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PREFACE

     In the last two decades surprising successes have been achieved 

in a variety of fields in space science under favor of the progress 

in rockets and artificial satellites. The topic with which we will 

concern ourselves in this thesis, i.e., acceleration and heating 

of  plasmas  , are those that have never failed to fascinate 

scientists to their mysterious mechanisms. We may now be proud of 

our success, but, at the same time, we should know that it is only a 

glimpse of what the universe still shrouds in mystery. 

     In this thesis the magnetic field and flow with an X-type 

neutral point or stagnation point are studied in terms of the 

reconnection of magnetic Zines of force. In its somewhat intuitive 

concept, the reconnection mechanism involves two important physical 

processes : acceleration and heating of plasmas ; and penetration of 

an electric field parallel to a plane at rest. 

     The original stimulus for considering the reconnection process 

was derived from the solar-flare phenomenon, but recently there has 

been considerable interest as a possibly important process in strong 

radio sources and star formation and in the study of geomagnetic 

storms. Some attempts have also been performed in order to simulate 

the flare events in laboratory devices, which means in itself the 

acceleration and heating of plasmas due to the release of magnetic 

energy. 

     In chapter 1, we describe a concept and kinematics of magnetic 

lines of force, together with the way in which a pair of antiparallel 

magnetic lines of force reconnect with each other at a neutral point. 

                                - iv -



We will also mention solar flares and geomagnetic storm events shortly. 

     Chapter 2 deals with the classification of magnetic neutral 

points in an infinitely conducting fluid. The X-type magnetic neu-

tral point, with which we will mainly concern ourselves, can be ap-

propriately classified as one of the neutral points. The probable 

existence of spiral and node types of neutral points, and their 

physical implication as well, are tentatively discussed. 

     Chapter 3 is given to the critical survey of the current models 

for the stationary-state reconnection at X-type neutral points. Each 

model will be examined whether it can describe the explosive phase of 

the largest solar flares, during which 1032 ergs of the kinetic energy 

are likely to be carried away by a plasma of  1016 g ejected at some 

1500 km/sec. There have been two opposing points of view concerning 

what determines the rate of reconnection. One is to assume the con-

ditions near the neutral point to be predominant, while the other 

considers the conditions far from the point to be important. Both of 

them say that it is possible to account for the explosive phase of 

the largest solar flares. However, we cannot approve of their results, 

since these theories could not completely succeed in the matching of 

the solutions which were separately studied in the vicinity of the 

neutral point and in the region far from it. 

     Hence in chapter 4, we investigate, though numerically, two 

dimensional stationary-state solutions of a finitely conducting mag-

netohydrodynamic ( MHD ) fluid in which no such clear-cut distinctions 

are made between the two regions. Although the Reynolds numbers used 

are much smaller than the actual ones, the resulting solutions exhibit 

smooth transition in their properties from the diffusive near the 

neutral point to the convective far from it. We can show that the 

stationary-state reconnection may be possible even in very highly 

conducting fluids, and that the overall features are not essentially 

influenced by dissipations due to finite electrical conductivity or 

viscosity, but definitely by external conditions such as the applied 

electric field in the magnetized fluid.
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    Finally, chapter 5 is devoted to the study of the evolutionary 

process involving a reconnection of magnetic lines of force. Given 

an initial antiparallel magnetic field, or a current sheet, to which 

there is an injection of fluid in a transverse direction, we numeri-

cally seek to see how the process of reconnection builds up. The 

findings of this experiment are : magnetic lines of force can recon-

nect and grow to the X-type configuration in fluids of any finitely 

large hydromagnetic and hydrodynamic Reynolds numbers ; the conditions 

local to the neutral point are less important than the external con-

ditions that set up global flow patterns ; acceleration of fluid in 

bulk only concerns whether the X-type configuration grows to the 

comparably large extent or not ; and the electric field at the neutral 

point due to the rapidly changing magnetic field is less efficient in 

accelerating charged particles. 

     In chapter 6, the relevant laboratory experiments are shortly 

mentioned, together with some complementary remarks to the particle 

acceleration. 

     All equations and quantities are in the rationalized MKS system 

of units unless otherwise mentioned.
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ACCELERATION AND 

 RECONNECTION OF

HEATING OF 

MAGNETIC

PLASMAS DUE TO 

LINES OF FORCE



                 Chapter 1 

GENERAL INTRODUCTION

§ 1. Introduction 

     We have some concepts which possess no real physical entity but 

describe the qualitative nature or an intuitive side of a physical 

quantity or a phenomenon. Such concepts are sometimes useful, for 

they make it easy to give insight into complicated phenomena and to 

allow the deduction of general results without excessive calculation. 

     The concept " magnetic lines of force " belongs to this category. 

We can neither see nor touch them ; they have no real entity, and 

accordingly we cannot discriminate some line of force from the other. 

But, for example, when a charged particle is placed in the magnetic 

field, we are able to make sure of their existence by the particle's 

gyration. We could show a more familiar example ; put iron powder on 

a thin board and move a magnet under it, then we can also ascertain 

its existence by the alignment of the iron powder along the lines of 

force. 

     The concept " magnetic lines of force are frozen in highly con-

ducting fluids ", which was advanced first by  Alfven in 1942 ( Stern, 

1966 ), can qualitatively describe the evolution of magnetic field in 

highly conducting fluids. It has often been a powerful tool for the 

elucidation of the complicated geophysical and astrophysical situations....,
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§ 2. Concept of Magnetic Lines of Force 

2.1 What are magnetic lines of force ? 

     The magnetic field B is solenoidal and therefore can be repre-

sented by two scalars. Though it may be represented in several ways, 

it is advantageous, for studying magnetic lines of force, to introduce 

Euler potentials a  ands such that 

B=Vax VB. =Vx ( aV ) .(1.1)

The line of intersection of a pair of surfaces a - constant and (3 

  constant defines a line of force characterized by the associated 

values of a and B. It is informative to touch briefly on the features 

of Euler potentials ( Stern, 1966 ). 

(1) The use of Euler potentials facilitates the introduction of tubes 

of flux. The flux in the tube with a rhomboidal cross section, defin-

ed by the 4 lines of force ( a, s ), ( a + da, (3 ), ( a, s + d(3 ) and 

( a + da, s + d(3 ) , is given by

dcl) = dads . (1.2)

(2) A pair of Euler potentials a and s are not uniquely defined, and 

an alternative choice of h( a, s ) and g( a, s ) are possible for a 

given pair of potentials, provided B( g, h ) / a( a, s ) = 1. 

(3) Since the representation is not linear, the superposition of 

Euler potentials due to several sources is not in general valid. As 

a result, it is not possible to derive the potentials a and IS analyt-

ically, except in some simple field configurations. One such case 

for which the potentials can be derived analytically is provided by 

a two-dimensional field, where B neither depends on z nor has a com-

ponent in its direction. One may then choose
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               =  z  , 

             a = A( x, y ) , 

hence 

       B = VA( x, y ) x Vz . (1.3) 

     It may be said, in plainer words, that each equi-potential 

contour of A represents the corresponding magnetic line of force. 

Superposition of potentials exists in this case, all of them sharing 

the same (3. 

(4) Magnetic lines of force characterized by families of Euler poten-

tials are often not closed and therefore attain infinite length in a 

bounded region of space. We can easily give an instance, e.g., mag-

netic lines of force which come from both a current flowing along a 

circle r = R in the z = 0 plane and a filamentary current along the 

z-axis of a cylindrical coordinate system. The a-surfaces are 

toroidal rings and a-surfaces an archimedean screw with its axis 

twisted around the circle and its ends, in general, not meeting.

2.2 Kinematics of magnetic lines of force

     An alternative description of a magnetic field which changes in 

time in a known way is possible by assuming a velocity to the associ-

ated lines of force. Here we will mention the motion of magnetic 

lines of force. 

     The surfaces of a and which are convected with the fluid define 

a velocity of the lines of force, V. Since the rate of change in a 

and B, as observed by a particle moving with the fluid's velocity v, 

vanishes, they satisfy

9a+ v •Da = 0 , (1.4a)
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      DR+v . vs =  o  .(1.4b) 

A velocity satisfying this condition can always be found ( Northrop, 

1963 ), such that 

v = (atva -asvs) xBz.(1.5) 

                              B This definition is not concerned with the velocity component parallel 

to B, which we set equal to zero customarily. The normal component 

is then regarded as the velocity of a line of force. 

     However the solution of Eq. (1.5) is not unique. We have point-

ed out that there exist many equivalent choices of a and B describing 

the same B. Therefore we can transform Euler potentials from time to 

time without altering the physical picture. The velocity correspond-

ing to this transformation may always be added to the velocity (1.5). 

Such a velocity merely relabels the lines and is termed a " relabeling 

velocity " ( Stern, 1966 ). 

     Thus, the definition based on Euler potentials is not entirely 

satisfactory to define the velocity of the lines of force. We there-

fore broaden the definition and regard as a " velocity of lines of 

force " any velocity V satisfying 

      ag-Vx (VxB) =uoQV?B.(1.6) 

It can be shown that V consists of three components : a convection 

velocity v, a relabeling velocity U and a slippage velocity w ( Sweet, 

1950 ). Convection of magnetic lines of force with the fluid's veloc-

ity v is assumed to satisfy*

* Newcomb (1958) showed that v satisfies all verifiable consequences 

associated with the concept of the motion of lines of force, e.g., 
line preservation and flux preservation. 
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     taB  -  V  x  (v  x  B  ) = o .(1.7) 

It may alternatively be said that the change of magnetic field in an 

infinitely conducting fluid is equivalent to the convection of mag-

netic lines of force with the fluid's velocity. It may be verified 

that V of Eq. (1.5) is one of the particular solutions. 

     Since any relabeling velocity U expresses no variation in the 

field, it is determined from the equation 

V x ( u x B) = 0.(1.8) 

The general solution has the form 

u =VTx B ,(1.9) 
B2 

with `Y a scalar and VT normal to B. 

     A velocity of slippage, W, due to finite electrical conductivity 

is defined by* 

      -V x (w x B ) = 
u1QV2B .(1.10) 

The solution to this equation is given by 

          _Bx (VxB)    w(1 .11) 
uo0B2 

The slippage velocity is proportional to the magnetic body force act-

ing on the fluid. One thus gets the picture of a viscous interaction 

between the fluid and the lines of force, with the lines exerting a

* 

are

It is apparent that W includes 

 considered separately.

U ( Sweet, 1950 ), but here they
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force on the fluid proportional to their relative velocity. The order 

of magnitude of W is (  uoaL )-1, which is used to indicate the time 

of decay of a given magnetic field. 

§ 3. Reconnection of Magnetic Lines of Force 

3.1 Schematic picture 

     Is it possible for magnetic lines of force to be broken off and 

reconnected again ? The answer of this question is that it is actu-

ally possible only at the magnetic neutral point where B = 0. This 

will now be examined schematically. 

     Taking the neutral point as the origin, the magnetic field B 

near a neutral point 0 may be expressed by the lowest order term of 

a Taylor expansion 

    B = a• r(1.12) 

where r is the radius vector to 0 and a is a constant diadic ( aT = 

OBI0; T denotes transpose ). In this order-of approximation, there 
is no diffusion, i.e., 02B = 0. Hence magnetic lines of force move 

only with the relabeling velocity W in such a field in which there is 

no fluid motion. If such a magnetic field pervades initially, mag-

netic lines of force do not change the pattern as a whole. Near a 

neutral point, the relabeling velocity is larger and diverges at 0, 

but at large distances from 0 it diminishes rapidly to a negligible 

magnitude. As a consequence, no matter what the flow velocity of the 

conducting fluid is, there will always exist a small neighborhood of 

0 in which the convection of lines of force by the fluid velocity can 

be neglected, compared with the relabeling velocity. Here we consider 

the magnetic lines of force near an X-type neutral point as shown in 

Fig. 1. The possible existence of this neutral point will be studied 
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Fig. 1 

Schematic configuration of magnetic 

lines of force near an X-type neu-

tral point. 0 denotes a neutral 

point.

in chapter 2. Consider a line of force which initially passes points 

A,B,C near 0. A time interval At later the line will move a distance 

wAt. Far from 0 this shift is negligible, so that if one defines a 

line by its portion far from 0 one will be still observing essentially 

the same line. Near 0, however, there will be a real change, with 

the points A,B,C moving to D,E,F. The point A turns a corner at 0 by 

the infinite slippage velocity to reach D while B and C transform 

smoothly into E and F. This is, what we call, the manner that a pair 

of oppositely directed lines of force, which go toward the neutral 

point, are broken off and reconnect with each other at the neutral 

point. 

3.2 Physical meaning 

     There is no actual change induced before and after the  reconnec-
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tion in such a field as the one mentioned in the preceding section. 

It is only a formal relabeling of the magnetic lines of force. When 

we call for the reconnection in an actual magnetohydrodynamic fluid 

or in a magnetized plasma, it involves the drastic change both in the 

field and in the fluid, having the key to the following two processes 

( Fukao and Tsuda, 1973a ). 

(1) Acceleration of particles. Stored magnetic energy is converted 

into kinetic and thermal energies of plasmas. 

(2) Quasi-stationary penetration of an electric field  parallel to a 

plane at rest. If magnetic lines of force grow to an X-type configu-

ration, the fluid is injected from opposite sides, and the electric 

field is induced parallel to a plane at rest where the incident flow 

collides. The electric field may exist quasistationarily, since the 

magnetic energy is carried away by the fluid ejected perpendicular to 

the injected flow. It is possible for the electric field to be trans-

ported along the highly conducting magnetic lines of force across the 

plane to regions where the electric field has not penetrated before. 

The detail will be cleared up in the following descriptions. 

     We add a few comments on nomenclature. Some call the process of 

reconnection the " annihilation of a magnetic field ", and others, 

call it the " merging of magnetic lines of force ", according to the 

images they make of the process or the situation in which it actually 

occurs. However, we give here a general name " reconnection of mag-

netic lines of force " to the phenomena that involve neutral points 

in conducting fluids to bring on such results as mentioned above. 

§ 4. Some Roles of Reconnection in Space and Laboratory Plasmas 

4.1 Applications to the astrophysics 

     Astrophysical interest in neutral points dates from an observa-

tion by Giovanelli (1947) that solar flares occur preferentially in 
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the vicinity of neutral points of sunspot fields. This excellent idea 

 — which still lacks complete confirmation because of the difficulty 

in identifying neutral points on the sun led Dungey ( 1953 ; 

1958 ; 1963 ) to develope a theory of reconnection which described the 

acceleration of charged particles in terms of the induced electric 

field near an X-type neutral point ( see, chapter 3, g 2 ). 

     Reconnection process has also been considered to be possible in 

the formation of chromospheric spicules ( Uchida, 1969 ), in the de-

tachment of the magnetic field of an intersteller cloud from the 

surrounding field ( Mestel and Strittmatter, 1967 ), in X-ray stars 

( Parker, 1968 ), and even in galactic flares ( Sturrock and Barnes, 

1972 ). 

