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          Analysis of Particle-Size Distributions by a 

            Dynamic Light Scattering Apparatus with 

                   a Time Interval Digitizer 

       Yoshisuke TSUNASHIMA, Norio  NtMOTo, Yutaka MAKITA, and Michio KURATA* 

                                  Received September 14, 1981 

         The Histogram method presented by Chu et al. for analyzing the correlation function profile measured 
     by means of homodyne photon correlation spectroscopy is reexamined and its reliability is established for a 

     wide variety of autocorrelation functions consisting of bimodal modes. The autocorrelation functions 
     analyzed are simulated test functions which are constructed for a hypothetical system with bimodal particle-
     size distributions, and observed functions which are obtained by a computer-controlled software correlator 

     with 512 channels for aqueous suspensions of binary mixtures of polystyrene-latex particles of different 
     known radii. 

      KEY WORDS: Dynamic light scattering/ Autocorrelation function/ Histogram 

method/ Particle-size distribution/ Translational diffusion 
coefficient/ Polystyrene-latex spheres/ 

                               I. INTRODUCTION 

       The dynamic light scattering method is extensively used in the study of polymer chain 

    dynamics as a powerful tool to analyze diffusive motions in solutions.I^3) However, the 

    analysis is often obstructed by the existence of polydispersity in polymer samples or by the 

    appearance of intramolecular motions. These effects distort the shape of the autocorrela-
    tion function A(T) measured by photon correlation spectroscopy from a single exponential 

    form, and more or less complicate interpretation of the measured function. 

        Recently, Chu and his collaborators including one of the present authors have proposed 
    a histogram method for analyzing the correlation function profile of non-exponential decay. 4) 

    In this method, the normalized distribution function of the decay rate, G(F), is approx-

    imated by an equally segmented histogram in F space and the histogram is determined so 
    as to minimize a measure of fitness of the computed A(T) to the experimental one with 

    respect to the histogram parameters, cf. seq. With A(T) composed of 96 delay channel 

    numbers, Chu et al. have studied the reliability of the histogram method by simulation and 

    predicted that if the disturbance from intramolecular motions is absent, the method should 
    be fairly applicable to the analysis of the polydispersity in macromolecular samples with 

    either unimodal or bimodal distribution of molecular weight. They have successfuly tested 

    this prediction by using aqueous suspensions of a polystyrene(PS)-latex4> and two low-
    molecular-weight polystyrene (M0=1.03 x 104 and 1.79 x 105) in cyclohexane.5) All 

    these solutes, however, have unimodal distributions of particle or molecular dimensions. 

    * ,ff mAt , *f2A, m , *m : Laboratory of Polymer Physical Chemistry, Institute for 
      Chemical Research, Kyoto University, Uji, Kyoto 611. 

( 293 )



 Y. TSUNASHIMA, N. NEMOTO, Y. MAKITA, and M. KURATA 

      Thus, the reliability of the histogram method has not fully been established yet for systems 
      with bimodal particle-size distributions. 

          We have recently constructed a computer-controlled software correlator with a channel 
      number as large as 512.6) The increase in the channel number up to 512 was naturally 

      effective in locating the base-line level on the diagram for observed photon correlations, 
      and allowed us to shape an accurate autocorrelation function A(T) even for very weak scat-

      tered intensity at scattering angles ranging from 10° to 150°. Thus, we are in a position 
      to try an accurate analysis of A(T), especially consisting of double or multiple mode distribu-
      tions in the decay rate. For example, we are interested in separate determination of 

      diffusive and intramolecular modes from A(T) of a high-molecular-weight polymer sample, 
      or in separation of two translational diffusive modes of a mixture of two kinds of particles 

      or molecules with distinctly different dimensions. For the purpose, we employ the histo-
      gram method mentioned above. 

         In this article, we first review the histogram method of analysis and then apply it to a 
      series of simulated autocorrelation functions A(T) which are constructed for various types of 

      bimodal particle-size distributions with taking a plausible disturbance from noise into 
      account. Comparison of the particle-size distribution recovered from A(T) with the one 
      originally set in the simulation allows us to estimate the reliability of the histogram method 

      of analysis employed. The histogram method is also applied to mixtures of two kinds of 
      aqueous PS-Iatices, each bearing a unimodal particle-size distributions around a mutually 

      different mean value. It will be shown that the particle-size distribution of each component 
      latex is actually derivable by using the histogram method from A(T) obtained for the 

       mixtures. 

                            II. HISTOGRAM METHOD 

      1. Unimodal System 

         When an optical field obeys Gaussian statistics, the normalized photocurrent auto-
      correlation function measured by the homodyne method, A(T), is related to the normalized 

      first-order correlation function of the scattered electric field, go) (T) as 

A(T)=1+pig(1'0.)I2(1) 

      where T is the delay time and is the amplitude dependent on experimental condition of 
      coherence. fi is usually assumed to be an unknown parameter in the data fitting procedure. 

