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Theoretical Calculation of Garbon-13 Spin Relaxation
Parameters for Motional Processes Described
by A Three-Correlation-Time Model

Kouichi MuravaMA, Fumitaka Horir, and Ryozo KITAMARU

Received June 10, 1983

The exact equations of the C-13 spin relaxation parameters for the Howarth’s model are given. This
model involves three independent random motions of the internuclear vectors between chemically bonded
proton and 18C nuclei, Z.¢. an isotropic random motion, a librational random motion within a cone and
a diffusional random rotation about an axis with a fixed angle.

INTRODUCTION

The nuclear spin relaxation is caused in principle by any perturbation involving
Fourier components that correspond to the differences between the energy levels within
the spin system. However, it is widely found that the spin relaxation of nuclei such as
1H and 13C is predominantly archieved by the time-fluctuation of the dipole-dipole
interaction between the spin-having nuclei. Particularly in natural abundance 13C nmr
the spin relaxation is predominantly carried out by the dipole-dipole interaction between
chemically bonded 13C and 'H, because the interaction between 13C themselves can be
neglected due to the low concentration (1.19%,) and the interaction abruptly diminishes
with increasing internuclear distance. Since the chemical shifts of individual carbons
of substances are well distingushable with each other in 13C nmr, the investigation of the
spin relaxation provides detailed information of the time-fluctuation of the internuclear
vectors relating to individual carbons. Nevertheless, in order to obtain the worthy knowl-
edge it is necessary to establish the formulae that correlate the relaxation phenomena to
the time-fluctuation of the internuclear vectors. If the internuclear vectors undergo
a spherical random motion, the relaxation phenomena can be described by a correlation
time which characterizes the rate of the random motion. However, the internuclear
vectors in real substances, particularly in polymers, do not undergo such a simple
random motion as expected. Some models of the motion such as the ellipsoid model
undergoing random rotations have been proposed and examined in relation to the relaxa-
tion phenomena on real substances such as proteins.

We have found that the 13C relaxation phenomena of polymers such as terephthalic
acid polyesters? and polyethylene2® can be well understood by use of the 3-r model
which was proposed by Howarth.4% However, he connected his 2-7 librational model®
to Woessner’s 2-r rotational model®:? and the equations were not derived mathematically.

* Wii¥E—, EHCEL JkEE= : Laboratory of Fiber Chemistry, Institute for Chemical Research, Kyoto
University, Uji, Kyoto 611. ’
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Therefore, in this paper we will derive the exact equations of the relaxation parameters
for this 3-7 model.

THEORY

The 13C spin relaxation parameters on substances including only 3C and 'H as
spin-having nuclei are described in terms of the spectral densities as follows, if the
relaxation is conducted only by the dipole-dipole interaction between the nuclei.

1 20)112% 2
e = LR Jom—wd)+18/i(we)+ 9w o) (1)
1 yclyu?s®

_ 9/ 2(wntwe) —/o(wn—wc) e
N =t on— ) T 18/x(wo) 1+ Yl T o) yo (3)

Here, 71, 7> and NOE are the spin-lattice and spin-spin relaxation times and nuclear
Overhauser enhancement, respectively. yc, yu and wc, wr denote the magnetogyric
ratios and Larmor frequencies of 33C and H, respectively. 7% is the Planck’s constant
%[2w. 7 is the internuclear distance between 13C and H. Here, the relaxation conducted
by only the dipolar interaction between chemically bonded 13C and 'H is considered and
7 is treated to be constant. /V denotes the number of H bonded chemically to *3C under
consideration.

The spectral densities /»(w) are defined to be the Fourier transforms of the correlation
functions of the orientation functions #, which are functions of the C-H internuclear
vector #(hereafter designated as C-H vector) as

Tnlw)= [ B (t7) Fu®)) exp Ger)dr (4)

with =0, 1 and 2,

where the angular bracket designates the average of the spin ensemble. The orientation
functions F are described in terms of the direction cosines x, ¥, z of the C-H vector in a
rectangular coordinates in the laboratory reference frame where z axis is parallel to the
static magnetic field Ho;

Fo=1-—322
Fr=(x+ip)z (5)
Fa=(x-}2y)2

with x24y2fz2=1.