     The original stimulus for considering the reconnection of mag-

netic lines of force was certainly derived from the solar-flare 

phenomenon, but now it appears on the stage playing a crucial role 

in the Universe. 

     We will briefly mention the solar flare phenomenon in the follow-

ing section which is not only a probable result of the reconncetion 

but a splendid manifestation of a variety of plasma instabilities. 

Recently, we have also obtained under favor of the progress in space 

vehicles, many pieces of observational evidence of the reconnection 

near and within the earth's magnetosphere. We will, first, give a 

short account of them in the next section. 

4.2 Reconnection near and within the earth's magnetosphere 

4.2.1 Observational evidence 

     There is indirect but strong observational evidence for reconnec-

tion between the interplanetary and geomagnetic fields. For example, 

it has been found that geomagnetic disturbance at ground level tends 

to be greater when the interplanetary magnetic field has a southward 
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component ( see, e.g., Arnoldy, 1971, and references therein ). 

Sonnerup and Cahill (1968) have reported several examples of rotational 

discontinuities occurring at the magnetopause, especially during mag-

netic storms ; this is consistent with the occurrence of a significant 

amount of reconnection on these occasions. Moreover, the dayside 

magnetopause is found to be closer to the earth when the AE index is 

large ( Meng, 1970 ) and the interplanetary magnetic field is directed 

southward ( Arnoldy, 1971 ). In addition, observations of energetic 

solar particles over the polar caps, in the geomagnetic tail, and in 

interplanetary space, suggest that the geomagnetic lines of force in 

the tail are reconnected with interplanetary magnetic lines of force 

and that this reconnection usually takes place less than about 0.1 AU 

( AU : astronomical unit of  distance, 1AU = 1.495 x 108 km ) beyond 

the earth's orbit ( e.g., Domingo and Page, 1971 ; Morfill and Quenby, 

1971 ; Van Allen et al., 1971 ). 

     Observational evidence has also been obtained for a continuous, 

but non-uniform, inward shift of the dayside magnetopause by 2RE 

( RE : earth radius ) during a 2-hour period in which the solar wind 

momentum flux is thought to have remained constant ( Aubry et al., 

1970 ). This inward motion occurred immediately after the direction 

of the interplanetary magnetic field changed from northward to south-

ward. Moreover, the average position of the magnetopause was closest 

to the earth when the southward component of the interplanetary mag-

netic field in the magnetosheath attained its greatest intensity. 

The inward shift did not produce any compression of the magnetospheric 

cavity, implying that magnetic flux was transferred from the dayside 

of the magnetosphere to the geomagnetic tail. Aubry et al. suggest 

that the erosion of the dayside magnetic flux and the enhancement of 

the tail magnetic flux, in the absence of an increase in solar wind 

pressure, may be referred to an increased tangential drag on the 

geomagnetic cavity resulting from the southward component of the 

interplanetary magnetic field. 

     Magnetic neutral line was actually observed in the magnetospheric 
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tail. Nishida and Nagayama (1973), in what appears to be a very 

important piece of work, have found that all across the local-time 

sector of  ly1 5. 15RE ( in the solar magnetospheric coordinate ), the 
neutral line is formed somewhere between x = -10 and -30RE within 

abount 10 minutes of the onset of the substorm expansion phase.

4.2.2 Model of the magnetosphere 

     These observational evidence seems in favor 

nection model of the magnetosphere ( Dungey, 1963 

Fig. 2, there is quite a change in topology when 

field switches from southward to northward. When

of the Dungey recon-

 ). As sketched in 

 the interplanetary 

 the interplanetary

t North 

(a)Solor 
       Wind

N

(b)

 

t  North

Solar 

Wind

Fig. 2 The Dungey's model of the magnetosphere for  : 
   (a) the southward interplanetary field and (b) 

   the northward interplanetary field. N denotes 
   a neutral point. Arrows indicate the direc-

   tion of plasma flow. A pair of antiparallel 
   magnetic lines of force are carried toward the 

  neutral point from both sides and following 
   reconnections are ejected in the transverse 

   direction. No attempt has been made to draw 
   these diagrams to scale ( after Dungey, 1963 ). 
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field is southward there are magnetic lines of force with two, one 

and no feet on the earth, but when the interplanetary field is north-

ward lines of force either intersect the earth twice or not at all. 

Thus, in the Dungey model the magnetosphere is open for southward 

interplanetary fields and closed for northward interplanetary fields. 

     Another difference between the northward and southward models, 

is the role played by the reconnection between the interplanetary and 

geomagnetic fields. For southward interplanetary fields flux is added 

to the tail by this reconnection ; for northward interplanetary fields 

flux is removed from the tail. Either process is a steady state, 

however, since flux is removed from the tail for southward fields by 

reconnection at a magnetic neutral point in the  tail,  and added to 

the tail for northward fields by convection from the dayside. 

     We have already mentioned the observations of solar energetic 

particles, but both solar electron data ( West and Vampolar, 1971 ) 

and solar proton data ( Evans and Stone, 1971 ) indicate that the tail 

is open at aZZ times, regardless of the sign of the north-south com-

ponent of the interplanetary magnetic field ( Morfill and Scholer, 

1972 ). Thus, the Dungey model for northward fields is not consistent 

with these results. The theoretical reconnection models at the mag-

netopause are now investigated using, for example, a modified Dungey 

model ( Morfill and Quenby, 1971 ; Russell, 1972 ) and a model with 

a pair of Alfven shocks in addition to slow shocks at the interface 

( Nishida and Maezawa, 1971 ), but not yet well established. 

4.3 Mechanisms of the solar flares 

     Solar flares are complex and transient excitations of the solar 

atmosphere above magnetically active regions of the solar surface. 

They involve enhanced emission of y-ray, X-ray, EUV, visible rays, H
u 

and mm-, cm- and m-waves, together with solar cosmic rays and plasma 

ejection. Their mechanism is not yet understood after more than a 
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century of study since, in 1859, Hodgson and Carrington separately 

observed the explosive phenomenon on the solar surface ( Sweet, 1969 ). 

However, we have rapidly advanced in knowledge in the last twenty 

years mainly due to the increasing opportunities of the direct obser-

vation of various emissions and ejections by balloons, rockets and 

satellites. The resolving power of observations of the magnetic field 

in the solar atmosphere is also continuously improved to bring about 

a better understanding. 

     A proton-producing flare of importance 3+ typically occurs in a 

large complex sunspot group during a period of changing magnetic flux. 

It begins with an enhancement of the atmospheric emission for several 

minutes, followed by an explosion leading to the ejection into inter-

planetary space of plasma clouds and high-energy particles. The total 

optical emission continues to increase for some minutes, and the whole 

atmosphere remains activated subsequently on a decay time scale of 1 

hour. Here we do not restate the main points obtained to date con-

cerning the observational evidence of solar flares ; readers are 

referred to the review papers by Sweet (1969) and Takayanagi et al. 

(1973). However, it is informative to point out that 1032 ergs of 

energy are likely to be emitted during the explosive phase, mainly in 

the form of the kinetic energy carried by a plasma of 1016 g ejected 

at some 1500 km/sec, and that another 1032 ergs are emitted in the 

decay stage, mainly in optical radiation ( Parker, 1963  )_ If one is 

allowed to distribute this amount of energy over the area of the ac-

tive region, say 1019 cm2, the energy density is estimated at 2 x 1013 

ergs/cm2. However, the thermal energy in the column with a height, 

say 109 cm, may amount, at most, to 5 x 109 ergs/cm2 in the chromo-

spheric level where ne = 5 x 1012 /cm3 and T = 7 x 103 °K, or to 109 

ergs/cm2 in the coronal condensation where ne = 4 x 109 /cm3 and T 
2 x 106 °K ( Takayanagi et al., 1973 ). This is short of what is 

required, by some orders of magnitude, hence cannot account for the 

thermal energy. Pneuman (1968) has considered the magnetoacoustic 

flux transported from the photosphere, but the flux density 3 x 108 
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ergs/cm2/sec is also unfavorable to the buildup time. On the other 

hand, the magnetic energy available may be sufficient, with B = 500 

gauss which is often seen in the active regions of large flares. 

Thus we may reasonably consider that the explosive phase of a solar 

flare is attributable to a release of magnetic energy stored by the 

photospheric motions during the development of an active region. 

     We have not yet succeeded in theoretical explanation of solar 

flares, which is a difficult and troublesome task with many aspects. 

Some of the most fundamental aspects have been described only by in-

complete and qualitative theoretical models. Nevertheless the exclu-

sive association of solar flares with active regions shows that at 

least some aspects of the problem are  magnetohydrodynamic. Hence, we 

will discuss at length in chapter 3 the prevailing models of the re-

connection process in reference to the explosive phase but we should 

not miss the fact that many different mechanisms have also been 

proposed and investigated along this line ( Sturrock and Coppi, 1966 ; 

Sturrock, 1968 ; Gold and Hoyle, 1960 ). Possibly the list of these 

mechanisms has already been complete in the sense that no immediate 

source of energy has been overlooked which may be relevant for the 

total flare phenomenon or any important part of it ( Schmidt, 1969 ). 

     A number of fundamental alternatives for a theory of flares, of 

course, are still open. They should be given by the different possi-

bilities to store an energy of about 1032 ergs in a way that it can 

be released within about 102 sec. 

4.4 Reconnection in laboratory plasmas 

      Some experiments on the reconnection process have been performed 

in order to simulate the flare events in laboratory devices ( e.g., 

Bratenahl and Yeates, 1970, Syrovatsky et al., 1972 ; Ohyabu and 

Kawashima, 1972 ). Now they are still at preliminary stages but we 

may expect that when the artificial flares are actually realized in
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the laboratory plasmas a new mechanism 

plasmas will fall into our hands. In 

process has now received considerable

of acceleration and heating of 

this sense, the reconnection 

attention by many experimenters.
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                              Chapter 2 

TOPOLOGICAL STUDY OF MAGNETIC 

   FIELD NEAR A NEUTRAL POINT

 §  1. Introduction 

     Magnetic neutral points are classified by the number of lines 

of force passing through them. A bundle of lines of force having a 

common tangent at a neutral point 0 is counted as one line only. It 

has been known that there exist two kinds of neutral points ( Dungey, 

1953 ). If there is only one line of force passing through 0, it is 

called ( by the shape of lines of force in its vicinity ) an 0-type 

neutral point. Alternatively, if three lines of force or bundles of 

lines pass through 0, it is known as an X-type neutral point. All 

current-free neutral points belong to this class. 

     These two types of neutral points have considerably been inves-

tigated and we will also be concerned mainly with X-type neutral 

points. However, they are not the.whole of the existing neutral 

points ; we can show the possible existence of other types of neutral 

points. We do not afford any stability condition, which requires a 

full understanding of the flow and magnetic field involving the cor-

responding neutral point. 

     In what follows, the classification of magnetic field in the 

vicinity of a neutral point will be strictly re-examined in terms of

* See Fukao et al. (1974).
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the phase trajectories. Much of what will be said is the extension 

and the generalization of Dungey's work, but some types of the neutral 

points which have not been recognized by the pioneers are first pro-

posed here. Then, we mention the volume force acting on the fluid. 

Finally, we advocates though very intuitively, a new type of evolution 

of neutral points which may explain higher rates of energy conversion 

than those expected in X-type neutral points. 

§ 2. Topology of Magnetic Lines of Force 

     Since the magnetic field must be a solution of Maxwell's equa-

tion, it must be differentiable, and hence expansible in Taylor 

series. Taking the neutral point as the origin, the magnetic field 

( magnetic flux density ) B near a neutral point may be expressed by 

Eq.  (1.12)  , that is, 

                        B = a • r . 

Only one constraint on a is as follows : a must have zero trace, 

because magnetic field is solenoidal. 

     Here we consider the solution of 

            r(T) = a • r(T) ,(2.1) 

where r(T) is the derivative with respect to an arbitrary parameter 

T. It is apparent that the solution r(T) describes a line of force, 

since r(T) indicates B itself. Therefore we can show magnetic lines 

of force in terms of phase trajectories, which satisfy Eq. (2.1). 

     It is readily seen that a must have at least one real eigenvalue, 

and that the orthogonal coordinate system ( x, y, z ) can always be 

chosen such that the z axis is in the direction of the eigenvector 

corresponding to the real eigenvalue of d. In such a coordinate sys-

tem, a may be described as 
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 all , a12 

a =a21 a22 

a31 a32

0 

o  

a33

(2.2)

where

In 

is

this 

given

where

3 

1 a.. = 0 ( zero trace ) . 
i=1

(2.3)

case the current density J in the vicinity of a neutral point 

by

            a32 

UoJ = —a31 

ao

(2.4)

Po is the magnetic permeability in vacuum and ao is defined as 

     ao ( = UoJ
z ) = a21 - a12 • 

The characteristic equation of a*, fa*(a), becomes 

fa*(a) = fA(X)• ( X - a33 ) ,(2.5)

where

fA(a) = a2 + a33A - X ,

in terms of X defined as

X = a12a21 - alla22 •

tion 

into 

any 

of f

The 

 (2. 

 four 

point 

A(X)

eigenvalues of a* are the roots of the characteristic equa-

5 ) . Figure 3 shows that the eigenvalues are classified 

                                                                    * 

 groups in the plane ( a33, X ) ; we can determine an a at 

 in the region where 4X + a33 + ao 2 0. Let the two roots 

be a and S, which are not necessarily real. We may note that
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 x/fj
,

///r, 
 4X+°? :0

4X+°43=0 

                   Fig. 3 The grouping of eigenvalues 
                            of a* and C. 

a+13+a33 = 0. 

     As already mentioned, three linearly independent vectors hl, h2 

and h3 are chosen such that h3 is the eigenvector corresponding to 

a33. And we assume, for simplicity, magnetic fields confined to the 

plane determined by h1 and h2. It may be quite sufficient, if only 

we illustrate them in the orthogonal cartesian system, since the 

affine transformation is always possible how much inclined hl and h2 

may be. Hereafter hl and h2 are respectively projected onto the x 

and y axes, and all figures are illustrated in the xy plane. 

2.1 Real eigenvalues 

     Both a and S are real if 

               4X + a33 > 0 . 

In this case the roots of Eq. (2.5) can be classified into three 

cases. 
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2.1.1 The case of  a = S = a33 ( = 0 ) 

    This is satisfied if 

        X = a33 = 0 .(2.6) 

The eigenspace corresponding to the eigenvalue 0 is denoted by Wo. 

Then there are three cases according to the dimensions of Wo. 

(1) When J = 0 ( i.e., a31 = a32 = ao = 0 ; see Eq. (2.4) ), it is 

readily shown from Eqs. (2.3) and (2.6) that a = 0 and, therefore, 

that dim Wo = 3, which means no field in the whole space. 
all a12a21 a22 

(2) If J * 0 and both= 0 and= 0 are 
               a31 a32a31 a32 

simultaneously satisfied dim Wo = 2. Either J z = 0 ( i.e., ao = 0 ) 
or J

x= J = 0 ( i.e., a31 = a32 = 0 ) satisfies these conditions. 
In this case Wo becomes a plane including the z axis, i.e., a31x + 

a32y = 0 if 1a311 + 1a321 * 0. In the case in which a31 = a32 = 0, 
either allx + a12y = 0 ( if laid + 1a121 * 0 ) or a2lx + a22y = 0 

( if 1a211 + 1a221 * 0 ) will take its place. At any rate it is 
readily seen that the electric current flows parallel to the plane Wo. 

