Kyoto University Research Info	rmation Repository
Title	A New Synthetic Route to -Methylenecarboxamides Using Dianion of N-PhenyI-2-[(phenylsulfonyl) (Commemoration Issue Dedicated to Professor Shinzaburo OKA On the Occasion of His Retirement) methyl] propenamide
Author(s)	Tanaka, Kazuhiko; Ushio, Hideki; Horiuchi, Hiroshi
Citation	Bulletin of the Institute for Chemical Research, Kyoto University (1989), 67(3): 128-131
Issue Date	1989-11-30
URL	http://hdl.handle.net/2433/77303
Right	
Туре	Departmental Bulletin Paper
Textversion	publisher

Bull. Inst. Chem. Res., Kyoto Univ., Vol. 67, No. 3, 1989

Note และสาวการ

A New Synthetic Route to *a*-Methylenecarboxamides Using Dianion of N-Phenyl-2-[(phenylsulfonyl)methyl]propenamide

Kazuhiko TANAKA,* Hideki USHIO, and Hiroshi HORIUCHI

Received May 26, 1989

Regioselective reaction of the dianion of N-phenyl-2-[(phenylsulfonyl)methyl]propenamide with alkyl halides leads to β -substituted carboxamides, which upon Lewis aicd mediated cyclization afford α -methylenecarboxamides in good yields.

KEY WORDS: a-Methylenecarboxamides/ (E)-trisubstituted carboxamides/ 3.4-dihydroxy-2-methylenecarboxamides/ 5.6-dihydro-2Hpyrans/ 3-methylene- β -lactams/

The α -methylene carbonyl system is a common structural feature of naturally occuring substances possessing cytotoxic, fungitoxic, and growth-inhibitory activity.¹⁾ Accordingly, various methods have been developed for the synthesis of α -methylene carbonyl derivatives.²⁾ However, there are relatively few methods available for the direct introduction of a-methylene carbonyl group using a carbanion derived from a-methylene carbonyl system because of the chemical instability of the carbanion.³⁾ Recently we have found that the dianion of N-phenyl-2-[(phenylsulfonyl)methyl]propenamide (1) can be generated at -78° C and serve as a versatile reagent for the preparation of a variety of α , β -unsaturated carbonyl compounds like (E)-trisubstituted carboxamides, 3,4-dihydroxy-2-methylenecarboxamides, 5,6-dihydro-2Hpyrans, and 3-methylene- β -lactams.^{4,5)}

We now describe a convenient method for the preparation of α -methylene carbonyl derivatives having fused-ring system by regioselective alkylation and subsequent Lewis acid mediated cyclization procedure. The dilithiation of (1) proceeds readily with 2 equiv. of butyllithium to provide a yellow solution of (2) which can be converted to the β -substituted products (3-7) upon reaction with alkyl halides. Treatment of the adducts (3-6) with AlCl₃⁶⁾ in dichloromethane gives six- or seven-membered exocyclic a-methylene carboxamides (8-11). On the other hand, reaction of (7) with AlCl₃ under similar conditions afforded seven-membered endocyclic product (12). The endo structure was confirmed by conversion of (12) to the known methyl ester (13)⁷ via isomerization of the double bond of the amide, N-tert-butoxycarbonylation, and subsequent methanolysis.⁸⁾

In these synthetic sequences, the amide (1) is synthetically equivalent to a 1.1dipole or a 1,3-dipole (Scheme $3^{(5)}$ and perceived as a useful reagent for an efficient

田中和彦, 牛尾英樹, 堀内裕志: Department of Chemistry, Faculty of Science, Kyoto University

Synthetic Route to α -Methylenecarboxamides

Scheme 2. Beagent : i, ButOK ; ii, (ButOCO)₂O ; iii, CH₃ONa

elaboration of α -methylene carbonyl derivatives that might otherwise prove difficult to prepare.

