

Г

Title	Differential and Integral Cross Sections of the (p,a) and (d,a) Reactions on some Light Nuclei
Author(s)	Yanabu, Takuji; Yamashita, Sukeaki; Nakamura, Teruo; Takamatsu, Kunio; Masaike, Akira; Kakigi, Shigeru; Nguyen, Dai Ca; Takimoto, Kiyohiko
Citation	Bulletin of the Institute for Chemical Research, Kyoto University (1965), 43(s): 41-67
Issue Date	1965-02-25
URL	http://hdl.handle.net/2433/76098
Right	
Туре	Departmental Bulletin Paper
Textversion	publisher

Differential and Integral Cross Sections of the (p, α) and (d, α) Reactions on some Light Nuclei

Takuji Yanabu,^{*1} Sukeaki Yamashita,^{*1} Teruo Nakamura,^{*2} Kunio Takamatsu,^{*3} Akira Masaike,^{*4} Shigeru Kakigi,^{*2} Dai Ca Nguyen,^{*2} and Kiyohiko Takimoto^{*2}

(Kimura Laboratory)

Received June 15, 1964

Alpha emitting reactions induced by protons and deuterons were investigated in our laborabory since 1960. Protons with energy near 7.5 MeV and deuterons with energy near 15 MeV were produced by the Kyoto University cyclotron. Alpha particles leaving the residual nuclei in their ground or low-lying excited states were detected by a proportional counter, a scintillation counter and later by a solid state detector.

Differential and integrated cross sections are given in tabullar forms for the following reactions; (p, α) reactions on F¹⁹, Na²³, Al²⁷, P³¹ and K³⁹, (d, α) reactions on C¹², N¹⁴, O¹⁶, F¹⁹, Ne²⁰, Al²⁷, P³¹ and S³².

1. INTRODUCTION

When the nucleus is struck by high speed protons, deuterons or other particles, many types of nuclear reaction occur if energetically possible. Among those reactions, alpha particle emitting reactions are interesting from the following standpoints.

1) Alpha particle energy is determined more precisely than other particles such as protons or deuterons, so that to detect and analyze the emitted alpha particle energy is a convenient method to determine the energy levels of the residual nucleus.

2) Whether the alpha particle emitting state is a compound nucleus or not is interesting from the standpoint of reaction mechanism.

3) From the standpoint of surface direct reaction, it is interesting to inquire whether the (p, α) and (d, α) reactions come from the nucleons pick-up or α -cluster knock-out processes.

4) If the above mentioned knock-out process is dominant, there will be fair variation of the reaction cross sections from nucleus to nucleus, i, e., the type of 4n nucleus will give larger values of cross sections than others.

5) If alpha-clustering in the target nucleus is assumed, the angular distributions of alpha particles resulting from the (p, α) reaction may have some re-

^{*1} 柳父琢治,山下佐明

^{*2} 中村輝男, 柿木 茂, ニュエン・ダイ・カ, 滝本清彦

Department of Physics, Faculty of Science, Kyoto University.

^{*3} 高松邦夫 Now at the Institute for Nuclear Study, University of Tokyo.

^{*4} 政池 明 Now at the Department of Physics, Faculty of Science, Nagoya University.

lation to the free proton-alpha scattering and some relation will hold between the (d, α) reaction and the free deuteron-alpha scattering.

6) Since deuteron and alpha particles have zero isobaric spin, it is possible to check the isobaric spin conservation rule in the (d, α) reaction when the target and the residual nucleus have different iso-spin quantum number.

In the following, results obtained in our laboratory for the (p,α) reactions on F^{19} , Na^{23} , Al^{27} , P^{31} and K^{39} , and for the (d, α) reactions on C^{12} , N^{14} , O^{16} , F^{19} , Ne^{20} , Al^{27} , P^{31} and S^{32} are given in tabullar forms. Abbreviations used in these tables are,

 α_0 , : alpha particles leaving the residual nucleus in its ground state.

 $\alpha_{1,\text{etc}}$: alpha particles leaving the residual nucleus in its first excited state and so on.

 E_p : incident proton kinetic energy in the laboratory system.

 E_a : incident deuteron kinetic energy in the laboratory system.

 $\theta_{0.M.}$: angle between the direction of the detected alpha particle and the direction of the incident beam in the center of mass system.

 $(d\sigma/d\Omega)_{\sigma.M.}$: differential cross sections in the center of mass system.

Error: essentially statistical error + back ground subtraction error.

2. EXPERIMENTAL METHODS AND RESULTS

2-1. $F^{19}(p, \alpha) O^{16}$ Reaction²⁾

The 7.4 MeV protons were extracted from the Kyoto University cyclotron and focused on a teflon film of 0.6 mg/cm^2 thick at the centre of a scattering chamber. Proton energies were changed from 7.4 MeV to 6.9, 6.5 and 6.0 MeV by passing through the aluminum foil of suitable thickness.

Alpha particle detection was done by a counter telescope consisting from a thin proportional counter in conjunction with a CaI scintillation counter. Alpha particles leaving the residual nucleus in its ground state were selected. The results obtained are listed in Table 1. Integrated cross sections calculated from these differential cross sections are given in Table 6.

Detailed description of the experimental procedures is given in reference (2).

2-2. Na²³ (p, α) Ne²⁰ Reaction⁵⁾

Thin layer of about 1 mg/cm² of the Na₂CO₃ fine powder was used as a Na²³ target. Proton beam handling is the same as above 2-1. Proton energies were 7.3 MeV, 7.1 MeV and 6.9 MeV. Alpha particles leaving the residual Ne²⁰ nucleus in its ground and first excited states were detected with a p-n junction type solid counter. Results sre listed in Table 2. Integrated cross sections calculated from these results are listed in Table 6. Detailed description of the experimental procedures are given in reference (5).

2-3. Al²⁷ (p, α) Mg²⁴ Reaction²⁾

A commercial aluminum foil of 0.2 mg/cm^2 was used as a Al²⁷ target. Proton energies were changed from 7.4 MeV to 7.0, 6.5 MeV by the stacked foil method.

Alpha particles leaving the residual nucleus Mg²⁴ in its ground and first excited states were counted with a single proportional counter of 10 cm effective length.

Differential cross sections of these reactions are listed in Table 3, and the calculated integral cross sections are given in Table 6.

2-4. P³¹ (p, α) Si²⁸ Reaction²⁾

Proton energies used were 7,4, 7.0, 6.5 and 6.1 MeV. P^{31} target were prepared by red phosphorous fine powder deposited on a 0.25 mil mylar sheet. The target thickness was 0.3 mg/cm² for P^{31} . Alpha particles leaving the Si²⁸ nucleus in its ground and first excited states were detected with a single proportional counter described in 2-3 and in reference (2).

Differential cross sections for this reaction are given in Table 4, and the calculated integral cross sections are listed in Table 6.

2-5. K^{39} (*p*, α) A^{36} Reaction⁵⁾

Proton energies were changed from 7.3 MeV to 7.1 and 6.9 MeV. Thin layer of K_2CO_3 fine powder deposited on a 0.25 mil mylar sheet was used as a K^{39} target. Target thickness was about 1 mg/cm².

Alpha particles leaving the residual A³⁶ nucleus in its ground and first excited states were detected with a p-n junction type solid state counter. Differential cross sections for this reaction are listed in Table 5, and the integral cross sections calculated from these results are given in Table 6.

2-6. C^{12} (*d*, α) B^{10} Reaction¹⁾

Deuteron energy was 14.7 MeV. Polystyrene film of 0.2 mg/cm^2 thickness was used as a C¹² target. Alpha Particle detection was done with a proportional counter whose gas pressure was controled from outside the scattering chamber. Detailed description of the experimental procedure is given in reference (1).

Alpha particles leaving the B¹⁰ nucleus in its ground and first excited states were selected. The numerical values of the differential cross sections are listed in Table 7, and the integrated cross sections calculated from these values are given in Table 15.

2-7. N¹⁴ (d, α) C¹² Reaction¹⁰

Natural nitrogen gas was used as a N^{14} target. Alpha particle detection was done by a thin proportional counter in conjunction with a C_sI scintillation counter. Detailed description of the experimental procedures is given in reference (1). The incident deuteron energy was 14.7 MeV, but the energy loss in the gas target was about 200 KeV, so the effective energy was about 14.6 MeV. Alpha particles leaving the C¹² nucleus in its ground and first excited states were selected. Differential cross sections for this reaction are given in Table 8, and the integrated cross sections are listed in Table 15.