         For a monodisperse polymer solution, g(l) (T) can be written as 

Ig)(T)I=exp(—PT)(2 ) 

      if the contribution of intramolecular motions is negligible. The decay rate P is related 
      to the diffusion coefficient D as 

P=Dq2(3 ) 

     with 

q=(47rn/Ao) sin (0/2)(4 ) 

      where n is the refractive index of solvent, Ao the wavelength of the incident light in vacuum, 
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and 0 the scattering angle. For a system with a continuous distribution  of  r, the function 

go-) (r) can be expressed as 

                Igw(T)1=f~G(r)exp(—rT)dr(5 ) 

where G(r) dr represents the fraction of the total integrated intensity of scattered light 
from the molecules with decay rates between r and r+dr. In the histogram method, 
Eq. (5) is approximated by a histogram of equally segmented steps dr in f-space: 

Mr•+Gr/2 

I ga>(T)I = E H;(f,)f'exp(—ri4T)dr (6 ) 
                    ~=1rj-er/2 

with the normalization condition, 

M E H1(F,)dP=1(7) 
=1 

Here HAP') is the height of the j-th histogram step of the width dr around r; and M is 
the number of steps. Hence, 

dr=(rmax—rmin)/M(8 ) 

AT is the clock pulse interval for our time interval correlator, and i is the channel number 

(<511) with T=idT. 
   Substituting Eq. (6) into Eq. (1), we obtain the fitting error d; for the i-th channel as 

    d,=[A(iLT)-1]—)3[ E (—H;(r;)/idT} X 
                                        =1 

      {exp[—(r,+2zir)idr]—(r,+1—(r;- Z dr)iLT]}]2(9 ) 
Then, values of H;(r;) can be obtained by using the non-linear least-square fitting pro-
cedure where the reduced sum of di 2 is minimized with respect to a set of H;(r;) 

                  a 511 
8H1(f3) r i (dr2/a72j=0 (j=1, 2, ..., M) (10) 

where o2 is the statistical fluctuation of data point. The algorithm of Marquardt7) was 

practically in use because of its rapid convergence and good fitness. 
   In the fitting procedure, the initial values of HAT;) and of Prange (rm;n and rmax) 

are to be refined after each computation. The refinement of the former is immaterial, but 
some care may be required for the latter. We searched the r range by setting HAT J) 
equal to zero when its contribution is less than 0.5% of the maximam value of H1. Com-

putations were carried out by a FACOM M-160AD computer in our institute. 

2. Bimodel System 

   When the resultant histogram shows a bimodal-like distribution, the measured auto-
correlation function A(idr) may be re-analyzed by a splitted bimodal distribution with 

go.) (r) in the form 
                    2 Allrjl+drl/2 

             g11)(T)1= E E H91(r,t)fexp(—riLT)dr (11)                       1=1;1=1r;t-4/W2 

with the normalization condition, 
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                           2 Mt 

E E H7,(P,!)dre =1(12) 
1-1 11=1 

Here H71(rl!), ZIP 1, and Mt bear the same meanings as before within each mode denoted 

by 1. The relative intensity of each mode is therefore obtained as the amplitude at T=0 
in Eq. (11), 

M1 

at= E Hl1(1',I)dPt, 1=1, 2.(13) 
11=1 

3. Mean Decay Rate and Cumulants 

   The relationship between the cumulant and the moment expressions for g(1) (T) gives 

us1,2,3> 

lnlg(')(T)I= E Kn(r){(—T)n/n!} 
                                   n=1 

                              ~,G2T2—31 FL3T3+41(ia4-3f222)T4—... (14) 

where Kn is the n-th cumulant, and pt. is the n-th moment about the mean of G(P): 

              pn= f(r—r)'G(P)dr(15) 
Thus, the profile of P distribution will be expressed by the following values, 

                 KI=p,1=r=f*rG(P)dP=<D>zq2, 
                                            0 K2=1.G2, K3=µ3, K4=1.G4-3/.(.22, ••• .. (16) 

where P is the mean decay rate, <D>z is the z-average diffusion coefficient. p,2/1-2, 
µ3/µ23'2, and µ4/12.22 represent the z-average normalized variance, the standard deviation, 
the skewness (asymmetricity), and the curtosis (peakness) of the distribution, respectively. 
Terminating Eq. (14) at Kn term and substituting it into Eq. (1), we can obtain the optimum 
values for the first to n-th cumulants and moments by using the minimization algorithm of 
Marquardt mentioned above. The results are then called the n-th-order fit of the cumulants 
method. 8) It should be noted that the cumulants method can never predict the presence of 
bimodal nor multimodal distribution, but analyze the distribution as a unimodal one. 

                   III. SIMULATED DATA ANALYSIS 

1. Simulated Data Generation 

   The normalized and substantial autocorrelation function /3Ig(1>(T)I2 with bimodal 
distribution was generated by using a Pearson type I distribution function for G(r). This 
function is expressed as G(P)=C(P/hI-1)m~1(1—r/h2)m2with P ranging from h1 to h2. 
Hence, 

            P1g(1)(idT)12=F*h{f 12G1(P) exp (—PidT)dP+ 

                    feh4G2(r) exp (—ridT)dr}2(17) 
                                   h (296)
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with 

 G(T)=G1(P)+G2(P) 

=aiCi (Ph i-1)m1(1-P/h2)m2 a2C2(P/h3-1)ma(1-P/h4)m4 (18) 

Here al and as represent relative intensities of each mode, and as for unimodal distribu-
tion. Cl and C2 are the normalization constants for G1(P) and G2(P), respectively; e.g., 

                Ci 1= fi2(P/hl-1)m1(1-P/h2)m2dP(19) 
F* is the amplitude and its value is adjusted to be 0.75 which is a typical value obtained 
under our experimental condition.6) We used an argon ion laser equipped with an etalon 
as light source. The integrals in Eqs. (17) and (19) were computed by using a Gauss-
I.egendre integral program in FACOM 230-60 Scientific Subroutine Library. 

