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   Theoretical Calculation of Carbon-13 Spin Relaxation 

       Parameters for Motional Processes Described 

           by A Three-Correlation-Time Model 

           Kouichi MURAYAMA, Fumitaka  HORII, and Ryozo KITAMARU 

                               Received June 10, 1983 

    The exact equations of the C-13 spin relaxation parameters for the Howarth's model are given. This 
model involves three independent random motions of the internuclear vectors between chemically bonded 
proton and 13C nuclei, i.e. an isotropic random motion, a librational random motion within a cone and 
a diffusional random rotation about an axis with a fixed angle. 

                         INTRODUCTION 

   The nuclear spin relaxation is caused in principle by any perturbation involving 
Fourier components that correspond to the differences between the energy levels within 
the spin system. However, it is widely found that the spin relaxation of nuclei such as 
1H and 13C is predominantly archieved by the time-fluctuation of the dipole-dipole 

interaction between the spin-having nuclei. Particularly in natural abundance 13C nmr 
the spin relaxation is predominantly carried out by the dipole-dipole interaction between 
chemically bonded 13C and 1H, because the interaction between 13C themselves can be 
neglected due to the low concentration (1.1%) and the interaction abruptly diminishes 

with increasing internuclear distance. Since the chemical shifts of individual carbons 
of substances are well distingushable with each other in 13C nmr, the investigation of the 
spin relaxation provides detailed information of the time-fluctuation of the internuclear 
vectors relating to individual carbons. Nevertheless, in order to obtain the worthy knowl-
edge it is necessary to establish the formulae that correlate the relaxation phenomena to 
the time-fluctuation of the internuclear vectors. If the internuclear vectors undergo 
a spherical random motion, the relaxation phenomena can be described by a correlation 
time which characterizes the rate of the random motion. However, the internuclear 
vectors in real substances, particularly in polymers, do not undergo such a simple 
random motion as expected. Some models of the motion such as the ellipsoid model 
undergoing random rotations have been proposed and examined in relation to the relaxa-
tion phenomena on real substances such as proteins. 

   We have found that the 13C relaxation phenomena of polymers such as terephthalic 
acid polyesters') and polyethylene2,3) can be well understood by use of the 3-T model 
which was proposed by Howarth.4'5) However, he connected his 2-T librational model4) 
to Woessner's 2-T rotational mode16,7) and the equations were not derived mathematically. 

* „Lig—,t,m5ca, : Laboratory of Fiber Chemistry, Institute for Chemical Research, Kyoto 
  University, Uji, Kyoto 611. 
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Therefore, in this paper we will derive the exact equations of the relaxation parameters 
for this 3-T model. 

                           THEORY 

   The 13C spin relaxation parameters on substances including only 13C and 1H as 

spin-having nuclei are described in terms of the spectral densities as follows, if the 

relaxation is conducted only by the dipole-dipole interaction between the nuclei. 

      1 1,°2yH------------2 [J
O(wH—Wc)+18.1(wc)+9J2(w+                    Hwc)](1 ) 

                    g 

 NT,16rJ       

1------yc2yH2r`2------------[4J
0(0)+Jo(wx—we)+181,(wc)+36J1(wH)+9J2(wx+wc)](2 )     NT

2 32rs 

   NOE=1 9J2(wx+wc)Jo(WH—wc)  Yx(3 )              J
o(wH—wc)+18J1(wc)+9J2(a+wc)•yc 

Here, TI, T2 and NOE are the spin-lattice and spin-spin relaxation times and nuclear 
Overhauser enhancement, respectively. yc, yH and wc, con denote the magnetogyric 
ratios and Larmor frequencies of 13C and 1H, respectively. h is the Planck's constant 
h/2ir. r is the internuclear distance between 13C and 1H. Here, the relaxation conducted 
by only the dipolar interaction between chemically bonded 13C and 1H is considered and 
r is treated to be constant. N denotes the number of 1H bonded chemically to 13C under 
consideration. 
   The spectral densities/m(0J) are defined to be the Fourier transforms of the correlation 
functions of the orientation functions Fm which are functions of the C-H internuclear 
vector r(hereafter designated as C-H vector) as 

Jm(w)= f <Fm*(t-}-T)Fm(t)> exp (iwr)dr(4 ) 
with m=0, 1 and 2, 
where the angular bracket designates the average of the spin ensemble. The orientation 
functions Fm are described in terms of the direction cosines x, y, z of the C-H vector in a 
rectangular coordinates in the laboratory reference frame where z axis is parallel to the 
static magnetic field Ho; 

F0=1-3z2 
FI=(x+iy)z(5 ) 
F2 = (x + y) 2 

with x2+y2+z2=1. 
Since the direction cosines x, y and z are time-dependent, the orientation functions Fm 
become time-dependent. The ensemble averages of the correlation functions <Fm*(t+T) 
Fm(t)> are considered to be independent of t and dependent only on the time difference T, 
so far as concerned with the spin ensemble in a steady state. If the C-H vector undergoes 
a sperical random rotation, the correlation functions follow simple exponential decay and 
the spectral densities for all m's are described as 

(230)



 13C Spin Relaxation Based on Three-Correlation-Time Motional Model 

 Jm  (w) = <I Fm (612>------------1+0,2,12(6 ) 

where TI is the correlation time that characterizes the spherical random rotation.Then, 
the relaxation parameters such as T1, T2 and NOE can be formulated by substitution of 
Eq. (6) in Eqs. (1), (2) and (3) in terms of TI as described in a standard text book of NMR. 