Since the direction cosines x, ¥ and s are time-dependent, the orientation functions #y
become time-dependent. The ensemble averages of the correlation functions {/*(z4)
Fu(?)) are considered to be independent of # and dependent only on the time difference ,
so far as concerned with the spin ensemble in a steady state. If the C-H vector undergoes
a sperical random rotation, the correlation functions follow simple exponential decay and
the spectral densities for all s’s are described as
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In@)=AEnOID T ore (6)

where 7; is the correlation time that characterizes the spheri(:étl random rotation. Then,
the relaxation parameters such as 71, 7% and NOE can be formulated by substitution of
Eq. (6)'in Egs: (1), (2) and (3) in terms of 77 as described in a standard text book of NMR.

In this paper, however, we will derive the formulae for the relaxation paramefers in
the case that the C-H vector undergoes an anisotropic random motion including plural
independent random motions. = It is assumed that the random motion of the C-H vector
in the laboratory frame can be expressed by superposition of plural indepéndent motions.
Consider rectangular coordinates .Si1, Ss, -+, Sz that are correlated by orthogonal
transformations. It is assumed that .S1 is the frame to describe the most inner motion of
» and Sk the laboratory frame and frame .S; is transformed to the Sj—1 by Euler angles
¢;, 0; and ¢; which are rotations about the z-axis of the frame .S;, about the new y-axis,
and about the final z-axis, respectively. Then, the direction cosines x, p, z of » in the
laboratory frame can be correlated to the direction cosines x1, y1, and 21 in the frame S1 by

X : X1
Y |=ArApr . Az 11 (7)
b4 Z1

where A; is the inverse matrix of the orthogonal transformation matrix that transforms
St to Si-1. The matrix A; are expressed as

C0s ¢; €os 0 cos i —sin i sinhi - —cos ¢i cos 6 sinfi—sin i cos i cos i sin ;
A;=| sin¢; cos 0; cospi--cos i singhi  —sine; cos 8; sinfi4-cos i cosh;  sin $isin 6; |
—sin 0; cos i sin 8; sin ¢; cos &;
(8)

Therefore, the time-dependence of the direction cosines, in the laboratory frame,

e S S,
\\I/

7

Fig. 1. Schematic diagram of 3-r model for the motion of the internuclear C-H vector.
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of the vector # involving plural independent motions can be formulated by the Euler angles
in each transformation matrix with x1, y1 and z;. We are dealing with “the 3-r motion”
of » which was proposed by Howarth® by connecting his *“2-r librational motion” to
“Woessner’s 2-t rotational motion” with an intuitively derived formula, as shown
schematically in Fig. 1. J7# is assumed that the C-H vector v undergoes a random
diffusional rotation about an axis(A) with a vertical angle Or, and the axis A further
lbrates about another axis(B) within a solid cone of a vertical angle 01, (¢n other words the
axis A is assumed fo move at random among infinite number of equilibrium positions in
this cone), and finally the axis B undergoes a spherical vandom votation in the labovatory
Sframe. In this case, Eq. (7) reduces to

X X1
y |=As Asf 1 (9)
z 51

with

ax1=C0S ¢1 sin 01
y1=sin ¢1 sinfx
z1==cos 01

01==0¢

(10)

Let the axes A and B the z-axes in the frames .51 and .Sz, respectively, then the angles
P2 and s can be treated as zero, because it is sufficient for this mode of motion to define
the z-axis of Si (axis A) in .S: and the z-axis of .Sz (axis B) in .S3 (laboratory frame).
Then, the matrix elements in Eq. (9) reduce to

cos i cos @y —sing; cos ¢ sin B;
A;=| sin dicosf;  cos¢; sind;isinb; (11)
—sin §; 0 cos 6;

for 7=2 and 3.

Here, 8; and ¢; are considered to fluctuate at random with time in the ranges of 3=
0~0z, pa=0~2m, and O3=0~m, ¢3=0~27. By use of Egs. (9), (10), and (11), the
orientation functions defined in Eq. (5) can be expressed by the summation of products of
/f, & and % functions as

Fat)= 3 SROZROMPO (2

Here 4§7(?) are the functions of 61 and ¢ arising from the stochastic rotational motion
of 7, and g{7’(#) are the functions of 62 and ¢2 arising from the librational motion of the
axis A, and f$7'(#) are the functions of 85 and ¢s arising from the spherical motion of the
axis B. The functions £{(2), g52(?) and 4$(7) are listed in Table I for each , the
derivation of which is given in Appendix 1. Since the three elementary motions are
assumed here to be independent with each other, the correlation functions of the orientation
functions F» can be expressed in the product summation of the respective correlation
functions of f, g, 4 functions as
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Table I. ff,-',';), g;-',';), /zg-',',” Functions

