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   In the X-ray and electron diffraction patterns of drawn fibers of the stereocomplex of poly(L-
lactide) and poly(D-lactide), the equatorial reflections were rather sharp, but those on the layer lines 
were largely broadened tailing in the direction parallel to the layer line, becoming more diffuse as the 
layer order increases. According to the paracrystalline theory, lattice disorders causing the broadening 
were analysed. The degree of shift disorder among polymer chains in the direction parallel to their 
molecular axis is estimated at about 0.1. 

    KEY WORDS: Stereocomplex/ Poly(L-lactide)/ Poly(D-lactide)/ Paracrystal-
                  line/ Lattice disorder/ 

                        INTRODUCTION 

   The equimolar mixture of poly(L-lactide) (PLLA) and poly(D-lactide) (PDLA) is 
crystallized into a stereocomplex with the unit cell of cell dimensions: a=0.916 nm, b= 
0.916 nm, c=0.870 nm, a=109.2°, 19=109.2° and y=109.8°, in which respective polymer 
chains in the 31 helical conformation are packed side-by-side in a pair in the parallel 
fashion [1]. The X-ray and electron diffraction patterns of the complex fiber are found 
to have the following characteristics; (1) the equatorial reflections are rather sharp up to 
the high order ones, and (2) the reflections on the layer lines are broadened tailing in the 
direction parallel to the layer line, being more diffuse with the increase of layer order. 
Most of drawn polymer fibers exhibit more or less these diffraction features; for 
example, in case of polyethylene, reflections on the second layer line are rather sharp up 
to higher reflection angle, where as in the fiber pattern of poly-/3-propiolactone, 
reflections even on the first layer line degenerate into a diffuse streak [2]. The 
broadening behavior of diffractions on the layer lines is qualitatively explained in terms 
of the shift disorders among chains in the direction parallel to their molecular axis. In 
the present paper, the lattice disorders are semiquantitatively discussed on the basis of 
the paracrystalline theory [3,4], and broadening of diffractions on the layer lines is 
simulated by a computer. 
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                         EXPERIMENTAL 

   Thin films for electron microscopy were prepared by means of the Petermann and 
Gohil method [5] using the dilute solution in p-xylene, in which PLLA and PDLA were 
dissolved in a ratio of 1:1. Being less crystalline, as-prepared films were annealed at 
198°C in N2-atomosphere for 2 hrs to promote crystallization. Oriented specimens for 
X-ray diffraction works were made by drawing a cast film of PLLA and PDLA with 
their content ratio of 1:1. The drawn films were also annealed to grow the complex 
crystals further. Lamellar crystals of the complex were grown from the 0.1 wt% 
solution in acetonitrile in which PLLA and PDLA were disolved in the equimolar 
ratio[6]. 
   Electron microscopic observations were carried out with an electron microscope 
JEM-200CS, JEOL, and X-ray diffraction work with a rotating anode X-ray generator 
RU-300, Rigaku. Cylindrical fiber photographs of the stereocomplex were taken using 
a filament 0.2 mm thick in diameter. To perform the profile analysis of the patterns, 
the integral breadth method was used. In order to correct the instrumental broadening, 
line profiles of the cylindrical photograph of an aluminium filament with the same 
diameter were utilized. The pure line breadths of the complex samples were obtained 
from the experimental breadths by subtraction of instrumental broadening on the 
assumption that as-measured line profiles of the polymer and aluminuim are expressed 
by the Lorentzian functions[7]. X-ray diffraction patterns were taken in a vacuum 
using CuK,. radiation monochromatized with a graphite crystal. 