2-8. O^{16} (*d*, α) N¹⁴ Reaction^{1),3)}

This reaction was investigated in two stages. First, a mylar film of about 0.8 mg/cm^2 was used as a O¹⁶ target, and the alpha particle detection was done by a

thin proportional counter in conjunction with a C_sI scintilation counter. Deuteron energy was 14.7 MeV in this stage. Second, natural oxygen gas was used as a O^{16} target, and the alpha particles were detected with a p-n junction semiconductor counter. Deuteron energy was 14.5 MeV in the second stage. Detailed descriptions are given in references (1) and (3).

Numerical values of the differential cross sections are given in Table 9, and the integrated cross sections are listed in Table 15.

2-9. F^{19} (*d*, α) O¹⁷ Reaction⁴⁾

A thin film of 0.8 mg/cm² thick teflon was used as a F^{19} target. Alpha particles leaving the O¹⁷ nucleus in its ground, first, second, third and fourth excited states were resolved with a semiconductor detector, whose reverse bias voltage was adjusted to fit the range of alpha particles. Deuteron energy was 14.7 MeV. Detailed description of the experimental procedure is given in reference (4).

Numerical values of the differential cross sections for this reaction corresponding to each O^{17} state described above are given in Table 10. Integrated cross sections are listed in Table 15.

2-10. Ne²⁰ (d, α) F¹⁸ Reaction⁴⁾

Natural neon gas was used as a Ne²⁰ target. The gas pressure was about 30 cm Hg. Alpha particles were detected with a semiconductor detector. Alpha particle groups corresponding to the ground, fifth, sixth and seventh excited states of the F¹⁸ nucleus were resolved by this detector, but alphas corresponding to the first, second, third and fourth excited states of the residual nucleus were not resolvable. So the differntial cross sections for these states are summed values of each reaction channel. Deuteron energy was 14.7 MeV. Detailed description of the experimental procedure is given in reference (4).

In Table 11, the numerical values of the differential cross sections for this reaction are given. Integrated cross sections are listed in Table 15.

2-11. Al²⁷ (*d*, *a*) Mg²⁵ Reaction⁶⁾

A commercial aluminum foil of 0.2 mg/cm^2 thick was used as a Al²⁷ target. Alpha particle detection was done with a p-n junction type semiconductor detector. α_0 , α_1 , α_2 , α_3 , α_4 and α_8 groups leading to the ground, first, second, third, fourth and eighth excited states of the Mg²⁵ nucleus were resolved by this detection system, but alpha groups corresponding to the fifth, sixth and seventh excited states of the Mg²⁵ nucleus were observed as one group. Detailed description of the experimental procedure is given in reference (6).

Numerical values of the cross sections for this reaction are given in Table 12, and the integral cross sections are listed in Table 15.

2-12. $P^{31}(d, \alpha)$ Si²⁹ Reaction⁴⁾

Fine powder of red phosphor deposited onto thin mylar film (0.9 mg/cm²) was used as a P³¹ target. Phosphor thickness of 2.7 mg/cm² and 0.6 mg/cm² were used alternatively. Alpha particle detection was done with a semiconductor detector. Only the alpha group corresponding to the ground state of Si²⁹ was resolvable. Detailed

description of the experimental procedure is given in reference (4).

Numerical values of the differential cross sections for this reaction is given in Table 13, and the integral cross section is listed in Table 15.

2-13. S³² (*d*. *a*) P³⁰ Reaction⁴⁾

Hydrogen sulfide gas was used as a S³² target. The gas pressure was about 30 cm Hg. Alpha particle detection was done with a semiconductor detector. α_0 , α_3 , and α_4 groups corresponding to the ground, third and fourth excited states of the P³⁰ nucleus were resolved. Alpha groups leaving the residual P³⁰ nucleus in its first and second excited states were counted as one group. From α_5 to α_9 groups were also unresolvable. Detailed description of the experimental procedure is given in reference (4).

Numerical values of the differential cross sections are given in Table 14, and the integral cross sections are listed in Table 15.

100.0 Long and a second s	$E_p = 7.4$ MeV			$E_p = 6.9 \text{ MeV}$	
$ heta_{ ext{C.M.}}$ degree	$(d\sigma/d\Omega)_{\rm C.M.}$ mb/sterad	Error %	$ heta_{\mathrm{C}.\mathrm{M}}.$ degree	$(d\sigma/d\Omega)_{\rm C.M.}$ mb/sterad	Error %
21.6	1.67	5.3	21.5	0.772	6.3
32.3	1.43	2.8	32.2	0.760	4.3
42.9	1.00	4.3	42.9	0.645	7.7
53.5	0.99	4.2	53.4	0.642	3.6
63.9	1.51	2.9	63.8	0.610	4.4
74.2	1.58	2.9	74.2	0.659	4.4
84.4	1.26	3.3	84.4	0.487	5.3
94.5	0.50	5.4	94.4	0.284	6.7
104.4	0.12	8.3	104.4	0.181	10
114.2	0.12	13	114.2	0.244	8.1
123.9	0.56	5.5	123.8	0.533	5.8
133.5	0.95	4.1	133.4	0.983	5.0
142.9	1.32	3.5	142.8	1.27	4.0
152.2	1.71	4.1	152.2	1.64	4.8
161.5	2.09	3.6	161.5	2.13	3.0

Table 1. Numerical values of differential cross sections for ${\rm F}^{19}~(p,\,\alpha)~{\rm O}^{16}$ reaction. ${\rm F}^{19}~(p,\,\alpha)~{\rm O}^{16}$ g'nd

	$E_p = 6.5 \text{ MeV}$		$E_p = 6.0 \text{ MeV}$		
$\theta_{\text{C.M.}}$ degree	$(d\sigma/d\Omega)_{\text{C-M}}.$ mb/sterad	Error %	$\theta_{\mathrm{C.M.}}$ degree	$(d\sigma/d\Omega)_{\rm C.M.}$ mb/sterad	Error %
21.5	0.621	6.6	21.5	2.27	3.6
32.2	0.683	6.8	32.1	1.45	5.1
42.8	0.556	6.8	42.7	0.797	6.7
53.3	0.514	6.8	53.3	0.398	7.4
63.8	0.575	6.3	63.7	0.252	9.8
74.1	0.582	6.9	74.0	0.493	7.0
84.3	0.630	6.5	84.2	0.657	5.9
94.4	0.494	7.7	94.3	0.548	7.1
104.8	0.246	11	104.2	0.500	7.7
114.1	0.197	12	114.0	0.481	7.6
123.8	0.430	8,5	123.7	0.483	8.0
133.3	1.04	5.5	133.3	0.869	6.0
142.8	1.80	4.2	142.7	1.45	4.6
152.2	2.27	3.7	152.1	2.05	3.1
161.5	2.40	3.0	161.5	2.60	3.3

Table 2. Numerical values of differential cross sections for Na^{23} (p,α) Ne^{20} reaction

$E_p = 7.3 \mathrm{MeV}$				$E_p = 7.1 \text{ MeV}$	
$\theta_{\mathrm{C.M.}}$ degree	$(d\sigma/d\Omega)_{\rm C.M.}$ mb/sterad	Error %	$\theta_{\text{C.M.}}$ degree	$(d\sigma/d\Omega)_{\rm C.M.}$ mb/sterad	Error %
32.3	1.13	14	32.3	1.41	11
43.0	1.05	11	43.0	0.95	14
53.5	0.89	7.9	53.5	1.01	11
64.0	0.89	9.1	64.0	0.72	11
74.3	0.66	9.8	74.3	0.54	15
84.6	0.60	8.8	84.6	0.29	24
94.6	0.76	8.6	94.6	0.34	18
104.6	0.81	6.5	104.6	0.33	18
114.3	0.98	8.5	114.3	0.40	18
124.0	1.14	7.5	124.0	0.50	15
133.5	1.42	7.2	133.5	0.94	10
143.0	1.62	6.0	143.0	1.05	9
152.3	2.20	5.5	152.3	1.24	9
161.6	2.44	4.1	161.6	1.55	6

(a)	Na ²³	(p, α_0)	Ne ²⁰	g'nd	
-----	------------------	-----------------	------------------	------	--