   In this paper, however, we will derive the formulae for the relaxation parameters in 
the case that the C-H vector undergoes an anisotropic random motion including plural 
independent random motions. It is assumed that the random motion of the C-H vector 
in the laboratory frame can be expressed by superposition of plural independent motions. 
Consider rectangular coordinates Si, S2, • • •, Sk that are correlated by orthogonal 
transformations. It is assumed that Si is the frame to describe the most inner motion of 
r and Sk the laboratory frame and frame S; is transformed to the S;_1 by Euler angles 

y&;, 01 and tkj which are rotations about the z-axis of the frame S1, about the new y-axis, 
and about the final z-axis, respectively. Then, the direction cosines x, y, z of r in the 
laboratory frame can be correlated to the direction cosines xi, yi, and zi in the frame Si by 

/x\ I xi\ 
                 y =Ak Ak-1 ... A2 I yi(7 ) 

\z/ \zi/ 

where Ai is the inverse matrix of the orthogonal transformation matrix that transforms 
Si to S;_i. The matrix Ai are expressed as 

    / cos Oi cos 0i cos 0i—sin .95i sin i&ii —cos 96i cos Bi sin 0i—sin ¢i cos tki cos yii sin Bi 
Ai= sin y5i cos Bi cosz/,i+cos Oi sin s/ri —sinOi cos 01 sin ,b +cos yii cos tit,: sin sin 01 

         —sin Bi cos tiisin 01 sin Oicos Bi 

(8) 

   Therefore, the time-dependence of the direction cosines, in the laboratory frame, 

/ B 

A 
      ~\ f \,i 

             11`i, r" 

C eR 
       Fig. 1. Schematic diagram of 3-r model for the motion of the internuclear C-H vector. 
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       of the vector r involving plural independent motions can be formulated by the Euler angles 
        in each transformation matrix with xi, yi and a1. We are dealing with "the 3-T motion" 

       of r which was proposed by Howarth4) by connecting his "2-r librational motion" to 
        "Woessner's 2-r rotational motion" with an intuitively derived formula, as shown 

       schematically in Fig. 1. It is assumed that the C-H vector r undergoes a random 
       di?usional rotation about an axis(A) with a vertical angle OR, and the axis A further 
       librates about another axis(B) within a solid cone of a vertical angle BL (in other words the 

       axis A is assumed to move at random among infinite number of equilibrium positions in 
       this cone), and finally the axis B undergoes a spherical random rotation in the laboratory 

       frame. In this case, Eq. (7) reduces to 

/x\xi\ 

               Iy=A3.A2 y1(9)                    \ z/zi/ 

with 

xi=cos 01 sin 01 
yi =sin 01 sin01 
zi=cos 01(10) 
01=OR 

       Let the axes A and B the z-axes in the frames Si and S2, respectively, then the angles 
02 and O3 can be treated as zero, because it is sufficient for this mode of motion to define 

       the z-axis of Si (axis A) in S2 and the z-axis of S2 (axis B) in S3 (laboratory frame). 
       Then, the matrix elements in Eq. (9) reduce to 

                           cos~'i cos Bi -sin qi cos Oi sin Bi \ 
                      A1-sin Oi cos Oi cos chi sin Oi sin Oi (11) 

                      —sin 0i 0 cos 0i / 

       for 1=2 and 3. 
       Here, 0i and ci are considered to fluctuate at random with time in the ranges of 02= 

0'6L, 02=0ti21r, and 03=0,-ir, q'3=0,--,21r. By use of Eqs. (9), (10), and (11), the 
       orientation functions defined in Eq. (5) can be expressed by the summation of products of 
       f, g, and h functions as 

s Fm(t)= E fk)(t)gjk)(t) h .(4) (t) (12) 
,,k=1 

       Here h;k)(t) are the functions of Br and i arising from the stochastic rotational motion 
       of r, and g(i7)(1) are the functions of 02 and 02 arising from the librational motion of the 

      axis A, and f(k)(t) are the functions of 03 and 03 arising from the spherical motion of the 
      axis B. The functions ITV (t), g(i77) (t) and h;k)(t) are listed in Table I for each m, the 

       derivation of which is given in Appendix 1. Since the three elementary motions are 
       assumed here to be independent with each other, the correlation functions of the orientation 