EXPERIMENTAL

A typical procedure for the preparation of 3. To a solution of the dianion 2 (6.64 mmol) at -78° C under argon was added 1-bromo-3-phenylpropane (1.32 g, 6.64 mmol) in dry THF (3 ml). The reaction mixture was stirred at -78° C for 2 h and warmed to 0° C during 1 h, and quenched with saturated aqueous NH₄Cl (10 ml). The product was extracted with ethyl acetate (3×50 ml). The combined

K. TANAKA, H. USHIO, and H. HORIUCHI

Halide (El-X)	Adduct % Yield	Product % Yield
Ph(CH₂)₃Br	CONHPh 67% SO2Ph (3)	63% CONHPh (8) ^a
PhO(CH₂)₂Br	CONHPh 46% 502Ph (4)	СО солнр <u>р</u> (9) ^b
Ph(CH₂)₄Br	CONHPh 76% SO2Ph	47%
CI CI	(5) CONHPh 37% SO2Ph (6)	(10) ^a CONHPh 67% (11) ^a
Ph(CH₂)₂Br	CONHPh 54% SO2Ph (7)	6 3 %. CONHPh (12) ^a

Table 1. Alkylation of dianion (2) and cyclization of adduct.

b) 5 equiv. AlCl₃, dichloromethane, reflux, 3 h.

extracts were washed with brine, dried over Na₂SO₄, filtered, and evaporated. The crude product was purified by chromatography (silica gel, hexane-ethyl acetate, 3:1) to give 1.87 g of **3** (67% yield): ¹H NMR δ 8.24 (s, 1H), 6.81–7.80 (m, 15H), 6.06 (s, 1H), 5.56 (s, 1H), 4.52 (dd, J=11.0, 4.0 Hz, 1H), 2.32–2.68 (m, 2H), 1.38–2.12 (m, 4H); IR (thin film) 3330, 1608, 1600, 1315, 770, 710 cm⁻¹; exact mass calcd for C₂₅H₂₅NO₃S (M⁺) 419.155, found 419.154.

A typical procedure for the conversion of 3 into 8. To a solution of 3 (0.48 g, 1.15 mmol) in dry CH_2Cl_2 (10 ml) at 0°C under argon was added powdered AlCl₃ (0.46 g, 3.45 mmol). After stirring at 0°C for 5 min and at room temperature for 1 h, the reaction mixture was poured into ice water and extracted with CH_2Cl_2 (3×10 ml). The combined extracts were washed with water, dried over Na₂SO₄, filtered and evaporated. The crude product was purified by chromatography (silica gel, hexane-ethyl acetate, 3:1) to give 0.20 g of 8 (85% yield): mp 134–137°C; ¹H NMR δ 7.40–6.80 (m, 10H), 5.87 (s, 1H), 5.05 (s, 1H), 4.20 (m, 1H), 2.78 (m, 2H), 1.40–2.20 (m, 4H); IR (nujol) 3250, 1650, 1600, 760, 700 cm⁻¹. Anal Calcd

a) 3 equiv. AlCl₃, dichloromethane, room temp., 1 h.

Synthetic Route to α -Methylenecarboxamides

for C₁₉H₁₉NO: C, 82.28; H, 6.90; N, 5.05. Found: C, 81.92; H, 7.07; N, 4.97.

ACKNOWLEDGMENT

K.T. expresses gratitude to the Kurata Foundation for financial support. This work was supported in part by a Grant-in-Aid from the Ministry of Education, Science, and Culture of Japan.

REFERENCES

- (1) See, for instance, G. Schlewer, J.-L. Stamp, and C. Benezra, J. Med. Chem., 1985, 24, 94.
- (2) For a recent review see: H.M.R. Hoffmann and J. Rabe, Angew. Chem., Int. Ed. Engl., 1985, 24, 94.
- P. Beak and D. J. Kempf, J. Am. Chem. Soc., 1980, 102, 4550; K. Tanaka, Y. Nozaki, N. Tamura, R. Tanikaga, and A. Kaji, Chem. Lett., 1980, 1567; J.J. Fitt and H.W. Gschwend, J. Org. Chem., 1980, 45, 4257.
- (4) K. Tanaka, H. Yoda, and A. Kaji, Tetrahedron Lett., 1985, 26, 4147.
- (5) K. Tanaka, H. Yoda, and A. Kaji, Tetarhedron Lett., 1985, 26, 4751.
- (6) B.M. Trost and M.R. Ghadiri, J. Am. Chem. Soc., 1984, 106, 7260.
- (7) J. Vebrel and R. Carrie, Bull. Soc. Chim. Fr., 1982, II-116.
- (8) D.L. Flynn, R.E. Zelle, and P.A. Grieco, J. Org. Chem., 1983, 48, 2424.