we cannot easily estimate the shear bands of the complicated mode. For

example, it is apparent that shear bands of Cw2 are the same as for the buckling-like mode. It is

seen on the front surface, however, that the shear bands from the bottom edge do not penetrate

through the specimen. We cannot define an apparent shear band in such a case. Figure 6.20

shows the estimated shear bands for Ao -2 for which we can identify an apparent shear band.

6.3.3 Effects of the Shapes of the Specimens

Strain Localization Pattern

Let us focus on the differences in the strain localization patterns among the four shapes of

specimens listed in Table 6.1. It is seen in Figures 6.7 and 6.8 that the deformation patterns

of specimen B are similar. The deformations are homogeneous until the axial strain reaches 4%

of the axial strain, however, strain localization starts at 8% and shear bands are clearly seen at

12%. At an axial strain of 20%, two shear bands finally appear from the edge of the top and the

bottom of the specimen, and shear bands are more clearly seen on one of the surfaces than the

other. The deformation patterns of specimen D have the same tendency as those of specimen

B. The distribution of shear strain becomes non-homogeneous from an axial strain of 8%, and

then, four shear bands develop near the edge of the top and the bottom of the specimen. On the

other hand, the deformation patterns of specimen A and specimen C are different from those

of specimen B and specimen D. We can see the buckling-like mode in the cases of Awl, Aw 2,

Ao-1, CN-1, CN-2, and all cases of Co. The other cases of specimens A and C, Le., AN-3, Ao-2,

Ao-3, and Cw 3, show the relatively complicated mode.

Consequently, all cases of specimens Band D show the "X" mode due to the rather small

aspect ratios of 2 and 1, respectively. On the other hand, specimens A and C are likely to show

the buckling-like mode induced by their large aspect ratios of 4 and 3, respectively. Some cases

of specimens A and C, however, show the other type of strain localization pattern with the

complicated formation of shear bands.

Stress-strain Relations

Figures 6.5(a) rv6.6(a) show the stress-strain relations of cases AN and Ao, respectively. The

specimens for all cases exhibit gradual strain softening, and each peak stress corresponds to the

generation of shear bands. Figure 6.21 shows the stress-strain relations and the distributions

of shear strain for cases Awl and Ao-2. The deformation of AN-1 starts to localize at an axial

strain of 8% and the shear bands of the buckling-like mode appear at 12%, corresponding to

the beginning of the softening behavior. On the other hand, the deviator stress continues to

increase, although strain localization for Ao-2 is clearly seen at 8% and 9%. This is probably

because the dilatancy of overconsolidated clay increases the deviator stress much more than the

softening induced by the shear band on the side surface. When the strain softening behavior

starts, the second shear band generates from 10% and intersects the first one. Finally, the second
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Figure 6.21 Stress-~train relations and the distributions of shear strain for (a)AN-1 (1%jmin)

and (b)Ao-2 (0.1%jmin)

shear band becomes apparent and the softening behavior continues up to 20%. In this way, the

stress-strain relations of the cases of specimen A show strain softening corresponding to the

beginning of the buckling-like mode or to the generation of apparent shear bands. However, the

decrements in deviator stress do not have a clear tendency.

The stress-strain relations of the cases of specimen C are similar to those of specimen A. In

addition, there is a specific relation between the localization mode and the softening behavior.

The deviator stress in those cases, which show the buckling-like mode, decreases much more than

the others. Figure 6.22 shows the stress-strain relations and the distributions of shear strain

for cases CN-1 and CN-3. The buckling-like mode of case CN-1 appears at an axial strain of 12%

just after the deviator stress begins to decrease. On the other hand, the stress-strain relations

of case CN-3 show gradual strain-softening behavior, although the "X" mode of the shear bands

is clearly seen on the front surface. The stress-strain curve of case Co-3 explicitly shows the

softening behavior corresponding to the generation of shear bands, as shown in Figure 6.23.

When the strain-softening behavior starts at an axial strain of 6%, the first shear band appears

in the upper part of the specimen. The specimen shows strongly unstable behavior as the first

shear band grows, and then, further decrease start around 14%. During the drastic decrease in

deviator stress, the second shear band can be seen in the lower part at an axial strain of 16%.

The stress-strain relations of specimen B show rather moderate strain softening behavior just

at the appearance of shear bands. The shear bands for all cases of specimen B are generated

and the deviator stress levels of specimen B begin to decrease between axial strain levels of

8% and 12%. Contrary to these three cases for specimen A, specimen B, and specimen C, the

stress-strain relations of specimen D show continuous hardening behavior, although shear bands

appear in all cases. This is probably because the extremely small aspect ratio for the shape of

specimen D induces geometric stability.
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6.3.4 Effects of the Strain Rate

Strain Rate Sensitivity

It is well known that clay exhibits strain rate sensitivity. Oka et al. (2003) reported the strain

rate sensitivity of Fukakusa clay under undrained triaxial compression conditions. As shown

in Figures 6.5(a) to 6.12(a), however, we can clearly see rate sensitivity only in case BN.

On the contrary, the other cases do not show apparent strain rate sensitivity. The reason for

this is that the deviator stress is more greatly dependent on the deformation mode than the.

material characteristics of rate sensitivity. Since triaxial tests are a boundary value problem,

non-homogeneous deformations are naturally induced and strain localization leads to a local

decrease in stiffness by which the clay exhibits strain-softening behavior. Figure 6.24 shows

the stress-strain relations in the range of the small axial strain of 0.1%. The deviator stress

obtained from the tests with higher strain rates is larger than that from tests with lower strain

rates, except for case CN . This tendency shows the typical strain rate sensitivity of clay.

Strain Localization Pattern

As mentioned in Section 6.3.1, strain localization patterns are classified into three types. The

strain localization pattern for specimen B is the "X" mode, which is composed of two shear

bands developing from the edges of the top and the bottom of the specimen. Figure 6.25

shows distributions of shear strain for specimen B with different strain rates at an axial strain

of 20% and inclination angles of the shear bands. Shear bands on the front surface are clearer

than those on the side surface. In the case of the fastest strain rate of 1 %jmin, shear bands

develop from the top edge. On the other hand, in the case of the lowest strain rate of 0.01

%jmin, shear bands develop beneath the top edge. There are black areas, namely, areas where

the shear strain is very small, near the top and the bottom ends. Shear band formation that

is seen in the case of a middle strain rate of 0.1 %jrnin starts from a relatively lower part than

the top edge. Due to this tendency, the inclinations of the shear band with a strain rate of 0.01

%jmin are lower than those with higher strain rates. In addition, the thickness of shear bands

with lower strain rates is larger than that of bands with higher strain rates. On the side surface,

it is worth mentioning that four shear bands formed in the case of the highest strain rate of 1.0

%jmin.

Figure 6.26 shows the distributions of shear strain for specimen D with different strain

rates at an axial strain of 20% and inclinations of shear bands. All shear bands develop from

thetop and the bottom edges and form two "X" modes. However, the number of shear bands

decreases as the strain rate becomes larger. In particular, we can see relatively homogeneous

deformations on the side surface for cases Dw 1 and Do-1, while three or four shear bands are

clearly seen on both surfaces for cases Dw3 and Do-3. There is no specific tendency of angles

for the shear bands that are 46 to 68 degrees.

In the case of specimen A, shown in Figure 6.27, the specimens compressed with higher

strain rates tend to show the buckling-like mode. Cases Aw 3, Ao-2, and Ao-3 show an apparent

shear band and a rather extensive distribution of shear strain along the shear band. The shear
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band inclination of the buckling-like mode is smaller than that of the complicated mode. The

inclination angles of shear bands for case Awl, with a strain rate of 1 %/min, are larger than

those of case Aw 2, with a strain rate of 0.1 %/min. In addition, the shear bands of case Awl

develop from the edges of the top and the bottom of the specimen, while those of case Aw 2

start beneath the edges. This tendency is consistent with the case of specimen B.
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Figure 6.27 Distributions of shear strain for specimen A with different strain rates at an axial

strain of 20% and inclinations of the shear bands

The effects of the strain rates on the strain localization pattern are prominently seen in the

case of CN . Figure 6.28 shows the distributions of shear strain for specimen C with different

strain rates at an axial strain of 20% and inclination angles of shear bands. All of the deformation

modes for the Co cases are the buckling-like mode, however, those of the CN cases are greatly

affected by the strain rate. The deformation pattern of case Cwl, with the highest strain rate
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of 1 %/min, shows the typical buckling-like mode. On the other hand, the deformation pattern

of case Cw3, with the lowest strain rate of 0.01%/min, is the "X" mode which is often seen in

the case of specimen B. It is worth noting that case Cw2, with a medium strain rate of 0.1%,

shows both the buckling-like mode on the side surface and the "X" mode on the front surface.

In the CN cases we can conclude that the buckling-like mode tends to appear in the cases of

higher strain rates. This tendency is consistent with the cases of specimen A.
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Figure 6.28 Distributions of shear strain for specimen C with different strain rates at an axial

strain of 20% and inclinations of the shear bands

6.3.5 Effects of Dilatancy

As mentioned above, the deformation behavior is greatly dependent on the shapes of the spec­

imens or the strain rates. We can conclude that overconsolidated clay is more brittle than

normally consolidated clay. This tendency can be typically seen in the cases of specimen C.

Figures 6.29 and 6.30 shows the stress-strain relations and the distributions of shear strain at

an axial strain of 12% for the CN cases and the Co cases, respectively. It is clearly seen in the

stress-strain relations that the axial strain levels of the peak stress for the Co cases are smaller

than those for the CN cases. This suggests that overconsolidated clay reaches the failure state

earlier than normally consolidated clay. Shear bands are clearly observed in the distributions
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of shear strain for overconsolidated clay at an axial strain of 12%, while apparent strain local­

ization cannot be seen in those of normally consolidated clay. In addition, all of the cases for

overconsolidated clay show the buckling-like mode and extensive strain softening. On the other

hand, the strain softening in cases Cw2 and Cw3 is moderate and the buckling-like mode is

not seen in these two cases, even though the geometric instability of specimen C, caused by

the higher aspect ratio, may cause the buckling-like mode. In the case of specimens A, Band

D, however, we cannot see a clear difference between the normally consolidated clay and the

overconsolidated clay. Consequently, in the case of specimen C, we can conclude that normally

consolidated clay is relatively ductile and that overconsolidated clay is relatively brittle.

