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    Brief description of the parallel disk rheogoniometer was given, especially, in the case 

 used for dynamic complex viscosity measurements. Results of certain preliminary tests for 

 dynamic measurements gave an assurance of the reliability of the dynamic data obtained 

 with this instruments. Dynamic data were compared with steady shear data, in which 
 dynamic viscosity, 77'(co), and rigidity, G'(co), were compared respectively with steady shear 

 viscosity, 77'((e) and normal stress, 1/2(011-oz0, in toluene solutions of polystyrene. The 

 results were in agreement with our predictions. 

INTRODUCTION 

   A new instrument temporarily named the parallel disk rheogoniometer" was 

established for the purpose of studying viscoelastic behaviors of concentrated poly-

mer solutions. With this instrument we had studied the non-Newtonian flow 

and normal stress phenomena in certain polymer-diluent systems. From these we 

determined two rheological parameters of flowing viscoelastic fluid, i.e., the recip-

rocal of steady shear compliance and the steady shear viscosity, and discussed 

about the nature of the concomitant viscous and elastic response of the 

fluid?,3,4,5) 

   In succession to them we have made a study of dynamic complex viscosities 

of polymer solutions, especially relating them to steady flow behavior. Its results 

will be reported here. In the next chapter we will give a brief description of the 

instrument and also an outline of the principle and procedures of dynamic com-

plex viscosity measurments. Explanations for the procedures of normal and shear 
stress measurements were already given in our previous papers'," and they will 

not be recounted here. In the third chapter we will show results of certain preli-

minary tests for the validity of dynamic data obtained with this instrument. 

Finally in the last chapter we will show experimental results indicating the 

relation between dynamic data and steady flow data, i.e., the relation between 

dynamic viscosity and steady shear viscosity and that of dynamic rigidity and 

normal stress data, obtained in solutions of polystyrene in toluene. 

 *,J\, ilt1J), 1-1114M 
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                      EXPERIMENT AND PRINCIPLE 

    1. Instrument and Material 

   The parallel disk rheogoniometer used in the present study is shown in  Fig.l. 

This instrument has four different functions, namely, as a parallel disk type 

apparatus for normal stress measurements, a rotational viscometer for steady 

shear viscosity measuremnts, an oscillatory rheometer of coaxial cylinder type and 

an oscillatory-rotational rheometer for studying viscoelastic response to sinusoi-

dally oscillating shear superimposed on a continuous laminar shearing motion. 

s • 

I -.. ) 

:,- 

         Fig. 1. The view of the parallel disk rheogoniometer. Now it is used as 
                a rotational viscometer. This assembly can be used also for 

                 dynamic viscosity measurement. 

   The instrument, as is seen in Fig. 2, furnishes two sets of driving devices, 

the one for rotational motion and the other for oscillatory motion, each one con-

sisting of a 1/2h.p. induction motor, a gear box of ring-cone type (gear ratio 1:4) 

and an eight step gear box of a planetary gear system (gear ratio 1:3 per step). 

   These two devices are connected through a superimposer and can give either 

one or both of rotational and oscillatory motion within ranges of speeds from 1.24 
x10' to 10 revolutions per second and of frequencies from 4.5 x 10 to 30 cycles 

per second, respectively, to the driving shaft of the main assembly. On the 
driving shaft either an outer disk for normal stress measurements or an outer 
cylindrical cup for shear stress (viscosity) measurements can be mounted. The 

outer container (disk or cup) is enclosed with a jacket in which thermostated oil 

is circulated from an oil bath, and by which temperature can be controlled at 

any temperature in a range from room temperature up to about 100°C within an 
accuracy of ±0.2°C. 