(a) m=0

Jre=—(3/4) sin2 916241

Sar=—(3/4) sin2 f1¢2$1

Far=—23sin 01 cos Bieits

fap=—23 sin 81 cos f1¢~id1

For=—(1/2)(3 cos? 91 —1)
for all &’s

£11=(1/2)(cos? 022 cos O2-1)e?i¢2
£13=(1/2)(cos? 83—2 cos fz-+1)e~2i¢2
£13=(sin 0z cos #2+-sin Ga)eide
£14=(sin s cos Oz —sin Ga)e—id2
g15=—4/3]2 sin2 §

Aj1=(1/2)sin? 83

#j2={(1/2)sin? 03

/ja=sin 03 cos f3

%ja=sin @3 cos fs

his=—+1]6 (3 cos? 83—1)
for all f’s

ge1=(1/2)(cos? §2—2 cos Ba+1)e2id2
ga2=(1/2)(cos? 022 cos f2-}-1)e=%i¢2
£23={(sin 02 cos f2—sin f2)ei¢2
&24=(sin 0z cos B2+sin f2)e—i¢z
LFos=— \/§72_ sin2 @s

£31=(1/2)(sin 2 cos 82+-sin O2)e?i%2
ga2=(1/2)(sin 02 cos f2—sin d2)e=%¢2
g33=—(1/2)(2 cos? #2-}-cos fa—1)ei#2
g34=—(1/2)(2 cos? fz—cos 2 —1)e~i¢2
&35=+/3/2 sin s cos 02

ga1=(1/2)(sin 02 cos fa—sin fa)e2i%2
ga2=(1/2)(sin B3 cos §2-}sin fz)e— 242
gaz= f(1l2)(2 cos2 02— cos 02— 1)eitz
g14=—(1/2)(2 cos? §3+cos fz2—1)e~id2
g45=1/3[2 sin 2 cos 2

gs51=—(3/2) sin? fae2i2
g5a=—(3/2) sin2 fze—2ig2
£53=23 sin 92 cos faeid2
£54==3 sin 82 cos fae~iv2
&55=4/3/2 (3 cos? fs—1)

(b) m=1

Fie=(1/4) sin? f1e2id1

Ser=(1/4) sin2 G1¢~2i¢:

Sar=(1/2) sin 1 cos G1eis1

Sar=(1/2) sin 61 cos G1e~i%1

Sor=—(1/2)(3 cos? :—1)
for all £’s

%j1=+/1]6 (sin B2 cos B3+sin fa)eids
%j2=+1]6 (sin O3 cos Bs—sin B3)eiss
hjs=—+1]6 (2 cos? 83}-cos B3—1)eids
hja=—A1]6 (2 cos? fa—cos f3—1)eids
% j5=sin O3 cos f3¢ids

for all ;’s

£11=—143[8 (cos? 0212 cos fa-+1)e%:
g12=—+38 (cos? §3—2 cos fa+1)e2is2
&13=+/3/2 (sin 8z cos Bz-|-sin Ba)eid
£1a=+/3]2 (sin 02 cos f3—sin Bz)e~i%
£15=(3/2) sin? 02 :

g21=—+/3[8 (cos? f3—2 cos B+ 1)e2ise
gaa=—1/3/8 (cos? f2-+-2 cos fz41)e2is
£23=+/3/2 (sin 82 cos fz—sin B2)eisd:
£24=43[2 (sin 85 cos fa--sin B2)e—ide
g25=(3/2) sin? 02

ga1=—4/3[2 (sin 82 cos Bz4sin fa)e2is:
ga2=—+/3]2 (sin 02 cos fz—sin fs)e2i%2
g33=—+3[2 (2 cos 282+ cos fa—1)eiv2
g3a=—+/3]2 (2 cos? fa—cos fa—1)eis2
&35=—3 sin 02 cos 02
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ga1=—13]2 (sin 02 cos §z2—sin fz)e?ié:
gae=—+/3/2 (sin 82 cos O2-}-sin fa)eid
gaz=—~3]2 (2 cos? B2—cos fa—1)eit2
gaa=—AI32 (2 cos? B3+ cos B2 —1)e~is2