   Chu et al.4) have used in their simulation a narrow and a broad unimodal distributions 
of which p,s/P2 were 0.05 and 0.143, respectively, and bimodal distributions of which total 

µ2/P2 ranging from 0.08 to 0.97. One of the constituent mode of these bimodal distribu-
tions had a variance u,/Pr2 ranging from 0.259 to 2.405, and the other a rather small 
variance ranging from 0.00279 to 0.0108. Thus, we here test two extremely narrow 
unimodal distributions with variances 6.75 x 10-3 and 1.44 x 10-3, and two bimodal distribu-
tions composed of these unimodal distributions, of which the mixing fractions of the slower 
decay mode al are 0.30 and 0.80, respectively. The total variance of the bimodal distribu-
tions thus composed are 0.077 and 0.12 as shown in Table II.1 and 1I.2, respectively. 

   We simulated two kinds of autocorrelation functions for each distribution mentioned 
above, one denoted by A'(idr) is straightforwardly evaluated by Eq. (17), and the other 
denoted by A(iJT) is constructed by introducing a random error factor into A'(adT). 

Actually, a random number generating in the range bounded by 110.03 xA'(dT)1 is added 

to A'(idr) at each channel. The simulated correlation function A(idr) thus constructed 
shows a slightly larger scatter of data points as compared with real experimental functions. 

Values of parameters, h, m, a, and C, used in the simulation are listed in Table I and II. 

               Table I. Characterization of the simulated unimodal distribution 

G(I')=C(I'/h1-1)m1(1-I'/h2)m2 
h1=656.5, h2=970, mi=1.218, m2=1.344, C=0.3406 

                      Histogram 
            MethodCumulants Method 

                 (M=19)  
Calc.no error±3% error 

     no ±3% -------------------------- 
                   error error second fit third fit second fit third fit 

I'-rmax1.65 1.65 1.65 0.81 1.65 0.81 1.65 0.81 1.65 0.80 1.64 
r/sec-1808.9 808.9 808.9 809.0 809.0 809.0 809.0 807.1 808.9 798.3 804.4 

µ2/103 sec-2 4.41 4.40 4.65 4. 51 4.39 4.96 4.56 -0.151 4.04 -54.6 -13.7 
µ2/P2x1036.75 6.73 7.10 6.90 6.70 7.58 6.97 -0.232 6.17 -85.7 -21.2 
µ3/104 sec-3 1.17 1.10 0.958 - - 103 23.9 - - -12600 -2430 
,u4/107 sec-4 4.30 4.30 4.80 - - -- - - -

  K4/107 sec-4 -1.54 -1.51 -1.67 
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                              Table II. Characterization of the simulated bimodal distributions. 

 G(F)=aiCi(P/hi-1)mi(1-1'/hz)mz+(1-ai)Cz(1'/ha-1)m3(1-1'/hs)m4. 
                                               Slow decay mode : h1=656.5, h2=970, mi=1.218, m2=1.344, C1=0.3406. 

                                               Fast decay mode : ha=1500, h4=1825, m3=1.372, m4=2.312, C2=28.88. 

        1. a1=0.300 

          1.1. Histogram Method (Mi-+-M2=9+10) 

                Total ValuesaSlow Decay ModeFast Decay Mode ,.j 

                 calc. no error±3% errorcalc. no error±3% errorcalc. no error ±3% error z 

                                                                                                                               y .r/sec-11388 1388 1386809 8118281636 1636 1639 

µz/105 sec-21.48 1.48 1.464.41E-2b 5.41E-2 5.31E-23.84E-2 4.26E-2 4.49E-2 

µ2/P2x 1027.66 7.66 7.590.675 0.823 0.7730.144 0.159 0.167 Z 
t4 

µa/107 sec-3-4.77 -4.76 -4.331.17E-3 6.65E-3 2.97E-35.38E-3 1.65E-3 2.69E-3 0 

y 

                                                                                                                                             O 

cµ4/1010 sec-44.00 4.02 3.734.30E-3 6.56E-3 5.90E-33.51E-3 4.03E-3 4.54E-3 
  PTmax"-1.77 1.77- 1.04 1.06- 2.09 2.09 4 

al0.300 0.301 0.312N 
                                                                                                                                                     H a 

           1.2. Cumulants Methoda P 
p 

            no error±3% error¢ 
                             calc. 