       functions Fm can be expressed in the product summation of the respective correlation 
       functions of f, g, h functions as 
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               Table I. f,k>, g,k>, h;k> Functions 
(a) m=0 

fik=—(3/4) sin2 Oie2iss1gu=(1/2)(cos2 02+2 cos 0z+1)e21252 
f2k=—(3/4) sin2 01e-2ishgoz=(1/2)(cos2 02-2 cos 02+1)8-2i02 
f3k=-3 sin 01 cos 01eisbigo= (sin 03 cos 02+sin 02)ei42 
f4k=-3 sin 01 cos Oie i0lg14= (sin 02 cos 0z—sin 02)e-i152 
15k=—(1/2)(3 cos2 01-1)g15=—V3/2 sins 02 

      for all k's 
---------------------------------------------------------------------- g21=(1/2)(cos2 02-2 cos 62+1)e2102 

hi, =(1/2) sin2 03g22=(1/2)(cos2 02+2 cos 02+1)e 31h 
hj2=(1/2) sin2 03g23=(sin 02 cos 02—sin 02)eis52 
h1s=sin 03 cos 0sg24= (sin 62 cos 02+sin 02)c-102 
hj4=sin 03 cos 03g25= —V3/2 sin2 02 
his= —V1/6 (3 cos2 03-1) 

for all j'sgsi=(1/2)(sin 02 cos 62+sin 62)e2t42 
                                     gs2=(1/2)(sin 02 cos 02—sin 02)e-21152 

gss=—(1/2)(2 cos2 624-cos 02-1)e102 
g34=—(1/2)(2 cos2 02—cos 02-1)e iss2. 
g35= V3/2 sin 62 cos 02 

                                 g41=(1/2)(sin 03 cos 02—sin 02)e2is52 
g42=(1/2)(sin 02 cos 02+sin 02)e 2is2 
go= —(1/2)(2 cos2 02—cos 02-1)eiss2 

                                     g44=—(1/2)(2 COS2 02+COS 02-1)e—iss2 
g45= V3/2 sin 03 cos 02 

g51= —(3/2) sin2 02e2i02 
gs2=—(3/2) sins 02e-2ish2 
gss=3 sin 02 cos 02eiss2 
g54=3 sin 02 cos 02e102 
go= V3/2 (3 cos2 02-1) 

(b) m=1 

fik=(1/4) sins Oie2i951gji=—iJ3/8 (cos2 02+2 cos 02+1)e2452 
f2k=(1/4) sin2 B1e 2tP'g12=—V/3/8 (cos2 02-2 cos 02+1)e-2/952 
fak=(1/2) sin 01 cos Uieihgo= V3/2 (sin 02 cos 02+sin 02)eis62 
f4k= (1/2) sin 01 cos 01e-ing14= V3/2 (sin 02 cos 02—sin 02)e-io2 
f5k=—(1/2)(3 cuss 01-1)g15=(3/2) sin2 02 

       for all k's 
................................................................................... g21=—V3/8 (cos2 02-2 cos 02+.1)6242 

hp= V1/6 (sin 03 cos 03+sin (Neils' g22=—V3/8 (cos2 02+2 cos 02+1)e_2iss2 
h12= V1/6 (sin 03 cos 0s—sin 03)eisss g23=V3/2 (sin 02 cos 02—sin 02)eiss2 
hi3=—,11/6 (2 cos2 03+cos 0s-1)eissa g24=V3/2 (sin 02 cos Us+sin 02)e-iss2 
h14=-4/1/6 (2 cos2 03—cos 03-1)eissa g25= (3/2) sin3 02 
hfs=sin 03 cos 03e43 

      for all j'sgal= —0/2 (sin 02 cos 02+sin 02)e2432 
.................................................................................... gas= —V3/2 (sin 02 cos 02—sin 02)6.-2i02 

g33=—V3/2 (2 cos 202+cos 02-1)e40z 
g34=—V3/2 (2 cos2 02—cos 02-1)e-i562 
g35=-3 sin 02 cos 02 
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                                        g41= —'J3/2 (sin Os cos O2—sin 02)3242 
                                        g4a=-V3%2(sin 02 cos Oa-I-sin 02)e-242 

g43=—V3/2 (2 COS2 02—COs 02-1)ei#2 
g44=—'J3/2 (2 cos2 Oa+cos 02-1)8—i52 
g45=-3 sin 02 cos 02 

gsi=V3/8 sin2 0252102 
                                        g52=Vl3/8 sin2 02e-242 

gsa=V3/2 sin 02 cos 02eio2 
g54—V312 sin 02 cos 02e-i02 
g55=—(1/2)(3 cos2 02-1) 