                       THEORETICAL BAIS 

   The scattering intensity of X-rays by matters is expressed in a general form [4]; 

I(s)=N(<Fu(s)2> -- I <Fu(s)> 12.D)+ v I <Fu(s)> 2.D.Z(s)* I S(s) 12 (1) 

In the quation, 
   Fu(s) : the scattering factor of a single scattering unit, 

   v : the volume of the scattering unit, 
   D the factor due to the disorder of the first kind (Debye-Waller factor), 

   Z(s) : the interference function (the lattice factor), 
S(s) 12 : the shape factor, 
s the scattering vector (Is I =2•sin 0/A in which 0 is the Bragg angle and A the 

         wavelength of X-ray); 
N : the number of scattering units in a coherent scattering volume, 

and the symbols < > and * mean the averaging and convolution operations, respective-
ly. In the present case, the unit cell of the crystalline complex is taken as a scattering 
unit. 
   Lattice disorders or distorions of the second kind largely depend on the distribution 
of the centers of gravity of the scattering units(the unit cells) in a scattering matter. 
Their effect on the scattering intensity is involved in the interference function Z(s). 
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According to Hosemann's idea of paracrystalline structure, the entire distribution of 

scattering units in the whole matter can be expressed if the distribution functions of the 
nearest neighbours are known. On the basis of this theory, the lattice disorders of the 

second kind were examined. For convenience of further discussion, the Cartesian 

coordinates are set up with the z axis parallel to. the direction of molecular axis as 

shown in Fig. 1, and the corresponding reciprocal space is described in X, Y and Z. 

The distributions of the nearest neighbours in the directions x, y and z in the real lattice 

coordinates are denoted by the functions  HI(x, y, z), H2(x, y, z) and H3(x, y, z), 

respectively. (Thereafter, these functions are abbreviated to Hi(i=1, 2, 3).) Lattice 

disorders in paracrystals are specified by the mean squares of fluctuations arround the 

averaged lattice points dii(i, j=1, 2, 3), where the first subscript denotes the function 

which the quantity is characteristic of and the second the coordinate axis along which 

the fluctuation occurs(1, 2 and 3 for x, y and z, respectively). The one-dimensional 

interference function Zi(X, Y, Z)(i=1, 2, 3) due to Hi in the corresponding direction in 

real space is defined and expressed in terms of the Fourier transform of the distribution 

function; 

                         z 

aa~~^                  b`Z2 Y 
z, 

X 

  Figure 1. Parameters to specify the triclinic unit cell of PLLA and PDLA complex in the 
           Cartesian coordinates. The origin is set at the center of gravity of a unit cell. The 

           x and y axes are in the plane normal to the molecularaxis , and a' and b' are the 
           projections of the a and b primitive translational vectors of the crystal lattice on the 
           x-y plane. Small solid circles show the centers of gravity of neighboring unit cells . 

zl and z2 are displacements of the neighboring centers in the a' and b' directions from 
           the x-y plane, respectively. a and j9 are the angle between the a' and x axes and that 
           between b' and y axes, respectively. In the present set-up of the coordinates, they 
           are both 15°. 

                 Zi(s)=Re{ (1+Fi(s))/(1—F1(s)) }(2) 

where F1(s) denotes the Fourier transform of Hi, Re means the real part of the function 
and s stands for a vector s(X, Y, Z) in reciprocal space. In eq.(2), Fi(s) is generally 
complex and represented with the moduli and phase; F(s)=- I Fi(s) exp (it) and its 
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conjugated complex Fi(s)*= IFi(s)1 exp (—iX), where X=2ns • ai in which a1 is the 
primitive translational vector in the i-axis of the crystal lattice. These are inserted in 
eq.(2) to give 

Z,(s)— 1—~F(s)IL(3) 
1-2F1(s) cos X+ I Fi(s) i 2 

The three dimensional interference function for an ideal paracrystal, where there is no 
correlation among the distribution functions in the respective axes, is expressed by the 
product of one-dimensional interference functions as Z(s)=Z1(s)Z2(s)Z3(s). 

   In the eq. (1), the first term denotes the diffuse background intensity changing 
gradually with the scattering angle and the second term the crystalline reflections 
measured as the Bragg peaks. In order to estimate the lattice disorder and crystallite 
size, the profile analysis of the crystalline reflections is carried out. Though various 
methods have been put forward for this purpose, the integral method is adopted for its 
convenience [7]. The diffraction profile is mostly determined by the convolution of 
Z(s)* I S(s) 12 in eq. (1), for F„ (s) and D dully affect the change in diffraction intensity 
with the change of the scattering angle. A peak profile of the function Z(s) is well 
approximated by the Lorentzian function and that of the shape factor can be also 
replaced with the Lorentzian function. By this substitution of functions, the convolu-
tion can be easily performed and resultingly, the integral breadth 8(3 for a crystalline 
reflection is expressed by two terms attributed to the crystallite size and lattice disorder 
as follows[8]: 

           Op=-----1+(irgh)2(4)             Nd d 

where g is a disorder parameter defined as the ratio 4/d of the lattice spacing d and its 
fluctuation d, N the number of the lattice planes and h the reflection order. 