                      second fit third fitfourth fit second fitthird fit fourth fit 

1'Tmax- 0.69 1.77 0.691.77 0.69 1.77 0.69 1.77 0.69 1.77 0.67 1.77 z) 
r/sec-11388 1388 1390 13881388 1388 1388 1385 1388 1380 1388 1342 1386 

p2/105 sec-21.48 1.57 1.65 1.481.52 1.47 1.47 1.43 1.61 0.882 1.63 -7. 08 1.32 

µ2/r2 x 1027.66 8.16 8.53 7.707.88 7.66 7.63 7.45 8.36 4.63 8.44 -39. 3 6.90 

sa/107 sec-3-4.77 - - -4.06-2.81 -4.88 -5.26 --- -24.6 0.355 -855 -14.8 

µ4/1010 sec-44.00 - -- - -3.60 -4.84-- - - -3610 -29.8



        2.  a1=0.800 

         2.1. Histogram Method (Mi+M2=9+10) 

                  Total ValuesaSlow Decay ModeFast Decay Mode 

                  calc. no error±3% errorcalc. no error±3% errorcalc. no error±3% error 

   F/sec-1974 974973809 8138121636 1629 1622 

µ2/105 sec-21.14 1.14 1.114.41E-2b 5.64E-2 5.34E-23.84E-2 4.35E-2 3.12E-2 
ro 

112/172X1011.20 1.20 1.176.75E-2 8.54E-2 7.86E-21.44E-2 1.65E-2 1.12E-2 P 

µa/107 sec-35.40 5.00 4.941.17E-3 5.09E-3 5.44E-35.38E-3 4.10E-3 1.82E-2 

µ4/1010 sec-44.15 3.82 3.754.30E-3 6.98E-3 7.27E-33.51E-3 4.42E-3 1.75E-3 

rTmax--1.99 1.99__1.66 1.66__3.36 3.36d 
n al0.800 0.806 0.809 

o. 
... 2.2. Cumulants MethodaN 
10Q. 

toono error±3% error 
calc.G 

                     second fit third fitfourth fit second fit third fitfourth fitw 
P Irma.-0.97 1.98 0.971.99 0.97 1.99 0.971.97 0.97 1.99 0.96 1.99 "n' 

r 
r/sec-4974971 966 974974 974 974 969965 970 974 959 972 

µ2/105 sec-2 1.14 0.917 0.7911.13 1.101.14 1.14 0.879 0.777 0.925 1.15 -0.271 1.00r, 

µ21P2 x 101 1.20 0.973 0.847 1.19 1.161.20 1.20 0.936 0.834 0.983 1.21 -0.294 1.06 g 
µ3/107 sec-3 5.40 - - 4.98 4.405.60 5.78 - -1.08 5.35 -64.4 0.60574 

µ4/1010 sec-4 4.15 -- -1.39 1.75 --- -148 -6.03 

        a. Total or resultant values obtained when the resulted bimodal distribution is regarded as a unimodal one. 
        b. For example, 1.0 E-2=1.0 x 10-2.
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2. Analysis of Simulated Correlation Functions 
   Results of analysis of the simulated correlation function A(idT) for the unimodal 

distributions are summarized in Table I. As expected, the histogram analysis of A'-
functions gives all the moments except IL3 correctly to within a 1% deviation from the input 
values. The analysis of A-functions to which a 3% randomization has been applied gives 
I' correctly, p.2 and,..ss/P2 within a 5% deviation, and p,s, p4, and K4 within a 10% deviation 
from each input value, respectively. The slightly poor reproducibility of pa found in the 
both cases indicates that the skewness of distribution, especially of narrow distribution as 
the present ones, is most strongly affected by the segmentation of variables as compared 
with other characteristics of distribution. 

   In the cumulant analysis, we used two different delay time ranges; one is the entire 
range of idT extending from i=1 to 512 as is the case of the present histogram analysis, 
and the other is a partial space extending 1=1 to 250. We indicate in Table I the delay 
time range by -Tmax, where Tmax is the maximum delay time. The cumulant method 
gives poorer results as compared with the histogram method; for example, the former 
analysis of the A-function gives I' correctly but p2 with a 10% deviation from the input 
value in the second-order fit with 1 Tmax=1.65. These results indicate that the distribu-

tion used here is too narrow to be analyzed by the cumulants method. 

   Figure 1 shows A(1JT), which is abbreviated as A(i) there, as a function of the channel 

number i of clock pulse interval. The percent error of fitting di given by Eq. (9) is also 

plotted against i. In the insert to the figure, the histogram Hi(I'i) and the input Pearsonian 
curve are shown as functions of the decay rate r, where agreement between two functions 

2..  

                           SIMULATED DATA8 

                                       WITH ±3°l. ERROR 
                      AT=4}ismo 4 

                2 ilk                                   0 
5 10 

                                                                    fx10-2IS1  

1 --------------------------------------------------------------------------------------- ---------------- 

                                                                                               -10 

                                                                                                                            --10 

0- I lI 1 I1 I 1 II  
      0100200300400500 

                                    CHANNEL NUMBER C 

         Fig. 1. The autocorrelation function A(1) and the fitting error di (in %) plotted 
                 against channel number i of clock pulse interval for the simulated unim-
                odal distribution with a 3% randomization. A(i) is the abbreviation of 

A(idr). Insert: The histogram H(P) and the Pearsonian distribution 

                 function for the decay rate P. Parameter values used: d-r=4 1Lsec, PTmax 
                =1.65. The dots denote data points, and the solid curve A(i) shows the 

               fitting curve obtained by the histogram H(P). 
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is excellent. Hence, using the histogram method, we can extract reliable information on 
 G(P) from A(-r) even when an extremely narrow distribution as the present one is given. 