   (c) m=2 

flk=(1/4) sin2 01e2ig1gu=J3/2 (cos2 02+2 cos 02+1)e21is2 
fak=(1/4) sin2 01e-2i01gi2=\/3/2 (cos2 02-2 cos 02+1)e-2462 
fak=sin 01 cos Oleihgis=—V 6 (sin 02 cos Oa+sin 02)ei52 
f4k=sin 01 cos 0ie ioigi4=—J 6 (sin 02 cos 02—sin 02)e-i#2 
f5k=(1/2)(3 cos 01-1)g15=3 sin2 02 

          for all k's 
.......................................................................................... g21= V3/2(cos2 02-2 cos 02+1)e2i02 

hj1=V1/24 (cos2 0s+2 cos 03+1)e2452:22= V3/2 (cos2 02+2 cos 02+1)U2i02 
hj2=V1/24 (cos2 03-2 cos 0s+1)e2453 g2s=—\/ 6 (sin 02 cos 02—sin O2)eis62 
h13= V1/6 (sin Oa cos 03+sin 03)e2j4a g24=—V/ 6 (sin 02 cos 02+sin O2)3-i52 
hj4=V1/6 (sin 0s cos 03—sin O3)e2itsa gss=3 sine Os 
h is= (1/2) sine Ose2tSh 

         for all j'sgs1=,/3/2 (sin 02 cos O2+sin 02)32452 
.......................................................................................... g32= V3/2 (sin 02 cos 02—sin 02)e-242 

gss= V3/2 (2 cos2 02+ cos 02-1)eis62 
g'34= V3/2 (2 cos2 02—cos 02-1)e-i02 
g35= —3 sin 02 cos 02 

ga1=V3/2 (sin 02 cos 02—sin 02)e242 
g42=V3/2 (sin Ozcos 02-I-sin 02)3- 2is62 
g43= V3/2 (2 cos2 O2—cos 02-1)ei52 
g44= .J3/2 (2 cos2 02+cos 02-1)e-i~s 
g45=-3 sin 02 cos 02 

g5i=J3/2 sine 02e242 
gs2=V3/2 sin2 028-2452 
gss=4J 6 sin 02 cos 02e42 
g54=1/ 6 sin 02 cos 02e-isbz 
g55=(3 cos2 02-1) 

<1.m*(1+T)r'm(1)> 

`\[ f7k)(1- T)4 )(t+T)ei(t+T)]*[ J 1, )(t)e,)(t)g,)(t)]> 
7,k102 

      —E (f1km)(tTT)f!n)(t)>`\gjkm)(tTT)gln)(00 . m)(t-}-T)hin)(t)>(13) 
j, k, !
,n 

Consider first the correlation functions of the f functions relating to the stochastic 
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   rotational motion. In this motion of the C-H vector r with a constant 01=0R in the 
   frame S1, the probability p(clod--Z101, T) that takes a value of y6104-401 at time t-FT 

   when 01 was cblo at an arbitrary time t will be given by a Gaussian distribution aso 

.P(010+40,, T)=  (?ITTR 1)—l~ze—=R4~1Y~4=(14) 

   Then, an actual calculation with use of Table I yields, 

      <fkm~(tIT)fln'(6>=«^f,km,(010+Z101)p(Olo+401, 7)ddy&l]f17)(010)/\ 
=K<f jkm)(4.10)fn)(03.o)>(15) 

   with 

K=e-411/=R for j=1=1 or 2 
=e I=It=R for j=1=3 or 4 

                                                (16)                  =1for j=1=5 
=0for j l 

   for all m's (also independent of k and n as revealed in Table I). 
      Since the average of the spin ensemble that is indicated by the angular bracket is 

   considered to be equivalent to the average in relation to C610 so far as concerned with 
   a steady state, it is evident from Table I that <f;km)(963.o) f is)(4.10)> becomes zero unless 

j=l. On the other hand, when j=l, Eq. (15) reduces to 

<f jkm) (t+T)fjn(t)> =K<fjkm)(4.10)f j7)(5610)> 

=K<Ifjk)(010)I2>(17) 

   Therefore, Eq. (17) with Eq. (16) and Table I yield actual forms of the correlation 
   functions as 

<fjk°)(1+ T)fjn)(t)>= 4 CRe-4I=1/=R for j=1, 2 

=3BRe-I=I1=Rfor j=3, 4 
=ARfor j=5 

<fjkl)(t I T)fjn)(t)>-12 CRe 4I=I/=R for j=1, 2 

                          =12BRe I=U=Rfor j=3, 4 (18) 
=ARfor j=5 

<fjk2)(t+T)fjn)(t)>=12 CRe4I=I/=Rfor J=1, 2 

                                   --3BRe-I=I1=Rfor j=3, 4 
                  =ARfor j=5 

   where 
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AR=(114)(3 cos2 6R-1)2 

BR=3 sin2 OR COS2 OR(19) 