                     RESULTS AND DISCUSSION 

   Figures 2 and 3 show the electron and X-ray diffraction patterns of the drawn fiber 
of the complex of PLLA and PDLA, respectively. These fiber patterns show clearly 

s,> 

3c  i 
ti1 

   Figure 2. X-ray fiber pattern of the stereocomplex of PLLA and PDLA. The fiber axis is 
            vertical. Figures on the left side show the order of layer line. 
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  Figure 3. Electron diffraction pattern of the fiber of PLLA and PDLA. The fiber axis is 
           vertical. Figures on the left side show the order of layer line. 

the diffraction features outlined above in the introduction. Broadening and tailing of 

the reflections on the layer lines are more remarkable as the order of layer increases. 

Eventually, reflections on the layer line over the 4th one are so broadened to fuse with 

the background into a continuous diffuse streak. By applying the eq. (4) to the line 

broadening of equatorial reflections of the X-ray fiber pattern, the degree of paracrystal-

line lattice disorder and the crystallite size in the direction perpendicular to the 

molecular axis were first evaluated. Integral breadths of 100 to 500 reflections are 

plotted against the square of reflection order in Fig. 4. When the plot is linearly 
approximated by the eq. (4) against  h2, though data scatter in Fig. 4, the crystallite size 

SP•103[A-11 

20- 
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10-                                            0 

1---------------------------------------------------------------------------------------------------11 I 
      1 4 916 25 h2 

   Figure 4. Integral breadths of hoo reflections as a function of the square of reflection order. 
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is estimated at 10.9 nm from its intercept with the ordinate and the g-value of disorder 

parameter 0.011 from the slope. As the hk0 net in reciprocal space is hexagonally 
symmetric (see below in Fig. 9), reflections indexed as 010 and 110 overlap on the 100 

reflections in the fiber pattern, and many reflections do so on the 200 to 500 reflections. 

As many reflections which are indexed with different Miller indices but have the same 

Bragg angle overlap into a single peak, the integral breadths are averaged and dispersed 

as seen in Fig. 4 so that some ambiguousness might be unavoidable in above results by 

the linear approximation. It is at least concluded, however, that the lateral order of 
molecular packing is very high because equatorial reflections remain sharp up to the 

high order. Since no meridional or near-meridional reflections with more than two 

different diffraction orders exist, the lattice disorder and crystallite size in the molecular 

direction, unfortunately, cannot be obtained in the above way. The shift disorder 

along the chain axis was estimated in the simulation procedure. 

   As analysed above using the equatorial reflections, the radial fluctuation in the x 

direction d11i to which the value 422 in the y direction is probably equal, is 0.013 nm. 

Though the tangential components d12 and 421 cannot be obtained in the above way, 

they are considered to be nearly equal to du and 422, as judged from the spotty electron 

diffractions without spreading in special directions (see Fig. 9). When values of these 

mean squares of fluctuations are all taken to be equal, fluctuations in the distances of 

nearest neighbouring molecules in x and y directions are radially symmetric, i.e. 
isotropic, around their axis. Normally, principal axes of the fluctuations are in the 

crystallographic axes. Though the present crystal has a triclinic system with the 

oblique lattice axes, the principle axes of fluctuations are taken to be in the x, y and z 
directions of the Cartesian coordinates. When the fluctuations are isotropic in the 

plane normal to the molecular axis as in the present case, the set-up of the orthogonal 
lattice coordinates will give rise to no serious error in description of fluctuations. The 

value of 433 is maybe small because the repeat distance of a polymer chain is constant in 

the fully extended conformation. It is assumed that 431 and 432 are very small. In 

view of the magnitude of these mean square of fluctuations, the distribution functions 

H1, H2 and H3 can be expressed using the Gaussian functions in terms of the parameters 

in Fig. 1. 