6.4 Summary

Triaxial compression tests using rectangular specimens for normally consolidated clay and over­

consolidated clay with different strain rates have been conducted. We have obtained the dis-
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tributions of shear strain by an image analysis of photographs of the specimens taken during

deformation. Using the distributions of shear strain, the strain localization behavior of clay has

been investigated in detail.

In all cases, strain started to localize from the edges of the top and the bottom of the spec­

imens, and then, the localized deformations lead to apparent shear bands. Corresponding to

the generation of shear bands, strain-softening behavior was observed. Specimen D, however,

showed monotonically hardening behavior. Three types of deformation modes were seen and

three-dimensional shear bands were estimated from the distributions of shear strain. The de­

formation mode was greatly dependent on the shapes of the specimens and the strain rates.

The deformation modes of specimens Band D were consistently the "X" mode, however, the

formations of shear bands were affected by the strain rates. Specimens A and C, whose aspect

ratio is large, with higher strain rates are likely to show the buckling-like mode and extensive

softening behavior. On the other hand, specimens A and C, with lower strain rates, show the

complicated mode tnat includes both the "X" mode and the buckling-like mode. In addition, it

is found that overconsolidated clay is more brittle than normally consolidated clay.
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Chapter 7

Numerical Simulation of Triaxial

Tests for Rectangular Specimens

7.1 Introduction

A series of triaxial compression tests for the rectangular clay specimens reported in the last

chapter have been numerically simulated in this chapter by the finite element method using an

elasto-viscoplastic constitutive equation. As mentioned before, the same boundary conditions

as those used in the undrained triaxial compression tests for rectangular specimens can be set

up when simulating the tests by the finite element method. If we simulate the triaxial tests

for cylindrical specimens by the finite element method, an assumption that the specimens are

polygon poles or under axisymmetrical conditions is needed. On the other hand, no special

assumptions are required to set up the boundary conditions for rectangular specimens.

The analysis method is a soil-water coupled finite element method based on the finite defor­

mation theory. The code for the finite element method used in Chapters 3 and 5 is extended

to a three-dimensional one. The constitutive model used in this chapter is the elasto-viscoplastic

model for clay considering the structural changes proposed by Kimoto (2002), Kimoto and aka
(2003), and Kimoto et al. (2004; to appear). This model can reproduce the behavior of both

normally consolidated clay and overconsolidated clay, and can address the material instability

induced by structural changes in the clay. In addition, there are fewer material parameters than

in the model introduced in Chapter 4.

The simulation results yield much information on the inside of the specimens, e.g., the dis­

tributions of strain, the stress levels, and pore water pressure, which are not obtained from

the experiment. All of the test cases with different shapes and strain rates have been simu­

lated. Then, comparing the results of the experiment and the simulation, we have discussed the

mechanism of strain localization.
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7.2 Elasto-viscoplastic Constitutive Model Considering Struc­

tural Changes

For the constitutive equation of clay, an elasto-viscoplastic constitutive model considering struc­

tural changes, proposed by Kimoto (2002), Kimoto and Oka (2003), and Kimoto et al. (2004; to

appear), was used. The basic theory of viscoplasticity (Perzyna 1963) is the same as that of the

elasto-viscoplastic model introduced in Chapters 2 and 4. On the other hand, a characteriza­

tion of the material instability is newly proposed considering the microstructural changes in the

geomaterials, and the kinematic hardening rule is not adopted. Structural changes are described

as the shrinking of both the overconsolidation boundary surface and the static yield surface with

the evolution of viscoplastic strain. In the following, the introduction of the constitutive model

will be given.

7.2.1 Overconsolidation Boundary Surface

The overconsolidation boundary introduced in Section 4.2 is adopted in the model. The

overconsolidation boundary surface controls the shape of the plastic potential function (see

Figure 4.2).

a'
fb = r;* + J\;1:'n In ,m = 0

amb

where r;* is the relative stress ratio defined as

_* {( * *) (* *)}1/2"I = '(Iij - '77ij(O) TJij - TJij(O)

(7.1)

(7.2)

(7.3)

in which a~j is Terzaghi's effective stress tensor, TJij is the stress ratio tensor, Sij is the deviatoric

stress tensor, a:n is the mean effective stress, Oij is Kronecker's delta, and subscript (0) indicates

the state at the end of consolidation, in other words, the initial state before deformation occurs.

M:'n is the value of VTJijTJij at the maximum compression and a:nb is the parameter which controls

the size of the surface.

7.2.2 Structural Changes

Originally, the hardening rule for the overconsolidation boundary surface was defined with re­

spect to the viscoplastic volumetric strain E~~ as

a:nb = a:nbi exp (~ ~:E~~) (7.4)

where A is the compression index, /'i, is the swelling index, e is the void ratio, and a:nbi is the

initial value of a:nb' which is defined as the isotropic consolidation yield stress.

In order to describe the degradation of the material caused by structural changes, strain

softening is introduced into the hardening parameter with the viscoplastic strain as

(7.5)
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in which CT:nai and CT:na! are the initial and the final values of CT:na' and z is an accumulation of

the second invariant of viscoplastic strain rate i~J.

i
t 1

. . .vp .vp "2
Z = zdt, z = (Cij Cij )

o
(7.6)

Substituting CT:na into Equation (7.4), CT:nb is defined by the hardening rule with respect to

the viscoplastic volumetric strain and by the softening rule with respect to structural changes

as

(7.7)

in which (3 is a parameter which denotes the degradation rate of CT:na in Equation (7.5). Since

z is equal to 0 at the initial state, the relation of CT:na = CT:nai = CT:nbi is derived. Hence, two

independent parameters, (3 and CT:na!' are introduced to describe the soil structures. The ratio

of CT:na! to CT:nai' namely,

1 / 1n = CTma! CTmai (7.8)

provides the degree for a possible collapse of the structure at the initial state. n satisfies the

condition of 0 < n ~ 1, in which n = 1 indicates the soil which loses its structure perfectly. In

addition, the ratio of CT:na to CT:nai is defined by Equation (7.5) as

Na = CT:na/CT:nai = n + (1 - n) exp( -(3z). (7.9)

When viscoplastic strain does not occur, i.e., z = 0, the value of Na is equal to 1. On the other

hand, when the value of z becomes large enough, Na approaches n, and the softening converges

due to structural changes.

7.2.3 Static Yield Function

Adachi and aka (1982) assumed a Cam-clay type of static yield function to describe the me­

chanical behavior of clay at its static equilibrium state.

_* - * CT:n
fy = 'fl +M ln~ = 0 (7.10)

CTmy

where the CT~~ is the static-hardening parameter and fy = 0 represents the static state in which

no viscoplastic deformation occurs.

Considering volumetric strain hardening, the hardening rule CT:}:J was originally given as

1(8) _ 1(8) ( 1 + e vp )
CTmy - CTmyi exp ,\ _ ,/kk (7.11)

In a similar manner to overconsolidation boundary surface fb' strain softening is defined in

order to express the effect of a structural collapse through changes in CT~~ with the viscoplastic

strain. Adopting Equation (7.9) to Equation (7.11) yields

CT~~ = {n + (1 - n) exp(-(3Z)}CT~~iexp (~ ~:c%1) (7.12)

where CT~~i is the initial value of CT~~. The decrease in CT~~, defined by Equation (7.12), leads

to the shrinking of the static yield function according to the structural collapse.
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7.2.4 Viscoplastic Potential Function

Viscoplastic potential function fp is given as

(7.13)

where £1* is constant in the NC region, while the value of £1* in the OC region depends on the

current stress and (J~c as

(7.14)

where (J~c denotes the mean effective stress at the intersection of the overconsolidation boundary

surface and the (J~ ,axis as

17:j(O)17:j(o)

M*m
(7.15)

In the case of isotropic consolidation, (J~c equals (J:nb'

NC region

L.L-L..L.LLl...L.J...L1..I(-)----.1-,:----.l-.,_ a':
-amy" -amb amp

Figure 7.1 OC boundary surface, static

yield function, and potential function in the

NC region (Kimoto 2002)

./SySij
OC region

Figure 7.2 OC boundary surface, static

yield function, and potential function in the

OC region (Kimoto 2002)

Overconsolidation boundary fb' static yield function fy, and potential function fp at 17:j(o) =
ofor the NC region and the OC region are demonstrated in the (J~-JSijSij space in Figures

7.1 and 7.2, respectively. (J~b and (J~~ become small as the accumulation of viscoplastic

strain increases. Since the increments in viscoplastic strain for the overstress type of model are

determined by the difference between the current stress state and the static state, the shrinkage of

the static yield surface due to the degradation of the soil structure increases the viscoplastic strain

increments. The static yield function as well as the potential surface are transformed smoothly

between the OC and the NC regions, so that calculations can be conducted continuously without

interruption.
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7.2.5 Viscoplastic Flow Rule

Viscoplastic strain rate tensor c~J, based on an overstress type of viscoplasticity theory (Perzyna

1963), is given as

.vp _ (<1> (f)) afp
Cij - I 1 Y a(7~ .

~J

(7.16)

(7.17)

(7.18)

(7.20)

where <1>1 indicates the strain rate sensitivity. Based on the experimental data of the strain-rate

constant triaxial tests (Adachi and Okano 1974), material function <1>1 is given as:

,iJ>,Uv) ~ c'<1,. exp [m' (~' Hd'ln ~~) ]

0(7:n exp [m' (ry* + M* In :tJ]
0= 0' exp (m'M* In (7~~i) (7.19)

(7myi

in which m' and 0 are viscoplastic parameters and Equations (7.7), (7.9), and (7.12) are used.