Then there exist three vectors h3, h2 and h1, each of which satisfies 

a*h3 = Oh3, a*h2 = Oh2 ( h3 and h2 are in the plane Wo ) and a*hi = h2 

( if Jz = 0, h3 is taken instead of h2 ), respectively. Therefore 

the general solution of Eq. (2.1) is expressed as 

          r(T) = c3h3 + c2h2 + C1( h2T + h1 ) 

               = c1h1 + E2h2 + c3h3 

where 2 = C1T + C2 and Ci's ( i = 1, 3 ) are arbitrary and real con-

stants. These phase trajectories describe the antiparallel magnetic 

field directed to h2 ( note that, if J
x= J= 0, h2 is in the xy 

plane ). The plane Wo is the so-called magnetic neutral sheet where 

the magnetic field vanishes. 
* 

(3) For the other values of a , dim Wo = 1. In this case both J* 0 

                                                                                 z 
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and  1Jx~ + IJyJ * 0 must hold. Wo is a straight line and identical 
with the z axis. Then there exist three vectors h3, h2 and hl, each 

of which satisfiesa*h3 = oh3, a*1k = h3 and a*hi = h2, respectively. 

Therefore the magnetic lines of force are written by 

                                                  T2       r(T) = C3h3 + C2( h3T+h2 )+C1(h32+h2T+h1 ) 

           = C1h1 + E2h2 + E3h3 

Cl 
where E2 = C1T+C2 and E3 =2T2 + C2T + C3. They show that Wo 

( the z axis ) is the magnetic neutral line along which magnetic field 

vanishes. In the plane defined by h2 and h3 ( i.e. C1 = 0 ) an anti-

parallel field is formed in the direction of h3. In any plane paral-

lel to the above, the magnetic lines of force are parabolic. These 

rather unfamiliar lines of force is formed by the superposition of 

two antiparallel fields shown in the case of (2). 

     It is apparent that the lines of force mentioned in (2) and (3) 

originate only from the current near the neutral point : there is no 

field induced by externally-applied current, since no field remains 

when J - 0 ( see the case of (1) ). 

2.1.2 The case of two equal eigenvalues. 

     This is the case, either if 

                X -2a33= 0 ( $33 * 0 ) 9 

or if 

               4X + a33 = 0 ( a33 * 0 ) . 

The former condition leads to a( or ( ) = a33, and the latter, a = (3 

( _ -a33 ). The former case may be shown to be identical with the 2 

latter by transforming the coordinate, so that we consider only the 

latter case. Let's denote the eigenspace corresponding to the eigen-
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 a 

value a( =S= -23 ) by  W. Then the following two cases should 
be considered according to the dimensions of Wa. 

(1) If Jz = 0, dim Wa = 2 and Wa becomes a plane given by 2a31x + 

2a32y + 3a33z = 0. Note that, when J
x = J = 0, Wa coincides with Y 

the xy plane itself. Then three vectors h3, h2 and hl can be chosen 

such that a*h3 = a33h3, a*h2 = -a2h2 and that a*hi = -hl ; h2 
and hl are in the plane Wa_ Therefore the general solution of Eq. 

(2.1) is given by 

_a33-~ 
       r(T) = C3h3ea33T+C2h2e 2T+ C1h1e 2T. 

In the Wa plane all lines of force are straight and go toward the 

neutral point if a33 > 0 ( Fig. 4a ) , while outward if a33 < 0. It 

is apparent that, in any plane containing the z axis, a saddle is 

formed ( see, for instance, Fig. 5b ) . The three dimensional con-

figuration does not seem difficult to be visualized. 

(2) If Jz * 0, dim Wa = 1. Wa is a straight line given by the inter- - 

section of the two planes, i.e., ( 2a11 + a33 )x + 2a12y = 0 and 

2a31x + 2a32y + 3a33z = 0 if a12 * 0. In the case of a12 = 0 ( i.e., 

all = a22 = -a23 ), x = 0 ( yz plane ) should be taken instead of 
the former of the above two planes. When J

x = J = 0, Wa is in the Y 

YY

I

     (a) 

Fig. 4 Lines of force for the cases 
       (a) dim  Wa = 2 and (b) dim W 
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xy plane. Then three vectors  h1, h2 and h3 can be chosen such that 

a*hi = - a2 hl, a*h2 = -11 h2 + h1 and that a*h3 = a33h3, where hl 
is in the direction of the line W

a. Therefore the general solution 
of Eq. (2.1) is expressed as 

     r(T) = Clhle                     a33T+ C2( h1T + h2 )ea23T+C3h3ea'33T 

              lhle~T+ C2h2ea23 T+ C3h3ea33T 

where El = C1 + C2T. The lines of force in the plane defined by hl 

and h2 are shown in Fig. 4b. Note that a saddle is formed in the 

plane defined by hl and h3. 

     In this case, when J = 0, there are such magnetic fields as shown 

in (1), which may be referred to some external source currents. When 

J 4 0 as shown in (2), the fields due to the current near the neutral 

point are superposed upon the current-free fields. 

2.1.3 The case of three different eigenvalues 

     This is the case if 

              4X+a33 > 0 (2a33 - X 4 0 ) . 

Let's denote the eigenspaces corresponding to the eigenvalues a, 3 

and a33 respectively by W
a,W13 Wa33,where Wa33is, of cource, 

identical with the z axis. Both W
a and WSare also straight lines 

and W
a, for instance, is given by the line of intersection between the 

planes ( all - a )x + a12y = 0 and a31x + a32y + ( a33 - a )z = 0, if 

'all - al + la121 4 0. Otherwise a21x + ( a22 - a )y = 0 is taken 
instead of ( all - a )x + a12y = 0. WS is similarly determined. Note 

that, when J
x = Jy= 0, both Waand WSare in the xy plane. Then the 

solution of Eq. (2.1) is expressed as 

    r(T) = C1hieaT+C2h2eST+C3h3ea33T , 
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where  hi's are respectively the eigenvectors corresponding to a, 13 

and a33 ( therefore they are linearly independent ). Three eigen-

spaces obviously form the principal axes, i.e., lines of force passing 

through the neutral point. In the plane defined by hl and h2, a node 

is formed at the neutral point for as > 0. In this case all lines of 

force are directed toward the neutral point for a, S < 0 ( Fig. 5a ) 

and outward for a, > 0. A saddle, on the other hand, appears for 

af3 < 0 ( Fig. 5b ). In another plane defined by hl ( or h2 ) and h3, 

mit t

s

(a) (b)

Z

         Fig. 5 Lines of force for the cases (a) a < Q < 0 
                and (b) a < 0 < Q. 

the same is also true. Here, it may be worthwhile to note that, when 

J = 0, the principal axes are orthogonal to each other ( since then 

a* becomes symmetric ). The special case of one vanishing eigenvalue, 

whose meaning has been extensively discussed by many pioneers, will be 

discussed later.

2.2 Complex eigenvalues

Both a and Q are

The eigenvalues a and

complex if 

4X + a33 < 0 . 

B may be written as
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         a,=u+ iv and (3=a= p - iv  (  p  = -a23) 

and the corresponding eigenvectors can be chosen such that they are 

conjugate with each other, i.e., h and h. Then the general solution 

of Eq. (2.1) is expressed as 

   r(T) = CheaT + 6he01T + C3h3ea33T ,(2.7) 

where C is an arbitrary complex number. We put 

                 h=2( hl - ih2 ) 

where hl and h2 are real vectors. Both hl and h2 are in the xy plane 

if J
x = Jy= 0. Since hl and h2 are linearly independent, they com- 

pose the bases of the phase space together with h3. Putting 

(T) = + i2 = CeaT (2.8) 

Eq. (2.7) is expressed as 

               r(T) = c1h1 + C2h2 + C3h3ea33T 

If hl and h2 are projected onto 1 and i, respectively, the vector 

C1h1 + C2h2 corresponds to the complex number given by Eq. (2.8). 

Putting C = Reie, Eq. (2.8) is expressed as 

                (T) = Re• ei (uT+ 0 ) 

Magnetic lines of force in the plane defined by h1 and h2, therefore, 

become logarithmic spirals. They are inward when p < 0 ( a33 > 0 ; 

Fig. 6a ), while outward when p > 0 ( a33 < 0 ). In the case of 

p = 0 ( a33 = 0 ; Fig. 6b ) , each line of force becomes a closed 

trajectory, forming a so-called center of spiral ( therefore the z 

axis is the magnetic neutral line ). In the limit J > 0, the closed 
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 z

               (a) 

      Fig. 6 Lines of force for 
               complex conjugate. 

lines of force tend to vanish in 

these lines of force are induced 

Hence the spiral fields ( a33  $ 

limit ao - 0 such that they are 

closed lines of force ( Fig. 6b 

source currents as shown in Fig.

Y

 Y

           (b) 

the cases in which  a and (3 are 

 (a) u<0and (b) p = 0. 

 the whole space, which means that 

by the current near the neutral point. 

0 ) may be regarded by considering the 

formed by the superposition of the 

) upon those due to the external 

 4a.

    Finally, it may be 

ishing eigenvalue, which 

given by

instructive to consider 

 is very familiar to us.

a33 = 0 ( X * 0 ) or

the case of one van-

  This condition is

X = 0 ( a33 * 0 ) .

The latter case is shown as the direct copy of the former by trans-

forming the coordinate, therefore,. only the former case is considered. 

Then the z axis is apparently a neutral line and magnetic field B 

becomes independent of z. When J
x = Jy= 0, Bx = 0 and hl and h2 are 

in the xy plane as shown before. When X > 0 ( see the case (2.1.3) ), 

a saddle is formed in the planes parallel to the plane defined by hl 

and h2 ( Fig. 5b ) . This type of magnetic field has been familiar to 

us as the X-type configuration from its shape. When X < 0, the so-

called 0-type configuration is formed as shown in the case (2.2) ( Fig. 

6b ). 
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§ 3. Topology of Magnetic Volume Force 

     The magnetic volume force acting on the fluid is 

 poF = poJ x B = c • r , 

where 

           **T * 
              c = ( a- a ) • a . 

For simplicity, we consider only the case of J x = Jy=0 ( Jz * 0 ). 

Then the magnetic volume force becomes two-dimensional ; it is inde-

pendent of z and Fz= 0. Therefore, they may be expressed as 

                         [ -a2I -a22 ) ( x )            poF=c*•r=ao a
ll a12 J lY 

where ao ( = poJ
z) is the same as before. Topological patterns of 

the magnetic volume force, so to say the force lines of force, are 

                                         * specified by the eigenvalues of C in the same manner as those of 

magnetic lines of force. The characteristic equation of c* becomes 

            f
C*(A) = A2 + aoa- aoX , 

where X is the same as before. They are classified into three groups 

depending upon 4X + ao= 0. The descriptions would be the direct copy 

of those for magnetic lines of force• mentioned in section 2. Let the 

two eigenvalues be a and S. At least one of them must be negative, 

since a +B= -ao < 0. The types or topological patterns of the force 

lines of force are classified and tabulated in Table 1. 

     In the case of a33 = 0 ( then the magnetic field also becomes 

two-dimensional as shown in section 2 )• a saddle-type volume force 

is formed for the X-type magnetic field when X > 0 ( i.e., as < 0 ). 

Let's denote the eigenspaces corresponding to a and S respectively as 

a andboth of which are apparently straight lines. aand ES 
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Table 1 Topological 

ao = J
z* 0 

force-free.

pattern of 

is assumed

the force lines 

 ; otherwise it

 of force. 

becomes

Case Types of a and  S
Topological pattern of

force lines of force

 4X+ao>0 real

( a<S )

a<g<0( X<0 ) node( Fig. 5a )

a<0<3( X>0 ) saddle( Fig. 5b )

a<3=0( X=0 ) sink

4X+ao=0
real

( a=3<0 )

dim W
a=2

radial line

( Fig. 4a )

dim Wa=1
degenerate node

( Fig. 4b )

4X+ao<0 complex conjugate( a=p+iv

and s=a with p<0 )
logarithmic spiral

( Fig. 6a )

are orthogonal to each other, since then,  C is symmetric as seen 

from Eq.  (2.3) . It will be readily shown that the magnetic force 

pushes the fluid in the larger wedge of X-type magnetic field so as 

to squeeze it outwards from the smaller wedge. On the other hand, 

when X < 0 ( i.e., as > 0 ), a node-type volume force is formed for 

the 0-type magnetic field. In this case the magnetic force pushes 

the fluid inwards to the neutral point ( or the z axis ). 

     The above result of the classification of magnetic volume forces 

are shown in Fig. 3, upon which 4X + ao = 0 is superposed. Figure 

3 indicates that the ordinary two-dimensional problems ( a33 = 0 ) 

are merely the very limited case.
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§ 4. Evolution of a Neutral Point 

     For simplicity, we discuss only the case of J
x=  J = 0. As 

shown in Fig.  3, the ( a33, X ) plane is divided into four domains. 

If there is no current near the neutral point ( i.e., ao -^ 0 ), both 

the third and fourth domains will vanish. The topology of magnetic 

field and volume force in each domain has been made clear in sections 

2 and 3. 

     Some sort of evolution of magnetic neutral point was first dis-

cussed by Dungey (1953). He proposed that the rapid increase of the 

current density, i.e., discharge, would occur near an X-type neutral 

point, if the pressure gradient was negligible and the conductivity 

was infinitely large. In our topological analysis the discharge model 

belongs to the case of a33 = 0 and X > 0 in the first domain : both 

the magnetic field and volume force are two-dimensional and have the 

X-type configuration. It is easy to imagine from the preceding dis-

cussions that both the fluid and the magnetic field in the larger 

wedges concentrate in the vicinity of the neutral point, which leads 

the smaller wedges to become diminished. This folding of the principal 

axes means that the current density grows at the neutral point. In 

reality, however, the finite conductivity would diffuse the concentrat-

ed magnetic field, arresting the growth of the current density, which 

enhances the thermal energy ( or the pressure ) of plasmas in the 

vicinity of the neutral point. Moreover, the force due to the increas-

ing pressure gradient would keep the fluid from concentrating further. 

Hence, it may be expected that a steady state could be attained by a 

balance between the force due to the pressure gradient and the magnetic 

volume force. This is alternatively interpreted as the rate of recon-

nection in the vicinity of the neutral point is balanced with that of 

the supply of lines of force by the incoming fluid from the exterior. 

This is the basic mechanism of reconnection at the x-type neutral 

point, which we will investigate later. 