   In the case of dynamic measurements, the cylindrical cup and bob assembly is 

used. That is, into the cup containing a test solution is immersed concentrically 
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            Fig. 2. The driving systems of the perallel disk rheogoniometer-

an inner cylinder (bob), which is suspended with a torsion wire. The upper end 
of the wire is attached to a saddle, which can be moved along a vertical slide by 

means of a lead screw. 
   A forced (oscillatory) motion of the outer cup is detected with the aid of a 

differential transformer which is attached to the lever connecting the deriving 
device and the superimposer. A response of the inner bob to this motion can be 

detected with a pair of differential transformers attached to the upper end of the 

inner bob. The output voltages generated in differential transformer circuits at 

the outer and inner cylinders are fed respectively to horizontal and vertical 

plates of a cathode-ray tube to obtain a Lissajous ellispoid on its screen. 
   Materials used in this study were a commercial castor-oil (chemically pure 

grade) and a commercial silicone oil (Shinetsu Chem. Ind. KF 96H) for certain 
preliminary tests and toluence solutions of polystyrene samples S, (M„=18.2 x 155, Mn 
=6.43x10'),S3(M„=7.26x10',M.-3.96x105) and The (Mv=15.3x105, Mn=7 .90x105). 

   2. Principle 

   A rigorous solution for the motion of a viscoelastic fluid in an annular space 

between walls of two coaxial cylinders, in which the outer cylinder is oscillated 

with certain predetermined amplitude and frequency, was first given by Markovitzs' 

under the assumptions that the end effect of both cylinders can be neglected 

and the complex viscosity of the fluid is independent of the amplitude of oscilla-

tory motion. The solution is written as: 
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           1—----p(cosrp-I-isinm)+ Xap* )'__l._-(I-k/w)An+Bn =0, 
 n= P 

where notations of the symbols are as follows : 

         p=amplitude ratio of bob and cup, 
<p =phase difference between bob and cup, 

*=1/—(iG'/co) =complex dynamic viscosity , 
G'=dynamic rigidity, 

p=density of the test solution, 
w=angular frequency (=2<rv), 

          v=frequency in cycles per second, 

1—moment of innertia of the inner cylinder assembly, 
k = torsional constant of suspending wire. 

          An's and Bn s=geometrical constants of the instrument, 

                      and i =1% 1. 

   Thus, when p and (p are determined under various known frequencies, co, of 

the outer cup, the complex dynamic rigidity, G', can be determined as functions 

of frequency, CO, by solving Eq. (1) with knowledge of instrumental constants. 

   It is noted that by a proper choice of dimensions of the instrument and of 

the frequency range investigated we may neglect the third and higher terms in 

the above expansion formula with respect to (ip(0/77*). Geometrical constants for 

the first two terms are given as: 

           1  R22 — R12 _(Rzz=R~2) 2(2a,b)                                          8
Rz2 Ai4nL R12R22                                         B1_ 

     1 (R1 R22 RI'(2c)       A2=32 n\4 InR2R12 Rz<),(2c 
         B2={(R22—R12)(R24-5R22R12-2R12)+12Rz2R121nR~},(2d) 

where RI and R2 are radii of the inner and the outer cylinder, respectively, and 

L is length of the inner cylinder immersed in the test fluid. 

   An amplitude ratio, p, and phase difference, 99, of two cylinders can be deter-

mined from a Lissajous ellipsoid and its circumscribed rectangle with latera 

parllel to the horizontal and vertical axis of the oscilloscope at each frequency of 
oscillation, co ; that is, p can be given by a ratio of two latera of the rectangle, 

and < can be given by the use of the relation:          

I sing) =4(A)hr[A], 

in which (A) and [A] are area of the ellipsoid and of the rectangle, respectively. 

In this way, with observation of Lissajous pattern at various frequencies both 

components of the dynamic complex viscosity can be determined as functions of 

angular frequency, co. 

   PRELIMINARY TEST FOR DYNAMIC COMPLEX VISCOSITY MEASUREMENTS 

   1. Determination of Instrumental Constants 

   Prior to use Eq. (1) for the determination of dynamic complex viscosities of 
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test solutions, it is necessary to determine instrumental constants such as An's 
 Bn's, I and h. Among them, geometrical constants, A,'s and B2z's, can be readily 

calculated by the use of Eqs. (2a) — (2d). Since our instrument has the dimensions 
of R =19.0mm, R,=20.0mm and L=150mm, geometrical constants are as follows : 

