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 Viscoelasticity of a Solution of Star-Branched Polystyrene 

              Kunihiro  OSAKI*, Eiichi TAKATORI*, Michio KURATA*, 
         Hiroshi WATANABE**, Hirotsugu YOSHIDA**, and Tadao KOTAKA** 

                              Received August 26, 1988 

   The relaxation modulus, G(t, y), at finite magnitude of shear, y, was measured for a solution of a 
star-branched polystyrene, composed of four chains with molecular weight Mb each connected at one 
end at a point. The result was compared with that for a linear polymer with molecular weight 2Mb, i.e., 
with the same end-to-end chain length as the branched polymer. The stress relaxation of the branched 
polymer was much slower than that of the linear polymer. On the other hand, the function h(t, y)=G(t, 
y)/G(t, 0) was approximately the same for two polymers. The observation may be in accord with the 
tube model theory of polymer entanglement; the branch point should hinder the sliding motion of the 
chain as a whole along the tube-like cage formed by surrounding chain molecules while it should not 
disturb the shrink of chain along the tube, which gives rize to the nonlinear characteristics of relaxation 
modulus. 

    KEY WORDS: Branched polymer/ Polymer chain entanglement/ Stress re-
                  laxation/ Nonlinear viscoelasticity/ 

                         INTRODUCTION 

   In concentrated solutions or melts of polymers, the motion of a polymer chain is 
hindered and retarded by entanglement with other polymer chains.' The stress 
relaxation under constant deformation proceeds very slowly over a certain range of 
time. The stress finally begins to decrease as the polymer chain moves a considerable 
distance sliding along the entanglement points. An example of stress relaxation 
measurent2) is shown in Fig. 1. Here the relaxation modulus, G(t, y), is defined as the 
ratio of the shear stress to the magnitude of shear, y, after a shear deformation is 
applied instantaneously at time t=0. The limiting value of G(t, y) at y—^0, represented 
by the curve at the top, is usually denoted as G(t). As the strain, y, becomes larger, the 
relaxation modulus, G(t, y), becomes to depend on y. The nonlinear behavior can be 
more closely investigated with a function 

              h(t, y)=G(t,y)(1) G(
t) 

This function starts from unity, decreases with time, and levels off at a certain time 
denoted as rk.Curves for various y values level off at approximately the same time. 
The final value of h(t, y), denoted as h(y) hereafter, decreases with increasing y. 

   The most widely accepted theory for the motion of a polymer in entangled system 
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Fig. 1. Relaxation modulus, G(t, y), and function h(t, y) for solution of poly (a-methylstyrene) in 

      Aroclor at 30°C; M=6.85X 106 and c=0.071gcm-3. 

is the tube model theory of de Gennes3) and Doi and Edwards.4) In this theory, a 

polymer molecule is assumed to be confined in a tube-like cage formed by surrounding 
chains. The molecule is allowed to slide back and forth along the tube and to come out 
of the ends of the tube; the loop-wise extusion of the molecule through the tube wall is 
not allowed. The motion of the chain along highly twisted tube, called the reptation by 
de Gennes,3) is very slow and it takes quite a long time for the chain molecule to lose 
the memory of the original shape. This time is supposed to correspond to the longest 
relaxation time, r1, of the relaxation modulus. On the other hand, the molecular 
motion of the distance of the order of the tube diameter is not hindered by the wall and 

proceeds in a relatively short time, zs. The time gap between zs and r1 corresponds to 
the plateau region where the relaxation is very slow. 

   In the tube model theory, the origin of nonlinear viscoelasticity is attributed to the 
shrink of the highly extended chain toward its equilibrium length along the tube4> 
This process is estimated to be much faster than reptation motion. Thus a part of the 
stress is lost before the final relaxation of stress begins. This picture is in accord with 
the observed behavior of the function h(t, y) shown in Fig. 1. The final value, h(y), of 
the function h(t, y) obtained by assuming the shrink of chain was in quantitative 
agreement" with the observed values.6MThe theory tells that the characteristic time 
for the shrink process should be proportional to zsN2 where N is the number of 
entanglements per molecule. The characteristic time zk, supposedly corresponding to 
the end of the shrinking process, was proved to be proportional to zsN2 irrespective of 
the polymer species, molecular weight, and concentration.2) Thus the viscoelasticity of 
linear polymers is described fairly well with the tube model theory. 

   Now we consider a star-branched polymer, i.e., a polymer composed of f chains of 
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molecular weight Mb each connected at one end at a point. For such a polymer, the 

sliding motion back and forth along the tube is impossible because of the hindrance at 

the branch point. The stress relaxation should proceed through some other, much 
slower, type of molecular  motion.8> On the other hand, the shrink of chain will not be 

much hindered by the branch point located at the center of molecule. Suppose we 
compare the stress relaxation of the star-branched polymer with that of a linear polymer 

with the molecular weight 2Mb. We expect that the relaxation time of the former is 

longer than that of the latter while the function h(t, y) is essentially the same for both 

polymers. We examine this prediction in the present paper. 