     The X-type magnetic field, however, is only a special case in the 
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first domain in Fig. 3 : there may exist various types of neutral 

points in three dimensional magnetic field, and the full understand-

ing of their remarkable natures will be required for various astro-

physical and geophysical phenomena. That is, however, very difficult, 

since the problem becomes, in general, an unsteady process in three 

dimensions. Hence we shall discuss below, though in a simplified way. 

the quite different types of configuration, that is, spiral types of 

fields and volume forces in the second, third and fourth domains in 

Fig. 3. 

     In the second domain, a node-type magnetic field is formed in the 

xy plane ( Fig. 5a ; the principal axes are not necessarily orthogonal, 

since J
z* 0 ). In the plane containing both the z axis and either of 

the principal axes in the xy plane, a saddle is formed. The magnetic 

volume force, on the other hand, is a spiral type in the planes paral-

lel to the xy plane ( Fig. 6a ). The fluid would easily move along 

the force lines of force, since then the force due to pressure gradi-

ent does not effectively keep the fluid from entering spirally along 

the force lines. Hence, if the external conditions are favorable, the 

field-lines would be wound due to the spiral motion of the fluid to 

become spiral. 

     In the third domain, a spiral-type magnetic field is formed in 

the xy plane ( three dimensional configuration is not difficult to be 

visualized ). Remind that this type of magnetic field is formed by 

the superposition of the field induced by the external source currents 

( Fig. 4a ) upon that by the current near the neutral point ( Fig. 

 6b ). In this domain, a spiral-type magnetic volume force is formed 

in the planes parallel to the xy plane. If the current density ( ao ) 

is sufficiently small, the lines of force are in such a form as shown 

schematically in Fig. 7a , where the radial lines of force are more 

predominant. The corresponding force lines of force are shown by 

dotted lines. The fluid would move spirally along the magnetic force 

lines to carry and wind the lines of force inward with time. This is 

accompanied with the growth of the current density in the vicinity of 
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       Fig. 7 Schematic pattern of magnetic lines of force 

               (solid lines) and force lines of force (dotted 
               lines) for the case that  JZ is comparably (a) 

               small and (b) large. 

the neutral point. If the current density ( ao ) grows comparably 

large, the lines of force are considerably wound as shown schematical-

ly in Fig. 7b , where the 0-type lines of force become predominant. 

Then the magnetic volume force becomes similar to a node-type as shown 

by dotted lines. These magnetic field and volume force are met in the 

fourth domain. This suggests that the fluid would be pinched radially 

and that the magnetic lines of force are piled up in the vicinity of 

the neutral point. If the magnetic energy reserved up to the extreme 

would lead to the rapid annihilation, we can expect the heating and 

acceleration of plasmas, sufficient for many phenomena. 

     It is worthy of notice that, if magnetic lines of force are wound 

somewhere except near a neutral point, they tend to unwind themselves 

due to magnetic volume force, while near the neutral point they are 

wound by themselves. 

     The above discussions have made clear, though very intuitively, 

the exotic nature of magnetic neutral points. However, they were 

restricted only to the vicinity of the neutral point, and in reality, 

the external conditions seem to play a crucial role in any type of 

evolution of magnetic neutral points.
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§ 5. Concluding Remarks 

     The classification of magnetic neutral points was strictly re-

examined in terms of the phase trajectories. It is the extension and 

the generalization of Dungey's work (1953), but the probable existence 

of some types of neutral points spiral and node was pointed 

out first. The solutions describe only the vicinity of the neutral 

point, and in practice one of them will adapt itself to that of the 

outer region. 

     We also tentatively discussed the evolution of magnetic neutral 

point for the spiral configuration of magnetic field and volume force, 

which is quite different from the X-type configuration. Then we 

pointed out that the current density may grow ( or the magnetic energy 

may be reserved ) extremely near the z axis due to the spiral motion 

of the fluid. The magnetic energy reserved up to the extreme may lead 

to an abrupt release when the fluid is pinched radially. This would 

be difficult, however, to be discussed quantitatively, since the 

problem is essentially an unsteady process of three dimensional mag-

netic fields, in which the external conditions must be always taken 

into consideration.
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                            Chapter 3 

        A CRITICAL SURVEY OF 

CURRENT RECONNECTION MODELS

§ 1. Introduction 

     Before considering the individual proposed mechanisms it may be 

useful to examine one-dimensional behaviors of two opposing antipar-

allel magnetic lines of force ( Petschek, 1964 ; Yeh and Axford, 

1970 ). In the incompressible, unsteady hydromagnetic fluid in which 

B = ( 0, B( x, t ), 0 ), with B( x, 0 )  = -B( -x, 0 )  - constant ( in 

Cartesian coordinates ), the fluid is stationary and B satisfies 

aB 1 a2B  
                      — atPQ axe 

The fluid intensity is 

         Baerf (V(to)2 ) .(3.1) 

The instantaneous thickness of the current sheet 8 ^t/110.In this 

case the antiparallel magnetic lines of force do not become recon-

nected, in the strict sense of the word, but only annihilated as they 

merge at the neutral line or sheet x = 0. The surplus of the magnetic 

energy is directly converted into heat by Joule dissipation. The 

rate of merging is given by the rate at which magnetic lines of force 

diffuse towards the neutral sheet, which in turn is proportional to 
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1 / 6. Since 6 increases with time, rapid conversion of magnetic 

energy into other forms of energy cannot be expected by the simple 

diffusion in the absence of fluid motion. 

     Then we will imagine a uniform flow toward the neutral sheet from 

either side, together with a sink for un-magnetized fluid there. If 

u = ( u(x). 0, 0 ) with u  =  +uo in x < 0, a steady state can be reach-

ed such that 

aB 1 a2B 
      u = —              ax Pa ax2 

The solution is 

      BQ± ( 1-euQux) in x<0 .(3.2) 

The thickness of the current sheet 6 - 1 / p uo is held constant by 

a balance between the convection and the diffusion of magnetic lines 

of force. A high rate of merging is possible under the large gradient 

of the magnetic inductance. However, the example quoted here is not 

actual because of its postulated sink. In a more realistic situation 

the fluid must be removed from the neutral sheet and the process is 

never limited to the one-dimensional problem. 

     In what follows, we will discuss the prevailing models of recon-

nection in relation to the explosive phase of largest solar flares 

which seems to be the most splendid manifestation of the process in 

space. In section 2 we consider the special instability of a neutral 

point or line discussed by Dungey (1953) and by Chapman and Kendall 

(1966). Dissipation in a homogeneous current sheet of Sweet (1958) 

and the wave mode dissipation in a current sheet discussed by Petschek 

(1964) will be described in sections 3 and 4, respectively. In sec-

tion 5 there follows a group of proposals of Sonnerup (1970) and Yeh 

and Axford (1970). Finally we will mention the nonsteady current 

sheet of Syrovatsky ( 1966, 1969 ).
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§ 2. Discharge at a Magnetic Neutral Point 

    Dungey (1953) has argued a remarkable behavior of a pressure-less 

fluid in the vicinity of a magnetic neutral point. If initially both 

a fluid motion and an electric current vanish, so that magnetic lines 

of force are rectangular hyperbolas, a small perturbation amplifies 

itself and produces a flow diminishing the angle between the principal 

axes. The current density meanwhile increases, until the electric 

field ( in the fluid's frame ) becomes appreciable. Dungey called 

this as " instability " ; he thought that such a development takes 

place in solar flares and that the current then becomes a " discharge  " 

accelerating particles to high energies. However, the theory suffers 

from an essential defect in that the effects of the pressure gradients 

which are likely to play an important role in controlling the rate of 

inflow of the fluids are not considered in the process. 

     To understand Dungey's mechanism one should note that the folding 

of the principal axes and of the associated system of lines of force 

is not confined to the neighborhood of the neutral point. The neutral 

point which resembles in all respects the one investigated by Dungey 

is realized ( Stern, 1966 ), for example, by two fixed parallel di-

poles, directed along the line connecting them and immersed in an 

infinite homogeneous conducting fluid at rest ( Fig. 8 ) . In this

Fig. 8 The neutral point formed between two parallel 
       dipoles ( after Stern, 1966 ). 
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system, the field is, and remains, a potential field and is therefore 

stable. Only if the dipoles are allowed to attract each other, i.e., 

if the lines of force are free to move, the system is unstable and 

releases the available surplus of magnetic energy. But in this case 

the system is not in equilibrium to start with and there is no ques-

tion of stability in the usual sense. 

    A special solution to the hydromagnetic fluid containing an X-

type neutral point has been given with elegance by Chapman and Kendall 

( 1963, 1966 ) and by  Uberoi ( 1963, 1966 ). In their model the neu-

tral point is contained in a tube of incompressible conducting fluid 

with a circular cross section, which is surrounded by a vacuum. 

Dungey's instability proceeds and the cross section becomes progres-

sively more elliptical with the ratio of minor to major semi-axes 

tending zero. This solution seems to indicate that a thin current 

sheet between two approaching magnetic fluxes of opposite polarity 

will be formed within the travel time of an Alfven wave, i.e., within 

less than 102 sec in a preflare environment. However, the electric 

current density is uniform over the cross section and does not become 

large near the neutral point within a finite time ; that is, the mag-

netic lines of force do not reconnect at the neutral point ( Yeh and 

Axford, 1970 ). A more serious limitation arises in that the fluid 

is decoupled from the magnetic sources by vacuum surrounding the tube. 

Such decoupling seems unlikely, however, in astrophysical applications. 

§ 3. Dissipation in a Homogeneous Current Sheet 

     The dynamics of a stationary homogeneous current sheet have been 

studied by Sweet (1958) and then by Parker (1963). See the schematic 

figure 9 . Two homogeneous antiparallel magnetic fields sandwich 

the current sheet. Two fields outside the sheet are carried by the 

fluid toward the sheet at the same rate at which inside the sheet they 

diffuse toward each other and simultaneously annihilate themselves by 
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Fig. 9 

Magnetic lines of force for Parker's 
mode (left) and the coordinate to be 
used (right). The fluid moves toward 
the null magnetic field region of the 
current sheet from both sides and is 
ejected along it. 2L and 26 are re-
spectively the length and thickness 
of the current sheet.

Joule dissipation. The fluid outside the sheet moves toward the sheet 

at the same rate at which it can be squeezed out of the sheet in a 

direction parallel to the original magnetic lines of force with the 

Alfven velocity. The rate is alternatively represented by the recon-

nection time scale for magnetic flux within a distance from the sheet 

equal to its extension L along the field, i.e., 

      T = ( TATL )1/2(3.3) 

where TA = L / VA is the time of passage of an Alfven wave across L 

and TL = apoL2 ( a, electrical conductivity ; uo, magnetic permeabil-

ity ) is the ohmic diffusion time for a system of dimension L without 

a current sheet. For a current sheet of width L = 107 m in the corona 

at the level of the type III bursts, i.e., p = 10-9 kg/m3 ( = 10-12 

g/cm3 ), a = 2 x 106 Q-1 ( - 2 x 1016 esu ) and with B = 250 gauss, 

TA = 15 sec and TL= 3 x 1014 sec. This would result in a reconnec- 

tion time T = 7 x 10' sec, which was found to be much longer than the 

- 39 -



observed time scales of flares. The theoretical time scales could 

never approach the observed ones unless ad hoc dimensions L are as-

sumed extremely smaller than the observable scales. The compressi-

bility of the fluid improves the situation, but if the two fields 

were not exactly antiparallel or they had no neutral plane, the common 

component of the fields would accumulate in the sheet and diminish 

the compressibility of the fluid. The reconnection time is still 

impossibly long even in the ideal case ( cf. Parker, 1963 ). 

     It was pointed out, however, by Jaggi (1964) that the tearing 

mode instability would disintegrate the current sheet into current 

threads before the sheet became thin enough for the stationary state 

to be established. Before the onset of the instability, and while the 

sheet is thicker than its stationary-state thickness, the fluid would 

be squeezed out from the edges of the sheet without replenishment by 

ohmic diffusion across the field. Mass continuity then shows that 

the thickness of the sheet diminishes exponentially with time scale 

 TA. Therefore the tearing mode instability becomes effective when its 

fastest-growth time scale TT falls below TA. For a sheet of thickness 

Z, TT = ( T
aT2. )1/2 where Ta is the Alfven travel time across Q and 

TQ,the ohmic diffusion time within the sheet ( Furth et al., 1963 ). 

Setting TA = ( T
aTQ )1/2, the thickness of the sheet at the onset of 

instability is given by Q. / L = ( TA / TL )1/3, i.e., 2 = 4 x 102 m 

in the example considered. It is at this stage that the ohmic diffu-

sion sets in and that material would diffuse into the sheet. It is 

not clear how the system would develop subsequently. If it were 

assumed that a stationary state were maintained such that the stabil-

ity criterion TA = ( T
aT )1/2 remained marginal, mass continuity 

within a sheet of constant thickness R, determines the incoming veloc-

ity as v = R,VA / L = VA( TA / TL )1/3. This would lead a reconnection 

time ( TA2TL)1/3 = 4 x 105 sec. Although this is less than the time 

( TATL )1/2 mentioned above, it is still extremely longer. This is 

not altered under chromospheric conditions. 

     According to Sturrock (1968), the sheet would not remain near 
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marginal 

velocity 

enhanced 

removed 

that the

stability but would become highly turbulent, the diffusion 

being governed by the Bohm diffusion coefficient. However, 

diffusion thickens up the sheet which thereby tends to 

the tearing mode instability. This supports the assumption 

 system cannot depart very far from marginal stability.

§ 4. Slow Shock Dissipation in a Current Sheet 

    The first stationary-state mechanism fast enough for a flare it-

self is that of Petschek (1964) comprising a boundary layer framed by 

two intersecting slow-mode magnetohydrodynamic shocks as shown in 

Fig. 10. Ohmic diffusion operates only in the small plane current 

sheet of the intersection region of size 2y*. 

 Two antiparallel magnetic fields outside the boundary layer moves 

with the fluid toward the boundary layer, so that any line of force

Fig. 10 

Configuration of the magnetic field 
including standing waves. The mag-
netic lines of force are indicated 
by light lines. The heavy lines 
indicate the edge of the boundary 
layer. For y > y*, the edge of the 
boundary layer is determined by mag-
netohydrodynamic waves and is there-
fore rather sharply defined. The 
fluid moves toward the boundary 
layer and is ejected along it (after 
Petschek, 1964).

2L

 ~28  H

T

 Y 

 Lx
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reaches the current sheet before it cuts the shock wave anywhere else. 

Once the fluid has crossed the shock wave, it moves rapidly outward 

in the y direction together with the reconnected line of force. The 

direction of the field and fluid motion as well changes discontinu-

ously in the shock waves. In this sense they are a sort of switchoff 

shocks, though not in its strict meaning. The magnetohydrodynamic 

shocks directly transform magnetic to kinetic energy by Lorentz forces. 

They propagate upstream against the incoming fluid, which can move to-

ward the shock at a rate which yields a stationary state of the system. 