Hi(x, y, z)=--------------------(2
7)3/2411412413 

1 (x—a cos a)2 (y—bsin a)2(z-z1)2 
exp

L—       2{42+42+Lid-I                 L 
1      H

2(x, y, z) = 3/2                 (2
7r)421422423 

                  r1r(x—bsin /3)2 (y—bcos9)2 (z-z2)2 }1         expL 2 t dzi + dz2 + dz3 J 

H3(x, y, z)=6(x) 6(y) b(z—c)(7) 

where 8 means a delta function. The Fourier transforms of these functions can be 

easily obtained in the analytical form. The one-dimensional interference functions Z1, 
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Z2 and Z3 are calculated by inserting the Fourier transforms of eqs. (5) to (7) in eq. (3), 
respectively. The three-dimensional interference function Z(s) is finally obtained by 
multiplying the three one-dimensional interference functions when the present system is 
assumed to be an ideal  paracrystal. To ease the calculation, the crystallite size is 
assumed to be large enough to be approximated as I(s)12—+V•t5 s) where V is the 
volume of a crystllite. As estimated above, however, the lateral size of crystallites is 
finite in reality and surely produces broadening of reflections. The small, finite 
crystallites cause all reflections to broaden almost equally in the X and Y directions 
independently of the order of reflection or the reflection angle. Thus, profiles of the 
diffraction patterns were examined paying our attention to the dependence of line 
broadening on the order of reflection or the scattering angle. On the above assump-
tions, the intensity of the crystalline reflections in eq. (1) is simply expressed by 

I(s)=N I <Fu(s)> 2-D-Z(s)(8) 

In actual calculation, Fu(s) and D obtained by structure analysis were used, i.e., the 
isotropic temperature factor is 0.09 nm2 [1]. To simulate the fiber pattern, the Cartesian 
coordinates (X, Y, Z) are transformed into the cylindrical ones (R, !F, Z) and the 
intensity function is averaged over the whole f as follows; 

                        1 fI(R, Z)= 2n-I(R, T, Z)d'(9) 
                                  Following Hosemann [9], we assume that loss of crystalline reflections may be 

determined by the region in the diffraction pattern in which the intensity maxima do not 
exceed the back ground by more than 10-20%. When this criterion is applied to the 
disappearance of crystalline reflections on the layer line, the mean square of fluctuation 
by the shift disorder d;i is estimated by the following relation in terms of the order of 
the boundary layer line, 4 over which reflections are largely broadened to degenerate 
into a continuous broad streak; that is, 46 =0.25/ 0.25/ l c where c is the primitive translation 
of the crystal c-axis. In consideration that reflections on the 4th order of layer line 
become a diffuse streak, g-value of the shift disorder in the PLLA and PDLA complex 
is evaluated at 0.062 by the relation, i.e. J13 and d23 are both 0.054 nm. Figure 5 shows 
the averaged line profiles of the fiber diffraction pattern, which are simulated by the eq. 

(9) using the the experimentally obtained or assumed values of mean squares of 
fluctuations. Peaks which can be identified as crystalline reflections still remain on the 
4th layer line as seen in Fig. 5E. Even if broadening due to the small crystallites size 

(10.9 nm) is taken into account, the sharp peaks in Fig. 5E will not fuse into a diffuse 
streak. Figure 6 shows the two-dimensional intensity maps developed on the ieroth to 
fifth layer planes, which are simulated by the eq. (8). The intensity maxima are 

point-like on the zeroth layer plane and become expanding more and overlapping at 
their tails on the layer plane as the layer order increases. On the 4th layer plane, 
however, most of diffraction maxima still so sharp to be recognized as isolated peaks. 
Larger values of 413 and 423 for shift disorders are needed to make the simulated 

profiles closer to the really observed ones. Figure 7 shows the diffraction profiles 
simulated by using the g-value of 0.1, i.e. 0.087 nm for 453 and d23 (other d's are 
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Figure 5. Patterns of A to. F shows the calculated X-ray diffraction profiles on the zeroth to fifth layer 
        lines, respectively. 

