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          Design Study of a Beam Matching Section 

                for the ICR Proton Linac 

             Hideki DEWA*, Yoshihisa IWASHITA*, Hiromi OKAMOTO*, 
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   A new beam matching system between the RFQ (Radio Frequency Quadrupole) linac and the DTL 
(Drift Tube Linac) is investigated. This system consists of four PMQ (Permanent Magnet Quadrupole) 
lenses and a double gap buncher which is a QWR (quarter wave—length resonator). The shunt impedance 
optimization of the buncher is studied by the SUPERFISH with the approximated geometry. The shunt 
impedance and Q—value of the new cold model are measured. 

   KEY WORDS : Beam matching/RF cavity/Buncher/PMQ/Quarter wave—length 
                 resonator/ 

                             1. INTRODUCTION 

   The ICR proton linac, whose operation frequency is 433.3 MHz, consists of the RFQ 

(Radio Frequency Quadrupole) linac and the Alvarez DTL (Drift Tube Linac), The RFQ 
linac accelerates 50 keV protons from the multi—cusp ion source up to the energy of 2 MeV, 
followed by the DTL whose output energy is 7 MeV. 

   The MEBT (Medium Energy Beam Transport) system, which is referred here as the sec-
tion between the RFQ linac and the DTL, transports proton beams from the RFQ linac, 
achieving the beam matching to the acceptance of the DTL. A matching section using eight 
focusing magnets with a buncher has been reported in the previous work for the ICR proton 
linac. 1) The shunt impedance of this first buncher is 0.43 MC2 per gap, which requires RF 

power of over 10 kW. Since the available power for the buncher is less than 10 kW, a new 
buncher with higher shunt impedance should be designed. 

   The major advantages of a quarter wave—length resonator (QWR) for the buncher appli-
cation are its small size and high efficiency. The design studies of this type of cavities have 
been performed at many other laboratories.7)3)4)5) In the design study of our buncher, the 

parameters are optimized with the results from SUPERFISH 6) calculation. The beam match-
ing to the DTL acceptance is also calculated with the help of TRACE-3D'). According to the 
SUPERFISH calculations, the requirement of the high shiunt impedance makes the cavity size 
large. The old matching section design using eight PMQ (Permanent Magnet Quadrupole) 
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lenses should be modified to make enough space for the larger buncher cavity. We fabricate 

the cold model of the larger buncher to measure the shunt impedance and Q-value. 

                     2. BEAM OPTICS CALCULATION 

   In order to match the beam ellipse parameters to the DTL acceptance, we calculate the 

phase space ellipse of the output beam from the RFQ linac with the PARMTEQ 8) simulation, 
while the DTL acceptance is evaluated by the  PARMILA  9) simulation. Table 1 shows the 

phase space parameters of the output beam from the RFQ linac when the calculated 
unnormalized beam emittance of the input beam is 1002r mm mrad and the beam current is 60 
mA. The phase space parameters of the DTL acceptance are shown in Table 2. 

   Transverse and longitudinal matching conditions is calculated with the computer code 

TRACE-3D. In our design, a transport system with four PMQ lenses and the double-gap 

buncher is studied, assuming that the buncher is placed around the middle of the 570 mm-long 

beam line between the RFQ linac and DTL. 

   At least four PMQ lenses are necessary to achieve the perfect matching because the field 

gradient and length of PMQs are fixed as shown in Table 3. The TRACE-3D automatically 
determines the positions of four PMQ lenses to match the phase space ellipses. From the 

results given in Fig. 1 and Table 4, transverse ellipses are almost matched within the 6 % error 

in the x-direction. This error is evaluated by 

     Table 1. The beam ellipse parameters at the end of the RFQ linac calculated by the 
            PARMTEQ. 

  ax —1.494$x 0.112 mm/mradex 24.7 n mm mrad 
  ay 1.918$y 0.145 mm/mradey 28.4 7r mm mrad 

ag5 0.092$q5 1.05 deg/keVeg 1990 deg keV 

     Table 2. The beam ellipse parameters of the DTL acceptance calculated  by the 
           PARMILA. 

  ax —2.359,ex 0.210 mm/mradex 87 is mm mrad 
  ay 0.971$y 0.0657 mm/mradey 87 n mm mrad 

a¢ 0.34(3qS 0.269 deg/keVeq5 4630 deg keV 

           Table 3. The specifications of the PMQ lenses used for our transport 
                        system. 

     Length28.8 mm 
       Inner diameter11 mm 

       Outer diameter28 mm 
            Magnetic field gradient18.8 kG/cm 
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                 Fig. 1. The MEBT configuration optimized by TRACE-3D. 