It is also concluded that our choice of 1'Tmax=2 is a reasonable one for precise analysis 
of the correlation function. Actually, A(T) attains quite closely its base line when fTmax= 2. 

   Results of the histogram analysis for two bimodal distributions defined earlier are 
summarized in Table II.1 and 2, the former for ai=0.30 and the latter for a1=0.80. In 
both cases, the total variance µ2/P2 which is a characteristic parameter in unimodal descrip-
tion of the bimodal distributions becomes 10 to 80 times larger than those of the constituent 
unimodal distributions. The total P is in agreement with the input value within 0.1% 
deviation, µz and µ2/P2 within 3%, and IL s and /.64 within 10%, respectively. These devia-
tions are of comparable order with those obtained for the unimodal distributions. Further-
more, we obtained the following results for the characteristic parameters of each constituent 

distributions: (1) P was in agreement with the input value within 1%, (2) /Ls and µ2/152 
within 25%, (3) p.3 and µ4 was obtained in the same order of magnitude as those of input, 
and (4) the relative intensity al of the weak mode, i.e. al in Table II. 1 and as in Table II.2, 
was estimated to an accuracy of 5%. These results, especially (1) and (4), may be counted 

as a strong support for the reliability of the histogram method in application to the separate 

estimate of constituent dynamic modes from a multiple-mode correlation function. Again 
it is to be emphasized that we used the condition 1 Tmax=2. 

   As shown in Table II.1 and 2, the cumulants method of third- and fourth-order fits, 

if used with l Tmax 2, also gives good values of P and µz. However, the reliability in 

the estimates of higher moments rapidly decreases, and the method gives practically no 
information about the characteristics of each constituent distribution. 

   Figures 2 and 3 show plot of A(i) against i, and the histograms H1(Pi) obtained 
from A(i). Agreement of the latter with the input G(P) is again satisfactory. 

2---------------------------------------------------------------------------------- 

                                                         SIMULATED DATA 
                                                            WITH *3% ERROR 

(1) a1 =0.30 
At' =2.5ps 

1 ------------ 
a 4 

  o~ 

L 2                                                 I 1                                        I 
1 

      i 

           0.41.01.62.2 
r1103 s1 

0i i I i I I I i 1 I  
0100200300400500 
                                    CHANNEL NUMBER i 

         Fig. 2. Plots of A(i) against i, and plots of H(I') against I' for the simulated 
                bimodal distribution with a 3% randomization. The relative intensity of 

                  the small decay mode ai=0.30. Parameter values used: dr=2.5µsec,. 

I'Tmax=1.77. The dots and curves bear the same meanings as in Fig. 1. 
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                                                             SIMULATED DATA 
                              WITH 3% ERROR  
                   ..(2) a1 =0.60 

AT =4 H5. 

dt 

4 

                   C_2 

                     0 
0.41.0 1.62.2 

r/103 s 1 

        II I I I II 
      0100200 300400500 

                                            CHANNEL NUMBER L 

         Fig. 3. Plots of A(i) against i, and plots of H(f) against I' for the simulated 
                bimodal distribution with a 3% randomization. ai=0.80, d7=4 µsec, and 

TTmax=1.99. The dots and curves bear the same meanings as in Fig. 1. 

   In conclusion, if the data-point dispersion of A(r) is less than 3% and the range of 
delay time extends to ITmax-2, we can expect the histogram method to give the char- 
acteristic parameters of bimodal distributions with the following reliances: (1) 99% on P, 

95% on FG2, and 90% on µa ane /t4 for the total or overall distributions, and (2) 99% on I', 
75% on p.2, an order of magnitude of M,a and jr4 for each constituent distributions, and 95% 

on the fraction of constituent modes. 

              IV. MEASUREMENTS ON BINARY MIXTURES 
                  OF AQUEOUS POLYSTYRENE-LATICES 

1. Particle-Size Distribution Function 

   Consider a polydisperse sample of spherical particles with a continuous distribution of 
sizes and denote by f *(r)dr the number fraction of a class of particles whose radii are in the 
range between r and r+dr. We call P(r) the particle-size distribution. Since the mole-
cular weight of a particle is proportional to r3, the (number) distribution function of M is 

given as 

f *(M) =krsf *(r)(20) 

where k is a constant. 
   According to the theory of light scattering,9) the reduced scattered light intensity from 

a solution of these particles is given as 

            R(0)=Kv ff*(M)M2P(M, 0)dM(21) 
if the molar concentration v is sufficiently small so as to make higher order terms of v 

negligible.'°) Here, B is the scattering angle, P(M, 0) is the particle scattering factor for 

a particle with molecular weight M and K is a constant including the square of specific 
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 refractive index increment. Eq. (21) can be expressed, in terms of r, as 