Finally the viscoplastic deviatoric strain rate and the viscoplastic volumetric strain rate are

obtained as follows:

.vp _ 0 [, (-* + M-*I (7~)] 17ij -17;j(o)eij - exp m 17 n -,- _*
(7mb 17

(7.21)

The additive decomposition of the total strain rate into elastic and viscoplastic parts is

assumed, and the elastic strain rate tensor is given by a Hooke's type of isotropic elasticity law.

7.3 Finite Element Analysis of Triaxial Tests for Rectangular

Specimens

The finite element formulation used in this chapter is the same as that used in Chapters 3 and

5. The governing equations are equilibrium equations for the solid-fluid mixture and a continuity

equation for pore fluid. Based on the finite deformation theory, an updated Lagrangian method

with the objective Jaumann rate of Cauchy stress is used for the weak form of the rate type of

the equilibrium equations. The finite element code is formulated in a three-dimensional setting.

The element types used in the three-dimensional analysis are shown in Figure 7.3. A twenty­

node isoparametric element with a reduced Gaussian (2x2x2) integration for the soil skeleton

and an eight-node isoparametric element with a full (2x2x2) integration for pore fluid are used.
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Figure 7.3 Isoparametric elements used in the three-dimensional finite element method
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7.3.1 Determination of the Material Parameters

Ten material parameters are required by the constitutive model introduced in the last section.

They are compression index A, swelling index K" initial void ratio eo, elastic shear modulus Go,

compression yield stress a:nbi' stress ratio at maximum compression M:n, viscoplastic parameter

m, viscoplastic parameter 0, structural parameter a:naf' and structural parameter (3. All of

them are determined by isotropic consolidation tests and more than two undrained triaxial

compression tests. Other parameters include coefficient of permeability k and coefficient of

earth pressure at rest Ko. The material parameters used in this chapter are listed in Table 7.l.

Compression index A and swelling index K, are given by the slope of the isotropic consolidation

and the swelling tests, respectively. We determined A to be 0.191 and K, to be 0.043 using the

isotropic consolidation and the swelling test results for Fukakusa clay by Yamamura (2002).

The initial void ratios, eo, obtained in each test are listed in Table 6.2. In order to simulate

the tests accurately, we should use the values obtained in each test, however, we used the

average of them since calculating with different void ratios is not appropriate for a comparison

of the simulation results. Consequently, the initial void ratios of normally consolidated clay and

overconsolidated clay were calculated to be 1.10 and 1.11, respectively.

Elastic shear modulus Go is determined by the initial slope of the undrained triaxial com­

pression tests, namely, Go = ~qj(3~El1), in which ~q is the increment in deviator stress and

~El1 is the increment in axial strain. In this study, ~El1 was determined to be 0.1%. Elastic

shear moduli Go are given by normally consolidated clay and overconsolidated clay with each

strain rate. Undrained triaxial compression tests on Fukakusa clay by Yamamura (2002) were

used for the moduli of the strain rates of O.l%jmin and O.Ol%jmin, and those of 1.0%jmin.

Compression yield stress a:nbi is assumed to be the pre-consolidation stress. Therefore, that

of normally consolidated clay is 200 kPa and that of overconsolidated clay is 300 kPa. The stress

ratio at maximum compression M:n is defined as the stress ratio whereby maximum compression

occurs in the drained compression tests. For clay, however, M:n can be equal to the stress ratio

at the critical state. Herein, M:n is determined from the stress ratio at the residual state in the

undrained triaxial compression tests.

Viscoplastic parameters m' and 0 can be determined from undrained triaxial tests with dif­

ferent strain rates. Adachi and aka (1982) noted that viscoplastic parameter m' is estimated

from the slope of the relation between the stress ratio and the logarithm of the strain rate.

In principle, material parameters are determined from elemental tests. In this study, however,

undrained triaxial compression tests using cylindrical specimens were conducted only for a strain

rate of 1.0%jmin. Hence, we applied the test results using rectangular specimens, namely, B

(4cmx4cmx8cm) and A (4cmx4cmx12cm) to estimate viscoplastic parameter m', because

these shapes are relatively similar to the cylindrical specimens generally used in triaxial compres­

sion tests whose diameter is 5 cm and height is 10 cm. Figure 7.4 shows the relations between

the applied strain rates and stress ratio qja~ for normally consolidated clay, in which q is the

deviator stress and a~ is the mean effective stress. We plotted the stress ratios at a~ = 0.9a~o,

a~ = 0.8a~o, and a~ = 0.7a~o, and estimated m' to be 21.7, 23.9, and 24.3, respectively. We

used 24.3 as m' since the other two values are so small that the simulation of triaxial tests with
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different strain rates would overestimate the strain rate sensitivity. As for the overconsolidated

clay, m' is estimated to be -18.1, 43.9, 17.1, and 20.5 from the stress ratios at a~ = 1.1a~o,

a~ = 1.2a~o, a~ = 1.4a~o, and a~ = 2.0a~o as shown in Figure 7.5, respectively. m' = 20.5

is used since experience has shown that the others are not appropriate values (e.g., Oka et al.

2002 and Kimoto and Oka 2003). After m' is fixed, viscoplastic parameter C is determined by

the peak stress.

Structural parameter a'maj can be obtained by the deviator stress at the residual stress

state, while (3, which dominates the decreasing rate of deviator stress, is determined by the

curve fitting.

Figures 7.6 and 7.7 show the simulation results of undrained triaxial compression tests for

normally consolidated clay and overconsolidated clay, respectively. Note that these simulation

results are approximate solutions of the constitutive equation, using the Runge-Kutta method,

under the triaxial stress state. In the case of normally consolidated clay, it is seen that the

peak stress in the stress-strain relations is different between the test results and the simula­

tions. However, the strain rate sensitivity and the negative dilatancy characteristics of normally

consolidated clay are well reproduced. The rate sensitivity and the dilatancy characteristics of

overconsolidated clay are also well reproduced, while the axial strain at the peak stress of the

simulation is smaller than that of the test results.

The coefficients of permeability for the normally consolidated clay and the overconsolidated

clay were obtained by falling head permeability tests in the triaxial cell. The head difference

applied by air pressure was 1000 cm for normally consolidated clay and 250 cm for overconsoli­

dated clay. To prevent leakage along the rubber membrane, silicone grease was filled in between

the specimen and the membrane.

Table 7.1 Material parameters used in the numerical simulation

Parameter N.C. clay a.c. clay

Compression index ,\ 0.191 0.191

Swelling index K, 0.043 0.043

Initial void ratio eo 1.10 1.11

O.01%/min 16300 (kPa) 9190 (kPa)

Initial elastic shear modulus Go O.l%/min 17700 (kPa) 9920 (kPa)

l%/min 23400 (kPa) 13080 (kPa)

Initial mean effective stress a:-"o 200 (kPa) 50 (kPa)

Compression yield stress a:-"bi 200 (kPa) 300 (kPa)

Coefficient of earth pressure at rest K ot 1.0 1.0

Stress ratio at maximum compression M:;' 1.14 1.14

Viscoplastic parameter m 24.3 20.5

Viscoplastic parameter C 5.8xl0-10 (l/s) 2.7xlO-9 (l/s)

Structural parameter a:-"a/ 170 (kPa) 270 (kPa)

Structural parameter f3 10 5

Coefficient of permeability kt 1.63x 10-9 (m/s) 2.86xlO-9 (m/s)

t K o and coefficient of permeability k were used only in finite element analysis.
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Figure 7.6 Numerical simulation results of undrained triaxial compression tests for normally
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Figure 7.7 Numerical simulation results of undrained triaxial compression tests for overcon­

solidated clay

7.3.2 Boundary Conditions

Figure 7.8 shows the boundary conditions for the shape of specimen B, which is set up ac­

cording to the same boundary conditions as those of the undrained triaxial compression tests

with displacement control. All the boundaries are assumed to be impermeable, however, the

transport of pore water between each element is allowed. Constant displacements (z-direction)

of O.Ol%jmin, O.l%jmin, and l%jmin are applied to the nodes on the bottom surface. The time

increment is determined by the increment of average strain ~c = 0.05%. As for the top and the

bottom surfaces, frictional force occurs between the top and the bottom surfaces and the top

cap and the pedestal. Hence, the top and the bottom surfaces deform. We measured the size

of the top and the bottom surfaces after the tests listed in Table 7.2. 'Before test' indicates

the time just after the specimens were trimmed. 'After test' means the time after the specimens

were consolidated and sheared under undrained conditions. In all cases, the displacements of

the surfaces are rather small, but not negligible. However, it is difficult to measure the friction
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coefficient and the maximum static friction force between the soil specimen and the paper filter.