CR=(3/4) Sin4 OR 

   Next consider the correlation functions of the g functions. The A-axis in the frame 
S2 can be defined by 02 that is the angle to z-axis (B-axis) and 02 that is the angle of the 

projection of the A-axis on x-y plane to x-axis in S2 since z-axis (B axis) of S2 is trans-
formed to z-axis (A-axis) of Si by rotation of 02 about itself and rotation of 02 about y-axis 

of Si. Let the position at 02, 02 be represented by a solid angle D(02, ck2); d12=sin 02dO242, 
0<_02<_0L, 0<9c2<27r. In the librational motion assumed here, if the A-axis was at Do 
at time t, the probability that the A-axis still remains at S20 can be considered to be e--'1'L 
and the probability finding the A-axis at another position Q1 at time t-{-T be 1—a-r/rL. 
Accordingly, the correlation functions of the g functions can be written as 

<gjkm)(t+T)A )(t)> 

     —\{L~ntgikm)('S21)(1—e r/rL)dQ1/felf21J+g'1km)(12o)er/rL}gtn)(Qo)>ao 
=(1—e—r/rL)<<gjkm)(S21)>.(2lgln)(Q0)>OO+e—r/ L<gjkm)(f220)gln)(S20)>90 

=(1—e-r/rL)<gjkm)(,(4)>f/1<gln)(S20)>n0+e-r/ L<g9km)(SLO)gln)(SLO >120(20) 

Here, the average of the spin ensemble at an arbitrary time is assumed to be equivalent to 
the average over available values of S20 and S21. 

   It is found by examining the g functions in Table I that <gVm) (D 1)>Q1, <g n)(Qo)>120= 
0 unless k=5, n=5 and that <g;km)(Q0)g7n)(Qo)>=0 unless k=n. 

   Accordingly, with the results of Eq. (16) the cross terms in Eq. (13) disappear and 
Eq. (13) reduce to

{{/    m(1T)Fm(t)>=E <Jjkm)(t+T)Jjk)(t)><am)(t+T)gjk)(6><hjkm)(t+T)h(Jk)(6> (21) 
j,k 

Since the axis B is assumed to undergo a spherical random rotation in the laboratory 

frame, all self-correlation functions of h;k) may follow exponential decays as 

<h jk m)(t-I-T)hjk)(t)> =<I h(.#k)(t)I 2>elr1/rI(22) 

The average of the square of Ih(Jk)I at an arbitrary time over the spin ensemble can be 
calculated assuming that 

          /a2rzn12.<Ihjk)(t)I2>=18-0f8-0hjk)(B3,03)2 sin 03d03d1b3/~8=0103=0sin03d0sd03 
By use of Table I, we have 

<Ih;k)(t)I2>=2/15(23) 

for all m's. 

Therefore, Eq. (21) can be rewritten as 
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         <Fm(t+T)Fm(t)>

I{ =2Er~~E [<J{lkm)(ITT)lAV (t)> E <gfkm)(t~T)gik)(t)>].(24) 
15 

where <flk;')(t+r)f;V(t)> is taken out of the summation in relation to k because it is 
equivalent for all k's. 

   The summation in relation to k in Eq. (21) can be carried out by use of Eq. (17) and 

the note cited to the equation. Thus, we have 

   E <g., m)(t+T)g7k)(t)>
nnn         =(1_e rirL)<gl5m)(`~~'1)>ni<g;5)(S`o)>Do+eT/TL<glkm)(20)g;k)(90)>no 

=(1—e T,TL)<gis)(S2)>n2+e rirL E <I47)(Q)I2>,2(25) 

Here, the average of g(;5)(9) and Ig;7)(Q)I2 over Q can be carried out by the relation, 

       < (S2)> D= f9(Q)dQ/ fndS2 
              =JOBLfoz~h(Bz,0z) sin BzdOsd~z/foL12"sin BzdOzd0z 

where OP) =g( .15)(S2) or Ig(;)(Q)I2. 
An actual calculation yields, 

<g95)>2=4CL for j=1, 2 
                      =BL for j=3, 4 

=6AL for j=5 

<gj5)>2=6CL for j=1, 2 
              =6BL for j=3 , 4(26) 

=AL for j=5 

<g;e)>2=24CL for j=1, 2 
                       =6BL for f=3, 4 

=4AL for j=5 

where 

                     AL=cos2 0L(1+cos OL)2/4 
                BL=sin2 °L(1-I-cos OL)2/6(27) 

CL=(cos OL+2)2(cos eL-1)2/24 

and, for example, 

E Igik)I2=4 for j=1, 2 
               =1 for j=3 , 4(28) 

                       =6 for j=5 
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Substitution of Eqs. (26) and (28) in Eq. (25) yields 

E <4o)(t+T)gik2(t)>=4[CL+(1—CL)e=I/=L]for j=1, 2 

BL I (1-BL)e=I/=L for j=3, 4 

6[AL+(1—AL)e-I=I/=L] for j=5 

E <g7k1)(t-f-T)g7k)(t)>=6[CL-1-(1--CL)e-=I/=L]. for j=1, 2 
6[BL+(1—BL)e-1=I/=L]for j=3, 4 (29) 