               R(6)=K'v ff*(r)r8 P(r, 0)dr(22) 
 On the other hand, the quantity G(r) dr represents the fraction of the total integrated 

 intensity scattered by all the particles having decay rates from r to r+dr. Hence, we 

 have 

               f°G(r)dr=K'vff *(r)r8P(r, 0)dr(23) 
    In the histogram method, we devided the r-space into segments of an equal interval 

dr. Thus, the j-th step of the histogram extends from rii(=ri-dr/2) to r12(=r1-1-
 dr/2). To define the corresponding step in r-space, we recall the following two relation-

 ships :9) 

D(c,r)=I'(c, r)/42=Do(r)(1-0.16 clp)(24) 

Do=ksT/6 or(25) 

 where Do and D are the translational diffusion coefficients at infinite dilution and at total 
 weight concentration c, p the particle density, ks the Boltzmann constant, and no the solvent 

 viscosity. Thus, r;l and r;2 are converted, respectively, to rji and r;2 by using the 
 relationship that 

r=(ksT/61r710)(g2/f)(1-0.16c/p)(26) 

 Then, the j-th step in r-space may be defined as 

ri=(rii-Fri2)/2, dr;=rii—r;2(27) 

 and Eq. (23) may be rewritten in the difference form as 

H;(ri)zlf=K'v .f*(ri)rjSP(ri, 8)dr;(28) 

 We note that the step interval dr; is not equal but depends on j.. The particle scattering 
 factor P(r;, 0) for a rigid sphere is written as 

P(x)=(3/x3)2(sin x—x cos x)2(29) 

 with 

x=q7=(44a)r sin (6/2)(30) 

 where X is the wavelength in the particle. Eqs. (28) to (30) enables us to determine the 
unnormalized distribution for the j-th class particles, f *(r;), from the histogram H;(r;). 

 The normalized distribution f (r;) is then calculated as 

                                     M 

                 .f(ri)=f*fi)l E.f*(ri)dr;(31) 

    When the distribution consists of two modes, the histogram analysis of A(r) is perform-
 ed by using Eq. (11). The relative intensity of each mode, ar(1=1, 2), is then written as 

      MrMi 

a,= E Hir(fir)dri= E .f(rii)rii°P(r;1, 0)dr;i (32) 
11=11r=1 
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  with 

                                       2 Ml 

                 f(rit)=f*(rir)~ E E f*(rir)4rit(33) 1=1 11=1 

  The mean radius r and the standard deviation Fc2,112 of the particle-size distribution either 
  of the total sample or of its constituents may be calculated from f (ri) or f (r 1) by using the 

  ordinary procedure. 

  2. Experimentals 

      The detail of our computer-controlled dynamic light scattering instrument with a time 
  interval digitizer has been described earlier. 6) The polymer samples we used were two 
  aqueous suspensions of PS-latex particles of 0.176 and 0.091 pm nominal diameter (Dow 

  Chemical, Lot No. 2M4K and 7EG5, respectively). The dilute suspensions of each 

  particle size were prepared as described earlier.6) Solutions of desired mixing ratio of 
0.091. to 0.176 µm particles were prepared by mixing by weight the constituent suspen-

  sions in a light-scattering cell through a Millipore filter of nominal pore size 0.22 µm. 
  Measurements of the autocorrelation function by time interval method were made at T=25° 

  C, ao=488 nm, 0=30° and 60° for the V0 component of scattered light from two mixed 
suspensions : mixture A; 2.32 X 10-6 g/(g solution) of 0.091 µm particles plus 8.90 x 10-6 

  g/(g solution) of 0.176 tm particles (weight fraction of 0.091 pm=0.965) and mixture B; 
  2.45 x 10-6 g/(g soltuion) of 0.091 µm particles plus 4.21 x 10`6 g/(g solution) of 0.176 sm 

  particles (weight fraction of 0.091 sm=0.368). Two single particle suspensions: 
  1.04 x 10-5 g/(g solution) of 0.091 ,um particles and 5.50 x 10-6 g/(g solution) of 0.176 ttm 

  particles were also measured for reference to the mixed suspensions. 

  3. Analysis of Correlation Functions 

      Results of the histogram analysis for two single aqueous PS-latices are listed in Table 

  III. We used the number of histogram M=14-20. The reduced decay rates 
I'/sin2(0/2) obtained at two scattering angles 30° and 60° were in good agreement within 

                Table III. Characterization of aqueous suspensions of polystyrene-latex 

                          particles by the histogram method. T=25°C; A0=488 nma. 

      angle,D, 1'/sin2(0/2)., ic2/P2, r, (1,2,)1/2,b rrmax 

     degreesec-1 sec--1 10-3 10-6 cm 10-o cm 

              (1) d=0.176 pm; c=5.50 x 10-6 g/g solution. 
        30220± 3 3290±40 1.49±0.04 8.70±0.10 0.33±0.01 1.67 

        60814± 2 3260± 8 1.73±0.05 8.80±0.01 0.36±0.01 1.67 

    ref.—3278c —8. 80d0. 12d— 

              (2) d=0.091 pm; c=1.04 x 10-5 g/g solution. 
        30428± 5 6400±70 3.85±0.56 4.47±0.05 0.27±0.02 1.10 