Consequently, we assumed that the horizontal (x-direction and y-direction) displacement of the

nodes on both the top and the bottom surfaces is constrained. The boundary conditions for

the other shaped specimens are the same as those for specimen B. Figure 7.9 shows the finite

element meshes for specimens A, C, and D.

z

All boundaries are impermeable
(permeable between each elements)

Displacement control with
0.01%/min, 0.1%/min, and 1%/min

~ Horizontally fixed

Fixed

B: 4 em x 4 em x 8 em
8 x 8 x 16 = 1024 elms

5121 nodes

Figure 7.8 Boundary conditions for the three-dimensional finite element analysis
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A: 4 em x 4 em x 12 em
8 x 8 x 24= 1536 elms

7569 nodes

c: 2 em x 4 em x 8 em
4x8x16=512elms

2777 nodes

D: 4 em x 4 em x 4 em
8 x 8 x 8= 512 elms

2673 nodes

Figure 7.9 Finite element meshes used in the numerical simulations; boundary conditions are

the same as those for B (4cmx4cmxScm)

7.4 Simulation Results

The undrained triaxial compression tests for normally consolidated clay and overconsolidated

clay for each size of specimen with different axial strain rates have been simulated. Figures
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Table 7.2 Sizes of the top and the bottom surfaces measured before and after the tests

Number of Top surface Bottom surface

specimen Before test After test Before test After test

AN-l - - - -

AN-2 - - - -

Aw 3 - - - -

BN-l 4.048 x 4.052 4.305 x 4.205 4.009 x 4.013 4.488 x 4.267

Bw2 4.036 x 4.035 4.176 x 4.163 4.094 x 4.095 4.103 x 4.102

Bw3 - - - -

Cwl 3.928 x 1.952 3.921 x 2.232 3.958 x 2.012 3.989 x 2.251

Cw 2 3.968 x 2.097 3.990 x 2.210 3.969 x 2.042 4.021 x 2.291

Cw 3 3.965 x 2.053 4.012 x 2.236 3.990 x 2.103 4.017 x 2.259

Dwl - - - -

Dw2 - - - -

DN-3 3.860 x 3.903 4.245 x 4.185 3.938 x 3.938 4.217 x 4.199

Ao-l 4.028 x 4.013 4.206 x 4.180 4.092 x 4.121 4.189 X 4.329

Ao-2 - - - -

Ao-3 - - - -

Bo-l 4.002 x 4.001 4.178 x 4.125 4.067 x 4.083 4.341 x 4.244

Bo-2 3.924 x 3.950 4.225 x 4.141 4.039 x 3.990 4.398 x 4.214

Bo-3 - - - -

Co-l 3.966 x 2.082 3.973 x 2.503 3.958 x 2.106 3.967 x 2.520

Co-2 3.967 x 2.071 3.978 x 2.413 3.996 x 2.107 4.001 x 2.687

Co-3 3.958 x 2.029 3.960 x 2.573 3.956 x 2.055 3.996 x 2.450

Do-l 4.047 x 4.062 4.316 x 4.371 4.052 x 4.116 I 4.390 x 4.454

Do-2 - - - -

Do-3 - - - -

- : not measured, Unit: (cm)

7.10rv7.17 show the simulation results for normally consolidated clay and overconsolidated clay

for each size of specimen, respectively. Figures 7.10(a) rv7.17(a) show the stress-strain relations

with the experimental results, Figures 7.10(b) rv7.17(b) show the effective stress paths with

the experimental results, Figures 7.10(c)rv7 .17(c) show the distributions of shear strain J'

and Figures 7.10(d) rv7.17(d) indicate the deformed meshes at an axial strain of 20%. In cases

where the calculations diverged, the final states are shown.

The deviator stress, the mean effective stress, and the pore water pressure used in the stress­

strain curves and the effective stress paths are calculated in the same manner as the experimental

data. The deviator stress and the pore water pressure are obtained using the average of those

nodal values of the top surface. In order to obtain the distributions of shear strain J on the

surfaces of the specimens, we used a special method, which is the same method as that for

experiment introduced in Section 6.2.3. Figure 7.18 displays the procedure for obtaining

shear strain J. After completing the calculations, we picked up the coordinates of the nodes on

the xz-surface and the yz-surface. Consequently, we used eight-node isoparametric elements to
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calculate strain values, of the xz-surface and the yz-surface.

{e} = [B]{u}

in which

(7.22)

(7.23)

or

(7.24)

where e is the strain, u is the displacement, subscripts x and y denote the horizontal direction,

z denotes the vertical direction, and exy is the shear strain. The superscripted numbers (1 to 8)

indicate the nodal numbers of the isoparametric elements. Using this strain vector, the second

invariant of deviatoric strain was calculated.

{exz}T = {ex, ez, exz } = {ex -ev/2,ez -ev/2,exz}

{eyz}T = {ey,ez,eyz } = {ey -ev/2,ez -ev/2,eyz}

rv - le2 + e2 + 2e2 rv = ley2 + ez2 + 2ey2zI - V X Z xz' I V

(7.25)

(7.26)

where ev(= ex +ez or ey +ez) is the volumetric strain in a two-dimensional form. Note that the

distributions of shear strain, are obtained by the above special method. On the other hand,

the distributions of the second invariant of viscoplastic deviatoric strain ,P, which will be shown

in the following, are obtained at the Gaussian integration points of each element.

We can see in Figures 7.10(a)"-'7.17(a) that the stress-strain relations for normally con­

solidated clay show strain-hardening behavior, and that the calculations for cases ON and DN

diverge around an axial strain of 16% with strain softening. On the other hand, the stress-strain

curves for overconsolidated clay show strain-softening behavior after the peak stress around an

axial strain of 2%, and then show a gradual hardening, except for cases 00-1 and Do-I. It is

seen in Figures 7.10(b),,-,7.17(b) that the effective stress paths for normally consolidated clay

exhibit negative dilatancy, i.e., a decrease in mean effective stress, while those for overconsoli­

dated clay exhibit positive dilatancy, i.e., an increase in mean effective stress. We can see in the

stress paths for overconsolidated clay that the mean effective stress decreases from the initial

value of 50 kPa in the early stage of loading, e.g., the mean effective stress for case Bo-1 at an

axial strain of 0.5% is 31 kPa. Figure 7.19 shows the stress path and the distribution of mean

effective stress and pore water pressure for case Bo-1 at an axial strain of 0.5%. It can be seen

in this figure, however, that the mean effective stress of almost the entire specimen increases

from the initial value of 50 kPa, and the pore water pressure at the top edge is much higher than

that at other parts of the specimen. The mean effective stress displayed in the stress path is

calculated by the pore water pressure of the top edge in order to exactly compare the simulation

results with the test results. The reason for the decrease in mean effective stress in the stress
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paths is that the higher pore water pressure at the top edge leads to an estimation of a lower

mean effective stress.

We can see in the deformed meshes shown in Figures 7.10(d) rv7.17(d) that the deformation

of the clay specimens depends on the shapes of the specimens, the strain rates, and the dilatancy

characteristics. Strain localization and the growing process of shear bands can be seen in the

distribution of shear strain in Figures 7.10(c)rv7.17(c). Although homogeneous deformations

can be seen until an axial strain of 4% is reached, the strain starts to localize at an axial strain

of 8%, and then four or two shear bands appear at an axial strain of 12% aqd develop with an

increased thickness on both surfaces. We can see in all cases that the shear strain at the center

of the specimen is larger than that at any other part of the specimen. On the side surfaces of

specimen C, shear bands can also be observed.

7.4.1 Strain Localization Pattern

All cases of AN in FJgure 7.10 show the "X" mode in both the upper part and the bottom

part of the specimen. In the experiments shown in Figure 6.5, however, cases AN-1 and Aw 2

show the buckling-like mode. The same tendency can be seen for case Ao-l. It is worth noting,

however, that the distribution of shear strain I of the experiment also shows the "X" mode in

both the upper part and the bottom part of the specimen until an axial strain of 8% is reached.

As mentioned above in Section 6.3.1, bifurcation occurs and leads to the buckling-like mode.

It is rather difficult, however, to trace the buckling-like mode because the buckling-like mode

may occur due to geometrical imperfections.

It is seen that simulations of specimen B, in Figures 7.12(c) and 7.13(c), effectively repre­

sent the strain localization pattern observed in the experiment, the "X" mode shown in Figures

6.7(c) and 6.8(c). Strain starts to localize at an axial strain of 8% due to the fixed conditions

of the top and the bottom edges. Shear bands can clearly be seen from the top and the bottom

edges at an axial strain of 12%. Finally, the two shear bands form the "X" mode.

The deformations of specimen C, obtained by the finite element simulation, show the "X"

mode at the center part of the specimen. In the experiments, we see that specimen C often

shows the buckling-like mode. On the other hand, only case Cw 3 does not induce buckling and

shows the complicated mode just like the "X" mode shown in Figure 6.9. This behavior is well

reproduced by the simulation of case Cw3 in which the "X" mode appears on the front surface

and shear bands also appear on the side surface.

The strain localization pattern of specimen D is the "X" mode. It is interesting that we can

see two "X"s on both surfaces. Four shear bands appear on both surfaces and form the "X"

mode on the left and right sides of the specimen. The simulation results reproduce the "X"

mode of D observed in the experiments very well.

Consequently, the various types of "X" mode of the strain localization pattern, due to the

fixed conditions at both edges of the specimen, can be seen in all cases. The simulation results

can very well reproduce the "X" mode especially for specimens Band D. For specimens A and C,

the finite element analysis can very well reproduce the deformation behavior when buckling does

not occur, such as in cases CN-3 and Ao-l. On the other hand, the buckling-like mode due to
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geometric instability is not seen in the finite element simulations since geometrical imperfections

are not taken into account.

7.4.2 Three-dimensional Shear Bands

We estimated three-dimensional shear bands observed in the experiments in Section 6.3.2.

In the case of the finite element analysis, however, we can directly see three-dimensional shear

bands. Figures 7.20 and 7.21 depict the distribution of the second invariant of accumulated

viscoplastic deviatoric strain "l for all cases, namely,

de"!1!de"!1!
~J ~J

(7.27)

where de~! is the deviatoric part of the viscoplastic strain increment tensor. In the distributions,

by disregarding smaller values of ryP, we can see localized strain, i.e., three-dimensional shear

bands. Note that ryP is obtained at the Gaussian integration points of the finite element method

and is different from the 'shear strain ry' used in Figures 7.10(c)1"V7.17{c).

It is seen that the shear bands of the AN cases develop from the eight corners of the edges

of the specimen. In the upper and the lower parts of the specimen, four shear bands intercross

each other from the edges, while the strain localization at the center part of the specimen is

more moderate. In the Ao cases, the shear band formation is greatly dependent on the strain

rates. The strain localization pattern for case Ao-1 is similar to that for the AN cases, however,

the accumulation of ryP at the center of the specimen for case Ao-1 is larger than that for the

AN cases.

The shear bands of cases BN and Bo-1 generate from the eight corners of the edges of the

specimen due to the constraint of lateral displacement, and they intersect at the center of the

specimen. On the other hand, the shear bands of cases Bo -2 and Bo-3 develop just beneath the

corners.

In specimen C, we can see different types of three-dimensional shear bands from the other

cases whereby the "X" mode of the shear bands form symmetrically in the x-direction. The

accumulation of ryP at the center of the specimen where the shear bands intersect is higher than

for the other parts. In addition, the shear bands can be seen also in the side surface apparently.