*******	$E_p = 6.9 \text{ MeV}$	
$ heta_{ ext{C.M.}}$ degree	$(d\sigma/d\Omega)_{ m C.M.}$ mb/sterad	Error %
32.3	1.02	17
43.0	0.75	18
53.5	0.96	13
64.0	0.74	16
74.3	0.62	19 `
84.6	0.70	14
94.6	0.80	14
104.6	0.91	13
114.3	0.80	16
124.0	0.91	15
133.5	0.91	17
143.0	1.19	14
152.3	1.33	14
161.6	1.16	13

Table 2. (continued)

			the second se		
	$E_p=7.3$ MeV			$E_p = 7.1 \text{ MeV}$	
$ heta_{\text{C.M}},$ degree	$(d\sigma/d\Omega)_{\rm C.M.}$ mb/sterad	Error %	$\theta_{\text{C.M.}}$ degree	$(d\sigma/d\Omega)_{\rm C.M.}$ mb/sterad	Error %
32.6	5.49	6.1	32.6	6.28	5
43.3	5.44	5.4	43.3	5.19	6
53.9	4.73	3.4	53.9	4.78	5
64.4	3.93	4.3	64.4	4.05	5
74.8	3.67	4.2	74.8	3.31	6
85.1	3.16	3.7	85.1	2.39	8
95.1	2.65	4.6	95.1	2.21	7
105.1	2.67	3.6	105.1	2.65	6
114.8	3.18	4.8	114.8	3.41	6
124.4	3.99	4.0	124.4	3.83	6
133.9	4.67	4.0	133.9	4.46	5
143.3	5.65	3.5	143.3	5.55	4
152.6	6.45	3.3	152.6	6.23	4
161.8	7.45	2.4	161.8	7.79	3

(b) Na²³ (p, α_1) Ne²⁰ 1st

$E_p{=}6.9~{ m MeV}$					
$ heta_{ ext{C.M.}}$. degree	$(d\sigma/d\Omega)_{0.M}$. mb/sterad	Error %			
3,2.6	7.95	6.3			
43.3	6.92	5.9			
53.9	5.92	5.5			
64.4	4.97	6.1			
74.8	3.95	7.4			
85.1	3.57	6.4			
95.1	2.68	7.4			
105.1	2.51	7.9			
114.8	2.91	8.2			
124.4	3.70	7.3			
133.9	4.26	7.8			
143.3	4.73	7.1			
152.6	5.79	6.5			

Table 3. Numerical values of differential cross sections for Al^{27} (p,α) Mg^{24} reaction

	$E_p=7.4~{ m MeV}$			E _p =7.0 MeV	
$\theta_{\text{C.M.}}$ degree	$(d\sigma/d\Omega)_{\rm C.M.}$ mb/sterad	Error %	$ heta_{ ext{C.M.}}$ degree	$(d\sigma/d\Omega)_{\text{C.M.}}$ mb/sterad	Errer %
21.4	0.769	14	21.4	1.24	5.5
26.7	0.772	7.8	26.7	1.15	4.5
32.1	0.817	4.8	32.0	1.31	5.6
42.6	0.917	4.5	42.6	1.30	5.3
53.2	0.785	4.6	53.1	1.26	4.9
63.5	0.737	5.1	63.5	1.23	5.2
73.9	0.687	5.4	73.8	0.892	5.2
84.0	0.697	4.5	84.0	0.628	7.7
94.1	0.713	4.2	94.1	0.599	8.7
104.1	0.696	6.8	104.0	0.518	7.8
113.9	0.761	3.6	113.8	0.617	8.4
123.6	0.769	3.3	123.5	0.771	7.7
133.1	1.13	3.9	133.1	0.967	6.8
142.6	1.50	2.4	142.6	0.903	7.5
152.1	2.11	2.3	152.0	0.876	6.2
161.4	2.70	2.1	161.4	0.784	7.9

(a) Al²⁷ (p, α_0) Mg²⁴ g'nd

	$E_p = 6.5 \text{ MeV}$		$E_p = 6.1 \text{ MeV}$		
$\theta_{\mathrm{C.M.}}$ degree	$(d\sigma/d\Omega)_{\rm C.M.}$ mb/sterad	Error %	$ heta_{\mathrm{C.M.}}$ degree	$(d\sigma/d\Omega)_{\rm C.M.}$ mb/sterad	Error %
21.4	2,46	3.8	21.4	3.15	6.6
26.7	2.78	5.9	32.0	3.33	5.2
32.0	2,58	4.0	42.6	3.37	5.9
42.6	2,73	3.4	53.1	3.49	5.5
53.1	2.45	4.3	63.5	2.58	4.8
63.5	1.79	4.7	73.8	2.17	7.2
73.8	1.58	5.4	84.0	1.65	11
84.0	1.13	7.9	94.0	1.44	7.5
94.1	1.05	6.6	104.0	1.54	10
104.0	0.992	7.1	113.8	1.27	12
113.8	1.08	8.3	123.5	1.88	14
123.5	1.29	6.9	133.1	2.59	8.8
133.1	1.64	6.6	142.6	2.41	9.6
142.6	1.87	6.6	152.0	2.15	9.5
152.0	1.83	7.8	161.4	1.96	11
161.4	2.07	6.3	······		

Table 3. (continued)

Construction of the second s		The second state in the second se				
	<i>E</i> _p =7.4 MeV				$E_p = 7.0 \text{ MeV}$	
$ heta_{ ext{C.M.}}$ degree	$(d\sigma/d\Omega)_{\rm C.M.}$ mb/sterad	Error %	đ	Эс.м. egree	$(d\sigma/d\Omega)_{\text{C-M}}$. mb/aterad	Error %
21.5	5.82	4.9		21.5	8.45	2.1
26.9	5.76	2.8		26.9	8.97	1.6
32.2	4.89	2.0		32.2	8.80	2.2
42.9	3.93	2.2		42.9	8.53	2.1
53.4	3.41	2.3	:	53.4	7.68	2.0
63.9	3.41	2.4	1	63.9	6.34	2.5
74.2	3.64	2.3		74.2	5.81	2.2
84.4	3.92	1.9	:	84.4	5.16	2.7
94.5	3.94	1.8		94.5	4.99	3.2
104.4	4.03	2.8	1	04.4	5.08	2.5
114.2	4.41	1.5	1	14.2	5.37	2.9
123.9	5.43	1.2	1	23.9	6.18	2.8
133.4	6.92	1.6	1	33.4	6.75	2.6
142.4	8.62	1.0	1	42.9	7.09	2.7
152.2	8.87	1.2	1	52.2	7.25	2.2
161.5	8.55	1.2	1	61.6	7.16	2.7

(b)	A127	(p, α_1)	${ m Mg^{24}}$	1st
-----	------	-----------------	----------------	-----

	And the second				
	$E_p = 6.5$ MeV			$E_p = 6.1 \text{ MeV}$	
$ heta_{ ext{C.M.}}$ degree	$(d\sigma/d\Omega)_{\rm C.M.}$ mb/sterad	Error %	$ heta_{ m C.M}.$ degree	$(d\sigma/d\Omega)_{\text{C-M}}.$ mb/sterad	Error %
21.5	9.08	2.0	21.5	8.53	4.0
26.9	9.13	3.2	32.2	7.68	3.4
32.2	8.12	2.2	42.9	6.37	4.3
49.9	6.77	2.1	53.4	6.31	4.0
53.4	6.30	2.7	63.9	6.05	3.1
63.9	5.53	2.7	74.2	6.60	4.1
74.2	5.61	3.0	84.4	5.92	5.5
84.4	5.52	3.6	94.5	6.87	3.4
94.5	4.91	3.0	104.4	6.91	5.1
104.4	4.63	3.3	114.2	6.69	5.4
114.2	4.72	4.0	123.9	7.46	6.8
123.9	5.13	3.5	133.4	7.37	5.3
133.4	5.55	3.6	142.9	6.76	5.5
142.9	5.89	3.7	152.5	8.06	4.9
152.2	6.09	4.3	161.6	7.45	9.4
161.6	6.03	3.7	·····		