        601610±20 6450±70 6.46±2.44 4.40±0.09 0.36±0.07 1.26 
    ref.— 6340c— 4.55d 0.29d— 

        a. Uncertainties represent the standard deviations of the data fitting. 
       b. (µ2r,)1/2=(standard deviation of r around r)=[f(r—r)2f*(r)dr/f f*(r)dr]1/2. 

        c. Calculated from rcatc=42kBT/6lrgorn with rn the nominal radius of Dow Chemical. 
        d. Nominal values of Dow Chemical. 
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1.5% with the theoretical values calculated from Eqs. (24) and (25) with  c=0. The average 
radii of the particles F estimated from f *(r) by using Eq. (28) agree also within 2,--,3% 

                                                                   with the nominal values of Dow Chemical. Thus, taking the fitting uncertainties indicated 

in Table III into consideration, we may conclude that, irrespective of the scattering angles, 
r and Y obtained are in perfect agreement with Dow Chemical's values determined by 
electron microscopy. The small values of (.62 f P2, actually of a order of 10-3, indicate that 
that the PS-latices used have very narrow size distributions. This is confirmed by com-

paring the estimated standard deviations (s2r)1/2 with nominal ones as shown in Table 
III. The tendency that PS-latex particles with a large size give (µ2r)1'2 two or three 
times larger than the nominal value has already been recognized in the histogram analysis 
by Chu et a1.41 

   In Fig. 4 are plotted against P the decay rate distribution 11(P) for aqueous PS-latices 
of d=0.176 and 0.091 µm, respectively, at 30° and 60°. The normalized distribution 
functions of particle size, f (r), are also shown in Fig. 4. It is notable that f (r) derived from 
M(P) for two scattering angles have a similar shape off(r) as it should be. 

   Results of the histogram analysis for aqueous suspensions of PS-latex mixtures are 
summarized in Table IV. We used bimodal type of hystograms with M1+M2=7+8 
or 9+12, where subscripts 1 and 2 denote the particles of d=0.176 .sm and 0.091 sm, 
respectively. The average radii rr and standard deviations (12r)1112 for each mode 

(1=1 and 2) are tabulated in the table. The relative intensities a1 of the first component 
with d=0.176 p,m were also estimated by using Eq. (32). These are to be compared 
with the calculated intensities al,aara=c1Y1n3P1(0)/[clyin3P1(0)+c2F2n3P2(0)] where the 

                                                       0) d = 0.176 rm 

9= 30' 9=60° 

4 -1.2 30, 
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rt_                                                               .er '~ 60' 
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                                                       (2) d= 0.091},m 

9= 30°9= 60' 
                                                                                                                                        ' 
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                                                0.8 11
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                _ - 0.1 - 
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                 4 5 12 16 204 5 
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         Fig. 4. The histogram G(P) plotted against the decay rate r, and the normalized 

                particle-size distribution/ (r) plotted against the particle radius r for the 
                 aqueous suspensions of PS-latex particles. (1) The nominal diameter 

                d=0.176µm and (2) d=0.091tan. T=25°C, A5=488 nm, and the scat-
                 tering angle 0=30° and 60°. 
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           Table IV. Characterization of binary mixtures of aqueous polystyrene-latex particles 
                    with different sizes by the histogram method. T=25°C; A0=488 nm.a 

               slow decay mode fast decay modetotalb 

      angle, 
sin (B/2)(7~2/r2)1sin (B/2)(µ2/r2)2sin (/2)p,2/r2 

    degree X sec X 103 x secX 103 X sec X 102 

             (1) Mixture A 
c2/(cl+c2)=0.965; c1=8.90 X 10-8 g/g solution; c2=2.32 x 10-6 g/g solution. 

        303320±40 6.71±0.70 6350±20 4.23±0.39 5740±30 4.90±0.33 
        603250±80 5.57±1.00 6390±40 4.69±1.65 5960±30 3.97±0.56 
  ref. 32786 — 6340c ——— 

             (2) Mixture B 
c2/(c1'+c2) =0.368; c1=4.21 X 10-6 g/g solution; c2=2.45 X 10-6 g/g solution. 

        303320±30 9.23±1.25 6310±20 2.83±0.79 3540±70 5.32±0.99 
        603260±60 8.73±1.00 6250±60 3.25±1.27 3670±50 7.99±1.55 
   ref. 3278c — 6340c ——— 

                              slow decay mode fast decay mode 

     angle,a1 r1(µ2r)11/2 r2(µ2r)2/12 rTmaxb 
      degreex 102 X 106 cm X 106 cm x 106 cm X 106 cm 

             (1) Mixture A 
         30 20.3±1.9 8.57±0.10 0.62±0.05 4.50±0.02 0.29±0.01 1.97 

         60 13.5±4.1 8.80±0.30 0.64±0.08 4.45±0.04 0.27±0.04 3.12 
      ref. 20.2(30°)d 8.80e 0.126 4.55e 0.296 — 
              16.4(60°)d 

             (2) Mixture B 
        30 91.4±5.4 8.50±0.09 0.71±0.07 4.56±0.02 0.24±0.03 1.81 

         60 86.5±4.3 8.71±0.13 0.68±0.08 4.58±0.04 0.26±0.07 1.87 
      ref. 91.9(30°)d 8.806 0.126 4.55e 0.296 — 
               89.7(60°)a 

        a. Uncertainties represent the standard deviations of the data fitting. Subscripts 1 and 2 
          (except p.2 and µ2r) denote the particles of d= 0.176 µm and 0.091 pm, respectively. 