Thus the inflow velocity is the  Alfven velocity reduced merely by 

geometrical factors which are to be determined from conditions of 

compatibility between the outer region with the boundary layer. This 

yields annihilation time scales for the system 

     T - TAln( TL/ TA ) •(3.4) 

Therefore the time scales are longer than Alfven travel times but only 

by factors between 10 and 30, and hence they become comparable with 

the observed time scales of flares. This mechanism also can operate 

in the presence of a z field. Since logarithms are slowly-varying 

functions, one can interpret Eq. (3.4) as implying that the electri-

cal conductivity plays only a minor role in this mechanism. Under the 

coronal conditions mentioned in the previous section T - 102 sec, 

which is of the right order of magnitude. It is even possible at 

chromospheric level. 

     However, if the ohmic diffusion in the current sheet is governed 

by classical electron scattering, it gives the thickness 6 of the 

current sheet - 10-6 m, which, as Petschek (1964) had recognized, is 

unreasonable for hydrodynamic approximations to hold, since it is much 

smaller than the electron gyroradius. The adoption of the anomalous 

conductivity would lead to a more realistic model for the current sheet 

( Parker, 1973b ), which is self-consistent with the necessary condi-

tions for the instability. It has been pointed out by Friedman and 
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Hamberger (1968) that the density of current, which constricts itself 

into the current sheet, violates the two-stream instability criterion. 

It is suggested that as the sheet is formed, it would settle into a 

condition near to marginal stability, in which the electrical conduc-

tivity is the reduced value given by Buneman (1959). In this case 

the diffusion region can be wider than the electron gyroradius. The 

current density yields electron velocities comparable with thermal 

velocities corresponding to an electron temperature 1.6 x  104 °K. 

Laboratory experiments, by these authors, of current-driven instabil-

ities at similar densities result in a rough agreement with the 

anomalous conductivity predicted by Buneman (1959). 

     The structure of the boundary layer has been subject to some 

criticism ( Green and Sweet, 1967 ; Petschek and Thorne, 1967 ), and 

it is deduced that the boundary layer consists of two separate modes ; 

an outer one is the intermediate shock and an inner one, the slow 

shock. The intermediate shock allows for the necessary changes in the 

field direction. It enables us to construct more realistic boundary 

layers which are smoothly matched to the outer field and fluid motion. 

Insertion of the intermediate shock makes it possible that an added 

uniform field in the z direction, which cannot participate in the re-

connection process, will not interfere with the reconnection of the 

y component of the magnetic field in the slow shock as it does in a 

homogeneous current sheet. It seems to be applicable to any two 

neighboring plasmas which are driven toward each other and transport 

magnetic flux of roughly opposite direction.

§ 5. Hydromagnetic Flow in a Similarity Form 

     In the preceding models efforts were focussed on how the recon-

nection rate depends on the electrical conductivity of the fluid 

( e.g., Sweet, 1969 ). Thus attention was confined to the diffusion 

region ( Parker, 1957 ; 1963 ) or to the outgoing flow after the 
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reconnection ( Petschek, 1964 ). Axford ( 1967 ; 1969 ), on the other 

hand, noticed that the reconnection is essentially controlled by the 

external conditions outside the whole region where two incoming flows 

merge into two outgoing flows. In support of his view Yeh and Axford 

(1970) have derived the flow with some kind of similarity property in 

an incompressible, perfectly conducting and inviscid fluid which shows 

the direct relationship between the outgoing flow and the incoming 

flow. These remarkable solutions appear out of the nonlinear equa-

tions, apparently as a result of the symmetry of the terms in the flow 

and magnetic field ( Elsasser, 1954 ). 

      Figure 11 is a sketch of the magnetic lines of force and stream-

lines in the similarity solution. The magnetic fluxes are divided 

into four sectors by the four separatrices (  Alfven discontinuities ). 

In the two inflow sectors the prominent feature is the bending of the 

lines of force into the separatrices, which is caused by the pressure 

gradient toward the neutral point. In the two outflow sectors, there

 III 
III 
III

ITT 

II 
III

Fig. 11 

A sketch of the magnetic field and 
flow configurations in the simi-
larity solution : the solid lines 
represent magnetic lines of force, 
and the dashed lines represent 
streamlines. The dotted lines 
show the standing waves (after Yeh 
and Axford, 1970).
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appears the  Alfven discontinuity which is the slow-mode hydromagnetic 

shocks in the compressible case. The physical origins of the shocks 

are, as ingeniously pointed out by Petschek, the kinks of the recon-

nected lines of force at the neutral point. The formation of these 

kinks is preceded by the bending of the lines of force. 

    Diffusion is predominant within the place where the diffusion 

velocity matches the convection velocity of the incoming lines of 

force. It is, however, the product of the electrical conductivity 

and some scale length that determines a diffusion velocity, and there 

is no natural scale length for the diffusion region in the magneto-

hydrodynamic description. Therefore the magnitude of the electrical 

conductivity adjusts the size of the diffusion region in order to 

accomodate the surrounding convective flow. It is not actual that the 

size of the diffusion region limits the convection velocity. Thus, 

the diffusion region is necessarily small for a highly conducting 

fluid and/or for a large convection velocity. The outgoing flows are 

actually unaffected by the details in the diffusion region, but 

determined directly by the magnitude of the incoming flows or the 

distribution of the pressure on the external region. In this sense 

the reconnection rate is essentially independent of the electrical 

conductivity in the diffusion region, and can have any value up to 

the Alfven velocity. Thus the diffusion region is important only in 

providing a seat for reconnection. 

     We should bear in mind that, in the similarity solutions for an 

incompressible fluid, the logarithmic gradient of the pressure in the 

radial direction is an exact constant. With this constant kept un-

changed, the current density would become infinite along the four 

separatrices where the azimuthal fluid velocity attains the Alfven 

speed associated with azimuthal magnetic field. The locations of the 

singularities were chosen in a manner such that, as the pressure 

gradient tends to zero, the configuration reduces to the geometry 

given by Sonnerup (1970), in which one quadrant consists of three uni-

form flow and magnetic field separated by two Alfven discontinuities
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as shown in Fig.  12. This configuration differs from the one con-

sidered by Petschek by inclusion of the first Alfven discontinuity, 

indicated by the line OL in the figure. The second Alfven disconti-

nuity, OT, was contained in Petschek's model where it was preceded by 

a region of non-uniform flow and magnetic field. The second discon-

tinuity is compressive in the sense that the fluid pressure increases 

across it, while the magnetic pressure decreases. Furthermore, it is 

backward facing relative to the flow, so that it is the trailing wave. 
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Fig. 12 

A sketch of the magnetic lines of force 

(solid lines) and streamlines (dashed 
lines) for the vanishing pressure gra-
dient. The lines OL and OT are leading 
and trailing waves, respectively (after 
Yeh and Axford, 1970).
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     On the other hand, the first discontinuity is expansive, i.e., 

the fluid pressure decreases across it while the magnetic pressure 

increases. It also appears to be forward facing relative to the flow, 

and therefore, it is the leading wave. However, the physical meaning 

has not yet been clarified ( Sonnerup, 1970 ). 

    Recently, Yeh and Dryer (1973) analyzed a compressible fluid for 

the case that the compressibility is small, and noticed that the lead-

ing wave in Sonnerup's solution corresponds to a expansion wave in 

which the bending of the magnetic lines of force takes place. In the 

case of an idealized situation discussed by Sonnerup bending takes 
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place in a narrow sector, so that the diminutive expansion wave would 

appear as discontinuity. The magnetic energy seems to be piled up 

around the separatrices in the expansion phase of the reconnection, 

and then in the compression phase the energy is converted from mag-

netic into kinetic and thermal. 

    The flow reversal in Fig. 11 which is due to the above choice 

of the locations of the singularities would have no physical meaning 

and any improvement would not drastically modify the conclusion 

mentioned above. 

     Yeh and Axford, however, gave only a rough analysis of the diffu-

sion region and did not notice the particular nature of the outgoing 

flow in their model, especially the fact that the total pressure at 

the exit from the diffusion region has a tendency to block the outgo-

ing flow. A more careful matching of the diffusion region to convec-

tion region was performed to obtain a tentative conclusion that the 

highest rate of reconnection is about VA / 18 ( Priest, 1973 ). 

§ 6. Nonstationary-State Current Sheets 

     In this section, we should mention Syrovatsky ( 1966 ; 1969  ) 

who has casted a doubt on whether a stationary-state current sheet 

can be established. He examined a pair of parallel currents as shown 

in Fig.  13. The configuration is current-free in the vicinity of 

the origin where the field intensity varies linearly from the origin. 

Here, the current is assumed to approach each other by a small frac-

tion S of their initial separation. If the displacement ocurrs slowly 

enough for the fluid velocity to be less than the local Alfven veloc-

ity, the new configuration will remain current-free except within a 

sheet of length ifE and width r
s, as shown in Fig. 14 ; rs shows the 

distance from the origin within which the gas pressure exceeds the 

magnetic pressure. Thus rs = uopoVs / 2Bo where po is the initial 
fluid density, Bo is the typical strength of the field and V

s is the 
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Fig. 13 

Magnetic lines of force and a 

pair of source currents  (Io) 
fixed at intervals of 2 (nor-
malized). The coordinate to 
be used is also shown (after 
Syrovatsky, 1966).
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  ~asV~Fig. 14 

             ..::!:;:::.,\ti 

                                    Magneticfield and fluid motion in- 
                                  duced by the displacement of the 

 "
source currents. The solid lines 

                                     represent magnetic lines of force, 

                                     and streamlines are represented by 

                                     dashed lines with arrows. The other 

                                    dashed lines form parts of the orig-
                                    inal magnetic lines of force which 

                                       are rectangular hyperbolas. 

  sound velocity. It is further assumed, on the other hand, that the 

  displacement is done fast enough to ensure that the fluid velocity in 

  the neighborhood of the current sheet exceeds  V
s. Therefore, outside 

  the current sheet the fluid will not have time to flow along the mag-

  netic lines of force. The frozen-in condition then uniquely determines 

  the fluid displacement outside the current sheet. The rarefaction 
                            h 

  formula in the current sheet 
h                               -pohas been obtained, where h is the 

 field gradient in the sheet and h0 is that of the initial time. He 

  argued the onset of the two-stream instability, relativistic runaway 

  electrons, and the conversion of the bulk of the released magnetic 

  energy into high-energy particles. However, the theory suffers from 
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such a serious defect that the formula is invalid within the current 

sheet, and that the fluid is in fact more likely to be compressed. 

    It should be emphasized that the theory proves impossible for a 

stationary current sheet to be formed ( Sweet, 1969 ). This is appar-

ent from the comparison between the magnetic and the fluid pressures. 

An upper limit to the fluid pressure in the current sheet is given by 

that of the fluid within  lxl < 2 swept up along the x axis by the 
frozen-in field. If the compression is assumed isothermal, this gives 

a maximum ratio of compression 2S / rs, hence a maximum fluid pres-

sure becomes povsi / rs. The field intensity immediately outside 
the sheet on the x axis is Bo 2d ( Green, 1965 ). Therefore the ratio 

of magnetic pressure at the x boundary of the sheet, to the fluid 

pressure at the neutral point must exceed 2 / 2rs >> 1. This indi-

cates that the fluid in the sheet should be more compressed, i.e., 

the current sheet cannot be in equilibrium. A sort of Parker modes 

can never be attained, although the above discussion cannot entirely 

preclude possible existence of a Petschek-type configuration. It 

would be rather closer to the Dungey's (1953) instability at a neutral 

point. The stability of this configuration, as that of Dungey mecha-

nism, depends upon whether the lines of force are free to move at the 

boundary. For example, if the pair of line currents in Fig. 13 are 

fixed, the field remains a potential field and is therefore stable. 

Only if the currents are released, the system changes itself to that 

of lower energy. It is the same as the Dungey's case that the system 

is not in equilibrium to start with.
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                             Chapter 4 

    A NUMERICAL SOLUTION FOR 

STATIONARY-STATE RECONNECTION 

   OF MAGNETIC LINES OF FORCE

§  1. Introduction 

     The major question to be answered by a steady-state analysis is 
" What is the maximum rate of reconnection ? " As already mentioned , 

several arguments have been presented about the maximum reconnection 

rate, based on the well-established boundary layer technique in hydro-

dynamics : the diffusion region and the convection region are investi-

gated separately, and then suitably matched with each other. However, 

they could not succeed in the complete matching in many aspects 

( Priest, 1973 ). which is really a controversial problem. 

     Therefore we discuss here a solution for steady, incompressible, 

finitely conducting, viscous fluid involving an X-type neutral point 

of magnetic field, in which no such clear cut distinctions are made 

between the two regions. It is assumed that the configuration is two-

dimensional in the sense that it is invariant with respect to z, as in 

the pioneering works. In this case, magnetohydrodynamic behaviour 

depends upon three parameters : externally applied electric field E 

( equivalently, the Alfven Mach number M of the incident flow ), mag-

netic Reynolds number Rm and hydrodynamic Reynolds number R. The 
method of computation is described in Appendix I.A. The nonlinear

* See Fukao and Tsuda (1973a).
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differential equations involving the fluid velocity and the 

field are solved numerically by the over-relaxation method. 

lutions are obtained only for moderate values of  Rm and R, 

bilities caused by the numerical scheme disturb convergence 

where their values are very large.

magnetic 

  The so-

and insta-

 in cases

§ 2. Governing Equations 

     The governing equations are the continuity equation, the equation 

of motion, Maxwell's equations and Ohm's law  : 

O-u=0 ,(4.1) 

^-B=0 ,(4.2) 

^ x E = 0 ,(4.3) 

11-10 x B = J ,(4.4) 

E +uxB=J/a,(4.5) 

         p( u- 0 )u = J x B - Vp - pv0 x 0 x U , (4.6) 

for fluid velocity U, magnetic field B, electric field E, current 

density J, hydrodynamic pressure p, mass density p, magnetic permea-

bility p, electrical conductivity a, kinematic viscosity v. There is 

no necessity for using the energy equation in the incompressible case. 

The fluid is characterized by a and v which are assumed to be uniform. 

Since the fluid is incompressible, p is also constant. 

     As mentioned, we assume that the phenomenon concerned is two-

dimensional. Then the above equations become 

Du au 
x+ _ 0 ,(4.7) a

x ay 

aB aB 
x + = 0 ,(4 .8) 

ax By 
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                   Y E+ uB- uB=1J 
zxyyxaz' 

P( ux ax + uy ay )u 

        = ( J
YBz-
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    aw 
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(4.9a,b)

(4.10)

(4.11)

(4.12)

(4.13)

p( ux Tx- + uY aY )u
y 

        = ( J
zBx - JxBz ) -

  a a 
p( ux ax + uy ay )u z 

       = ( J
XBy- JYBx) -

BP 

By

pv(

    aw 
       z  + 

pv ax ,

awy 

ax

Bw 
x ) 

By

(4.14)

(4.15)

(4.16)

where

is the 

stream

w = V x U 

vorticity. 

function (I)( 

       __ 

      DA   B

xay

By 

x,

introducing vector 

y ), we have 

       ___aA B
y ax '

potential

         (4.17) 

A( x, y ) and

(4.18)
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 act, 
u

x  =  ay  ,

      a(1)
u

y=—ax ,
(4.19)

and

Jz=—uVA , W
Z= —V24)

(4.20)

where

02—a2+a2 
   _ ax2 ay2

The contour A = constant gives an individual magnetic line of force, 

while the contour 0 = constant gives streamline. Equation (4.13) 

then becomes

30 aA a0 aA12 

ayaxaxay- Ez +oh0A .
(4.21)

Elimination of p from Eqs. (4.14) and (4.15) yields

  a~aa° a2 pl.
By ax-ax Byi0

_ 1 , BA a_aA a]02A = pv0"~ 
 uay axax ay •

(4.22)

It follows from Eqs. (4.9a and b) that E
zis constant in the xy plane. 