(a) $P^{31}(p,\alpha_0)$ Si²⁸ g'nd $E_p = 7.4 \text{ MeV}$ $E_p = 7.0 \text{ MeV}$ Error $(d\sigma/d\Omega)_{\rm C.M}.$ Error $(d\sigma/\mathrm{d}\Omega)_{\mathrm{C.M.}}$ $\theta_{\text{C.M.}}$ $\theta_{\text{C.M.}}$ mb/sterad degree degree % mb/sterad % 21.23.78 6.1 21.23.474.23.26 2.8 2.5626.5 4.6 26.531.7 4.27 2.54.3 31.72.4442.2 3.76 1.0 4.3 42.2 1.48 52.7 2.47 2.552.71.08 6.1 63.0 1.333.163.0 0.93 6.6 73.3 0.95 5.273.3 0.756.4 83.4 0.69 5.683.4 0.4311 93.5 0.59 5.7 0.66 93.5 9.5 103.40.924.65.0 103.41.310.91 113.3 4.51.975.2113.3 123.00.92 4.1 123.0 1.97 4.5 132.7 1.224.36.2 132.71.34142.21.424.0 142.2 1.19 6.2 3.8 151.7 1.713.0 151.7 2.52161.2 1.963.3 161.2 4.952.2

Table 4.	Numerical	values	of	differential	cross	sections	for	$\mathbf{P^{31}}$	(p, α)	Si ²⁸	reaction

and so a state of the second					
	$E_p=6.5$ MeV			$E_p = 6.1 \text{ MeV}$	
$ heta_{ ext{C-M}}.$ degree	$(d\sigma/d\Omega)_{\rm C.M.}$ mb/sterad	Error %	$ heta_{\mathrm{C.M.}}$ degree	$(d\sigma/d\Omega)_{\text{C.M.}}$ mb/sterad	Error %
21.2	7.48	3.9	21.2	1.81	5.3
26.4	5.62	3.8	26.4	1.61	5.0
31.7	4.44	4.1	31.7	1.15	4.5
42.2	2.27	3.1	42.2	0.87	7.7
52.6	1.25	5.6	52.6	0.70	8.2
62.9	1.00	4.5	62.9	0.76	5.2
73.2	0.80	9.5	73.2	0.97	5.5
83.4	1.06	6.6	83.4	1.13	6.2
93.4	0.66	7.8	93.4	0.96	6.5
103.4	1.31	6.1	103.4	1.19	5.8
113.2	1.74	7.6	113.2	1.24	6.5
122.9	2.44	8.6	122.9	1.56	6.0
132.6	3.10	6.7	132.6	1.78	5.6
142.2	3.54	6.3	142.2	2.54	4.6
151.7	3.84	4.8	151.7	2.76	3.6
161.2	4.47	5.2	161.2	2.73	4.1

Table 4. (continued)

(b) $P^{31}(p,\alpha_1)$ Si²⁸ 1st

		$E_p = 7.4$ MeV			$E_p=7.0$ MeV	
	$\theta_{\text{C.M.}}$ degree	$(d\sigma/d\Omega)_{\rm C.M.}$ mb/sterad	Error %	$ heta_{ ext{C.M.}}$ degree	$(d\sigma/\mathrm{d}\Omega)_{\mathrm{C.M.}}$ mb/sterad	Error %
	21.3	8.40	4.1	21.3	8.52	2.5
1	26.6	7.54	1.9	26.6	8.31	2.4
	31.9	8.10	1.9	31.9	7.74	2.3
	42.5	7.41	0.7	42.5	7.29	1.9
	53.0	6.78	1.6	53.0	6.17	2.4
	63.4	5.52	1.6	63.4	5,85	2.6
	73.6	5.93	1.7	73.6	4.92	2.5
	83.8	6,39	1.9	83.8	4.46	3.5
	93.9	5.98	1.8	93.9	4.19	3.8
	103.8	5.92	1.9	103.8	4.16	2.9
	113.6	4.83	2.1	113.6	4.47	3.5
	123.4	5.08	1.8	123.4	5.18	2.9
	133.0	5.41	2.0	133.0	4.29	3.6
	142.5	6.24	1.9	142.5	3.20	4.0
	151.9	7.52	1.5	151.9	2.46	4.1
	161.3	6.73	1.8	161.3	2.64	3.3

******	$E_p = 6.5 \text{ MeV}$	and drive a second count of the	**		$E_p = 6.1 \text{ MeV}$	
$ heta_{ ext{C.M.}}$ degree	$(d\sigma/d\Omega)_{\rm C.M.}$ mb/sterad	Error %		$ heta_{ ext{C.M.}}$ degree	$(d\sigma/d\Omega)_{\rm C.M.}$ mb/sterad	Error %
21.3	11.1	3.2		21.3	7.83	2.5
26.6	10.6	2.7		26.6	7.68	2.3
31.9	10.8	2.6		31.9	7.58	1.7
42.5	10.5	1.4		42.5	7.28	2.6
53.0	9, 53	2.0		53.0	6.20	2.7
63.4	8.55	2.8		63.4	5.08	2.0
73.6	7.13	3.2		73.6	4.62	2.5
83.8	5.49	2.9		83.8	4.15	3.3
93.9	3.54	3.4		93.9	3.67	3.4
103.8	4.28	3.4		103.8	4.26	3.1
113.6	4.85	4.6		113.6	3.96	3.7
123.4	5.80	5.6		123.4	4.33	3.6
133.0	6.90	4.3		133.0	4.39	3.5
142.5	6.90	4.5		142.5	4.36	3.5
151.9	6.67	3.7		151.9	4.62	2.8
161.3	5.03	4.9		161.3	4.90	3.1

Table 5. Numerical values of differential cross sections for $K^{39}(p,\alpha) A^{36}$ reaction.

	$E_p = 7.3 \text{ MeV}$		$E_{\mathcal{P}}=7.1$ MeV			
$\theta_{C.M.}$ degree	$(d\sigma/d\Omega)_{\rm C.M.}$ mb/sterad	Error %	$ heta_{\mathrm{C.M.}}$ degree	$(d\sigma/d\Omega)_{\rm C.M.}$ mb/sterad	Error %	
31.4	3.09	6.1	31.4	2.65	9.0	
41.8	2.50	4.9	41.8	2.28	6.1	
52.2	2.31	4.4	52.2	1.99	5.7	
62.4	1.68	3.8	62.4	1.84	5.3	
72.6	1.45	4.5	72.6	1.92	4.8	
82.8	1.26	4.3	82.8	1.59	5.4	
92.8	1.02	3.2	92.8	1.54	5.8	
102.8	1.30	3.9	102.8	1.61	5.3	
112.6	1.72	3.3	112.6	1.79	5.6	
122.4	1.85	3.7	122.4	2.09	5.0	
132.2	2.25	3.5	132.2	2.51	5.5	
141.8	2.49	3.9	141.8	3.08	4.7	
151.4	2.94	3.4	151.4	3.54	7.6	
161.0	4.02	2.7	161.0	3.61	1.1	

$E_p = 6.9 \text{ MeV}$	
$(d\sigma/d\Omega)_{\rm C-M}.$ mb/sterad	Error %
4.14	5.4
3.65	5.4
3.16	3.6
2.50	5.0
2.44	5.0
2.03	7.3
2.32	6.8
2.22	5.5
2.31	6.4
2.77	6.1
3.49	5.9
3.72	5.4
4.71	5.7
4.81	3.7
	$E_p = 6.9 \text{ MeV}$ $(d\sigma/d\Omega)_{\text{G.M.}}$ mb/sterad 4.14 3.65 3.16 2.50 2.44 2.03 2.32 2.22 2.31 2.77 3.49 3.72 4.71 4.81

Table 5. (continued)

	$E_p = 7.3 \text{ MeV}$		$E_p{=}7.1~{ m MeV}$			
$\theta_{\text{C.M.}}$ degree	$(d\sigma/d\Omega)_{\rm C.M.}$ mb/sterad	Error %	$ heta_{ ext{C-M}}.$ degree	$(d\sigma/d\Omega)_{\rm C.M.}$ mb/sterad	Error %	
31.6	4.15	5.7	31.6	4.08	7.2	
42.1	3.58	4.1	42.1	3.41	5.0	
52.5	3.47	3.6	52.5	3.72	4.2	
62.8	4.10	2.4	62.8	3.80	3.7	
73.1	3.71	2.9	73.1	3.96	3.4	
83.2	3.96	2.4	83.2	3.40	3.7	
93.2	3.98	1.6	93.2	3.50	3.8	
103.2	3.89	2.3	103.2	3,50	3.6	
113.1	4.63	2.0	113.1	3,82	3.9	
122.8	5.25	2.2	122.8	4.18	3.6	
132.5	5.20	2.3	132.5	4.90	4.0	
142.1	5.37	2.7	142.1	4.81	3.8	
151.6	5.18	2.6	151.6	4.56	6.7	
161.1	5.59	2.3	161.1	4.66	3.2	