ga5=—3 sin 03 cos b2

£51=4/3[8 sin? fae2isz
gsa== \/37@ sin? fae—2id2
L53= \/3/—2 sin 02 cos Baeive
£5a=+3]2 sin 02 cos fzeivz
&us=—(1/2)(3 cos? §2—1)

m=2

©

J1e={(1/4) sin? 1¢%%1
Jar=(1/4) sin2 f1¢~2i¢1
JSar=sin 81 cos B1¢ié1
Sar=sin 1 cos O1e~i%1
For=(1/2)(3 cos 01—1)
for all &’s

hja=A1]24 (cos? §3—2 cos B3+1)e?ids
ki5=+1]6 (sin 85 cos f3-}-sin 3)e2ids
7ja=+1]6 (sin 83 cos O3—sin fs)e2ivs
% j5=(1/2) sin? fze2ids

£11=v3]2 (cos? 82-+2 cos f2-+-1)eid2
£12=43]2 (cos? 02—2 cos §341)e~2i%2
&13=—4/ 6 (sin 85 cos f2--sin Ga)eid2
g1a=—~/ 6 (sin B2 cos B2 —sin B2)e~i#:
£15=3 sin2 02

£21=43[2 (cos? 82—2 cos Hz2-+1)e?i9:
£20=43]2 (cos? 8242 cos O34 1)¢2i¢2
£aa=—~ 6 (sin Oz cos Ba—sin Bz)eise
ga1=—1/ 6 (sin O cos 82-}-sin z)e=is:
£25=3sin2 02

£31=+/3]2 (sin B2 cos fz4-sin fa)e%i¢2

foralls £32=1/3]2 (sin 02 cos f3—sin Oz)e2i:
233=+32 (2 cos? fz2-+cos B2—1)ei
£3a=4/3/2 (2 cos? §a—cos §5—1)e~is2
£35=—3 sin @ cos Oz
ga1=43[2 (sin 85 cos 83—sin f2)e?is2
ga2=/3]2 (sin fzcos 3} sin fz)e—2ig
£a3=3[2 (2 cos? 0i—cos fa—1)eid2
£1a=3]2 (2 cos? a-}-cos fa—1)eit2
gas=—23 sin 05 cos 0z
&51=+/3]2 sin2 faeid:
£52=+/3]2 sin? fae—2is:
£53=+/ 6 sin 85 cos Gaeitz
g54=\/—€ sin Oz cos Bee—ide
£55=(3 cos? f2—1)

{En*(t4-1)Fn(2)>

=%/ WDtk

m)

7

PR S OO OD

=2 < P S O N S T RS ROV O

I8

Consider first the correlation functions of the f functions relating to the

(234)
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13C Spin Relaxation Based on Three-Correlation-Time Motional Model

rotational motion. In this motion of the C-H vector » with a constant 61=0r in the
frame S, the probability p(d10+d¢i, ) that ¢ takes a value of ¢rot-4d at time 74
when ¢1 was ¢1o at an arbitrary time # will be given by a Gaussian distribution as®

Plbrot+Add, 7) =%(7TTTR_1)—1/2€_TR‘A¢12/4’ (14)
Then, an actual calculation with use of Table I yields,

S £ 0= [T FHm o260 pbro+ Ay, Dddgs | £ o)
=K r0) f1 o)) (15)

with

K=e4Fr for j=/=lor2
— iR for j=/=3or4
, 16)
=1 for j=/=5

=0 for j=#/

for all »’s (also independent of £ and # as revealed in Table I).

Since the average of the spin ensemble that is indicated by the angular bracket is
considered to be equivalent to the average in relation to ¢10 so far as concerned with
a steady state, it is evident from Table I that {f¥{™(¢10) fim($10)> becomes zero unless
7={4. On the other hand, when j=/, Eq. (15) reduces to '

U ) fine)y =KL H G1o) £ 10>
=K FR G101 o

Therefore, Eq. (17) with Eq. (16) and Table I yield actual forms of the correlation
functions as v

<f?1§0)(t+7)f§?;’(l‘)>Z%CRe“ll"/’R for j=1, 2

=3Bue-tim for j=3,4

=Ar : for j=5
<f?k(1)(f’|“’f)f§'}x)(f)>:11_2CRe—‘lI"/'R for j=1, 2

—fpBatE for j=3,4 (s

=4z for j=5

I FROy=(5Cecm for j=1,2
:lBRe—J’V'R for 7=3, 4
=dAg for j=5
where

(235)