                        EXPERIMENTAL 

   A star-branched polystyrene with f =4 was synthesized by coupling polystyryl 

anion with 1, 2-bis (trichlorosilyl) ethane. The solvent was benzene and the initiator 

for the anionic polymerization was sec-butyllithium. The crude product was fraction-

ated repeatedly in benzene-methanol system until the gel permeation chromatogram 

became sufficiently sharp. As determined with the gel permeation chromatography 

and light scattering method, the molecular weight of the primary polymer, Mb, was 6.62 

X 105 and that of the branched polymer was 2.65 X 106. The ratio of the weight 

average to the number average molecular weight, MW/Mn, of the branched polymer was 
1.06. 

   A linear polystyrene, a standard sample F8 from Toso Ltd., was used for compari-
son; Mw=1.26 X 106 and MW/Mn=1.05. The molecular weight is approximately equal 

to 2Mb. 

   The stress relaxation measurements were performed for 15% solutions of two 

polymers in Aroclor 1248, a polychlorinated biphenyl supplied from Monsanto Chemic-
al Co. Notations B and L hereafter refer to the solutions of the branched polymer and 

the linear polymer, respectively. 

   The relaxation modulus was measured with an apparatus of cone-and-plate type. 

The details of apparatus were reported elsewhere.9> All the measurements were 

performed at 30°C. 

                     RESULTS AND DISCUSSION 

Linear Viscoelasticity 

   The relaxation modulus at infinitesimal strain, G(t), is shown in Fig. 2. Evidently 

the stress relaxation of the solution of branched polystyrene (B) is much slower than 

that of the linear polymer (L). The longest relaxation time of B is about three times as 

large as that of L. By a close inspection, one may note that the drop at the long time 

end, e.g. at the level of G=10 Pa, for the branched polymer is not as sharp as that for 

the linear polymer. This behavior implies that a small fraction of the segments keeps 

on contributing to the stress for a very long time in the case of branched polymer as 

predicted by the Doi-Kuzuu theory 8> It takes a long time for the orientation of 
segments near the branch point to become random. This is not the case for the linear 
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      Fig. 2. Linear relaxation modulus, G(t), for solutions of branched (B) and linear (L) 
              polystyrenes. 

polymer; the relaxation modulus at long time can be approximated by a single 
exponential decay function and drops sharply in accord with the tube model theory.4) 

Nonlinear Viscoelasticity 

   The relaxation modulus at finite strain, G(t, y), for the solution of branched 

polymer is shown in Fig. 3. The time range apparently corresponds to long time end of 
Fig. 1. By comparison, one sees that the relaxation modulus of the branched polymer 
is qualitatively similar to that of the linear polymer. 

   The function h(t, y) is shown in Fig. 4 for solutions of the branched polymer 

(circles) and the linear polymer (solid lines). Obviously the data for the two systems 
overlap with each other over a wide range of time, t< 10s, in which the decrease of the 
function h(t, y) is almost completed. The agreement between the two polymers may be 

quite impressive if one compares these results with the dashed lines for a linear polymer 
with the same molecular weight as the branched polymer. The agreement between the 
branched polymer and the linear polymer with the molecular weight 2Mb is in accord 
with the prediction based on the shrink of extended chains. 

   At longer times, the function h(t, y) for the linear polymer levels off while that for 
the branched polymer keeps on decreasing slowly and then levels off. Thus the 
function h(t, y) is not completely the same for the two polymeric systems. The final 
value, h(y), for the branched polymer is about 20% lower than that for the linear 

polymer when the strain, y, is large. 
   The quantity h(y) is shown in Fig. 5. Here the circles represent the result for the 

solution of branched polymer. The line L represents the average of the many results 
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Fig. 3. Relaxation modulus, G(t, y), for solution of branched polymer B. Values of y are given in 
      figure. 
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Fig. 4. Function h(t, y) for solutions of branched polymer (circles) and linear 
             polymer L (solid lines). Dashed line is for linear polymer with the same 
              molecular weight as branched polymer. 

for solutions of linear polymers.2'6'8) The result for the linear polymer in the present 
study lies on the line L. The line marked DE represents the theoretical result of Doi 

and Edwards') based on the concept of the skrink of chain. It may be noted that the 

experimental result for the branched polymer agrees very well with the theoretical 

result. 
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      Fig. 5. Function h(y) for sample B(circles). Lines L and DE represent, respective-
            ly, average results for linear polymers and theoretical prediction due to Doi 

            and Edwards. 

Further Comments 

   The results shown in Figs. 2 and 4 may be sufficient to conclude that the prediction 

given in the introduction section is experimentally substantiated; the stress relaxation is 
slower for the star-branched polymer than for the linear polymer having the same 
end-to-end length while the nonlinear viscoelasticity, represented by the function h(t, y), 
is approximately the same for the two polymers. The result may support the concept 
of chain shrinking as the origin of the nonlinear viscoelasticity. 

   The difference of the function h(y) for the two polymers may be of some interest. 
The values for the branched polymer are in better agreement with the theoretical values 
than those for linear polymers are. The deviation for the linear polymers has been 
observed consistently for many systems,2,4,5) and is not likely to be due to an ex-

perimental error. One may rationalize the result of Fig. 5 as follows. The good 
separation between the reptation process and the shrink process is a basic presumption 
for the development of the viscoelasticity theory based on the tube model.4) Obvious-
ly, the reptation process is highly hindered for the branched polymer, so that the shrink 

process may proceed ideally without a disturbance from the diffusional motion. Poss-
ibly the shrinking does not proceed ideally for the linear polymers for some unknown 
reasons and this causes the slight deviation between the theoretical and observed values 
of h(y). 
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