=AL-F(1—AL)e-i=i/°Lfor j=5 

<g;k2)(t-{-T)g(j2k)(t)>=24[CL+(1—CL)e I=I/TL] for j=1, 2 

=6[BLF(1—BL)e—I=l/=L]for j=3, 4 

4[AL+(1-AL)e=Ii=L]for j=5 

Substitution of Eq. (29) in Eq. (24) with Eq. (18) yields the correlation functions of the 
orientation functions of the C-H vector, 

<Fm*(t+T)Fm(t)> Km[ARALe-m/=I+AR(1—AL)e 1=1/=1 

+BRBLe-i=v=2+BR(1—BL)e 1=1/=3 
CRCLe'r1/=++CR(1—CL)e=/=5] (30) 

with 

Ko=4/5 

Ki=2/15(31) 

                      K2=8/15 

and 

T1 1=TL 1+TI-1 

T2 1=TR 1+TI`1 

T3 1=TR1' FTL-1-F-TI 1(32) 

T41=4TR 1+TI-1 

T51=4TR1+TG 1+TI-1 

Fourier transformation of <Fm**(t+T)Fm(t)> yields the spectral densities as 

            jm(W)=Km[ARAL-----------}2war2+AR(1-A)--------1+W2T12 

                 +BRBL--------1+0)2,22+BR(1—BL)---------1+W27-32 

          2T42T2  +C
RCL 1+W2T42 +CR(1—CL) 1+W2T52(33). 

where AR, BR, CR and AL, BL, CL are given by Eqs. (19) and (27), respectively. 

Substitution of Eq. (33) for the jm(w)'s in Eqs. (1), (2), and (3) yields the formulae of the 

spin relaxation parameters T1, T2 and NOE in terms of the correlation times TI, TL, TR 
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    0306090120 150 180 

eL I degree 
         Fig. 2. Dependence of the parameters AL, BL and CL defined by Eq. (27) on BL. 

that describe the respective independent motions involving in the "the 3-T motion" of the 
C-H vector. 

   Note here that if CL=BL=AL=cos2OL (cos OL+1)2/4 Eq. (27) is equivalent to the 
formula for the spectral densities which was derived by Howarth,4) connecting intuitively 
the formula of Weossner's 2T rotational motion to that of his 2T librational motion. 
The parameters AL, BL and CL in Eq. (33) are, of course, different with each other as 
shown in Fig. 2. where AL, BL and CL are plotted against OL. Therefore, the 
Howarth's equation is not valid in general. Nevertheless, when TI and TL are much 
larger than TR(TI, TL>>TR), T2,T3^`v'TR and T4, T5^ TRr4 and the terms including BRBL, CRCL 
in Eq. (33) can be neglected in comparison with the terms including only BR and CR, 
respectively. Accordingly, in such a case Eq. (33) becomes equivalent to the Howarth's 
equation. Hence, our previous analysis1-3) using Howarth's equation is not necessary to 
be revised. 

                    RESULTS AND DISCUSSION 

   In this section we examine the dependence of the relaxation parameters T1, 7'2 and 
NOE on the correlation times according to Eq. (33) that has been derived on the basis of 
the 3-T model. In Fig. 3 the value of NT1 is plotted against TL for different OL's 
while other parameters are fixed as TI/TL=102, TR=10-12s, OR=30°. The parameters 
fixed here roughly correspond to those determined for real polyethylene samples2'3) as the 
most probable values. The NT1 shows single minimum at about 5 x 10-11 s of TL when 
OL<10° but an additional minimum appears at about 5 x 10-9 s with increasing OL. 
The latter minimum at 5 x 10-9 s remains while the former minimum disappears with 
further increasing OL above 80°. It is noted here that TL of 5 x10-11 s for the former 
minimum corresponds to 5 x 10-9 s of TI which is equivalent to the value of TL for the 
latter minimum and the value of 5 X 10-9 s is roughly equivalent to l/wc(~ 6 X10-9 s). 

( 239 )



                         K.  MURAYAMA, F. HORII, and R. KITAMARU 

-E
I/ S 

          10 10-10 10-8 10-6 104 
^ TI 

eL/degree1 

8010_ 

u) 60 20 
1 \_ 

40= 
Z- 

40 - 

10-/ 1020y r6080 _ 
tI -wC 1L-WC _ 

10-12 1010 10-8 10-6 
IL/S 

          Fig. 3. NT1. vs TL for different 0L's indicated for each curve, when TI/TL=102, 
TR=10-12 S, 19R=30°. 

Hence it is concluded that the minimum of NT1 appears when the value of Ti or TL 
reaches the reciprocal of the Larmor frequency of 13C. 