The formation of three-dimensional shear bands for specimen D is rather consistent. Shear

bands develop at the eight corners and two of them intersect each other and form the "X" mode.

Two "X" modes can be seen on one surface and a high accumulation of ryP is at the center of

the specimen.

We cannot see apparent shear bands significantly in any cases, as can be seen in the test

results for Ao-2 (Figure 6.20). In addition, we can estimate that the three-dimensional shear

bands for specimens Band D penetrate the specimens (see Figure 6.18). However, the shear

bands obtained by the simulations do not penetrate the specimens. Figure 7.22 depicts the

three-dimensional shear bands of case Bw 2 tested and simulated, respectively: In the distribu­

tions of shear strain for the test results, the accumulation of shear strain on the front surface

is much higher than that on any other and we can see on the side surface that the shear bands

penetrate through the specimen. On the other hand, the shear strain of the simulation results
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Figure 7.20 Three-dimensional shear bands for the cases of normally consolidated clay (Dis­

tribution of the second invariant of viscoplastic deviatoric strain "l excluding smaller strain

levels)
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0 0 -3 (0.01o/elmin)
Axial train: 20%,P > 0.28

Figure 7.21 Three-dimensional shear bands for the cases of overconsolidated clay (Distribution

of the second invariant of viscoplastic deviatoric strain ,P excluding smaller strain levels)
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20%)

accumulates similarly on the side and the front surfaces because geometrical imperfections are

not considered.

7.4.3 Effects of the Shapes of the Specimens

Stress-strain Relations

The effects of the shapes of the specimens on the stress-strain relations obtained by the numerical

simulation are small, as shown in Figures 7.10(a)"'7.17(a). In the experiments, the specimens

which show the buckling-like mode or the apparent shear bands exhibit unstable strain-softening

behavior. On the other hand, the stress-strain relations of each simulation are similar as long as

the material parameters of the constitutive equation are consistent throughout the simulation.

Some cases for specimens C and D show strain-softening behavior and the calculations diverge,

since specimens C and D are greatly affected by the constraint conditions.

Strain Localization Pattern

We can see in Figures 7.10(c)"'7.17(c) and Figures 7.20 and 7.21 that all cases show the "X"

mode localization. Shear bands for all cases of the normally consolidated clay and cases Ao-l

and 2, Bo-l, Co-I, and Do develop from the corners of the edges of the specimens. Figure
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7.23 shows the schematic figures of the shear band formation process for each shape of specimen.

As shown in the distribution of "l at an axial strain of 3%, strain localizes from the corners

at small axial strain levels. When the axial strain becomes larger, the generated shear bands

develop dependent on the shape of the specimens, as can be seen in the distribution of ,P at an

axial strain of 16%. In the case of specimen A, since the height of the specimen is large enough,

shear bands generated in the upper part (1 and 2) and shear bands in the lower part (3 and

4) do not affect each other, and then four shear bands develop. On the other hand, the height

of specimen B is smaller than that of specimen A, and the upper shear bands and the lower

shear bands interact with each other. Finally, shear bands 1 and 4 and shear bands 2 and 3

develop two apparent shear bands. In the case of specimen D, since the height of the specimen

is so small that the upper shear bands and the lower shear bands ((1 and 3) and (2 and 4))

interact with each other even at small axial strain levels. Furthermore, the upper shear bands

(1 and 2) reach the bottom edge and the lower shear bands (3 and 4) reach the top edge. These

types of behavior are consistent with the formation process of the "X" mode observed in the

experiments.

7.4.4 Effects of the Strain Rates

Stress-strain Relations

The rate sensitivity of clay can be seen in Figures 7.10(a) rv7.17(a), except for case Do-I,

although the stress-strain curves obtained by the experiment show the rate sensitivity only at

small axial strain levels. This is probably because the stress-strain relations obtained by the

experiment are more dependent on strain localization patterns than on the material character­

istics, i.e., rate sensitivity. On the other hand, in the case of the numerical simulation, the

buckling-like mode or the appearance of apparent shear bands, which induce strain softening,

do not occur.

Strain Localization Pattern

Figure 7.24 shows the distributions of shear strain for the simulation of specimen A with

different strain rates at an axial strain of 20% and the inclination angles of shear bands compared

with the experimental results. In the simulation results displayed in Figures 7.10(c) rv7.17(c),

the shear-strain distributions of the front side and of the side surface are similar. Hence, we use

mainly those of the front surface in the following discussion.

It is seen that the effects of the strain rates on the simulation of the AN cases are small. On

the other hand, the simulation of the Ao cases is greatly affected by the strain rates. In the case

of a higher strain rate, Ao -l, the "X" mode appears in both the upper and the lower parts of

the specimen. As the strain rate becomes lower, the strain tends to localize in the center part

of the specimen. The simulation can reproduce the tendency of case Ao and the deformation

patterns, especially in the case of Ao-l.

Figure 7.25 shows the distribution of ,P inside the specimen for the Ao cases. We can see

that a higher accumulation of viscoplastic strain indicated by a white zone exists in the center
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Figure 7.24 Comparison of the distributions of shear strain and the inclination angles of the

shear bands for specimen A with different strain rates between the simulation results and the

experimental results (Axial strain: 20%)

026

~
058 \

\
\

,

) .._, ;
083f /0019,

I
I

!
.J

. -"- .. J/
0'6

032

J....., r''''
~ I

048f I

001

Ao·1 (1 %/min)
001

Ao-2 (0.1 %/min)
001

Ao-3 (0.01 %/min)

Figure 7.25 Distribution of "/ inside of the specimen for the Ao cases with different strain

rates (Axial strain: 20%)

145



Simulation Experiment

f

Simulation Experiment

f

~\'"

(a) '.

53"

~"'.

(b)
50"

~ .
......,.

49"

50" .. /
/(~

(b)

(c)

fast

slow

46"

~ ..,

80 -2 (0.1 %/min)

·50"
~.

44"

Figure 7.26 Comparison of the distributions of shear strain and the inclination angles of the

shear bands for specimen B with different strain rates between the simulation results and the

experimental results (Axial strain: 20%, Front surface); (a) shear bands develop from the top

edge, (b) and (c) shear bands develop beneath the top edge

of the specimen in the case of Ao-3, while two white zones exist where shear bands from the

corners of the top and the bottom edges intercross each other in the case of Ao-l. This tendency

can also be seen in Figure 7.21. In addition, the accumulation of ,P in the case of a lower strain

rate is larger than that in the case of a higher strain rate due to the strain rate sensitivity. This

tendency can be seen not only in Ao, but also in other cases. These results are consistent with

the results obtained by the strain localization analysis under plane strain conditions (Section

5.3.3).

The shear-strain distributions and the inclination angles of the shear bands of both the

simulation and the experiment for specimen B with different strain rates at an axial strain of

20% are shown in Figure 7.26. The numerical simulation for specimen B very well reproduces

the experimental results with respect not only to the "X" mode, but also to the effects of the

strain rates on the strain localization pattern. Shear bands develop from the top and the bottom

edges in the case of higher strain rates, while those with lower strain rates develop beneath the
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Figure 7.27 Comparison of the distributions of shear strain and the inclination angles of the

shear bands for specimen C with different strain rates between the simulation results and the

experimental results (Axial strain: 16%)

top and the bottom edges. Due to this tendency, the angles of shear bands become smaller as

the strain rate decrease. This result is not consistent with the result obtained in Section 5.3.3

under plane strain conditions. In addition, the thickness of the shear bands with lower strain

rates is larger than that of those with higher strain rates. Note that these types of behavior are

more clearly seen in the case of overconsolidated clay, namely, Bo·

In the case of CN, the effects of the strain rates on the strain localization patterns for the

CN cases are very small, as can be seen in Figure 7.27. On the other hand, the effects of

Co are clearly seen in the inclination angles of the shear bands. The angles of shear bands for

case Co-1 are the largest, namely, 52 degrees, while the angles of shear bands for case Co-3

are the smallest, namely, 45 degrees. This tendency is the same as that of specimen B. It is

worth noting that the deformations of Cw2 and Cw3 observed in experiments, which are not

the buckling-like mode, are well represented by the simulation.

Figure 7.28 displays the distributions of shear strain and the inclination angles of the shear

bands of both the simulation and the experiment for specimen D with different strain rates at
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Figure 7.28 Comparison of the distributions of shear strain and the inclination angles of the

shear bands for specimen D with different strain rates between the simulation results and the

experimental results (Axial strain: 12% for NC clay and 20% for OC clay)

an axial strain of 12% for normally consolidated clay and 20% for overconsolidated clay. We can

see in this figure that the effects of the strain rates are not significant. This is probably because

the effects of the fixed conditions at the top and the bottom edges on the strain localization

pattern of specimen D are much larger than those of the other specimens. The double "X" type

of strain localization is well reproduced by the simulation, however, the inclination angles of the

shear bands obtained by the simulation are smaller than those observed in the experiment.

On the whole, inclination angles of shear bands observed in the simulations are around 45

degree, which is the preferred orientation of shear band obtained from instability analysis by

Oka et al. (1995) under plane strain locally undrained condition using the viscoplastic model

presented in Chapter 2. On the other hand, those of experiments are rather larger than 45

degrees. It is possible that the migration of pore water and the three-dimensional conditions

affected the shear band formation.

7.4.5 Effects of Dilatancy

It is seen in the stress-strain curves shown in Figures 7.10(a) rv7.17(a) that the axial strain

of the peak stress for overconsolidated clay is smaller than that for normally consolidated clay.