K. MurayvaMma, F. Horit, and R, KITAMARU

Ar=(1/4)(3 cos? fz—1)2

Br=3sin2 Or cos? Oz 19

Cr=(3/4)sin* O

Next consider the correlation functions of the g functions. The A-axis in the frame

Sa can be defined by #2 that is the angle to z-axis (B-axis) and ¢ that is the angle of the
projection of the A-axis on x—y plane to x-axis in .S since z-axis (B axis) of Sz is trans-
formed to z-axis (A-axis) of .51 by rotation of ¢a about itself and rotation of 6; about y-axis
of S1.  Let the position at 6z, ¢2 be represented by a solid angle (s, ¢2) ; d82==sin 02402deps,
0=6:<0;, 0=¢:=<2m. In the librational motion assumed here, if the A-axis was at Lo
at time 7, the probability that the A-axis still remains at £2o can be considered to be ¢=/*z

and the probability finding the A-axis at another position £, at time ¢+ be 1—e/"L,
Accordingly, the correlation functions of the g functions can be written as

R AON

—<{[ A g:‘,f'"’<91><1—e—fffL>d91/ [ 4| +ar <'"><szo>e—f/m} (20 va,

= (e DK@ 0, @0 st g @ @0,

— (=TI (@0, g Q0 anrte VLGP 2 (@) (20)

Here, the average of the spin ensemble at an arbitrary time is assumed to be equivalent to
the average over available values of 2 and 2.

It is found by examining the g functions in Table I that {g%™(Q1)>a,, {gin (o)) e,=
0 unless £2=5, »=>5 and that {g¥™(Q0) gin’(Q20)>=0 unless k=x.

Accordingly, with the results of Eq. (16) the cross terms in Eq. (13) disappear and
Eq. (13) reduce to

F Z(f+T)Fm(t)>=j2k HP ) LR ONERD W+ g0 @A DA @ (21)

Since the axis B is assumed to undergo a spherical random rotation in the laboratory
frame, all self-correlation functions of 4$7’ may follow exponential decays as

IR DD @ =5 @ De V1 (22)

The average of the square of |4}’| at an arbitrary time over the spin ensemble can be
calculated assuming that

GEP P> = / /¢ " H(Bs, §s)? sin GsdBadps / / / sin 05 dsdeps
By use of Table I, we have
NP @)12>=2/15 (23)

for all m’s.
Therefore, Eq. (21) can be rewritten as
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AT (@)

2123 eI RS WD SO T g ) g0 O] (24)

where (3 (¢+7) £ is taken out of the summation in relation to %2 because it is
equivalent for all £’s.

The summation in relation to £ in Eq. (21) can be carried out by use of Eq. (17) and
the note cited to the equation. Thus, we have

PR G T (OY
=(1—e /g1 (@0, 855 o aote 71 B (g5 (20) g (Qa)a,
== g (@>a"+e "L T g (@DIa 25)

Here, the average of g$7(2) and | g% (€2)[2 over £ can be carried out by the relation,

(DBE)>a— A B()dR / A a0
=/ o ¥ @O g0 sin Oadtadpe / A & ﬁ * Sin Oad0sds

where D(Q)=g‘P(Q) or | g% (D)]2.
An actual calculation yields,

<girr=4Cy for j=1,2
=5 for 7=3,4
=64, for j=5
giPHe=6C, for j=1,2
=68, for j=3,4 (26)
=A; for j=5
(gWye=24Cy  for j=1,2
=65 for ;j=3,4
=44 for j=b5

where
Ar=cos? 01(14-cos 01)2/4
Br==sin? 0;(1cos 01)2/6 27
Cr=(cos 0.+ 2)2(cos 8.—1)2[24
and, for example,
%]g}g)lz_—_‘l for j=1,2
=1 for 7=3,4 (28)
=6 for " j=5
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Substitution of Eqgs. (26) and (28) in Eq. (25) yields

2<g}":§°)(1+7)g§ (D =A4[Crt+(1~Ce 1] for j=1,2
=B+ (1—Brye L for 7=3, 4
=6[d 1+ (1—Ad ezl for j=5

eI g RE=6[CH(1—Ce ] for j=1, 2
=6[Br+(1—Beri]  for j=3,4 (29)
=Ar+(1—Adpe L for j=5

Z‘.<g,(2)(l‘+7)g§?(¢)> 24[CiH(A—Cherr1] - for j=1,2
=6[B1+(1—Br)e L]  for j=3,4
AL (A — Ay for j=5