Al= 1.432 x 10-a, Az=2.39 x 10-v, 

Bi=4.75x10-',B2,=2.80x10-6 

Terms with indices higher than n=3 are all neglected. 
   The moment of innertia of the inner cylinder assembly, I, including the pair 

of cores of differential transformers attached to the inner cylinder is determined 
by observing a frequency I for free oscillation in case of suspending by a torsion 
wire of known constant, k, and by the use of well known relation: v = (1/27r) (k/I) "=. 
For the wire of k =1.615 dyne-cm/rad the observed value of v was 1.111 sec-1, 
therefore the moment of innertia around the wire axis was calculated as 1=3.314 
x103g-cm2. The above test was performed without applying an exciting current 
to the solenoidal coils of differential transformers. In case of the exciting current 
being applied to the solenoids (as in the state of measurements being performed) it 
was recognized that the frequency of free oscillation was increased to v'=1.124sec-' 
for the same torsion wire. This increase in v may be attributed to the influence 
of restoring force acting on the cores due to their interaction to the magnetic field 
of the solenoids. Therefore, taking this influence into consideration, we used effec-
tive wire constants, h*, defined as k*=k± k with Ok=(27r)2I(7/ -v2)=3.6x103 
instead of h for all the wires used in this study.* The real wire constants, k', of 
the torsion wires used are 1.578 x 108 (dyne-cm/rad) for the most rigid one and 
1.015 x 10' (dyne-cm/rad) for the least rigid one. 

   2. Test with Purely Viscous (Newtonian) Fluids 

   It should be noted here the equation (1) was derived under the two basic 
assumptions: the neglect of end effect and the independence of complex viscosity 
on the amplitude of oscillation. 

   An experimental check for the validity of the former assumption and for the 
appropriateness of other experimental conditions can be given by the test with 
a purely viscous (Newtonian) fluid of known viscosity. Since the imaginary part 

of the complex viscosity should be zero for a purely viscous fluid, the following 
relations are readily derived from Eq. (1) with neglecting all the terms higher 
than n=3: 

   27r (Ail-I-- B,p)v2 //sing)(3
a)       12 r/ p 

(A,I+B,p)pi,' A,kp cosy 
       (i)2(~i)°— 1 —(3b) 

Considering that in purely viscous fluid the real part of complex viscosity is 
independent of frequency and equals to the steady shear viscosity, we can expect 
that plots of (v/p) sin 9, and 1—(1/p) cos cp versus vz should give straight lines 

 * It was recognized that dk was independent of amplitude and frequency as far as the 
   displacement of the cores was not so large. 
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       Fig. 3. Plots of v sin gp/p and 1-cos p/p versus v2 in a castor oil(7is=8.70 
            poise) at 20.6°C. Circles indicate the obtained data, and lines are 

           calculated by Eqs. (3a) and (3b). 
                v sin 97/p=0.347 v2-0.423; 1 —cos p/p= 3.73 x 10-3v2— 0.512 x 10-2 

and their slopes and intersects could be calculated from Eqs. (3a) and (3b). Such 

tests were performed with a castor-oil (>,s=8.70 poise) at 20°C and a silicone oil 

(77=1.22 x103 poise) at 30°C is steady shear viscosity). The former results are 
shown in Fig.3, in which circles are experimental values and straight lines are 

calculated ones from Eqs. (3a) and (3b). It is seen that the coincidence between 

calculated and experimental values is fairly good in the plots of (v/p) sing, versus 
v2. While in the plots of •1—(1/p) cos go versus 7/2 the experimental values are 

scattered especially at the both ends of frequency range covered with the wire 

used in this experimental run. However, when another wire of a different constant 

is used for the test, the coincidence becomes considerably good in the frequency 

range where the previous data are scattered. 

   It may be said that each wire has its most suitable range of frequency (which 
is rather narrow in this instrument) and beyond both ends of this frequency range 

the scattering of data are almost inevitable. Therefore, to cover a wide range of 

frequency in performing measurements we should prepare many torsion wires 

with widely varied torsional constants. This difficulty can be avoided also by the 

change of moment of innertia of the inner cylinder assembly, for instance, by 

attaching an innertia ring. However, as the moment of innertia of our instrument 
is originally considerably large, this method seems to be impractical for our 

instrument. 