In, addition, we can see in Figure 7.29 that an accumulation of ,P at an axial strain of 5%

for overconsolidated clay is larger than that for normally consolidated clay, and that the shear

bands of overconsolidated clay are more clearly seen than those of normally consolidated clay.
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Figure 7.29 Distributions of ,P for cases Bw2 and Bo-2 (Axial strain: 5%)
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Figure 7.30 Distributions of mean effective stress and accumulated viscoplastic volumetric

strain for cases Bw 2 and Bo-2 (Axial strain: 20%)
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Figure 7.32 (a) Distribution of mean effective stress is more than 200 kPa, (b) Distribution of

viscoplastic volumetric strain is less than 0, (c) Distribution of mean effective stress is less than

50 kPa, and (d) Distribution of viscoplastic volumetric strain is more than 0 (Cases BN-2 and

Bo-2, Axial strain: 20%)

These points suggest that overconsolidated clay is more brittle than normally consolidated clay.

This tendency can be seen in the other specimens, namely, A, C, and D, and it is consistent

with the experimental results discussed in Section 6.3.5. Furthermore, we have concluded in

Chapter 5 that overconsolidated clay is more unstable than normally consolidated clay by an

instability analysis and a strain localization analysis under plane strain conditions. Note that

the constitutive model used in chapter 5 is different from that used in this section proposed by

Kimoto (2002) and Kimoto et al. (2004; to appear). On the other hand, the instability analysis

by Kimoto (2002) and Kimoto et al. (2004; to appear), using the same constitutive model in

the present simulations, provides that overconsolidated clay is more unstable than normally

consolidated clay.

Figure 7.30 shows the distributions of mean effective stress and accumulated viscoplastic

volumetric strain for cases BN-2 and Bo-2. In the case of normally consolidated clay, the mean
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effective stress decreases from its initial value of 200 kPa and positive viscoplastic volumetric

strain (compression is positive) occurs, namely, negative dilatancy can be seen. In particular,

these types of behavior are typically seen inside the shear bands. On the other hand, the mean

effective stress of overconsolidated clay increases from its initial value of 50 kPa and negative

viscoplastic volumetric strain accumulates due to its positive dilatancy characteristics.

In this way, the typical effects of the dilatancy of clay can be seen in the simulation, however,

different types of behavior can also be observed locally. Near the top and the bottom edges,

the mean effective stress of normally consolidated clay increases with positive viscoplastic vol­

umetric strain, and negative viscoplastic volumetric strain can be seen where the shear bands

intercross each other in spite of the negative dilatancy. On the other hand, the mean effective

stress of overconsolidated clay decreases around the point where the shear bands intercross, and

viscoplastic compressive volumetric strain accumulates near both edges in spite of its positive

dilatancy characteristics. These are closely related to the pore fluid flow. Figure 7.31 shows

the distribution of pore water pressure for cases Bw 2 and Bo-2. We can see in this figure that

the distribution of pore water pressure is rather homogeneous. This suggests that the migration

of pore fluid can easily occur. Consequently, near the top and the bottom edges, consolidation

occurs due to the constraint conditions and pore fluid flows out into the center part of specimen.

On the other hand, at the center of each surface where the shear bands intercross, expansion

occurs in the case of normally consolidated clay and the effects of dilatancy are canceled out

since the pore water flows in (Figure 7.32).

7.4.6 Discussion

Particular focus will be placed herein on the strain localization behavior.

It was found that strain rates significantly affect the strain localization patterns, as mentioned

before in Sections 6.3.4 and 7.4.4. Deformation with lower strain rates tends to localize at

the center of specimens, while strain localization in the case of higher strain rates is likely to

appear just near the top and the bottom edges. This behavior is clearly seen in cases Ao , BN'

Bo, and Co·

Firstly, let us consider the reason for this behavior by taking Ao as an example. It is seen

that the viscoplastic shear strain for all cases of Ao localizes from the corners at an axial strain

of 1% (Figure 7.33(a)). In the case of lower strain rates, the increases in the mean effective

stress near the top and the bottom edges due to the consolidation behavior are rather large

since the pore water easily migrates (Figures 7.33(b) and (c)). The increases in mean effective

stress due to consolidation and dilatancy enlarge the shear strength near both edges, and then

deformation starts to localize at the center of the specimen (Figure 7.33(a)) where the mean

effective stress is smaller than that near the edges (Figure 7.33(c)). On the other hand, in

the case of higher strain rates, the increments in mean effective stress due to consolidation are

rather small since it is hard for the migration of pore water to occur (Figures 7 .33(b) and

(c)). Thus, the strain localization from each corner develops further and the shear bands form

in both the upper and the lower parts of the specimen (Figure 7.33(a)) due to small increases

in shear strength near both edges (Figures 7.33(b) and (c)).
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As can be seen in the simulations of cases AN and CN , the effects of the strain rates on the

strain localization of normally consolidated clay are smaller than those of overconsolidated clay.

Since normally consolidated clay is a contractant material, the mean effective stress essentially

decreases and the effects of consolidation near the tope and the bottom edges are smaller than

for overconsolidated clay. Figure 7.34 shows the distributions of mean effective stress for the

AN cases with different strain rates at an axial strain of 5%. It can be seen that the red zones

(mean effective stress increases from its initial value: 200 kPa) are very small near the top

and the bottom edges even in the case of lower strain rates, while the mean effective stress

decreases along the shear bands indicated by the blue zones. Hence, the shear strength of

normally consolidated clay does not increase and the shear bands easily develop further from

each corner (Figure 7.35). This is the reason for the difference in the strain rate effects on

strain localization between the normally consolidated clay and the overconsolidated clay.

Secondly, the reason why higher strain rates are likely to induce the buckling-like mode

will be considered.•As shown in Figure 6.16, geometric instability induces buckling and the

shear bands develop from the point where the buckling occurs to the top and the bottom of the

specimen. In the case of higher strain rates, the strain tends to localize in the upper and the

lower parts of the specimen (Figure 7.33(a)). Consequently, the deformation of higher strain

rates goes into the buckling-like mode (Figure 7.36(a)). Furthermore, the non-homogeneous

distribution of pore water pressure in the case of higher strain rates, e.g., Figure 7.33(b),

probably enlarges the geometric instability. On the other hand, in the case of lower strain rates,

the buckling-like modes do not appear. Deformation with lower strain rates tends to localize in

the center part of the specimen due to the effect of consolidation (Figure 7.36(b)) even though

the aspect ratio of the specimen is large.

Finally, we will discuss geometrical imperfections which may induce the buckling-like mode.

The simulation is ideally symmetric, while the experiment is not perfectly symmetric. The lack of

homogeneous deformation may be due to geometrical imperfections, e.g., the initial imperfection

of specimens and the friction between the porous stone and the specimens. In order to adopt

geometrical imperfections into the simulation, frictional boundaries are assumed, as shown in

Figure 7.37. The coefficient of friction J.lf is 0.1. Figure 7.38 shows the distributions of "l
for specimens A and C using the frictional boundaries. We can see in this figure that cases AN,

Ao-1, CN, and Co-1 show the buckling-like mode. Two shear bands and the intersection of them

can be clearly seen in these cases. Note, however, that asymmetric deformations are induced by

the intrinsic imperfections in the numerical calculations. In any event, it is confirmed that the

buckling-like mode can only be reproduced if geometrical imperfections are taken into account

in some way. In addition, the priori material heterogeneity caused the asymmetric deformation,

as shown in Section 3.8. It is worth noting that the priori material heterogeneity may also be

an important factor in the buckling-like mode. Proper consideration regarding the geometrical

imperfections and material heterogeneity will be necessary in the future.
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Figure 7.38 Distributions of 'YP for specimens A and C using the frictional boundaries
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7.4.7 Local Volume Changes

Figure 7.39 depicts the distributions of total volumetric strain Cv (= Cll + C22 + c33) for each

specimen in the case of simulation with strain rate of O.l%jmin. It is seen in all cases that

positive volumetric strain (compression) occurs at the center part of the specimens and near the

top and the bottom edges. On the other hand, negative volumetric strain (expansion) occurs

near the side surfaces. In the other cases, I.e., simulation with strain rates of l%jmin and

O.Ol%jmin, the same tendency is observed.

aka et al. (1994) observed in undrained triaxial and plane strain compression tests for

normally consolidated clay that water contents along shear bands are lower than those outside

shear bands, namely, compression occurs inside shear bands. In the case of drained compression

tests by Hicher et al. (1994), normally consolidated clay exhibits compression inside shear bands,

while overconsolidated clay (OCR = 10) shows expansion inside shear bands. Shimizu (1982)

conducted compression tests for overconsolidated clay (OCR = 8) under the condition that the

mean effective stress is constant. In the tests, water contents inside shear bands are the highest,

which suggests volume increase occurs inside shear bands. These observations are consistent

with the dilatancy characteristics of clay. In the present simulation, it is worth mentioning that

expansion inside the shear bands is observed in case Cw2 in spite of the negative dilatancy

characteristic of normally consolidated clay. In addition, volume increase inside shear bands is

clearly seen in the simulation of CN-3 with frictional boundarY' as shown in Figure 7.40.

Figure 7.41 shows distributions of the local water contents for specimens C and D measured

after the tests in the present experiment. All of specimens D were divided into seven parts

(Figure 7.41(a)), and specimens C, which showed the buckling-like mode, were divided into

the parts along shear bands and the other parts (Figure 7.41(c)). In Figures 7.41(b) and

(d), Wlocal denotes the water content of each element and W is the water content of the whole

specimen. In the case of specimen D, water content of B22, I.e., the center part of the specimen,

is lowest, while those of A, C, B1, and B2, I.e., near the surfaces of specimens, are higher than

the other parts. This suggests that the center part exhibits the maximum compression, while

expansion occurs near the surfaces. In the case of specimens C, in which apparent shear bands

appeared, water contents inside shear bands, Band E, are higher than those of the other parts

even in the case of normally consolidated clay,. CN-l. These types of behavior of specimens C

and D are consistent with the simulation results shown in Figures 7.39 and 7.40. However,

the local volume changes inside shear bands for normally consolidated clay is contradictory to

the observations by aka et al. (1994) and Hicher et al. (1994).

The other data of the distributions of the local water contents are listed in Ichinose (2003).

However, no specific tendency can be observed in the other cases. There may be important

problem in the measurement method of local water contents. Recently, observations of local

density using X-ray CT scanners have been applied for geomaterials (e.g., Otani et ai. 2000).