            Table 4. The beam ellipse parameters at the entrance of the DTL 
                   calculated by the TRACE-3D. The TRACE-3D optimizes 

                   the positions of the four fixed—gradient PMQs to achieve 
the maximum matching to the DTL acceptance given in 

                    Table 2. 

         ax —2.502/3x 0.208 mm/mrad 

         ay 0.971(3y 0.0657 mm/mrad 

act. 0.341AO 0.269 deg/keV 

 /Ca — 2+(/3x %x)2--------------------------------------------------------------4 aaa^)2+(--------)2+(azml2+($ _  )2 
where the phase space parameters with bar indicate those of the DTL acceptance calculated 

with the PARMILA, and the other parameters correspond to the emittance of the output 

beam from the optimized MEBT designed with the TRACE-3D. 

   Perfect matching can not be found because of the fixed field gradient and the fixed length 

of the available PMQ lenses. According to the PARMILA simulation, the present solution, 
which includes the 6 %—mismatch, is permissible in the acceleration of proton beams without 

any particle loss in the DTL section. 

   For the longitudinal matching, the position and effective gap voltage of the buncher are 

optimized. It is concluded from the TRACE-3D calculations that the effective gap voltage of 

116 kV is necessary for the longitudinal matching. 

   This matching solution is also confirmed by the PARMILA simulations with 3000 

particles and the 100 % transmission rate is obtained as mentioned before. Figure 2 shows the 
transmission rate of the designed MEBT calculated by the PARMILA simulations at some 

specific values of the effective gap voltage. 

   The 70 kV effective gap voltage is necessary for zero—current beams, and 116 kV for 60 

mA beams. The transmission rate of the MEBT without the buncher is 79.9 % at 0 mA and 
62.4 % at 60 mA. 
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                          Effective Gap Voltage [kV] 

      Fig. 2. The transmission rate of DTL as a function of effective gap voltage of bun-
            cher at I=0 mA and I=60 mA. 

                  3. CAVITY DESIGN FOR THE BUNCHER 

3.1 The Design Method 

   A QWR cavity is adopted as our buncher cavity because of its good acceleration 

efficiency and the compact size. The resonant frequency of 433 MHz is the same as the RFQ 

linac and the DTL. The schematic view of the QWR buncher is shown in Fig. 3. The design 

parameters R, r, r0, Lc, Lt, Lg, are optimized to attain the maximum effective shunt 
impedance ZT 2, where Z and T are the shunt impedance and transit time factor, respectively. 

   The resonant frequency, the shunt impedance, the Q value, and the transit time factor of 

------------------- 2R --------------------^ 

                                    Lg       
• ----------------------                                                         • 

--------Ld 
                                                2r  

• --------------------------------------------------------- 
                  ~2roG 

                      Fig. 3. The schematic view of QWR buncher. 
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     Fig. 4. The approximated axially—symmetric geometry of the buncher for the SUPER-
            FISH calculation. 

the buncher are calculated with the computer code SUPERFISH. The SUPERFISH can not 
be essentially applicable to such geometries as a QWR buncher, because it has no axial 
symmetry. To perform the buncher parameter optimization, we approximate it to axially-
symmetric geometry shown in Fig. 4 for the SUPERFISH calculation. In this case, R, r, r0, 
and Lt, are set at the same values as the real ones given in Fig. 3, but Lg and Ld must be 
chosen at the half values. This correction is necessary because the real buncher has two gaps 
and two noses. 

3.2 The Calculation Results 
   Figure 5(a) shows the calculated shunt impedance based on the approximated symmetric 

geometry (Fig. 4). In these calculations, both r and Lg are fixed at 10 mm while we change 
the length of inner conductor, Lc, in order to adjust the resonant frequency at 433 MHz. The 
inner conductor . is straight in the first stage of the SUPERFISH calculations. Larger R 
increases the shunt impedance. The available space on the beam line limits the R to be 80 
mm. 

   The calculated shunt impedance as a function of the inner conductor radius r is shown in 

Fig. 5 (b). The shunt impedance decreases as r increases from 5 mm to 20 mm. r is chosen to 

be 7 mm because of the additional consideration of the mechanical strength and the cooling 

water paths. The electric flux between inner and outer conductor is concentrated at the gap 
regions in this condition. 