We may assume that E
zis a positive constant, E, since the streamlines 

would be decoupled with the magnetic lines of force if E
zwere zero. 

This means that magnetic lines of force are carried, at a constant 

rate, into the region of analysis. The above couple of equations are 

self-contained and can be solved independently from the set of equa-

tions that determines the other variables u,B,Eand E . Elimi- 
             zzY 

nating E
xand Eyamong Eqs. (4.10 ) - (4.12) and (4.16 ) , it is 

readily seen that Bz and uz must satisfy
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 P[ ux ax+ "y ay Juz 

                - 
171- [ Bx ax+ ByJBzpvV2uz , (4.23) 

         uxax+ °y ayJBz 

               - [ Bx ax+ Byay]uz =J1v2Bz . (4.24) 

These equations, together with appropriate boundary conditions, can 

be solved using the magnetic field and flow in the xy plane, which 

are determined by Eqs. (4.21) and (4.22 ). We shall, however, con-

cern ourselves here with only Eqs. (4.21) and (4.22). 

     Next we scale the variables. Distance x, etc., are normalized 

by L, the size of the whole domain, magnetic field B by Bo, the inten-

sity of the magnetic field at the boundary where there is an influx of 

magnetic lines of force ; fluid velocity ux etc. by VA, the Alfven 
velocity corresponding to Bo ; electric field E by VABO. Accordingly, 

magnetic potential A and flow potential are normalized by LB° and 

LVA, respectively. Hereafter, unless otherwise specified, all the 

variables that appear are understood to have been normalized in this 

way. 

     The equations to be solved are scaled to the nonlinear, simulta-

neous equations : 

DO aA __a4) aA1 a
yaxaxay-E +1 V2A ,(4.25)                               Rm 

          a(1) a _a~ aJv20        a
y axaxay 

— {ayax-3x ayJv2A=xv44) . (4.26) 
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where Rm and R are respectively the hydromagnetic and the hydrodynamic 
Reynolds numbers given by 

 Rm =  apVAL and R = VAL / v .(4.27a,b) 

§ 3. Numerical Results 

     For simplicity we impose a symmetry condition on both the x axis 

and the y axis, and solve for the first quadrant only. Figure 15 

is a schematic picture of the region of analysis, with magnetic field 

and streamlines. 

     A number of computer runs started from the magnetic field and 

flow, which are given by Sonnerup (1970) for the ideal hydromagnetic 

fluid ( perfectly conducting and inviscid fluid free from thermal 

conduction ). Sonnerup's solutions ( shown in Figs. 16 (a) and (b) )
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Fig. 16 Sonnerup's solution in an ideal hydromagnetic fluid for M = 0.5. Note the difference of 
length scale between the vertical and the horizontal directions. The heavy dot at the left bottom 
corner is the neutral point in the magnetic field, and also the stagnation point of the flow. The 
heavy lines indicate the ones with zero potential. Two rotational discontinuities divide the flow 
domain into three regions, each of which contains a uniform flow and magnetic field. (a) Magnetic 
lines of force. Contours drawn from -3.35 x 10-1 to 1.34 x 10-1, with a contour interval of 1.117 
x 10-2 scaled by 103. (b) Streamlines. Contours drawn from -3.37 x 10-1 to 9 x 10-3, with a con-

tour interval of 8.866 x 10-3 scaled by 103.



correspond to the case of M = 0.5. Figures 17 (a) and  18  (a) show 

the calculated profiles of magnetic lines of force in the cases of 

M = 0.5 and M = 1.0, respectively, where R
m= 200 and R = 200. The 

profiles of streamlines are shown in Figs. 17 (b) and 18 (b). We 

can readily see that the calculated configurations of Figs. 17 (a) 

and (b) are not altered much from the starting ones of Figs. 16 (a) 

and (b). There appear two transition layers, which smoothly connect 

each physical quantity in the regions on either side. The magnetic 

lines of force with zero-potential keep away from the origin. The 

streamlines become concave to the neutral point between the two 

layers, whereas they are straight under the uniform hydromagnetic 

pressure in the ideal hydromagnetic fluid ( Sonnerup, 1970 ; Yeh and 

Axford, 1970 ). When the Alfven Mach number M is larger, the wedge in 

which the fluid is ejected, as well as the one between the two transi-

tion layers, extends more widely throughout the whole regions except 

in the vicinity of the neutral point. Checking on the cross-section 

of ejection velocity u along the lines parallel to the x axis, one 

finds that the fluid is ejected at a velocity several times greater 

than the injection velocity in the narrow region around the y axis. 

A small increase and decrease appear in u along the transition layers 

far from the neutral point, by virtue of the considerable difference 

in the tangential component of the magnetic field between the regions 

adjacent to the layer. Between the two transition layers is the plat-

eau in u
y ; it is clearest in the region far from the neutral point. 

The magnetic field is intensified in. the region between the two tran-

sition layers, and a sharp valley is formed along the y axis. The 

fluid, on the other hand, should expand across the layer that stands 

nearest to the x axis ; and it should be compressed across the one 

nearest to the y axis. In this sense ( as Sonnerup (1970) suggested ) 

the former is an expansion wave ( in the compressible case this would 

dissolve into a series of isentropic, slow-expansion waves ), while 

the latter is compressive ( in the compressible case this would be a 

slow shock, or perhaps a combination of that and an intermediate wave ). 
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The accelerated fluid is ejected along the deep valley

field. The effects of E, 

below.

R and R
mwill be examined in

of the magnetic 

this order

3.1 Electric field

     Figure 19 shows the magnetic field B along the x axis and  B
x  Y 

along the y axis for differnt R
m's and R's. In the ideal hydromag- 

netic fluid, magnetic fields B and Bare constant along the x and 
Yx 

y axes, respectively, and Bx / By= M / ( 1 +V) ( see Eqs. (A5 ), 

(A8) and (4.18) ). Here we have cases of M = 0.5 and 1.0 when 

Rm = 200 and R = 200. It is readily seen that the intensity is not 
constant along the axes, and that B is considerably intensified near 

Y 
the neutral point. Each component tends to the respective constant 

of the ideal hydromagnetic fluid in the regions far from the neutral
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point. The humped pattern of the variation of magnetic field is 

remarkable for highly conducting fluid, and is only emphasized when 

the injection velocity or applied electric field becomes more intense 

( we shall mention this in section 4, in connection with the motion 

of magnetic lines of force ). In the ideal hydromagnetic fluid, 

injection velocity is equal to  M all over the x axis, and ejection 

velocity is also constant 1 +  /J throughout the y axis, regardless of 

the intensity of injection velocity. It is made clear by our compu-

tational study, however, that -u x increases linearly along the x axis 
from zero at the neutral point, has a small hump, then tends to the 

constant of the ideal hydromagnetic fluid. Ejection velocity u
y also 

increases linearly along the y axis near the neutral point, then has 

a large hump or the maximum velocity which is considerably larger 

than that of the ideal fluid. There is little change in the maximum 

velocity, except the shift of its position inward to the neutral point 

when the injection velocity is doubled. The ejection velocity tends 

more rapidly to the constant as the injection velocity becomes larger. 

In the vicinity of the origin, the rate of decrease of the injection 

velocity is found to be equal to that of increase of the ejection 

velocity. This is the same as those known in the usual stagnation 

flows. 

     The current density J z = -O2A in the xy plane is shown in Fig. 
20 (a) in the case of Rm = 200, R = 200 and M = 0.5. In the vicin-
ity of the origin where magnetic field is null and fluid velocity is 

stagnated, the Ohm's law J z= RmE should be satisfied. In our case, 
the calculated result at the neutral point is nearly 97, and may 

satisfy the law, since the exact result is 100. Two antiparallel 

electric current layers are formed along the two transition layers. 

The positive current flows so as to cover the magnetic neutral point 

and to form a current-core in the vicinity of it, while the negative 

current with somewhat weaker intensity avoids it. This implies, as 

Sonnerup suggested, that the transition layer corresponding to the 

positive current forms at the origin, while that corresponding to the 
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negative current forms in the outer region. The negative current 

exerts the Lorentz force  on the fluid directed outwards, and deceler-

ates the injected flow, co-operating with the hydrodynamic pressure 

( which does not explicitly appear in the calculation ). Note the 

position of negative current layer in Fig. 20 (a). The steep shear 

of currents is formed in the vicinity of the origin, especially along 

the direction of the injection of fluid. As discussed later, this 

may contribute to the reduction of the electrical conductivity, and 

seems to support the universal validity of the results obtained using 

a comparably''small Rm ( such as 102 ), though in the sun and the in-

terplanetary space values of 109 - 1010 are familiar. Figure 20 (b) 

depicts the case of M = 1.0, when Rm and R are the same as before. 

The two current layers are formed, corresponding to the transition 

layers in the magnetic field and flow. Both positive and negative 

currents show enhancement over the case of M = 0.5 and the current 

in the vicinity of the origin is compressed to the thinner core. 

The current shear near the origin also becomes stronger. The current 

is almost free in any other regions. 

     Figures 21 (a) and (b) show the vorticity wz = -024). The vor-
ticity is also dominant near the transition layers in the velocity 

field, and the intensity along the layer which stands nearest the 

y axis is considerably larger than that along the other, though the 

two layers are not so clearly separated near the origin. Note that 

vorticity is zero on the x and y axes. It is conspicuous that the 

binocular vortices appear in the transition layer nearest the y axis. 

The vortex nearest the origin ( the first vortex ) may be caused 

because the fluid injected from opposite sides with a super Alfvenic 

velocity forms, due to its inertia, a flow of wedge-like shape with 

its peak on the y axis. The other vortex ( the second vortex ) is 

excited in the same manner as the one that would be formed in flow 

passing a wedge-like obstacle. Both of them will be affected by the 

intensity of viscous force. These are so-called trailing vortices, 

and give vortex drag to the flow. The variation of ejection velocity 
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along the y axis corresponds quite well to the positions of vortices. 

The fluid velocity along the y axis increases linearly near the ori-

gin, the rate of increase becomes smaller away from the origin 

( ascribable to drag of the first vortex ). As we go farther along 

the y axis, the comparably large increase is recovered and the rate 

becomes smaller again, which seems due to the second vortex. 

3.2 Hydrodynamic Reynolds number 

     The variation of viscosity does not cause much difference both 

in the magnetic field and flow. Slight differences are recognizable, 

however ; the more viscous the fluid becomes, the peak that appears 

in the variation of  B along the x axis is suppressed, and the rate 

of increase of  Bx along the y axis in the vicinity of the neutral 

point becomes somewhat larger. The same is also true of the fluid 

velocity ( i.e., the maximum ejection velocity decreases a little 

and the rates of deceleration along the x axis, and acceleration along 

the y axis in the vicinity of the origin, become somewhat larger ). 

The extent of the current-rich region in the vicinity of the neutral 

point is compressed a little along the x axis, while it expands along 

the y axis, forming a slightly flatter core of current. The currents 

are somewhat localized and intensified, especially near the expansion-

wave-like transition layers, as the fluid becomes more viscous. Var-

iations of vorticity exhibit a tendency similar to those of current : 

the two layers of vorticity are joined together in the vicinity of 

the neutral point, while those of current are clearly separated. 

The overall pattern of the variations, including the maximum current 

at the origin, is apparently not influenced by the change of the 

hydrodynamic Reynolds number. Thus we can conclude that the viscous 

effect does not change drastically the features of the reconnection 

of magnetic lines of force. 
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3.3 Hydromagnetic Reynolds numbers 

     Figure 19 includes the case of  R
m = 50, R = 200 and M = 0.5, 

which is less conducting than that of R
m= 200. In this case, the 

intensification of the magnetic field B in the vicinity of the  neu-
                                 Y 

tral point disappears. The intensity B
xalong the y axis still 

increases beyond y - 0.2, while it remains constant beyond there in 

the more conducting fluid. When the hydrodynamic Reynolds number is 

reduced, such that R = 50, with the same parameters m = 50 and M = 
0.5, there is little change in the feature mentioned above. When the 

fluid is less conducting, the current intensity is considerably re-

duced, the region of current in the vicinity of the neutral point 

expands and reaches the boundary of the numerical domain along the 

y axis. Accordingly, the current shear near the origin becomes less 

conspicuous. The expansion-wave-like transition layer does not 

intersect the x axis, and so does not have a continuous configuration 

across the injected fluid. The layer of this type should have the 

origin far from the neutral point, as already mentioned. 

     Thus the change of hydromagnetic Reynolds number has a great 

influence on the magnetic field or the current field but little influ-

ence on the flow or the vorticity field. The change of the hydrody-

namic Reynolds number, on the other hand, seems to have more effect 

upon the flow than the magnetic field, though both of them are not so 

susceptible to the hydrodynamic Reynolds number as they are to the 

hydromagnetic Reynolds number. 

§ 4. Discussion and Concluding Remarks 

     Although we adopt Reynolds numbers that are 10-7 - l0-8 times 

smaller than those familiar in astrophysical and geophysical phenomena , 

the resulting solutions exhibit that the magnetic field and flow make 

a smooth transition in their properties from the . diffusive in the 
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vicinity of the neutral point to the convective far from it. Electric 

current-core is formed over the neutral point, and is bordered with 

a steep current shear around it. Electric current also flows along 

the two transition layers which divide the reconnection region into 

three, each of which contains almost uniform flow and magnetic field. 

The other regions are nearly current-free, and the magnetic field is 

practically frozen in the fluid there. The magnetic field is, of 

course, more easily frozen in more conducting fluids. The overall 

features are affected little by the change of the viscosity, except 

in the vicinity of the transition layers. As the conductivity becomes 

larger, the current-core over the neutral point is reduced in area, 

and the current shear becomes steeper. The current shear may contrib-

ute to reducing the effective electrical conductivity locally, as 

described below, and the reduction may become more remarkable as the 

conductivity becomes higher. Although we inevitably use unnaturally 

small values of the hydromagnetic Reynolds number, universal validity 

may be supported by the results  : we expect effective electrical 

conductivity to be reduced near the neutral point, even if the con-

ductivity is extremely large, and the magnetic field to be nearly 

frozen in the fluid far from it, even if conductivity is moderate. 

In this sense, the reconnection of magnetic lines of force is always 

possible, not only in the dissipative fluids but also in highly con-

ducting ones. It is revealed, however, that conductivity, as well as 

viscosity, inherent in the fluid has no influence on the reconnection 

rate ; this rate is determined entirely by the external conditions 

corresponding to the parameter M of our computation. Thus we may 

conclude that the rate of reconnection does not depend on conductivity 

and viscosity, but on external conditions, such as the externally 

applied electric field or the injection velocity of the fluid, as was 

indeed suggested by Yeh and Axford (1970). 