Substitution of Eq. (29) in Eq. (24) with Eq. (18) yields the correlation functions of the
orientation functions of the C-H vector,

Fu*(t+1)Fu(t)) =Kn[Ard eV 14 Ap(1—AL)e™
A + BrBre~" - Bp(l—Br)e~"1%

4 CrCre 7 Cr(1—Cr)e=/%] (30)
with | |
K 0=4/5
K1=2[15 (31)
K»=8/15
and

T =g 7

role=rgldr~1

T =7 1 (32)
=4~ 1

R P
Fourier transformation of {#n*(¢+7)Fu(?)) yields the spectral densities as

271 271

Snlw)= Kml:ARAL TTwir +AR(1 AT oee 1Fwor.®

272 273

+BrBrT 155 T+ wirs s+ Br(l—B) 5 2 1+ wirs?

274

2
T OO ey 1+ wirg 7t Cr(l—C) 1+;er :l (33)

where Agr, Br, Cr and A4, B, C. are given by Egs. (19) and (27), respectively.
Substitution of Eq. (33) for the /u(w)’s in Egs. (1), (2), and (3) yields the formulae of the
spin relaxation parameters 71, 72 and NOE in terms of the correlation times =7, 7z, 7z

(238)



13C Spin Relaxation Based on. Three-Correlation-Time Motional Model
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6. [ degree
Fig. 2. Dependence of the parameters 4z, Br and Cy, defined by Eq. (27) on 8.

that describe the respective independent motions involving in the “the 3-7 motion” of the
C-H vector. :

Note here that if Cp=Br=A;=cos?0. (cos0.-+1)2/4 Eq. (27) is equivalent to the
formula for the spectral densities which was derived by Howarth,? connecting intuitively
the formula of Weossner’s 2r rotational motion to that of his 2r librational motion.
The parameters 4, B, and Cr in Eq. (33) are, of course, different with each other as
shown in Fig. 2. where 4, B: and (. are plotted against ;. Therefore, the
Howarth’s equation is not valid in general. Nevertheless, when +; and 7z are much
larger than 7z(7s, 70> 7z), 72, Ta=7r and 74, Ts~7r/4 and the terms including BrBi, CrCy
in Eq. (33) can be neglected in comparison with the terms including only Bz and Ck,
respectively. Accordingly, in such a case Eq. (33) becomes equivalent to the Howarth’s
equation. Hence, our previous analysis1—® using Howarth’s equation is not necessary to
be revised. ’

RESULTS AND DISCUSSION

In this section we examine the dependence of the relaxation parameters 71, 72 and
NOE on the correlation times according to Eq. (33) that has been derived on the basis of
the 3-r model. In Fig. 3 the value of N7 is plotted against 7, for different 0.’s
while other parameters are fixed as 7;/rz=102, 7r=10"1%s, 6x=30°. The parameters
fixed here roughly correspond to those determined for real polyethylene samples®® as the
most probable values. The V771 shows single minimum at about 5X10-11s of 7, when
6,<C10° but an additional minimum appears at about 5x10~°s with increasing 6;.
The latter minimum at 5X10~?s remains while the former minimum disappears with
further increasing . above 80°. It is noted here that 7z of 5X10-1ts for the former
minimum corresponds to 5X107%s of 7y which is equivalent to the value of 7. for the
latter minimum and the value of 5X107?s is roughly equivalent to 1/wc(=6x10-°s).
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T/ s
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Fig. 3. N71. vs 1y, for different ;s indicated for each curve, when 7;(r; =102,
rp=10"12 g, §p=30°.

Hence it is concluded that the minimum of N7 appears when the value of 71 or 7o
reaches the reciprocal of the Larmor frequency of 13C. ;

Figure 4 indicates the dependence of V71 on 71 for different ratios 77/r; when other
paramefers are fixed as 0;=60° 0r=30° 7r=10"12s. Each curve seems to comprise
two components involving the minimum value at either 7. or mr=1jwc. When 771
<10, because of the closeness of the minimum positions of the two components there
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Fig. 4. N7 vs. 7, for different values of 77/71,, when 8,=60°, 7p=10"125, §5=30°.
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Fig. 5. N7 vs. 7, for different values of 8z, when 77/r; =102, 8;=60°, 7p=10"12s,

appears only one minimum: As the ratio 77/7. increases, the minimum relating to

71 becomes distinguishable from that relating to rz.