	$E_p = 6.9 \mathrm{MeV}$					
$\theta_{\text{C.M.}}$ degree	$(d\sigma/d\Omega)_{ m C.M.}$ mb/sterad	Error %				
31.6	4.03	5.5				
42.1	3.85	5.3				
52.5	3.79	3.3				
62.8	3.91	4.0				
73.1	3.86	4.0				
83.2	3.49	5.6				
93.2	3.55	5.5				
103.2	3.37	4.0				
113.1	3.37	5.3				
122.8	3.43	5.5				
132.5	3.52	5.9				
142.1	3.65	5.4				
151.6	4.80	5.7				
161.1	4.97	3.7				

Reaction	E_p (MeV)	Integral Cross Section (mb)
$F^{19}(p, \alpha_0) O^{16}$ g'nd	7.4	13.2
	6.9	8.6
	6.5	9.3
	6.0	11.1
Na ²³ (p, α_0) Ne ²⁰ g'nd	7.3	13.3
	7.1	9.4
	6.9	10.1
Na ²³ (p, α_1) Ne ²⁰ lst	7.3	53.2
	7.1	52.3
	6.9	57.3
Al ²⁷ (p, α_0) Mg ²⁴ g'nd	7.4	11.9
	7.0	21.1
	6.5	11.4
	6.1	28.2
Al ²⁷ (p , α_1) Mg ²⁴ lst	7.4	61.6
	7.0	80.9
	6.5	73.2
	6.1	87.2
$\mathrm{P}^{\mathrm{31}}\left(p,\alpha_{\mathrm{0}} ight)\mathrm{Si}^{\mathrm{28}}\mathrm{g'nd}$	7.4	20.0
	7.0	19.6
	6.5	27.9
	6.1	18.0
P^{31} (p, α_1) Si^{28} lst	7.4	78.2
	7.0	61.1
	6.5	86.2
	6.1	62.7
${ m K}^{ m 39}~(p,lpha_0)~{ m A}^{ m 36}~{ m g'nd}$	7.3	25.1
	7.1	27.0
	6.9	37.6
${ m K}^{ m 39}$ (p, $lpha_{ m 1}$) ${ m A}^{ m 36}$ lst	7.3	54.2
	7.1	49.4
	6.9	47.1

Table 6. Integral Cross Sections for the (p, α) Reaction

Table 7. Numerical values of differential cross sections for C^{12} (d, α) B¹⁰ reaction

	$E_a = 14.7$ MeV	• •• •• •• •• •• •• •• •• •• •• •• •• •		$E_a = 14.7$ MeV	
$ heta_{ ext{C.M.}}$ degree	$(d\sigma/d\Omega)_{\text{C.M.}}$ mb/sterad	Error %	$ heta_{\mathrm{C.M.}}$ degree	$(d\sigma/d\Omega)_{\text{C-M}}$. mb/sterad	Error %
24.6	2.64	14	25.6	5.02	12
30.9	6.27	5.3	31.9	7.26	5.0
37.2	5.85	3.3	38.2	6.69	3.6
49.6	4.56	5.2	50.5	3.50	5.6
61.1	2.21	5.4	62.5	1.25	7.0
72.5	1.88	4.6	74.2	1.67	4.8
83.6	2.15	4.4	85.5	2.30	4.4
94.2	1.59	3.6	96.2	2,65	3.1
104.3	1.04	6.8	106.5	2.64	4.8
114.0	1.67	4.4	116.2	3.81	3.3
123.3	2.98	4.7	125.4	4.54	4.4
132.2	2.65	4.7	134.2	3.41	4.7
140.7	2.27	5.8	142.5	2.34	7.3
148.9	2.72	5.3	150.5	3.42	6.0
156.9	4.31	4.9	158.2	4.75	5.9
165.2	5.31	4.9	165.6	6.86	5.9

(a) $C^{12}(d, \alpha_0) B^{10}$ g'nd

(b) $C^{12}(d,\alpha_1)$ B¹⁰ lst

Table 8. Numerical values of differential cross sections for N¹⁴ (d, α) C¹² reaction

(a) N^{14} (d,	α_0) C ¹² g'nd		(b) N^{14} (d, α_1) C^{12} 1st				
	$E_d = 14.7 \text{ MeV}$			$E_a = 14.7 \mathrm{MeV}$			
$ heta_{ ext{C.M.}}$. degree	$(d\sigma/d\Omega)_{\rm C.M.}$ mb/sterad	Error %	$ heta_{ ext{C.M.}}$ degree	$(d\sigma/d\Omega)_{ m C.M.}$ mb/sterad	Error %		
23.0	0.956	1.9	23.5	1.43	1.5		
28.7	0.535	3.5	29.2	1.36	2.2		
34.3	0.174	3.2	35.0	1.15	1.2		
45.5	0.036	16	46.3	0.871	3.3		
56.7	0.237	5.0	57.5	0.698	2.9		
67.7	0.337	4.7	68.5	0.632	3.4		
78.2	0.218	6.2	79.0	0.640	3.6		
88.5	0.164	7.7	89.3	0.505	4.4		
98.8	0.187	5.5	99.5	0.551	3.2		
108.7	0.189	9.8	110.0	0.655	5.3		
118.3	0.110	14	119.0	0.593	6.0		
127.5	0.102	9.3	128.5	0.505	4.2		
136.7	0.105	16	137.3	0.486	7.6		
145.3	0.083	14	146.0	0.643	5.1		
154.2	0.127	16	154.8	0.802	4.3		
162.8	0.286	5.0	163.3	0.947	2.9		

Table 9. Numerical values of differential cross sections for ${\rm O}^{\rm 16}$ (d, $\alpha)$ ${\rm N}^{\rm 14}$ reaction.

	$E_a = 14.7 \text{ MeV}$			$E_{d} = 14.5 \text{ MeV}$		
$ heta_{ ext{C.M.}}$ degree	$(d\sigma/d\Omega)_{\rm C.M.}$ mb/sterad	Error . %	$\theta_{\mathrm{C.M.}}$ degree	$(d\sigma/d\Omega)_{\rm C.M.}$ mb/sterad	Error %	
23.3	1.30	3.1	23.3	1.15	1	
29.1	0.922	3.2	29.1	1.23	1	
34.9	1.21	4.0	34.9	1.33	1	
46.3	1.44	2.6	40.6	1.45	1	
57.5	0.647	4.2	46.3	1.26	2	
68.5	0.427	4.7	57.5	0.622	2	
79.2	0.203	4.1	68.5	0.356	3	
89.7	0.233	6.4	79.2	0.293	3	
99.8	0.430	3.8	89.6	0.255	4	
109.7	0.521	4.5	99.8	0.276	4	
119.2	0.513	4.7	109.6	0,266	4	
128.5	0.437	5.4	119.2	0.374	3	
137.5	1.37	3.4	128.5	0.334	3	
146.3	1.70	3.2	137.5	0.549	2	
154.9	2.13	3.4	146.3	1.20	3	
163.3	1.39	4.2	154.9	1.42	2	
			163.3	1.09	1	

(a) O^{16} (*d*, α_0) N^{14} g'nd

(b) $O^{16}(d, \alpha_1) N^{14}$ 1st

(c) $O^{16}(d, \alpha_2) N^{14}$ 2nd

	$E_{d} = 14.5 \text{ MeV}$			Ed = 14.5 MeV	
$ heta_{ ext{C-M}}.$ degree	$(d\sigma/d\Omega)_{\rm C.M.}$ mb/sterad	Error %	$ heta_{ ext{G.M.}}$ degree	$(d\sigma/d\Omega)_{\rm C.M.}$ mb/sterad	Error %
23.6	0.036	6	 23.8	1.64	1
29.5	0.025	6	29.7	2.49	1
35.3	0.012	12	35.6	3.09	1
41.1	0.012	10	41.4	2.05	1
46.8	0.014	14	47.2	0.784	2
58.1	0.019	12	58.6	0.403	3
69.2	0.011	13	69.7	0.580	2
80.0	0.005	23	80.6	0.928	2
90.5	0.010	20	91.1	1.05	2
			101.3	0.826	2
			111.1	0.597	3
			120.6	0.763	2
			129.7	1.33	5
			138.6	1.12	10
			147.2	0.789	10
			155.6	1.39	10
			 163.8	1.93	10