   3. Test for Linearity 

   Another test which should be made before performing the measurements is to 

find the frequency range in which the linearity assumption holds valid. That is, 
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           Fig. 4. Test for the dependences of dynamic viscosity and dynamic 
rigidity, G', on the amplitudes of the outer cylinder: 11.1wt% 

                 polystyrene Thi in toluene at 20°C 

in deriving Eq. (1) the complex viscosity of the fluid is assumed to be independent 

of the amplitude of the oscillatory motion of the outer cylinder. This limit in the 

amplitude may depend on dimension of the instruments as well as the rheological 
nature of the material to be tested. In our experiment this test was made by 

comparing the G' and V values measured in polystyrene-toluene solutions at three 

different amplitudes, 1.08 x10-2, 1.58 x10-2 and 2.42 x10-2 radian, in the range 

available with this instrument. 

   A result for a 10% solution of polystyrene Thl in toluene at 20°C is shown 

in Fig. 4. It is seen that the coincidence of G' and 7 values obtained at different 

amplitudes is considerably good in the frequency range investigated. Thus in this 
experiment we use the amplitude range from 1.0 x10-2 to 1.5 x10-2 radian for all 

the solutions investigated. 

COMPARISON OF DYNAMIC DATA WITH STEADY SHEAR DATA 

   The relation between dynamic and steady shear viscosities has been discussed 
hitherto by various authors from both theoretical and experimental points of 
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view. Theoretical treatment by  DeWitt') predicted that the steady shear viscosity 
as a function of rate of shear should be the same as the dynamic viscosity as a 

function of angular frequency. Experimental check of this prediction by various 

authors,s,9,10' however, showed that both the viscosities were coincident with each 

other only at low frequencies, and the dynamic viscosity decreased more rapidly 

than did the steady shear viscosity. Our results, as is seen in Figs. 5a and 5b, 

also show this discrepancy, which suggets that the rate of shear dependence of 

steady shear viscosity is not quite quantitatively equivalent to the angular frequen-
cy dependene of dynamic viscosity. 

   The relation between dynamic rigidity and normal stresses was discussed by 

Markovitz and Williamson,11' who proposed that if 1/3(0-11-022)=f(8), then 

G'(e) =f(1.4(e), in which 0-11 and o-22 denote components of normal stress in the 
direction of flow and in the direction perpendicular to the plane of shear, respec- 

tively, and6 denotes the rate of shear. The factor of 1.4 was obtained empirically. 

Our analysis on the basis of a simple molecular theory4,12' suggests, however, that 

the angular frequency dependence of dynamic viscosity tends to the same form 

to the rate of shear dependence of 1/2(0-tt-022) when the rate of shear and angular 

frequency approach zero. For the relation between dynamic and steady shear 

viscosities, the analysis predicts that both viscosities tend to the same value at 

very small frequencies, and in both cases the steady shear data, 1/2(o- --o-n) and 
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        Fig. 5a. Comparison of dynamic data with steady shear data: polystyrene 
               St in toluene at 30°C. 
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         Fig. 5b. Comparison of dynamic data with steady shear data: polystyrene 
Th1 in toluene at 30°C. 

77(5), are always larger than the corresponding dynamic data G' ((o) and 7/((0)  at 
finite value of 6 or e. On this standpoint we compared 1/2(0-11-.--(722) with G'(w), 
indentifying the rate of shear, , with the angular frequency, w. 

   The results are shown in Figs. 5a and 5b for toluene solutions of polystyrene 
Si and Th1 obtained at 30°C. It is seen that both of normal stress and dynamic 
rigidity curves coincide with each other fairly well at low frequencies, and again 
slight discrepancies are recognized between both curves, that is, the former 
increases more rapidly than does the latter. These results are, at least, in quali-
tative agreement with the theory outlined above. However, it seems that this 
agreement is somewhat fortuitous, since the theories were derived for very dilute 
solutions with a simple molecular model. Theoretical consideration from more 

general standpoint is necessary to determine whether the above comparison has 
a general applicability, especially, whether the factor of 1/2 for normal stress 
data is a universal constant or only a factor applicable for some limited cases. 

   The authors are indebted to Professors Hiroshi Inagaki and Mikio Tamura 
for their interests in this work. One of the authors (TK) expresses his thanks 
to the Japan Society for the Promotion of Science for a Postdoctral Fellowship 
Grant (Oct., 1960—March, 1961) which enabled him to participate in this work. 
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