   Figure 4 indicates the dependence of NT1 on TL for different ratios TI/TL when other 
parameters are fixed as OL=60°, OR=30°, TR=10-12 s. Each curve seems to comprise 
two components involving the minimum value at either TL or TI=1/coc. When TI/TL 
<10, because of the closeness of the minimum positions of the two components there 

1-----------------------------------------------------------------1 i I 1 
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   104-                    GI /IL/. 
N Z 1 
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I 1 1 I 1--------------------------------- 
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        Fig. 4. N71 vs. TL for different values of TI/Tt, when OL=60°, TR=10-12 S, 0R=30°. 

(240)



             13C Spin Relaxation  $ased on Three-Correlation-Time Motional Model 

TI / S 

10101010-8 106 104 

             T1 

_eR /degree 

t `1 
=40= 
- 30= 

20-

                    10 

10-17— 

- 

1 1 1I 1 -

            10-12 10-1010-810-6 
"C

L /s 
        Fig. 5. NT1 vs. TL for different values of 0R, when TI/TL=102, 0L=60°, TR=10-12 s. 

appears only one minimum. As the ratio TI/TL increases, the minimum relating to 
TI becomes distinguishable from that relating to TL. Furthermore, it is seen that, when 
TI/TL>103 the NT1 vs. TL curves become nearly identical in the range of TL>2 X 
10-10 s (T/ >2 X 10-7 s). This implies that the spherical random motion with a cor-
relation time longer than 2 x 10-7 s has no effect on the value of NTi according to Eq. (33). 

   Figure 5 shows the relationship between NT1 and TL for different OR's. It is 
evident that the value of OR determines primarily the value of NT1 at the minimum. 

TI /s 
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        Fig. 6. NOE vs. TL for different values of 9L, when TI/TL=1O2, TR=1O-12 s, OR-30°. 
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   In Fig. 6 the value of NOE is plotted against TL for different OL's. As the value of 
TL increases from 10-12 s, the NOE's show minima as a result that TI reaches the order 
of 1/cuc and after passing maxima they again decrease until TL.~1/cuc. With further 
increase of TL they increase again due to the random rotation with a fixed value of TR = 
10-12 s. Figure 7 shows plots of NOE vs. TL for different ratios TI/TL. It is seen that 
the NOE's once approach 3 at TI,"110-10 s when TI/TL=103(105. 

   In Fig. 8, the value of NT2 is plotted against TI for different ratios TI/TL. It is seen 
that the value of NT2 is determined by primarily TI, rather insensible to shorter correlation 
times TL and TR. This corresponds to the fact that NT2 involves the term of zero-
frequency spectral density according to Eq. (2) and the spherical random rotation with 
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        Fig. 7. NOE vs. TL for different values of TI/TL, when OL=60°, TR=10-12 s, OR=30°. 
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          Fig. 8. NTz vs. Ti different values of TI/TL, when OL=60°, TR=10-12 s, OR=30°. 
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rather longer TI contributes to this term while other random motions with shorter TL or 

Ti? do not contribute to any spectral density. 

APP)ENDIX 1 
s    "Description of the Correlation Functions in the Form F „= E f;k)(01, 01)g;7)(02, 

qS2)h;k)(03,03) as Listed in Table I."j>k=1 
   If we define C to be the product A3 and Az, the direction cosines x, y and z are 

described as 

x=C11x1+C12y1+C13z1 

y=C21x1+C22y1+C23z1(A-1) 
z=C31x1+C32y1+C33z1 

3 Here, ci; is the ij element of C defined as cif=j (aik)3(ak;)a. Therefore, the correlation 
k=1 

function for m=0 given by Eq. (5) is expressed as 

               Fo(t) =1-3(c31x1+c32y1+C33z1) 2 
—(3/4)a+1 sin2 B1e2io1—(3/4)a_i sin2 0ie 2i41 
—3a+2 sin 01 cos 01ei#1-3a_2 sin 01 cos Bie iol 
—(3/2)a3 sin2 01—a4(A-2) 

where

TT                             at1=(cajfic32)2 
a±2-=(C31+ ZC32)C33 

(A-3) a3=C312+C322-2C332 

a4=3c332-1 

Since by use of Eq. (11)C31, C32 and C33 are described as functions of 02, 02 and 03, Eq. 