( 278 )



               Lattice disorders in the Stereocomplex of PLLA and PDLA 

  Th --              ffr 
           ICC--C.,rikri 

 O 5  05 
5?,. i. B 5-- V7 U 

           O/''''\' 't.''' .Y:3'.'J        ! I I I "4 ii Pa ° 6 '( re 

O 

      O•A ife)---4) 0 
O ---- 0

rryyL
---/,5                           5row—       

L ---------y 

All 4,, - ---41' 'Pri                                 4r-,G, 
A P 

Os o 
                                         COORDINATE X(nm'') 

Figure 6. Simulated intensity maps developed on the layer planes. Maps of A to F correspond to the 
        profiles of A to F in Fig. 5, respectively. Contour lines are drawn at the intensities of 100, 
        500, 1000, 5000 and 10000. The reciprocal axes a* and b* of the unit cell are shown by 
        arrows in A. Positions shown by arrows in B to F correspond to 001, 002, 003, 004 and 005 

         reciprocal points, respectively. 

unchanged), and Fig. 8 the corresponding contour maps of diffraction intensity on the 
layer planes. In Fig. 7 crystalline diffraction peaks are no longer recognized on the 4th 
layer line. Correspondingly, it is found from Fig. 8 that the intensity changes so slowly 
on the 4th layer plane that there is no sharp maxima producing the crystalline 
reflections. It is found thus that the stereocomplex of PLLA and PDLA should have 
as large shift disorder parameter as 0.1. 

   Figure 9 shows that lamellar crystals of the complex of PLLA and PDLA are 
basically triangular in morphology. Three sides of the lamellae correspond to any of 
110, 210 and 120 planes, respectively, on which PLLA and PDLA chains are alternative-
ly deposited. As seen in Fig. 9, two spirals with the difference of 60° in rotation angle 
and sawtoothed growth on the growth front (maybe caused by twinning) occur very 
often. Figure 10 shows a matured crystal of the complex together with homopolymer 
lamellae of PLLA or PDLA with a-form. It has a characteristic round morphology 
although homopolymer lamellae have a definite shape. It is interesting that though the 
matured crystal has no definite morphology, it exhibits a sharp electron diffraction 

pattern with the hexagonal symmetry as the triangle lamellae. As a result of frequent 
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Figure 7. Patterns of A to F shows the calculated X-ray diffraction profiles on the zeroth to fifth layer 
         line, respectively. 
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  Figure 9. Electronmicrograph of the solution-grown lamella of the complex of PLLA and 
           PDLA and the corresponding electron diffraction pattern . Arrows indicate the 
           positions of the axes of the screw dislocations. 
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  Figure 10. Electronmicrograph of the solution-grown, matured crystal of PLLA and PDLA 
            complex and the corresponding electron diffraction pattern. Parallelogrammic 

            lamellae are homopolymer crystals with a-form of PLLA or PDLA. 

occurrence of such spiral growth and sawtoothed growth, the triangle lamellae may 
become round as they grow. Whenever daughter crystals grow on the mother crystals 

by these growth processes, their orientation always changes by 60° in rotation. The 
resulted electron diffraction pattern does not change from that of the triangular basic 

lamellae in appearance because their electron diffraction pattern is hexagonally symmet-

rical. The small crystallite size in drawn fibers (though not measured on the solution-

grown crystals, the crystallite size may be small as well) may be due to these growth 
mechanisms; molecular chains are densely packed side-by-side but the coherent crystal-

line regions do not grow up largely and are limited laterally by change in growth 

direction due to frequent occurrece of these processes. As described above, polylactide 

chains in the stereocomplex are laterally packed with large fluctuation of shift in the 

direction parallel to their axis. The large fluctuations may induce the spiral growth of 

lamellar crystals, as molecular chains are displaced along their axis around the center of 

screw dislocation. Thus, the driving force of these growth modes is probably the large 

shift disorder among chains in the molecular directions. 
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