Detail measurements of local volume changes by X-ray CT scanners are desired in the future.
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Figure 7.40 Distributions of total volumetric strain in the case of the buckling-like mode
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158



A 81 821 822 823 83 C

(b)

neo

f
,.

/:; j0 /:; 0• '"0

• ON-1(1 %/min)

• ON-2(0.1 %/min)
... ON-3(0.01 %/min)

0 °o-1(l%/min)
J

c , ... ., 0 00-2(0.1%/min)

I
6 00-3(O.01%/min)

1.0 1-----,---,----- I

I .4­
0.5 8
0.0

;Ri -0.5

I -1.0
~

3:- -1.5

-2.0

-2.5

(a)

C

• C
N
-1(10f0lmin)

(d)
,--- --------- --r--- 0 Co-1(10f0lmin)

0 Co-2(0.1 Ofolmin)

0 6 Co-3(0.010f0lmin)
,

(
~

~
:)

A
0.6

0.4

C
B

;R 0,2

e....
E :;= 0.0

0 I
Ii -0.2
0:;=-

F
-0.4

-0.6

Co-1
A B c D E F

Figure 7.41 Measurements of local water contents for specimens C and D

7.5 Summary

In this chapter, a numerical simulation of undrained triaxial compression tests for normally

consolidated clay and overconsolidated clay was conducted by a soil-water coupled finite element

analysis based on the finite deformation theory. As for the constitutive equation, an elasto­

viscoplastic model for water-saturated clay considering structural changes, proposed by Kimoto

(2002), Kimoto and Oka (2003), and Kimoto et aT. (2004; to appear) was used. The material

parameters used in the simulation were determined by undrained triaxial compression tests and

isotropic consolidation tests on Fukakusa clay.

Firstly, we discussed the simulation results. Then, a comparison between the simulation re­

sults and the experimental results examined the effects of the shapes of the specimens, the strain

rates, and the dilatancy characteristics on the strain localization obtained in the experimental

results. The obtained conclusions are summarized as follows:

1. The stress-strain relations and the effective stress paths for all cases well represented the

strain rate sensitivity and the dilatancy characteristics. However, the strain-softening

behavior corresponding to the formation of shear bands was not observed.
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2. It was seen in the distributions of shear strain that the present simulation can well re­

produce the timing of the appearance of shear bands and the "X" mode of the strain

localization. On the other hand, the buckling-like mode cannot be represented since it

may occur due to geometrical imperfections, while the boundary conditions for the simu­

lation are ideally symmetric.

3. The distributions of ryP gave the three-dimensional shear bands of the simulation results.

From those figures, the mechanism of the three-dimensional strain localization was clari­

fied.

4. In all cases of the numerical simulation, shear bands developed from each corner of the

specimen. The generated shear bands interacted with each other and were dependent on

the shape of the specimen.

5. In the case of specimens A, B, and C, the strain tended to localize in the center of the

specimens as the strain rates decreased. The present simulation reproduced this tendency

very well.

6. The axial strain at the peak stress of overconsolidated clay was smaller than that of

normally consolidated clay, and the shear band formation of overconsolidated clay occurred

earlier than that of normally consolidated clay. In other words, overconsolidated clay is

more brittle than normally consolidated clay.

7. Normally consolidated clay and overconsolidated clay exhibited contractancy and dilatancy

characteristics, respectively. We observed increases in mean effective stress (consolidation)

and negative viscoplastic volumetric strain (expansion) even in normally consolidated clay,

and decreases in mean effective stress (dilatancy cancel out) and positive viscoplastic

volumetric strain (compression) even in overconsolidated clay. These types of behavior

resulted from the migration of pore water.

8. The distributions of pore water pressure with higher strain rates were rather non-homogeneous.

On the other hand, the distributions with lower strain rates were almost homogeneous.

Namely, the migration of pore water occurred more easily in the case of lower strain rates

than higher strain rates.

9. Consolidation occurred near the top and the bottom edges of the specimens and the

distribution of pore water pressure, which is associated with the amount of pore water

flow, caused the difference in strain localization patterns among specimens with different

strain rates.

10. The effects of the strain rates on the strain localization patterns for overconsolidated clay

were more apparent than those for normally consolidated clay. This tendency is closely

related to the consolidation behavior near the both edges.
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11. The reason why the buckling-like mode tended to occur in the case of higher strain rates

depends on both the effects of the consolidation and the strain localization mode before

the buckling-like mode appears.

12. Adopting geometrical imperfections into the simulation by a frictional boundary lead to the

buckling-like mode in the cases of specimens A and C. However, it is worth mentioning that

the buckling-like mode was induced by intrinsic imperfections in the numerical calculations.

13. Local volume decrease at the center part of the specimen was observed in both the simula­

tion and the measurements for specimens D, while local volume increase near the surfaces

of the specimen was seen in both the simulation and the measurements for specimens C.
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Chapter 8

Conclusion and Future Work

8.1 Concluding Remarks

In the present study, the strain localization of clay was investigated through an instability

analysis and a finite element analysis using an elasto-viscoplastic constitutive equation. In

addition, undrained triaxial compression tests were conducted on rectangular clay specimens and

the three-dimensional strain localization behavior was numerically simulated. The conclusions

obtained in each chapter are described below.

In Chapter 2, a strain gradient-dependent elasto-viscoplastic constitutive model for nor­

mally consolidated clay was introduced. The model was derived based on the elasto-viscoplasticity

theory proposed by Adachi and Oka (1982) and the gradient plasticity theory proposed by Oka

(1995) and Aifantis et al. (1999). We demonstrated that the model can describe such material

instability as strain softening and creep failure as well as the time-dependent behavior of clay.

In Chapter 3, the effects of permeability and strain gradient parameters on the strain local­

ization of normally consolidated clay were theoretically and numerically studied. A theoretical

investigation was conducted with a two-dimensional soil-water coupled instability analysis using

a simplified strain gradient-dependent elasto-viscoplastic model. The growth rate of the fluctu­

ation was discussed, and it was determined that materials with higher permeability levels are

more unstable than those with lower permeability levels in the case of viscoplastic softening.

On the other hand, materials with lower permeability levels are more unstable than those with

higher permeability levels in the case of viscoplastic hardening. In addition, it was found that

the strain gradient term acts as a stabilizer in the material system. As for the numerical study, a

soil-water coupled finite element analysis for normally consolidated clay, based on the finite de­

formation theory using the strain gradient-dependent elasto-viscoplastic model, was conducted

under undrained plane strain conditions. From the numerical investigation, we obtained results

consistent with the theoretical ones, namely, the viscoplastic material system with low perme­

ability is less stable in the viscoplastic strain-hardening range, whereas, the material system is

less unstable in the large strain, i.e., in the strain-softening range. In addition, it was confirmed
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that the accumulated shear strain is less localized when gradient term a3 is large. It was found

that permeability greatly affects the formation of shear bands. The effects of partially drained

conditions and inherent heterogeneity on strain localization were also investigated. Under par­

tially drainage conditions, materials with lower strain rates show consolidation. On the other

hand, materials with higher strain rates show localized deformation. Material heterogeneity

causes strain localization, even though the deformation of homogeneous clay becomes uniform.

The initial distribution of material parameters affects the deformation pattern.

In Chapter 4, we developed an elasto-viscoplastic model for both normally consolidated

clay and overconsolidated clay. The model can be seen as an extension of the elasto-viscoplastic

model for normally consolidated clay proposed by Adachi and Oka (1982). In the model, the

nonlinear kinematic hardening rule, the overconsolidation boundary surface, and a new definition

for the second material function using the stress-history ratio were introduced. The proposed

model can very effectively reproduce both positive and negative dilatancy characteristics which

are important characteristics of soil.

In Chapter 5, firstly, the instability of the model proposed in Chapter 4 was studied under

undrained triaxial creep conditions for simplicity. It was found that the model for normally

consolidated clay becomes unstable if the second material function is included. On the other

hand, the model for overconsolidated clay was also found to be unstable even if the second

material function is not introduced. Secondly, in the strain localization analysis using the finite

element analysis with the elasto-viscoplastic model, it was determined that the effect of dilatancy

characteristics is very significant in terms of the stress-strain relations and shear band formation.

In addition, it was confirmed that permeability and strain rates greatly affect the formation of

shear bands, and that the effects of permeability were consistent with the results obtained in

Chapter 3.

In Chapter 6, the strain localization behavior of undrained triaxial compression tests for

normally consolidated clay and overconsolidated clay, using various shapes of rectangular spec­

imens with different strain rates, were studied. An image analysis of digital photographs taken

during deformation provided the distributions of shear strain. From the image analysis, we

observed not only the three-dimensional generation process of shear bands, but also the onset of

localization at small strain levels, which would have been invisible if not for the image analysis.

It was seen in all cases that strain begins to develop from the top and the bottom edges of the

specimens, and that the localized deformations then lead to apparent shear bands. The strain

localization patterns were greatly dependent on the shapes of the specimens, the strain rates,

and the dilatancy characteristics. We classified the strain localization modes into the "X" mode,

the buckling-like mode, and the complicated mode. The "X" mode was seen in specimens Band

D, and their stress-strain relations exhibited stable behavior. Specimens A and C often showed

the buckling-like mode due to the rather high aspect ratio. It was seen, however, that some of

the A and C specimens showed the complicated mode which was identified as being an inter-
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mediate mode between the other two modes. Corresponding to the generation of shear bands,

strain-softening behavior was observed in the stress-strain relations of the A and C specimens.

It was found that the strain rates greatly affect the strain localization patterns, particularly in

the A and C specimens. Higher strain rates are likely to induce the buckling-like mode, whereas,

lower strain rates lead to the complicated mode. In addition, we estimated the three-dimensional

shear bands using the distributions of shear strain.