) F^{19} (d, α_0) O ¹⁷ g'nd $E_d = 14.7 \text{ MeV}$			(b) F ¹⁹ (a	<i>l</i> , α_1) O ¹⁷ 1st	
			<i>E</i> _{<i>a</i>} =14.7 MeV		
$\theta_{\text{C.M.}}$ degree	$(d\sigma/d\Omega)_{ m C.M.}$ $\mu{ m b/sterad}$	Error %	$\theta_{\text{C-M}}$. degree	$(d\sigma/d\Omega)_{\rm C.M.}$ $\mu{\rm b/sterad}$	Error %
22.4	535	2.0	22.4	131	4.1
33.4	255	3.7	33.5	74.1	5.6
44.4	216	3.3	44.5	46.7	7.2
55.3	72.9	6.2	55.4	58.7	6.8
65.9	58.7	7.3	66.0	43.0	8.7
76.4	87.1	6.4	76.6	27.0	12
86.8	87.0	7.0	86.9	39.5	10
96.9	63.0	6.6	97.0	42.8	7.8
106.3	69.1	7.3	106.9	34.4	12
116.4	82.8	6.6	116.6	22.1	13
125.9	87.7	6.9	126.0	34.4	11
135.3	58.8	8.0	135.4	59.1	8.0
144.4	78.2	7.0	144.5	31.4	11
153.4	104	4.8	153.5	49.4	7.0
162.4	90.6	5.6	162.4	87.0	5.8

Table 10. Numerical values of differential cross sections for F^{19} (d, α) O^{17} reaction

(c) $F^{19}(d, \alpha_2) O^{17}$ 2nd

(d) $F^{19}(d, \alpha_3) O^{17}$ 3rd

	$E_a = 14.7$ MeV			$E_a = 14.7 \text{ MeV}$	
$\theta_{\text{C.M.}}$ degree	$(d\sigma/d\Omega)_{ m C.M.}$ $\mu{ m b/sterad}$	Error %	$\theta_{\mathrm{C.M.}}$ degree	$(d\sigma/d\Omega)_{ m C-M}$. $\mu { m b/sterad}$	Error %
22.5	36.2	7.8	22.6	132	4.1
33.6	40.7	8.1	33.7	92.2	5.4
44.7	22.8	17	44.8	50.2	12
55.6	16.9	28	55.7	71.4	14
66.3	13.9	26	66.5	46.2	14
76.8	9.7	28	77.0	41.3	13
87.2	11.1	29	87.4	41.4	15
97.3	18.3	30	97.5	38.2	21
107.2	14.7	25	107.4	13.8	. 26
116.8	13.1	25	117.0	23.2	19
126.3	8.1	35	126.5	14.2	27
135.6	10.6	30			
144.7	24.6	20			
153.6	37.7	15			
162.5	38.3	16			

Table 10. (continued)

$E_a = 14.7$ MeV				
$\theta_{\text{C.M.}}$ degree	$(d\sigma/d\Omega)_{\rm C.M.}$ $\mu {\rm b/sterad}$	Error %		
22.6	53.0	6.5		
33.9	35.3	8.6		
45.0	45.9	12		
55.9	25.8	22		
66.7	22.2	20		
77.2	25.9	17		
87.6	21.2	21		
97.7	14.9	33		
107.6	21.1	21		
126.7	23.6	21		

(e) $F^{19}(d, \alpha_4) O^{17}$ 4th

Table 11. Numerical values of differential cross sections for Ne²⁰ (d, α) F¹⁸ reaction

(a) Ne²⁰ (d, α_0) F¹⁸ g'nd

(b) Ne²⁰ $(d, \alpha_{1,2,3,4})$ F¹⁸ 1st, 2nd, 3rd and 4th.

					الوالية بالمرجوب فالتقاد ويستعد ومستعد والمراجع والمراجع والمراجع والمراجع والمراجع والمراجع والمراجع والمراجع
	$E_a = 14.5 \text{ MeV}$			$E_a = 14.5 \text{ MeV}$	
$ heta_{ ext{C-M}}.$ degree	$(d\sigma/d\Omega)_{ m C.M.}$ $\mu{ m b/sterad}$	Error %	$ heta_{ ext{C.M.}}$ degree	$(d\sigma/d\Omega)_{\text{C-M}}$. $\mu \text{b/sterad}$	Error %
22.7	1268	1.0	22.8	2429	0.7
33.9	671	1.4	34.0	1487	0.9
45.0	171	4.0	45.2	1153	1.6
56.0	128	4.4	56.2	1047	1.6
66.8	195	3.0	67.0	529	4.4
77.4	196	4.4	77.0	689	2.3
87.7	111	5.5	88.0	744	2.5
92.8	177	6.8	93.1	747	3.3
97.8	246	4.2	98.1	770	2.4
187.7	202	4.5	108.0	931	2.1
117.4	131	6.2	117.6	977	2.3
126.8	70	5.8	127.0 .	973	1.6
136.0	99	7.0	136.2	1407	1.8
145.0	216	4.9	145.2	1550	1.8
153.9	249	2.5	154.0	1403	1.1
162.7	435	2.0	162.8	1696	1.0
167.0	600	1.6	167.1	2069	0.9

Table 11.	(continued)
-----------	-------------

(c) $\operatorname{Ne}^{-1}(a, \alpha_5)$ F ⁻¹ JIII						
	$E_d = 14.5 \text{ MeV}$			$E_a = 14.5$ MeV		
$ heta_{ ext{c.м.}}$ degree	$(d\sigma/d\Omega)_{ m C.M.}$ $\mu { m b/sterad}$	Error %	$\theta_{\mathrm{C.M.}}$ degree	$(d\sigma/d\Omega)_{ m C.M.}$ $\mu { m b/sterad}$	Error %	1000
22.8	458	12	22.9	628	11	af de des
34.2	336	12	34.3	373	12	
45.3	270	13	45.5	253	13	
56.4	270	13	56.5	167	14	
67.2	127	14	67.4	213	13	
77.8	138	15	78.0	75	17	
88.2	136	15	88.4	115	15	
93.3	136	22	93.5	206	20	
98.3	119	16	98.5	173	15	
108.2	136	16	108.4	127	16	
117.8	134	16	118.0	148	16	
127.2	95	16	127.4	157	14	
136.4	106	17	136.5	255	14	
145.3	170	16	145.5	244	15	
154.2	234	13	154.3	256	13	
162.8	361	13	162.9	275	13	
167.2	345	12	167.2	315	12	

(c) Ne²⁰ (d, α_5) F¹⁸ 5th

(d) Ne²⁰ (d, α_6) F¹⁸ 6th

(e) Ne²⁰ (d, α_7) F¹⁸ 7th

	$E_a = 14.5$ MeV					
$ heta_{ ext{c.m.}}$ degree	$(d\sigma/d\Omega)_{ m C.M.}$ $\mu { m b/sterad}$	Error %				
22.9	438	12				
34.3	182	13				
45.5	130	15				
56.5	71	16				
67.4	74	15				
78.0	65	18				
88.4	96	16				
93.5	81	25				
98.5	81	17				
108.4	89	17				
118.0	131	16				
127.4	150	15				
136.5	78	18				
145.5	110	17				
154.3	184	13				
162,9	200	13				
167.2	249	13				

(60)

.