     Next we mention the selective reduction of the electrical conduc-

tivity in the vicinity of the neutral point. In the collision-free 

plasma there are at least two possible mechanisms that might cause 
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the conductivity to remain finite. One is the wave-particle interac-

tions between the streaming electrons and low-frequency ion waves. 

Interactions between an electron and the ions are more influential 

than those between electrons in determining the magnitude of conduc-

tivity. Since the energy of ion waves is mainly in the regime of ion 

acoustic waves, the excitation of ion  acoustic waves is of interest. 

The other mechanism is due to the finite flight time during which the 

charged particles are exposed to, and accelerated by, the external 

electric field. Speiser (1970) estimated the magnitude of these 

inertial conductivities when applied to the geomagnetic tail. He 

found that they are about 8 - 11 orders of magnitude smaller than the 

collisional conductivity, and suggested that the wave-particle inter-

actions exert a small influence on the effective conductivity. 

     The simplest version of the inertial conductivities is as follows. 

Ohm's law involving the inertia effect is 

     m dJ=E+vxB-6,(4.28) 
   needtc 

where the collisional conductivity 

                G
cne2T    cm c(4.29) 

using the mean collision time T
c. Near the neutral point where the 

magnetic field is weak and the flow velocity is small, Eq. (4.28) 

can be approximated as 

                           6 

     dt T+TCE'(4.30) 
           cc 

which is solved for zero initial current such that 

J = 6
c( 1 - exp( -t/Tc ) )E .(4.31) 
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So an effective conductivity  Gi is defined as 

 ai = Q
c( 1 -exp( -Ti/Tc ) ) ,(4.32) 

where the time Ti is, from particle aspect, identical with the average 

flight time of the particles in the system ( Speiser, 1970 ). If Ti 

>> T,the inertial conductivity G. is the same as G. If Ti.<< T, 
c1cc 

on the other hand, 

                                T

Ti.         =6c,(4.33) Qi 
                                 c 

and a. assumes arbitrarily small values as Ti - 0.Note that the 
      1 

inertial term for the steady state is 

          dJ dJ 
dt=~•dr'(4.34) 

which is negative in the y direction. In the vicinity of the neutral 

point this may be sufficiently larger than the collisional term, since 

much steeper shear of currents is to be expected in fluids more con-

ducting than those discussed above. Therefore, it is suggested that 

electrical conductivity is reduced effectively in the vicinity of the 

neutral point even in very highly conducting fluids, and hence, the 

current there remains finite. 

     We add a few comments concerning the hump shown in Fig. 19 , or 

the intensification of magnetic field in the vicinity of the neutral 

point. As mentioned the velocity of a magnetic line of force consists 

of two components : convection with fluid velocity, and slippage with 

diffusion velocity due to finite electrical conductivity ( we do not 

concern ourselves with relabeling of magnetic lines of force ). 

Convection carries magnetic lines of force with no variation in the 

fluid, while diffusion is proportional to the magnetic body force act-

ing on the fluid, as well as to the reciprocal of conductivity. The
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diffusive transport  is efficient in the vicinity of the neutral point 

and the convective transport far from it. Therefore, if conductivity 

of a fluid is sufficiently small, magnetic lines of force, convected 

into the deceleration or the stagnation region of the flow, will be 

entirely carried away from there by the diffusive transport ; hence, 

no humps appear as in the case of R
m= 50. On the other hand, if a 

fluid is so conducting that all lines of force, convected into the 

stagnation region, cannot be carried away by diffusive transport, they 

are piled up there. In such a fluid a hump or intensification of mag-

netic field is induced as in the case of R
m= 200. This is more re- 

markable in the more conducting fluid and in the case of larger fluid 

velocity.
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                             Chapter 5 

    A NUMERICAL SOLUTION FOR 

THE EVOLUTION OF RECONNECTION

 §  1. Introduction 

    In this chapter we present transient incompressible magnetohydro-

dynamic solutions to investigate the evolution of reconnection in a 

highly conducting viscous flow. 

     We start with a current sheet, i.e., antiparallel magnetic lines 

of force. There is then an influx of flow from both sides, transverse 

to the null magnetic field-region of the current sheet. The lines of 

force will be locally pressed against the other parallel lines of 

force and we may expect reconnection to begin. 

     We use two-dimensional incompressible MHD equations which are 

numerically solved with every nonlinear term retained. Numerical 

studies certainly have some drawbacks ; for instance, it may be said 

that we search for a particular solution in a particular situation. 

We nevertheless make an attempt on the lines described because there 

has been no self-consistent solution to date of the evolutionary 

process of reconnection in the fluid of finitely high conductivity. 

     If we analyze the points of interest of the evolutionary process, 

they are as follows.

* See Fukao and Tsuda (1973b).
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    Confirmation of reconnection. We want to confirm that individu-

al lines of force can indeed join across the region of null magnetic 

field. This confirmation can be made by use of a magnetic vector 

potential which turns out to be a scalar in case of  two dimensions. 

Each magnetic line of force is labeled with its potential value where-

by the identity of individual lines of force is retained. 

    Speed of growth. If reconnection occurs, then there is the 

formation of the so-called X-type configuration of magnetic field. 

We need to know the speed of growth, or the time scale of the recon-

nection process involving the neutral point. 

    Controlling conditions. What are the conditions that control the 

growth of the reconnection or the formation of the X-type configura-

tion of magnetic field ? Is the local condition in the immediate 

vicinity of the neutral point crucial to the build-up process, or are 

conditions far from the neutral point more important ? That is, have 

boundary conditions a greater influence on the process under consider-

ation ? One of these boundary conditions is the shape of the boundaries, 

the widths of the entrance and exit of the flow, that determine the 

overall flow pattern away from the site where reconnection takes place. 

Another such boundary condition is the speed of inflow, which may be 

specified in terms of the applied electric field driving the fluid at 

the entrance. 

    Acceleration of particles. One of the important functions of the 

reconnection process is the acceleration of charged particles. There 

are two types of acceleration in this context ; one is the increase 

of fluid bulk velocity and the other is the heating of particles 

through the Joule dissipation. The acceleration of the fluid in bulk 

is done through the formation of X-type configuration of magnetic 

field. If the X-type magnetic field extends over a scale sufficiently 

larger than the characteristic Alfven wavelength, this type of accel-

eration may give what space-physicists usually anticipate in many 

situations. The other type of acceleration is done irreversibly by 

the action of the electric field at the neutral point and in the case
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of the build-up process of the reconnection the electric field due 

to the rapidly changing magnetic field may heat up particles very 

efficiently. We seek to check on these types of acceleration quanti-

tatively. 

    Diffusion region vs convection region. In analytical studies 

given to the steady states of the reconnection, the domain of interest 
used to be divided into the diffusion region and the convection region. 

As already mentioned, this approach is based on the well-established 

boundary layer technique in hydrodynamics. In the computational study. 

it is difficult to make such a clear-cut distinction between the dif-

fusion region and the convection region from the outset. If there is 

in fact such a boundary layer to be formed, then it should manifest 

itself spontaneously with time in the computed flow and field patterns 

that have been obtained without such simplifying assumptions about the 

 boundary layer. 

    The above are the points of interest that will be pursued in this 

chapter.

§ 2. Governing Equations 

     The differential equations to be used are the usual MHD equations 

where incompressibility as well as time dependence are considered. 

Namely,

V.0 

V • B 

V x E 

1 0 x 
u 

E+u

= 0 , 

=o,

   3B 
= - 

   at, 

B=J, 

xB=J/a,

(5.1) 

(5.2) 

(5.3) 

(5.4) 

(5.5)

- 73 -



     p{at  +(u•V)U  }=JxB-Op 
 -pvVXVxU .(5.6) 

The notations used are obvious. The situation considered is the same 

as that of the preceding chapter : a and v are constant everywhere ; 

and the phenomenon we study is two-dimensional, namely, every quantity 

depends only on x and y coordinates and not on z. 

    Using potential functions A( x, y ) and 0( x, y ), the equations 

to be solved are scaled to the nonlinear, simultaneous equations 

aA =_aO aA+a( aA ,           +1p2A(5.7) atay ax ax ay R
m 

     V2 a~=--a~ aa~ a020        ata
y ax ax ay 

+ [ay ax-ax ay] V2A+R V0. (5.8) 

The induction electric field is known by relation 

aA E = E
z = - at .(5.9)

5 3. Assumptions and Procedure of 

    We first describe our somewhat 

boundary and initial conditions and 

computation. The difference scheme 

B.

Numerical Experiment 

simplified assumptions concerning 

then discuss the procedure of 

adopted is described in Appendix
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3.1 Boundary conditions 

    We assume that there exists an antiparallel magnetic field in the 

y direction, and that in the z direction there is no magnetic field or 

fluid velocity, since Eqs.  (5.7) and (5.8) can be solved independ-

ently of the other set of equations which determine the variables u
z, 

B
z,Exand E . For simplicity we impose a symmetry condition on both           y 

x and y axes and solve for the first quadrant only. A schematic 

picture of the region of analysis with the initial profile of the 

magnetic field is shown in Fig. 22 . There is a sudden injection of 

fluid from the boundary at x = 0.4 with a velocity profile also shown 

in the figure. This profile is a wavelength of a cosine function, 

having the maximum value U at y = 0 and minimum zero at y = ± 0.7- 

The origin will be the neutral point in the magnetic field as well as 

the stagnation point in the velocity field, at which the reconnection 

of magnetic lines of force will progress. The rectangular domain 

enclosed by thick lines is 0.8 X 0.4 by size and is replaced by 80 

x 80 rectangular meshes for computation. The length ratio of two 

imognetic Bo                  field 

0 

IT 
                                Fig. 22 

                                   The configuration for computation. 
                                  Arrows with a cosine envelope shows 

                               the velocity profile of the initial-
                                ly injected fluid at the boundary 

mx = 0.4. The intensity of linearly- 
                                 varying magnetic field is also shown 

                                 by a right-angled triangle.

                                           ------- 

 0.4 

--------- 82 cells
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D------  --Y
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sides of the mesh is, therefore, such that  Ox / Ay = 1 / 2. To pre-

serve the symmetry condition we need two outermost rectangular meshes. 

Thus we have 82 x 82 mesh points in all. The values of A and 0 on 

the boundaries of the inlet and outlet sides are extrapolated from 

within in terms of a third-order algebraic expression satisfied by 

the four nearest points, either aligned vertically or horizontally, 

so that the point of departure of each line of force or streamline 

may vary from time to time.

3.2 Initial conditions 

     In the case of vanishing zero-order velocity and uniform resis-

tivity, the following condition is met by the zero-order magnetic 

field Bo0

              V2B
0= 0 . 

This condition becomes 

             d2B (x) 
             oy  = 0 . 

                  dx2

(5.10)

(5.11)

Thus B(x) varies linearly with x, which is the initial configuration 
      oy 

of our model shown in Fig. 23. This magnetic field might be sustained 

by the uniform current or the static electric field in the z direction . 

We will, however, leave the static field out of consideration , since 
the current decays resistively in the form of Joule dissipation in 

time TL, under the condition T
L / TA = Rm >> 1. In the interval of 

about O.1TA, during which the numerical experiment proceeds , the cur-
rent or the pervading magnetic field seems to remain unchanged in view 

of the above condition. There is then an influx of fluid from both 

sides, transverse to the antiparallel magnetic lines of force . An
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Fig. 23 

The antiparallel magnetic field that 
there was at the start. Lines are 
contour A = constant ; the value of 
this constant is shown on each line, 
scaled by 103. The dot at the left 
bottom corner is the position of the 

neutral point, and the thick arrows 
are to show the injection and ejec-
tion of fluid.

unavoidable difficulty appears in this respect. Since the present 

model is incompressible, the velocity of sound is infinite. This 

means that we cannot inject a fluid as shown in Fig. 22 without con-

sidering the fluid that is ejected from the domain at the same time 

to maintain the continuity relation. We therefore simply " indent " 

a flow pattern shown in Fig. 24 on the antiparallel magnetic field 

shown in Fig. 23 at time t = 0. Figures 23 and 24 are reduced 

in length in the direction of y axis by a factor of 2. All the other 

square figures that will be shown later are also reduced in the same 

way.

Fig. 24 

Initial flow pattern to be indented 

on the antiparallel magnetic field 

shown in Fig. 23. Lines are con-

tour = constant ; the value of 

this constant is shown on each line, 

scaled by 103.

 7  

I-----------------------------------------------------------------------------
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3.3 Procedure of computation 

    The algorithm of computation is : ( 1° ). We compute the rhs of 

Eq.  (5.7) from the initial condition or presently given condition ; 

( 2° ) we estimate the variation of A from Eq. (5.7 ), given its rhs ; 

( 3° ) we compute the rhs of Eq. (5.8) as step ( 1° ) ; ( 4° ) we 

solve Eq. (5.8), a Poisson-type equation, for a(1) / at, given its 

rhs ; and ( 5° ) find the variation of from thus obtained 34) / at. 

And then the cycle restarts with step ( 1° ). 

     There are two possible numerical difficulties. One is with 

procedures ( 2° ) and ( 5° ) where we may have an instability of 

initial-value-problem type. When this occurs, the line of force ( A 

= constant ) usually becomes irregular like saw-toothed waves with a 

period of the order of the mesh size. This numerical instability can 

be averted by using the difference scheme of Friedrichs and Lax and by 

taking a time step carefully considered. In the actual computation we 

checked that the results do not vary much even when we used different 

time steps. The other is in the stage of ( 4° ) where a relaxation 

method is used to solve the boundary-value problem. The convergence 

criterion of the relaxation was also carefully considered to guarantee 

the accuracy. 

     The parameters of computation are R
m, R, and U ( maximum injection 

speed ). We could not get around the numerical difficulties in cases 

of R
mand R smaller than a few hundreds. This seems to be because when 

R-and R-1are large, the effect of smoothing out errors during the 

relaxation ( 4° ) could not overcome the errors due to higher-order 

numerical differentiation involving the terms on the extreme right of 

Eqs. (5.7) and (5.8) . 

     The physical quantities to be measured in the present numerical 

experiment are, for example, the position and displacement of each 

individual line of force, the instantaneous position of streamlines, 

the current density not only in the neighborhood of the neutral point 

but anywhere including the convection region, the distribution of the
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induction electric field and so forth. The results of these observa-

tions will be presented in the next section and the implications and 

interpretations of these results will be compared in section 5 with 

the points mentioned in the Introduction.

§ 4. Numerical Results 

    The numerical diffusion involved in our difference scheme is vir-

tually comparable with the other terms in the rhs of Eqs. (5.7) and 

(5.8) and as much as  10  - 102 times larger than the actual resistive 

and viscous diffusions of the fluid. Hence, the magnetic field does 

not interact strongly with the flow and the calculated patterns of the 

magnetic field are found to be very diffusive. It is, however, reveal-

ed that the variables such as E
zand Jzor the vorticity wzwhich are 

given by differentiating A or are sensitively dependent on Rm's and 

R's, although A and (I), respectively, are scarcely different.Therefore, 

we can say that the numerical diffusion is moderate in the sense that 

it never screens, though it exerts a considerable influence upon, the 

essential features of the reconnection of magnetic lines of force. 