       b. Total values obtained when the resulted bimodal distribution is treated as a unimodal one. 
        c. Calculated from rl,calc= (kg T/67r,7orin)g2 with Fin the nominal radius of Dow Chemical of 

          1-mode (1=1,2). 
       d. Calculated from ai,caic=ciFin2P1(0)/[ciFin3Pi(0)+c2r2n3P2(0)]• 

        e. Nominal values of Dow Chemical. 

  second subscript n denotes the nominal values. cl and cz are the concentrations in 

  g/(g solution) of particles with d=0.176 and 0.091 em, respectively. rin and F25 are the 
  nominal radii of Dow Chemical; i.e., Pin=0.088pm and Y2n=0.0455pm, respectively. It 
  is clearly seen from Table IV that rr/sin2(0/2) and Pr for each mode are, irrespective 

  of scattering angles and of mixed ratio of single suspensions, in good agreement with 
  the corresponding reference values within an error of 2% and 3~4% respectively. If 

  we take the fitting uncertainties into consideration, we can say that the constitutive 

(p2r),112 as well as 1'r and Fi(1=1,2) at given scattering angles can be fairly well estimated 
  by the histogram method, though (p2r)11/2 for larger particles are again overestimated 
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      Fig. 5. Plots of A(i) as a function of channel number i obtained for binary mix-
             tures of aqueous PS-latices with different diameters, d=0.176 and 0.091 

µm, at T=25°C, Ao=488 nm, and 0=60°: (1) mixture A, fraction of 0.091 
µm particles 0.965, Jr=4µsec; (2) mixture B, fraction 0.368, d-r=4ppsec. 

             The dots denote A(i) and the solid curves represent the fitting curves 
             obtained by the histogram analysis. For the curve (2), its ordinate is 

             sifted downward by 0.5 in order to avoid its overlapping with the curve 

          (1). 
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                                         Fig. 6. The histogram H(P) plotted against the decay rate P for binary mixtures 
             of aqueous PS-latices with different diameters, d=0.176 and 0.09111m: 

            (1) Mixture A; the fraction of 0.091 pm particles 0.965, 0=30°; (2) mix-
             ture A, 0=60°; (3) mixture B, fraction 0.368, 0=30°; (4) mixture B, 0= 

             60°. T=25°C and Ao=488nm. 
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         by a factor of 5 or 6. In addition, it should be emphasized that the relative intensities of 
         each mode evaluated by the histogram method are in good agreement with the theoretically 

         calculated ones to within 5% deviation. Figure 5 shows, as an example, a plot of the 
         measured points of correlation functions A(i) and the fitting curves resulted from the 
         histogram analysis as functions of channel number of clock pulse interval i, which were 

         obtained for two mixed suspensions A and B at T=25°C,  ao=488 nm and 0=60°. 
            In Fig. 6, we show plots of 1-1(1') distribution for two mixed suspensions A and B at 

         scattering angles 30° and 60°, respectively. For each mixture, it can be recognized that 
         the relative histogram area of slow decay mode 1 decreases slightly with increasing scattering 

         angle from 30° to 60° (see, also al in Table IV). This effect may be attributed to more 
         rapid decrease of P(0) for 0.176 pan-particles as compared with that for 0.091 ,um-particles. 

            By using Eqs. (32) and (33), we can obtain the normalized size distribution f (r) for 
         mixed suspensions A and B. Figure 7 shows the results, where a pair off (r) obtained at 
         scattering angles 30° and 60° are plotted against the particle radius r for mixtures A and B. 
         It should be noted in Fig. 7 that the main regions of r for each mode can be definitely 

         settled, irrespective of the scattering angles and of the mixing ratio of two components. 
         That is, the main region for each constituent particles of the present mixtures extends over 

r=4-5 x 10-6 cm and r=7.5' 10 x 10_6 cm for the particles with nominal sizes, d=0.091 
         and 0.176 ,um, respectively. This certifies clearly the following situations; (1) the ex-

         perimental result that (µ2r)i1/2 for mixed suspensions gave 2 times larger deviation than 
         that for single size suspensions (see Tables III and IV) does not exert any substantial 

        change on the shape off(r) distributions and (2) the individual f (r) estimated from mixed 
         suspensions represents the true size distributions with reasonable accuracy. 
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                                           2 d = 0.091pmd= 0.176 pm 
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                Z—,60 3 
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                 4 57 9 11 
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                    Fig. 7. The normalized particle-size distribution f (r) plotted against particle 
                            radius r for binary mixtures of aqueous PS-latices with different diameters : 

                         (1) Mixture A, fraction, 0.965; (2) mixture B, 0.368. T=25°C, Ao=488 
                           nm, and 8=30° and 60°. 
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   In conclusion, we were able to establish the reliability of the histogram method for 
the analysis of bimodal distributions of which constituent distributions are both as narrow 
as  p2r/r/2 =0.001 and to show that the relative intensity of each constituent is also deter-
minable from A(r) with reasonable accuracy. 
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