Furthermore, it is seen that, when

71/7:>108 the V71 vs. 7. curves become nearly identical in the range of 7,>2X

107195 (7;>2X1077s).

This implies that the spherical random motion with a cor-

relation time longer than 2X 10~7 s has no effect on the value of /7 according to Eq. (33).

Figure 5 shows the relationship between N7 and 7. for different Og’s.

It is

evident that the value of 0z determines primarily the value of /7 at the minimum.

T 1 /s 2
310'10 10°® 10 10 10
80 NOE
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60 O, /degree /20 0
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W | 80 |
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40 ’C L"'wc
> 10
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Fig. 6. NOE os. 71, for different values of 8z, when 77f7;, =102, 7g=10"12s, §5=30°,
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In Fig. 6 the value of NOE is plotted against 7. for different §.’s. As the value of
71 increases from 10~12 5, the NOE’s show minima as a result that 7; reaches the order
of 1/wc and after passing maxima they again decrease until rr=~1/wec. With further
increase of 7 they increase again due to the random rotation with a fixed value of rr=
10-22s. Figure 7 shows plots of NOE vs. 71 for different ratios r7/rz. It is seen that
the NOE’s once approach 3 at 1210710 s when 7;/r,=103~105.

In Fig. 8, the value of N7% is plotted against 77 for different ratios r7/rz. It is seen
that the value of V7 is determined by primarily 7/, rather insensible to shorter correlation
times 7z and 7z. This corresponds to the fact that V7% involves the term of zero-
frequency spectral density according to Eq. (2) and the spherical random rotation with

3 ‘ T T 1 T T
NOE
10) .
T; /T,
" 10
S22+ .
<z 102
10
1 | 1 1 ! ! 1 ]
107 107° 107 107 107
T, /s

Fig. 7. '"NOE vs. 71, for different values of 77/rz, when 8;=60°, Tz=10~12s, §r=30°.

109

1 |
107 107 10°® 10°
T /s

Fig. 8. NT3 vs. v different values of v7/7, when 8,=60°, Tp=10"12s, §p=30°,
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rather longer 7; contributes to this term while other random motions with shorter 7, or
7r do not contribute to any spectral density.

APPENDIX 1

“Description of the Correlation Functions in the Form Fn= ‘Z‘. S804, 61) 57 (02,
$2)2$2 (B, b) as Listed in Table 1.” e

If we define C to be the product As and As, the direction cosines x, » and z are
described as . ;

x=crx1-+c12y1+c1321
Y=Ca1X1-}¢c22¥Y1}c2321 ' (A-1)

g==c3101-}-¢32Y1F ¢332

3
Here, c¢ij is the 7/ element of G defined as c;j=k2 (@ir)s(ars)s.  Therefore, the correlation
=]

function for =0 given by Eq. (5) is expressed as

Fo(#)=1—3(¢cs1x1-tcse y1tcaszn)?
=—(3/4)as1 sin? f12°%: —(3/4)a_1 sin? fre—2%%:
—3a2 sin 01 cos 1¢%1—3a_s sin Oy cos f1e~
—(3/2)as sin? f1—aq (A-2)

where

az1=(ca1T7c32)?
asa=(ca1T écaz)css (A-3)

az=¢3121-c322—2c332

as=3¢332—1

Since by use of Eq. (11) cs1, ¢ca2 and c33 are described as functions of 82, ¢= and 65, Eq.
(A-3) reduces to

a:1==(—sin 83 cos f2 cos ¢2—cos 03 sin 0257 sin s sin $2)?
=(1/4) sin? O3(cos? 02-4-2 cos -} 1)e2i?:
-+ (1/4) sin2 @a(cos? 027 2 cos fa+1)e—2%:
-+sin 83 cos 8s(cos 82 sin fz--sin f2)ei?z
—+sin 3 cos 8s(cos 8z sin 827 sin J2)e—%:
+(1/2)(3 cos? 03—1) sin? 62 (A-9)

as2==(—sin O3 cos 0z cos pa—cos O3 sin B2 -7 sin O3 sin ¢2)
X (—sin @3 sin 02 cos pz-+cos s cos 0s)
=(1/4) sin? f3(sin G2 cos Oz-1-sin Gs)e2¢:
- (1/4) sin? @a(sin 02 cos 2T sin G)e2%:
—(1/2) sin 03 cos 03(2 cos? @3 1-cos fa—1)e?:
—(1/2) sin 03 cos 8a(2 cos? B27Fcos fa—1)e—i4:
—(1/2)(3 cos? f3—1) sin 62 cos 02 (A-5)
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ag=—(3/4) sin2 @3 sin? Oae2?%2 —(3/4) sin? 05 sin? Hze~2/%2
. +3sin 85 cos 03 sin fs cos f2¢i%2 43 sin A5 cos O3 sin 02 cos fae~i¢2
—(1/2)(3 cos? 3—1)(3 cos? fa—1) (A-6)
and
a4——-; —az (A-7)