Table 12. Numerilcal values of differential cross sections for Al²⁷ (d,α) Mg²⁵ reaction

(2	(a) Al ²⁷ (d, α_0) Mg ²⁵ g'nd $E_a = 14.7 \text{ MeV}$			(b) Al^{27} (d, α_1) Mg^{25} 1st $E_a = 14.7 \text{ MeV}$			
~	$\theta_{\text{C.M.}}$ degree	$(d\sigma/d\Omega)_{\rm C.M.}$ $\mu{\rm b/sterad}$	Error %	$\theta_{\mathrm{C.M.}}$ degree	$(d\sigma/d\Omega)_{\rm C.M.}$ $\mu {\rm b/sterad}$	Error %	
}	21.8	276	3.3	21.8	36.3	9	
	32.6	203	3.7	32.6	18.7	13	
	43.3	109	4.7	43.3	16.2	14	
	53.9	93.3	3.9	54.0	8.3	16	
	64.5	77.3	4.7	64.5	10.1	13	
	74.8	57.2	4.9	74.9	9.5	12	
	85.1	62.5	4.0	85.1	7.4	12	
	95.1	59.0	3.7	95.2	5.1	14	
	105.1	36.3	7.0	105.1	8.7	14	
	114.8	38.4	6.9	114.9	6.9	16	
	124.5	31.6	8.8	124.5	8.7	17	
	133.9	32.7	8.6	134.0	10.5	15	
	143.3	39.3	8.0	143.3	11.9	14	
	152.6	52.2	6.9	152.6	15.6	13	
	161.8	48.7	6.1	161.8	22.3	9	

(c) Al²⁷ (d, α_2) Mg²⁵ 2nd

(d) Al²⁷ (d, α_3) Mg²⁵ 3rd

$E_a {=} 14.7 \mathrm{MeV}$			$E_a = 14.7 \mathrm{MeV}$		
$\theta_{\text{C.M.}}$ degree	$(d\sigma/d\Omega)_{\rm C.M.}$ $\mu{\rm b/sterad}$	Error %	$\theta_{\mathrm{C.M.}}$ degree	$(d\sigma/d\Omega)_{\rm C.M.}$ $\mu {\rm b/sterad}$	Error %
21.8	43.7	8	21.8	268	3.3
32.6	23.9	11	32.7	172	4.1
43.4	21.,4	12	43.4	118	5.0
54.0	21.0	10	54.1	84.0	4.9
64.5	14.6	11	64.6	80.4	4.6
74.9	11.1	11	75.0	76.3	4.2
85.2	10.8	10	85.3	64.5	3.9
95.3	11.4	9	95.3	65.7	3.8
105.2	14.2	11	105.3	49.8	6.0
114.9	9.9	13	115.0	42.2	6.5
124.5	12.1	· 14	124.6	53.9	6.9
134.0	19.4	11	134.1	43.2	7.5
143.4	20,9	11	143.4	49.5	6.9
152.6	20.7	11	152.7	49.8	7.0
161.8	24.7	9	161.8	87.8	4.6

Table	12.	(continued)

_						
$E_d = 14.7 \text{ MeV}$				$E_d = 14.7 \text{ MeV}$		
θс.м. degree	$(d\sigma/d\Omega)_{\rm C.M.}$ $\mu { m b/sterad}$	Error %	$\theta_{\text{C.M.}}$ degree	$(d\sigma/d\Omega)_{\rm C.M.}$ $\mu { m b/sterad}$	Error %	
21.8	833	6.6	21.9	168	4.1	
32.7	555	7.1	32.7	84.4	5.8	
43.5	568	7.2	43.5	78.3	6.1	
54.1	466	6.5	54.2	88.3	4.8	
64.7	333	7.1	64.8	76.9	4.7	
75.1	208	8.0	75.2	57.8	4.8	
85.3	259	6.2	85.4	51.3	4.4	
95.4	277	5.8	95.5	49.6	4.3	
105.3	174	10	105.4	58.4	5.5	
115.1	147	11	115.2	61.2	5.4	
124.7	302	9.0	124.8	51.3	6.9	
134.1	326	8.5	134.2	62.4	6.2	
143.5	327	8.5	143.5	66.4	6.0	
152.7	350	8.4	152.7	79.1	5.6	
161.8	330	7.5	161.9	84.1	4.7	

(e) Al²⁷ (d, α_4) Mg²⁵ 4th

(f) Al²⁷ $(d, \alpha_{5,6,7})$ Mg²⁵ 5,6 and 7th

(g) Al²⁷ (d, α_8) Mg²⁵ 8th

$E_a = 14.7 \text{ MeV}$					
$ heta_{\mathrm{C.M.}}$ degree	$(d\sigma/d\Omega)_{ m C.M.}$ $\mu { m b/sterad}$	Error %			
21.9	222	3.6			
32.8	165	4.1			
43.6	122	4.9			
54.3	106	4.3			
64.9	72.1	4.8			
75.3	60.3	4.7			
85.5	63.3	3.9			
95.6	59.9	3.9			
105.5	64.6	5.2			
115.3	62.6	5.4			
124.9	60.7	6.4			
134.3	74.1	5.7			
143.6	80.0	5.5			
152.8	89.2	5.3			
161.9	94.5	4.4			

Table 13. Numerical values of differential cross sections for P^{31} (d, α) Si²⁹ reaction

- (0,000/ 0- 8	x (6	\cdot, \cdot, \cdot		- B
----------------	------	--	--	-----

.

$E_a = 14.7$ MeV				
$\theta_{\text{C.M.}}$ degree	$(d\sigma/d\Omega)_{\rm C.M}$. $\mu { m b/sterad}$	Error %		
21.5	156	4.6		
32.2	59.4	3.9		
37.5	42.9	8.0		
42.8	61.0	6.5		
48.1	71.9	7.0		
53.2	72.6	6.3		
63.7	28.1	7.1		
68.9	19.0	13		
74.0	24.1	11		
79.2	23.4	9.9		
84.2	. 25.1	11		
94.3	12.9	24		
114.0	15.3	22		
123.7	7.0	32		
133.3	8,3	30		
142.8	6.9	33		
152.2	16.6	20		
161.5	19.9	9.5		

Table 14. Numerical values of differential cross sections for S^{32} (d, α) P^{30} reaction

(a) S^{32} (<i>d</i> , α_0) P^{30} g'nd			(b) $S^{32}(d, \alpha_{1,2})$ P ³⁰ 1st and 2nd			
E_{a} =14.5 MeV				$E_a = 14.5 \text{ MeV}$		
$\theta_{\mathrm{C.M.}}$ degree	$(d\sigma/d\Omega)_{ m C.M.}$ $\mu{ m b/sterad}$	Error %	$\theta_{\mathrm{C.M.}}$ degree	$(d\sigma/d\Omega)_{\rm C.M.}$ $\mu{\rm b/sterad}$	Error %	
21.5	293	2.2	21.5	261	2.3	
26.9	176	2.5	26.9	156	2.7	
32.2	135	3.0	32.3	92.5	3.5	
42.8	145	3.4	42.9	98.3	4.1	
53.4	93.8	5.5	53.4	49.3	7.5	
63.8	70.7	6.4	63.9	36.3	8.9	
74.1	73.9	6.1	74.2	36.8	8.6	
84.3	75,4	7.1	. 84.4	46.1	9.0	
94.4	32.0	9.1	94.5	30.9	9.2	
104.3	56.4	7.0	104.4	26.7	10	
114.1	72.5	7.1	114.2	22.4	13	
123.8	40.1	9.2	123.9	23.2	13	
133.5	42.3	9.0	133.4	9.5	18	
142.8	48.0	7.4	142.9	25.2	10	
152.2	50.6	6.7	152.3	34.3	8.0	
161.5	71.0	4.9	161.5	25.2	8.2	

$E_{a} = 14.5$ MeV			$E_d = 14.5 \text{ MeV}$		
$\theta_{\text{C.M.}}$ degree	$(d\sigma/d\Omega)_{ m G.M.}$ $\mu{ m b/sterad}$	Error %	$ heta_{ ext{C-M}}.$ degree	$(d\sigma/d\Omega)_{\text{C.M.}}$ $\mu\text{b/sterad}$	Erron %
21.6	94.6	3.8	21.6	783	1.3
26.9	88.5	3.5	27.0	493	1.5
32.3	59.7	4.6	32.3	380	1.8
42.9	32.7	7.2	43.0	201	2.9
53.5	27.7	10	53.6	151	4.3
64.0	26.8	10	64.0	163	4.2
74.3	11.8	15	74.4	152	4.2
84.5	16.5	15	84.6	102	6.0
94.6	23.2	11	94.6	99.6	5.1
104.5	16.4	13	104.6	93.8	5.4
114.3	7.7	22	114.4	75.7	6.9
124.0	24.2	12	124.0	55.8	7.8
133.5	14.8	14	133.6	56.6	7.4
142.9	34.2	8.7	143.0	60.9	6.5
152, 3	67.5	5.8	152.3	43.5	7.2
101 0					

161.6

48.2

6.0

5.6

Table 14. (continued)