(A-3) reduces to 

        a±i=(—sin 03 cos 02 cos 02—cos 03 sin 02+i sin 03 sin 02)2 
=(1/4) sin2 03(cOs2 02±2 cos 02+1)e2i5b2 

+(1/4) sin2 03(cOS2 02T2 COS 02+1)e-2102 

            +sin 03 cos 03(cos 02 sin Oz±sin 02)ei#2 

            +sin 03 cos 03(cos 02 sin Ba+sin 02)e-i02 

+(1/2)(3 cos2 03-1) sin2 02(A-4) 

        a±2=(—sin 03 cos 02 cos 02—cos 03 sin 02f sin 03 sin 02) 

X (—sin 03 sin 02 cos q2+cos 03 cos 02) 
=(1/4) sin2 03(sin 02 cos 02±sin 0s)e202 

+(1/4) sin2 03(sin 02 cos 02+sin 02)e-2102 
            —(1/2) sin 03 cos 03(2 cos2 Os±cos 02-1)eio2 

            —(1/2) sin 03 cos 03(2 cos2 02+cos 02-1)e ih 

         —(1/2)(3 cos2 03-1) sin 02 cos 02(A-5) 
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a3=—(3/4) sin2 03 sine 02e2i¢2—(3/4) sin2 03 sin2 02e202 

              +3 sin 03 cos 03 sin 02 cos 02eioz+3 sin 03 cos 03 sin 02 cos 02e-102 

(1/2)(3 cos2 0s-1)(3 cos2 02-1)(A-6) 

  and 

a4= —a3(A-7) 

  Therefore, substitution of Eqs. (A-4), (A-5), (A-6), and (A-7) for a±i, a±2, a3 and a4 in 
  Eq. (A-2) yields Fo in the form E .fk g;k h;k as listed in Table I. 

l.k 
     Similarly, the correlation function for m=1 (Eq. (5)) is given as 

              Fi(t)=4/3+1 sine 0ie2j¢1I4f-1 sin2 Ole-201 
                       -F----2-P+2  sin01 cos 01ei'1+23_2 sin 01 cos 01 e'o1 

T .~ 133 sin2 01+P4(A-8) 

  with 

gm1=e108[---(sin 03 cos 03+sin 03)(cos2 02+2 cos 02+1)e202 
                —4(sin 03 cos 03—sin 03)(cos2 02+2 cos 02+1)e 2is52 

--2(2  cos2 03+cos 03-1)(sin 02 cos 02+sin 02)e1952 

--2(2  cos2 03—cos 03-1)(sin 02 cos 02+ sin 02)e-`s52 

           +2 sin 03 cos 03 sin2 02](A-9) 

            P*2=e08[—2(sin 03 cos 03+sin 03)(sin 02 cos 02+sin 02)e202 
                 --(sin 03 cos 03—sin 03)(sin 02 cos 02+sin 02)e-2N2 

                 +--y(2  cos2 03+cos 03-1)(2 cos2 02+cos 02-1)ei'2 

                  +-2-(2  cos2 03—cos 03-1)(2 cos2 02+cos 02-1)e-02 

             —3 sin 03 cos 03 sin 02 cos 02](A-10) 

            ,a3=ei#2[4(sin 03 cos 03+sin 03) sin2 02e2i¢2 
                 +-7-1 (sin 03 cos 03—sin 03) sin2 02e-202 

— 2 (2 cos2 03+cos 03-1) sin 02 cos 02e1#2 

                 --2(2  cos2 03—cos 02-1) sin 02 cos 02e-102 

(244 )



 13C Spin Relaxation Based on Three-Correlation-Time Motional Model 

           —sin 03 cos 03(3 cos2 82-1)](A-11) 

   134=—3o3(A-12) 
    Furthermore, the correlation function for m=2 (Eq. (5)) is 

F2(t)= y•+l sine 0ie2so1-}- y-1 sin2 0ie 2'c3 

+y+2 sin 01 cos 81eso1+y_2 sin 01 cos Ole-'o1 
1 +-
2-y3 y3 sin2 81-1-y4 (A-13) 

 with 

            y±i=e2s#3L4 (cos2 03+2 cos 82+1)(cos2 0212 cos 02+1)e2s$2 

               +4(cos2 03-2 cos 02+1)(cos2 02+2 cos 82+1)e-202 
—(sin 03 cos 03+sin 03)(sin 02 cos 02+sin 02)eso2 

                 —(sin 03 cos 03—sin 03)(sin 82 cos 02+sin 02)e-i02 

+ rL sine 03 sin 202](A-14) 

y±2=e2iO3[4(cos2 03+2 COS 03+1)(sin 82 cos 82+sin 82)e21 2 
+4(cos2 83-2 cos 03+1)(sin 02 cos 02 +sin 02)e-202 

+  (sin 03 cos 03+sin 03)(2 cos2 02+cos 02-1)e102 

1 +(
sin   83 cos 03—sin 03)(2 cos2 02+cos 02-1)e so2 

           -2sin2 Ba sin 82 cos 02](A-15) 

73=e208[— 4 (cos2 83+2 cos 83+1) sin2 026.202 
_--(cos2 03-2 cos 83+1) sine 02e2452 

                —3(sin 03 cos 03+ sin 03) sin 02 cos 82e1 2 

                —3(sin 03 cos 03—sin 03) sin 02 cos 02e-i#2 

— 2 sine 03(3 cos2 02-1)](A-16) 

1 y4=— 3 y3(A-17) 
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