Therefore, substitution of Eqs. (A-4), (A-5), (A-6), and (A-7) for as1, a2, as and as in
Eq. (A-2) yields F)p in the form Zkf,k gir #jt as listed in Table 1.
7,

Similarly, the correlation function for =1 (Eq. (5)) is given as
Fift)=-4Bia sin? Gsc2i#1-4- 1 sin? Gre=2i%
—}—%ﬁw sin 61 cos 016’-9’1—|—’%,3_2 sin 01 cos By ™%
+ 3 Basin? 01+ (A-8)
with
,3=1=e"¢3[—%(sin 03 cos 05--sin 63)(cos? 034-2 cos Gz} 1)e2*#:
—%(sin 03 cos fs—sin 83)(cos? 0272 cos O3-}-1)e~2%:
—%(2 cos? O3-cos 03 —1)(sin @5 cos 8z 1-sin §s)¢ %2
—%(2 cos? 83—cos §3—1)(sin 02 cos O2F sin fz)e—#4:

—I—%Sin 0 cos 03 sin? 92] (A-9)

Bt —5(sin B cos fs-Fsin 5)(sin B cos fs-Lsin B5)c2i%:
—+(sin 6 cos fa—sin 05)(sin 0z cos 6T sin Oa)e=2:
—l—%(Z cos2 03-cos O3—1)(2 cos? O24-cos 02 —1)e?2
—I—%(Z cos? §3—cos 03—1)(2 cos? Ba7F-cos 3 —1)e~#:

—3 sin 03 cos 03 sin 02 cos Gz:l (A-10)

,33=e""8[%(sin 03 cos Os-}-sin 03) sin? Bae2i?:
—‘}—%(sin 03 cos §3—sin fs) sin2 Gae—27%:
—%(2 cos? 05-+cos 83—1) sin 85 cos Oz¢¢:
—%(2 cos? f3—cos 0;—1) sin fa cos Gz¢#¢:

(244)



13C Spin Relaxation Based on Three-Correlation-Time Motional Model

—3-sin 0 cos 65(3 cos? 65—1) | (A-11)
1
Ba=—73Ps (A-12)

Furthermore, the correlation function for =2 (Eq. (5)) is

Falt) = a4 sint Gue2itip-Sy_y sint ue-2h
42 sin 01 cos O1e’f1-Ly_s sin 01 cos Bt
—l—%‘ys sin2 01 +ya (A-13)
with
7t1:62i¢3l:‘211‘(0052 03-+2 cos 24 1)(cos? 0242 cos §a+1)e2é%:

—l—%(cos2 #3—2 cos 02-+1)(cos? 02F 2 cos Oa-+1)e2i%2

—(sin 83 cos 03-+sin @s)(sin 5 cos 0z-+-sin fa)e?:

—(sin 85 cos B3 —sin Os)(sin 8z cos 85T sin )¢ %2

+3-sin? By sin % | (A-14)

y¢2=€2£"3|:711—(cosz 03-+2 cos 85--1)(sin 02 cos 0 1-sin §2)e2i%2
—I—%(cos2 83—2 cos 03+ 1)(sin 02 cos 2 Fsin Os)e 22
—i—%(sin 03 cos 03-F-sin 03)(2 cos? 8z --cos Gz—l)e"¢2
—l—%(sin 03 cos O3—sin 05)(2 cos? 27 cos O3 —1)e—#%:

;%sinz B3 sin 05 cos 02] (A-15)

'y3=e2"¢8[ —%(cos2 0342 o8 B3 1) sin? fae2ise
—%(cosz 03—2 cos fa—+1) sin? Gae 2%
—3(sin 3 cos Oz-+-sin f3) sin 02 cos fz¢'%:

—3(sin 03 cos O3 —sin Og) sin 02 cos Gae=i%2

—% sin? B3(3 cos? 02——1)} (A-16)
1
Yi=—73Ys (A-17)
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