   The advantage of a tapered inner conductor is confirmed with the SUPERFISH 

calculations, and r0 and Lt are optimized in the case where R=80 mm and r=7 mm. The ro 

dependence on the shunt impedance is shown in Fig. 5(c) with the fixed Lt of 100 mm. The 

shunt impedance of the tapered cavity is 18 % larger than that of the untapered one. Figure 5 

(d) shows the Lt-dependence of the calculated shunt impedance when ro is fixed at 30 mm. 
The optimized value of Lt is 9.4 cm and that of ro is 3 cm, as indicated by the results 
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Fig. 5. (a) The shunt impedance of the buncher as a function of a internal radius of 
            outer conductor, R. Both r and Lg are fixed at 10 mm. (b) The shunt impe-

            dance of the buncher as a function of a inner conductor radius r. R and Lg 
           are fixed at 80 mm and 10 mm, respectively. (c) The shunt impedance of the 
            buncher as a function of a inner conductor radius at the shorting plate ro . R 

           and r are set at optimized values of 8 cm and 0.7 cm, respectively. (d) The 
           shunt impedance of the buncher as a function of the taper length Lt. R and r 

           are set at optimized values of 8 cm and 0.7 cm, respectively. 

presented in Fig. 6. 
    Figure 7 shows the changes of the effective shunt impedance ZT 2 and the transit time 

 factor with respect to the gap length Lg. As Lg becomes larger, the shunt impedance increases 

gradually while the transit time factor becomes smaller. As a result, ZT 2 totally decreases 
with increasing Lg. Thus Lg is determined to be 5 mm. The shunt impedance of above design 

is 3.9 MQ per gap. 
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     Fig. 6. The shunt impedance of the buncher as a function of the taper length Lg and 

           inner conductor radius at shorting plate r0. R and r are set at optimized 

            values of 8 cm and 0.7 cm, respectively. Lg=9.4 cm and r0=3.0 cm are the 

            optimum point. 
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     Fig. 7. The transit time factor and the effective shunt impedance as a function of gap 
           length, Lg. Other parameters set at the optimized value are following, R=8.0 

              cm, r=0.7 cm, Lg=9.4 cm, r0=3.0 cm. 

                     4. COLD MODEL MEASUREMENT 

   We fabricated a cold model of the designed buncher (Photo 1, and Photo 2). The shunt 

impedance Z of the model buncher can be evaluated by the measurements of Q-value and Z/ 

Q. The loaded Q is given by 

QL- 0f 

where f0 is the resonant frequency and Of is the half band width of the transmission. The 

frequency dependence of the transmitted power is shown in Fig. 8. The measured f 0 was 

413.11 MHz which was about 20 MHz lower than the designed frequency 433 MHz. This 

frequency difference would be mainly caused by the approximated geometry as mentioned 
before. The input coupling coefficient Q was 1.15 while the output coupling coefficient was 
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                                                                                                         • 
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           Photo. 1. The cold model of the buncher. 

                   r Sy 

Photo. 2. The tapered inner conductor attached to the shorting plate. 
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    Fig. 8. The frequency dependence of the transmission power for the fabricated bun-

              cher. 
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         Fig. 9. The frequency shift along the beam axis by the bead-pull measurement. 

found to be negligibly small. The unloaded Q, given by 

Q=c1+a)QL, 

is 9800. 

   Figure 9 shows a result of the bead—pull measurement, where an aluminum bead of 1.2 

mm radius was used. The data ware taken at every 0.21 mm step along the beam axis. Z/Q is 

given by 

      Q 3a8vw\J Vfds/z 

where E0 is the dielectric constant of vacuum, at) is the volume of the bead, and co is 22tf o . 
The obtained Z/Q and Z were 0.28 kQ per gap, and 2.7 MQ per gap, respectively. The 

required power P is calculated from 
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    P=Vg 

where Vg is a specific gap voltage. 

   In the calculation of the longitudinal matching, the transit time factor and effective gap 

voltage are assumed to be 0.85 and 116 keV respectively. The specific gap voltage is 

calculated by 

           Veff          V
g= 

where Veff is the effective gap voltage and the factor 2 comes from the double gap structure. 

The required RF power is 1700 W in order to generate the effective gap voltage needed in the 

longitudinal matching. 

                            5. CONCLUSIONS 

   The optics of the beam matching section including four PMQ lenses and a buncher was 

optimized with the help of the computer code TRACE-3D. The optimized solution makes 

sure of the 100 % transmission rate which was confirmed with the PARMILA simulations. 

   The buncher geometry was also optimized with the use of the computer code SUPER-

FISH, though the resonant frequency of the model cavity was somewhat different from the 

expected frequency. The shunt impedance of the model cavity was measured to be 2.7 MQ per 

gap which was 70 % of calculated value. We obtained a sufficient prospect to design a high 
shunt impedance buncher. The systematic procedure presented in this paper will be applied to 

design a real buncher cavity. 
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