In Chapter 7, the numerical simulation of undrained triaxial compression tests using rect­

angular clay specimens was conducted with the finite element method in a three-dimensional

setting. The constitutive model used in the simulation was the elasto-viscoplastic model for

clay considering structural changes proposed by Kimoto (2002). The material parameters of the

model were determined by undrained triaxial tests and isotropic consolidation tests on Fukakusa

clay. From the simulation, we obtained the distributions of strain, stress, and pore water pres­

sure which are difficult to determine from the experiments. The stress-strain relations and the

effective stress paths of all cases well represented the strain rate sensitivity and the dilatancy

characteristics. However, the strain-softening behavior corresponding to the formation of shear

bands was not observed. The present simulation effectively reproduced the test results in terms

of the onset and the development of shear bands. In particular, the "X" mode type of strain

localization observed in all of the Band D specimens and some of the A and C specimens has

been very well represented. On the other hand, the buckling-like mode was not seen in the

simulation results because apparent geometrical imperfections were not taken into account. It

was found that the shapes of specimens, the strain rates, and the dilatancy characteristics had

a great influence on the strain localization patterns. The effects of the strain rates on the strain

localization patterns for specimens A, B, and C were well reproduced by the simulation, espe­

cially for the B specimens. Deformations with higher strain rates tend to localize at two parts,

Le., the upper and the lower parts of the specimens, while, deformations with lower strain rates

are likely to localize in the center sections of the specimens. From the comparison between the

experimental results and the simulation results, we clarified the reasons why the buckling-like

mode was often seen in the case of higher strain rates and why the effects of the strain rates

on the strain localization pattern were different between the normally consolidated clay and the

overconsolidated clay. In addition, it was confirmed that the buckling-like mode can only be

simulated if the geometrical imperfections are adopted in an appropriate way. Moreover, we

showed the distributions of total volumetric strain, namely, the local volume changes. It was

found that compression occurred at the center of the specimens and expansion occurred near

the surfaces of the specimens. These types of behavior are consistent with the measurements

of local water contents for specimen D. Volume increases inside the shear bands were observed

in both the measurements and the simulation for specimen C, in which apparent shear bands

appeared.

So far, the instability analysis and the numerical analysis with the finite element method

using an elasto-viscoplastic model in this study have clarified some mechanisms of strain local-
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ization. In particular, the experimental results and their simulation have given us many findings

regarding the shear banding behavior of clay. Through the obtained results, we have confirmed

that the finite element analysis method and the elasto-viscoplastic constitutive equation used in

this study can very well reproduce the strain localization behavior of both normally consolidated

clay and overconsolidated clay under three-dimensional conditions.

8.2 Recommendation for Future Work

Further investigations into strain localization and constitutive equations for clay are required in

order to clarify the mechanisms of strain localization. The topics of research which need to be

addressed in the future are listed below.

In this study, the role of the strain gradient term was clarified only for normally consolidated

clay. However, the constitutive model for clay has been extended to overconsolidated clay. It is

necessary, therefore, 'to investigate the effects of the strain gradients on overconsolidated clay.

In addition, the gradient parameters still need to be determined.

Some numerical calculations diverged at rather small axial strain levels; a few elements

deformed largely before shear bands appear. It was found that the frictional boundary conditions

relaxed the singular behavior. However, in order to calculate in the range of larger axial strain,

it is necessary to properly deal with the elements by specific methods, e.g., an adaptive mesh.

In this study, it was confirmed that the present simulation can represent the buckling-like

mode only if the geometrical imperfection is taken into account. In addition, it is worth noting

that the inherent material heterogeneity caused asymmetric deformations as shown in Section

3.8. Namely, it is necessary to introduce the geometrical imperfection and material heterogeneity

by proper method.

In the simulation of tests, we have obtained the distributions of total volumetric strain, i.e.,

local volume changes. In particular, the simulation results were consistent with the measure­

ments of the local water contents for specimens C and D. However, the measurements for other

cases were not successful enough to compare with the simulation results. Detail observation of

local density by X-ray CT scanners and comparison with the simulation results are desired.

We confirmed that the simulation methods in this study can be very effectively applied to the

strain localization behavior of clay under three-dimensional conditions. In the future, analyses

of case studies which are related to strain localization, such as slope failure and excavations, are

necessary in order to practically verify the proposed method.
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Appendix A

Derivation of det[A]

The matrix form for the governing equations of the instability analysis is given by Equations

(3.20)"'(3.31). In order to obtain det[A], we have used Mathematica 3.0, namely,

] 1 2 2)2 ( G")det [A = GK 4 2 2 (ni + n2 w + -
6,w J-l q W J-l

[4,wJ-l2w3

+(4,wGJ-l + 6,wKJ-l- 6,wKJ-lJ-l% + 4GJ-l2kl + 6KJ-l2kq2)w2

+(6,wGK - 6,wGKJ-l% + 4GJ-lG"kq2 + 12GKJ-lkq2

+6KJ-lG"kq2 +3KJ-lK"kq2 ~ 6GKJ-lJ-l%kq2)w

+12GKG"kq2+ 3GKK"kq2 - 6GKG"J-l%kq2] (A.l)

in which

(ni +n~? = 1 (A.2)

since n = (nl, n2) is the unit vector defined by Equation (3.15).

After adopting the condition det[A] = 0, and multiplying and dividing it by (6,wGKJ-l4q2w2)

and (4,wJ-l2), respectively, we obtain

(A.3)

where

0:2 =~ [-6,wGK(J-l% - 1) + kq2J-l{3K(2G" + K")
,wJ-l

+2G(2G" + 6K - 3KJ-l%)}]
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Material parameters K" and J1% are defined by Equations (3.6) and (3.7), in other words,

,
J1" - J1k

k - 2J1 + J1~

K" = 2(J1K' - J1~G")

2J1 + J1~

(A.7)

(A.8)

Substituting these into Equations (A.4) to (A.6), we obtain the coefficients of the characteristic

polynomial, namely,

0:2 = ( 1 ') [6/'wGK + kq2{ 3KJ1(2G" + K')
2/'wJ1 2J1 + J1k

+G(4J1(G" + 3K) + J1~(2G" + 3K))}]

(A.9)

(A.lO)

(A.ll)

When we use a rigid-viscoplastic model, the following assumptions for elastic shear modulus

G and elastic bulk modulus K are applied to make the elastic strain rate negligible:

G --+ 00, K --+ 00

Applying these assumptions, det[A] is obtained as

r 1 2 2 2 ( G")detlA] = -2 4 2(nl +n2) w+-
/'wJ1 W J1

[2{ /'w(J1% - 1) + kq2J1(J1% - 2)}w + kq2{ 2G"(J1% - 2) - K"}]

By adopting det[A] = 0 and substituting Equations (A.7) and (A.8), we obtain

(w + ~') [{2/,w + kq2(4J1 + J1~)}w + kq2(4G" + K')] = 0
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Appendix B

Derivation of Equations (3.54),

(3.64), and (3.69)

We will show some derivations of the equations used in the updated Lagrangian finite element

formulations based on the lecture notes by Nishimura (2001). In the following, time derivative

indicates the material time derivative without specific notations.

Time derivative of Jacobian determinant J

The time derivative of Jacobian determinant J is given as

a(det F) = F~.of
aFij ~J'

j = detF = a(detF) aFij
. aFij at

where F is the deformation gradient tensor and Fij is the components of F.

Using the following relations

(F~?f)TF.-:1 = ~J
~J det F

in which Ft/f is the cofactors of F, Equation (B.1) yields

. -1 .
J = (detF)Fji Fij = JtrL

in which L is the velocity gradient tensor defined as: Lij = FikFk-/.

Time derivative of F-T

We consider the time differentiation of the relation of F-1F = I as

F-1F+F-1F=0

F-1 = -F-1FF-1

Therefore, the time derivative of F-T is obtained as follows:

F'-T = _F-TFTF-T = _LTF-T
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Time derivative of the first Piola-Kirchhoff stress tensor

The nominal stress (the first Piola-Kirchhoff stress) tensor II is defined as follows:

(B.7)

where T is the Cauchy stress, F is the deformation gradient tensor, and J is the Jacobian

determinant. Differentiating II with respect to time yields

·T
II iTTF-T + JTTF-T + JTTp-T

J(trL)TTF-T + JTTF-T _ JTTLTF-T

J(T + TtrL - TLT)F-T (B.8)

in which the symmetry property of the Cauchy stress, namely,

is used.

(B.9)

Relation between the nominal traction rate vector St and the nominal stress

rate tensor St

Yatomi et al. (1989) demonstrated the relation between the nominal traction rate vector St and

the nominal stress rate tensor St.
The total nominal traction rate vector St is defined by following equation:

. .
Stds = tds = Tnds (B.lO)

in which Cauchy's stress theorem, Equation (3.47), and the symmetry property of the Cauchy

stress, Equation (B.9), are used, and t is the actual traction vector.

Using Nanson's law, Equation (3.51), nds becomes

JF-TNdSo

(iF-T + JF-T)NdSo

J(ItrL - LT)F-TNdSo

(ItrL - LT)nds

where I is the second order identity tensor.

Substituting Equation (B.ll) into Equation (B.10) yields

Tnds + T(ItrL - LT)nds

(T + TtrL - TLT)nds

(B.ll)

(B.12)

The relation between the total nominal traction rate vector St and the nominal stress rate tensor

St is obtained by using the definition of St, Equation (3.57), as follows:

(B.13)
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In addition, another reduction of Equation (B.10) can be described as
. .

St ds = t ds = t ds + tds

Let us consider the time derivative of (ds)2 by use of Nanson's law:

Thus

(B.14)

(B.15)

2dsds 2JjF~TN· F-TN(dSo)2 + 2J2F-TN· F-TN(dSo)2

2j
J(dS)2 + 2(-LTF-T)FT(nds. nds)

2(trL - n· L Tn)(ds)2 (B.16)

which yields the following relation:

(B.17)

Substituting Equation (B.17) into Equation (B.14) gives the total nominal stress rate vector

St as

(B.18)

In the present numerical implementation, we assume that the second term of Equation

(B.18) is negligible on the traction boundary aVt, i.e., the total nominal stress rate vector St is

equal to the actual traction rate vector t.
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