(e) S^{32} (d, $\alpha_{5\sim9}$) P^{30} 5~9th

161.6

E_{a} =14.5 MeV						
$ heta_{c.M.}$ degree	$(d\sigma/d\Omega)_{C.M.}$ $\mu { m b/sterad}$	Error %				
21.6	1108	1.1				
27.0	881	1.1				
32.4	558	1.4				
43.0	502	1.8				
53.6	389	2.7				
64.1	370	2.8				
74.5	303	3.0				
84.6	172	4.7				
94.7	222	3.4				
104.6	201	3.7				
114.5	179	4.5				
124.1	205	4.0				
133.6	220	3.7				
143.0	291	2.9				
152.4	281	2.8				
161.6	285	2.4				

55.4

Table 15. Integral Cross Sections for the (d, α) reaction

reaction	E_d (MeV)	Integral Cross Section (mb)
C^{12} (d, α_0) Be ⁸ g'nd	14.7	34
C^{12} (<i>d</i> , α_1) Be ⁸ 1st	14.7	42
N^{14} (d, α_0) C^{12} g'nd	14.7	3.2
N^{14} (d, $lpha_1$) C^{12} 1st	14.7	9.1
O^{16} (<i>d</i> , α_0) N ¹⁴ g'nd	14.7	9.9
	14.5	7.9
O^{16} (<i>d</i> , α_2) N ¹⁴ 2nd	14.5	13.3
F^{19} $(d, lpha_0)$ O^{17} g'nd	14.7	1.3
${ m F^{19}}$ (<i>d</i> , $lpha_1$) ${ m O^{17}}$ 1st	14.7	0.6
F^{19} (<i>d</i> , α_2) O ¹⁷ 2nd	14.7	0.2
${ m F}^{19}$ (<i>d</i> , α_3) ${ m O}^{17}$ 3rd	14.7	0.5
F^{19} (<i>d</i> , α_4) O ¹⁷ 4th	14.7	0.4
Ne ²⁰ (<i>d</i> , α_0) F ¹⁸ g'nd	14.5	2.8
Ne ²⁰ ($d, \alpha_{1+2+3+4}$) F ¹⁸	14.5	(13.9)
Ne ²⁰ (d , α_5) F ¹⁸ 5th	14.5	2.4
Ne ²⁰ (<i>d</i> , α_6) F ¹⁸ 6th	14.5	2.7
Ne ²⁰ (d, α_7) F ¹⁸ 7th	14.5	1.6
Al^{27} (d, $lpha_0$) Mg^{25} g'nd	14.7	1
Al ²⁷ (d , α_1) Mg ²⁵ 1st	14.7	0.1
Al ²⁷ (d , α_2) Mg ²⁵ 2nd	14.7	0.2
Al ²⁷ (d , α_3) Mg ²⁵ 3rd	14.7	1
Al ²⁷ (d , α_4) Mg ²⁵ 4th	14.7	0.6
Al ²⁷ (<i>d</i> , α_{5+6+7}) Mg ²⁵	14.7	(0.9)
Al ²⁷ (d, α_{δ}) Mg ²⁵ 8th	14.7	1
P^{31} (d, α_{0}) $\mathrm{Si}^{\mathrm{29}}$ g'nd	14.7	0.3
S^{32} (<i>d</i> , α_0) P^{30} g'nd	14.5	0.9
S^{32} (<i>d</i> , α_{1+2}) P^{30}	14.5	(0.5)
S^{32} (<i>d</i> , α_3) P^{30} 3rd	14.5	0.3
S ³² (<i>d</i> , α_4) P ³⁰ 4th	14.5	1.6
S ³² ($d, \alpha_{5\sim9}$) P ³⁰	14.5	(3.7)

3. DISCUSSION

Discussions on each reaction are given in references (1) to (6). Here we discuss the qualitative natures of the (p,α) and (d,α) reactions.

In general, it is believed that when the incident particle has high energy, and the emitted particle corresponds to the ground or lower excited states of the residual nucleus, reactions occur mainly through surface direct interaction⁷⁾. Characteristics of this surface direct reaction are larger yield than expected from the compound nucleus process, and the angular distribution is resembled by suitable summation of $|j_i|(QR)|^2$, where j_i is the *l*-th order spherical Bessel function, Q is the momentum transfer between the incident and emitted particles and R is the interaction radius. This means, in the surface direct reaction, the angular distribution show foward peaking and diffraction-like pattern.

In our experiment, 15 MeV deuteron has very larger momentum than 7.5 MeV proton, so behaviours of the surface direct reaction are expected more likely to appear in the (d,α) reaction than in the (p,α) reaction. It is true in our cases that almost all of the alpha particle angular distributions of the (d,α) reaction exhibited pronounced foward peaking and diffraction-like pattern, but on the contrary, the (p,α) reaction showed no distinct foward peaking so far investigated. There remain, some characteristics which can not be simply explained by the surface direct reaction. First of all is the backward peaking observed in the (p,α) reaction on Γ^{19} and in the (d,α) reaction on C^{12} , O^{16} and Ne^{20} . Moreover, as was pointed out by Takamatsu⁴⁾, the integral cross sections for the (d,α) reaction on C^{12} , O^{16} , Ne^{20} , Mg^{24} and S^{32} are about three times larger than the ones on neighbouring odd-A and odd-odd nuclei, *i. e.* N¹⁴, F¹⁹ and P³¹. This even-odd effect was observed also in the (p, α) reaction by Bayman *et al⁸⁾* and by Kumabe *et al⁹⁾*.

Second, the strong energy dependence of the angular distributions found in the (p, α) reaction on F¹⁹, Al²⁷ and P³¹ cannot be well explained by a simple direct reaction theory.

Since the system F¹⁹, Al²⁷ and P³¹ plus proton have excitation energies 13 MeV, 12 MeV and 9 MeV respectively, the intermediate states between the single level compound system and the complete statistical state are formed when these nuclides are struck by 7 MeV protons. In these cases, as was pointed out by Ericson,¹⁰ fluctuations can occur on the shape of angular distributions and on the integral cross sections.

Differential cross sections and integrated cross sections on various nuclei show us that, the (p, α) and (d, α) reactions are not so simple that simple compound or direct reaction theory can give complete explanation. It may be suggested that, the intermediate system whose life time is about $10^{-21} \sec^{110}$, shorter than the life time of the compound nucleus and longer than the time required for the incident particle to pass through the target nucleus, may play an important role and moreover, the alpha particle clustering in the target or in the intermediate system has essential effect on such reaction.

In conclusion, the authors wish to thank Professors K. Kimura and Y. Uemura for their continuous encouragement throughout this work. Thanks are also due to Mr. H. Fujita and other members of the cyclotron laboratory for their help and hospitality.

REFERENCES

- (1) T. Yanabu, J. Phys. Soc. Japan, 16, 2118 (1961).
- (2) S Yamashita, J. Phys. Soc. Japan, 16, 2378 (1961).
- (3) T. Yanabu, S. Yamashita, T. Nakamura, K. Takamatsu, A. Masaike, S. Kakigi, D. C. Nguyen and K. Takimoto, J. Phys. Soc. Japan, 16, 2594 (1961).
- (4) K. Takamatsu, J. Phys. Soc. Japan, 17, 896 (1962).
- (5) T. Nakamura, K. Takamatsu, A. Masaike, S. Kakigi, D. C. Nguyen, S. Yamashita and Y. Yanabu, J. Phys. Soc. Japan, 17, 19 (1962).
- (6) T. Yanabu, S. Yamashita, T. Nakamura, K. Takamatsu, A. Masaike, S. Kakigi, D. C. Nguyen and K. Takimoto, J. Phys. Soc. Japan, 17, 914 (1962).
- (7) S. T. Butler, *Phys. Rev.*, **106**, 272 (1957).
 M. el Nadi, *Phys. Rev.*, **119**, 242 (1960).
 H. C. Newns, *Proc. Phys. Soc.*, **76**, 489 (1960).
- (8) B. F. Bayman et al., "Proc. Rutherford Jubilee Int. Conf.," 1961 p. 555.
- (9) I. Kumabe, H. Ogata, T. Komatuzaki, N. Inoue, S. Tomita, Y. Yamada, Y. Yamaki and S. Matsumoto, *Nucl. Phys.*, 46, 438 (1963).
 I. Kumabe *et al.*, *Nucl. Phys.*, 46, 454 (1963).
- (10) T. Ericson, Advance in Physics, 9, 425 (1960).
- (11) This life-time was estimated by one of us (T. Y.) in the discussion about the iso-spin selection rule violation¹⁾, and recently, Kumabe *et al*⁹⁾ concluded the same result from the investigation on the Ni⁵⁸ (p, α) Co⁵⁵ reaction.