     All the results presented in this section are, unless otherwise 

specified, for U = 1, i.e., the peak value of the injection speed is 

one Alfven Mach. This choice of U reflects the consideration that we 

want to keep the number of independent parameters as small as possible 

and that flow coming in even a smaller magnitude of U will eventually 

reach a region where U = 1 before approaching close to the neutral 

point. 

     Figures 25 (a) - (e) are the time-sequential behavior of mag-

netic lines of force for the case of Rm= R = 5 x 103. The fluid is 
continually injected from the right bottom of the figure and ejected 

from the left top. Figure 25 (e) is a piece of tangible evidence 

of reconnected lines of force. Of course in (d) of the figure, a 

reconnected line of force should already have appeared, if a contour
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Fig. 25 

Computer-drawn temporal behaviour of magnetic lines of force for 
the case Rm = R = 5 x 103 and U = 1 at times t = 10-2 - 6 x 10-2. 

The neutral point is shown by a dot. Note that the length scale 

is reduced to half in the direction from top to bottm. The value 

of potential is shown on each line scaled by 103. Hereafter, 

unless otherwise specified, all the figures that will appear are 

for the same case.
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interval somewhat smaller were used. We thus see that reconnection 

in fact takes place at the existing neutral point, immediately after 

a fluid is injected. There are two important features observed. One 

is that the front tip of the reconnected magnetic line of force does 

not become flattened as it zips back upward and that the bordering 

regions continue to maintain their thinness with time. The other fea-

ture is that, although the fluid injection is done virtually under a 

frozen-in condition ( see Fig. 29 shown later ), the ejection speed 

of the front tip is far faster than that of the fluid. This point 

will be discussed at length shortly. 

     In Fig. 26 the stream lines at two different times are shown as 

examples. We can readily see that the successive configurations of 

the flow are not altered much from the initial one, except that the 

greater time makes a slightly wider turn near the point of stagnation. 

     From Fig. 25 , it can be seen that the reconnection builds up 

immediately after the injection of fluid. To see this more quantita-

tively, it is interesting to plot  Bx along the y axis at different 

times (  B
x has been scaled by Bo, the magnetic field carried by the 

4Q
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  (a) 

Fig. 26

                    (b) 

Computer-drawn streamlines at  : 
t =  10-2 and (b) t = 5 x 10-2. 
dot at the left bottom corner is 

position of the neutral point. 
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               incoming fluid ). This is shown in Fig. 

 27. Thus the transverse component of 

               the magnetic field rapidly reaches as 
T• s.0' 

                high as 10-2 in a matter of time 5 x 10-2 
          T•3.K 

                     Since the magnetic field is frozen, 

T,I,44although in fact partially in the fluid, 

,r.it is convected to the inner region with 

               the flow. We can see it in Fig. 28 (a) 

               and more clearly in (b) where U = 5. The 

\magnetic flux density is enhanced espe- 
  n4 n6cially near the turning points of the 

r 
                stream lines, forming a sort of shock 

   Bx along fr
ont, and then flattened far from the  plotted for 

times.points. As already shown in the study of 

.--------------,-.---------------. ;/ 

       os-----------' 
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(a)(b) 

  28 Variation of the magnetic flux density 

IBI with time along the x axis and along 
       a few lines parallel to it. The origin 

      of IBI is shifted by 6.0 for successive 
       curves. (b) is for the same Rm and R, 

       except U = 5. 
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the stationary-state solution, the variation of the magnetic field 

may be such that it is diffusive near the neutral point, enhanced con-

siderably in the intermediate region where the shock waves are excited 

and then tends asymptotically to a constant. Comparing the magnetic 

lines of force between the cases of U = 1 and 5, it is readily seen 

that the more intensely a fluid is injected, the greater is the inward 

convection of the front tips. Therefore, the wedge angle, made by 

the asymptotes of the magnetic lines of force which go through the 

neutral point, seems to extend wider for larger U's. 

     Figure 29 shows the fluid velocity along the x and y axes. 

There is local acceleration in the vicinity of the neutral point, but 

away from the neutral point the inlet and exit velocities are respec-

tively 1.0 and 2.0. The velocity field as a whole is little altered 

even after the intensity of the reconnected field reaches  10-2 ; the 

length ratio of 2 : 1 of the area we consider certainly restricts the 

global flow pattern. In the vicinity of the neutral point, the rate 

of decrease of the injection velocity is equal to that of increase of 

y ~-— 
       08Q40Q4 

20 ------------4~i 1.1-20

Fig. 29

1.0

 

1.0

0'-------------------------------------------------------------------' 0 
08 040 Q4 

Y---+x 

-ux along the x axis and uyalong the y 

axis at times t = 5 x 10-3- 4 x 10-2.
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the ejection velocity. This is the same as those known in the usual 

stagnation flows. One may also notice that the rates become reduced 

with time. This indicates that viscous diffusion is much more effec-

tive near the neutral point, the characteristic length of which is the 

instantaneous thickness  d -. 

    We show the current density as measured by -V2A in Fig. 30 . The 

overall pattern makes little change with time, but the current accumu-

lates in the vicinity of the neutral point. As expected, the current 

in the vicinity of the neutral point becomes stronger for larger R
m's 

and/or the larger U's. 

     Figures 31 (a) - (f) show the cross sections of the current 

density respectively along the x and y axes and along a few lines par-

allel to each axis. One finds that the core of current grows over the 

neutral point with a conspicuous gradient, especially in the direction 

       fi

Fig. 30

 um  u  i  linii  llllllll\11111111111111111111111111111111111111111  J  17 cD 

Current density JZ = -V2A at t = 3 x 10-2. 

The dot at the left bottom corner is the 

position of the neutral point. Contours 
are shown for -V2A = 0.1 - 3.1 with a 

contour interval of 0.1 scaled by .102. 
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of injection. The current also becomes intense along turning points 

of the flow, although the region spreads considerably. Similar fea-

tures are also revealed for different Rm's and R's. We discussed in 

the analysis of the stationary-state solution that the intense current 

is concentrated in the vicinity of the neutral point, from which the 

transition layer of intense current extends outward ; it has been shown 

that this transition layer corresponds to Petschek's boundary layer 

and to the trailing wave of Sonnerup (1970). In the stationary-state 

reconnection, however, the negative current also flows along another 

transition layer ( Sonnerup's leading wave ), which stands contiguous 

to the positive-current layer. Concerning the current-core over the 

neutral point with the ridgelike extension along Petschek's boundary 

layer, the above figures suggest that it may eventually evolve into the 

one with sufficiently large amplitude. However, although the current 

is rapidly reduced in the inlet side, it is not clear whether the 

negative-current layer can really be formed or not. 

     Figures  32  (a) - (d) show the time-sequential variation of the 

electric field due to aB / 3t along the x and y axes and along a couple 

of lines parallel to the x axis. The injection of an Alfvenic flow 

induces the electric field at the boundary, as much as 0.7 for maximum 

velocity, which is transported to the inner region with a linearly-

reduced intensity. A considerably large hump appears at the first 

instance and then becomes lowered with time, shifting its peak inside. 

As the reconnection proceeds, the electric field tends to be spatially 

uniform. Since the intensity of the magnetic field becomes uniform 

with time in the inlet side, we can say that the velocity of fluid 

there has a tendency to become uniform spatially. The rise and fall 

of the electric field coincides well with that of the current shown in 

Fig. 31 . Similar features are seen in the more conducting and/or less 

viscous fluid, where the increase or decrease are more rapid. Checking 

on the cases of different m's and R's, one finds that the time-
sequential variations of the electric field at the neutral point are 

proportional to those of the current density as expected from Ohm's law. 
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§ 5. Interpretation of the Results 

    We wish now to discuss those points of interest mentioned in the 

introduction. 

5.1 Confirmation of reconnection 

    After extensive calculations over a range of Reynolds number, it 

is seen that reconnection can in fact take place. The results strongly 

suggest that reconnection can occur for any fluid with global Reynolds 

numbers  103 < R
m < co, 103 < R < co. Below these lower thresholds our 

numerical scheme fails for technical reasons already mentioned ; how-

ever, since there is reason to believe that at lower Reynolds numbers 

reconnection is more easily done, therefore our numerical experiment 

indicates that reconnection can be accomplished at any small or finite-

ly large Reynolds numbers. This, together with the following statement 

on controlling conditions, seems to support the speculative conclusion 

put forward in chapter 4 that reconnection is not inhibited by the 

local condition at the neutral point, but rather the reconnection rate 

depends on the external conditions that set up the global flow pattern. 

     We may denote clearly that the magnetic lines of force would cer-

tainly grow to the X-type configuration through the reconnection in 

the region of existing neutral points. The bend or curvature of each 

line of force is expressed by the distance A9 of its front tip on the 

x axis, measured from its x coordinate on the exit boundary ( see Fig. 

33 ) . This figure shows the time-sequential Ws of all lines of 

force that appeared in computer-drawn figures such as Fig. 25 . This 

might also be considered to indicate that the velocity of lines of 

force on the x axis differs from that on the exit boundary. The mag-

netic field imposed initially in a direction parallel to the existing 

neutral line ( x = 0 ) tends to decline steeper with respect to the 

neutral point as the reconnection proceeds. It is especially steep 
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                                       Fig. 33 Bend or curvature of each magnetic 
                    line of force plotted for different 
                          times. 

far from the neutral point.Even at time t = 6.0 x 10-2, At's still 

increase almost linearly and the stationary state might not be attain-

ed shortly. It is, however, quite probable that the magnetic field 

forms an X-type configuration, ultimately extending over the angle 

corresponding to the injection velocity as shown in the analysis of 

the stationary-state solution. 

    We add a few comments concerning the behavior of a line of force 

in the vicinity of the neutral point. The advance of the front tip is 

conspicuous there and its speed is remarkably enhanced just before and 

after the line of force becomes reconnected. This may be referred to 

the slippage of magnetic lines of force from the fluid, the velocity 

of which is given by ( see Eq. (1.11 ) ) 

           1B x (

B2x B)   W-(5.12) 

              m Since we suppose the conductivity to be uniform in the whole region, 
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the enhancement of the slippage velocity should be referred to the 

local enhancement of the magnetic body force acting on the fluid there 

( see Fig. 29 ). There are, however, some grounds to expect that the 

enhancement of the slippage velocity might actually be more remarkable. 

We should note the fact that, as the reconnection proceeds, the current 

grows rapidly in the vicinity of the neutral point, forming a marked 

current-core with a steep shear or gradient. The computed current, of 

course, was found to be so diffusive, but if the numerical scheme were 

more appropriate, the enhancement of currents might be appreciable. 

We pointed out before that in the stationary state the large current 

shear is really formed in the vicinity of the neutral point and that 

its effect is comparable with the other terms in the Ohm's law. There-

fore, it is probable, in an appropriate circumstances, that the shear 

of currents may eventually evolve into the sufficiently large one in 

the vicinity of the neutral point and contribute to reduce effectively 

the electrical conductivity in the manner mentioned in chapter 4. The 

reduced conductivity also enhances the slippage velocity.

5.2 Speed of growth 

     From the preceding discussions, reconnection of magnetic lines of 

force at the existing neutral points or lines follows immediately after 

a flow, or a perturbation, sets up. The reconnection will, perhaps, 

be delayed in about the sound wave  propagation time in a compressible 

fluid, although it may not differ essentially from that of an incom-

pressible fluid. We observe that, as the reconnection proceeds, the 

transverse component of the magnetic field rapidly increases as high 

as 10-2, and that the wedge angle extending in the exit side becomes 

wider in a matter of time 5 X 10-2. In the analysis of the stationary-

state solution, the transverse component becomes about 10-1, or more 

corresponding to the velocity of incoming fluid. It will, therefore, 

require a time of a few TA's, before the full configuration of the 
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X-type magnetic field builds up, although the buildup is faster for a 

greater speed of fluid injection.

5.3 Controlling conditions

    As stated in a preceding paragraph, the process of reconnection 

does not seem controlled by the local conditions such as electrical 

conductivity or viscosity.  On the other hand, this process is con-

trolled by the external conditions of the area under consideration. 

According to our numerical experiment, the buildup of reconnection is 

considerably dependent on the typical speed of injection U ; the larger 

U is, the buildup is the faster. The other important factor is the 

shape of the boundaries, i.e., the widths of the inlet and exit of 

fluids away from the location of the neutral point. In other words, 

it may be said that the distribution of pressure gradients near the 

boundaries that set up the global flow in the domain is important in 

determining the flow pattern, rather than the dissipation mechanisms 

near the neutral point.

5.4 Acceleration of particles

     There are two types of particle acceleration in connection with 

the reconnection of magnetic lines of force. The first is the accel-

eration of fluid in bulk, which occurs-as follows. The fluid comes in 

with a slow velocity and a high magnetic field in a wide wedge angle 

as viewed from the neutral point. The fluid turns round at the neutral 

point forming a narrower wedge angle, with a weaker magnetic field but 

with a faster fluid velocity. The increase of the kinetic energy comes 

from the dissipation of magnetic energy by the propagation of Alfven 

waves in the incompressible case and switchoff shocks in the compress-

ible case. Thus, the angle made by the asymptotes of the X-type
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magnetic lines of force is essential in determining the degree of 

fluid acceleration. When the fluid is injected at a high rate, the 

wedge angle,  in which the fluid is ejected, becomes wider. This 

illustrates the fact suggested by the stationary-state solutions in 

the preceding chapter. It was also shown by the stationary-state 

solutions that the ejection velocity is always constant, independently 

of the external conditions on the flow. However, we cannot make it 

clear by the present computer experiment because of the weak-coupling 

between the magnetic field and the flow due to a resistive diffusion 

introduced artificially. In the absence of this artificial diffusion, 

the flow may be strongly restricted by the magnetic field and ejection 

velocity may be altered to some extent, although it is not clear 

whether it coincides with that of the stationary-state solution. How-

ever, it is the first essential to this type of acceleration that the 

X-type configuration of the magnetic field can really be set up in 

the region where there have been no flows before and that it extends, 

at least, over a characteristic Alfven wavelength. The rate of accel-

eration is, in this sense, considered to be infinitely large. However, 

we can raise three questions concerning this process. First, as 

already mentioned, the X-type configuration of the magnetic field must 

extend over a considerably large region. If the scale of the system 

is large enough in favorable circumstances, the acceleration will ef-

ficiently yield high energy particles as observed in space, while if 

the system is smaller than the characteristic Alfven wavelength, the 

increase of fluid kinetic energy will be soon spread over areas many 

times larger than the size of the reconnection region. The second 

question is, as suggested by Yeh and Axford (1970), that the fluid 

accelerated in this manner must escape from the system, otherwise the 

energy will again be converted to the energy of the magnetic field 

and then it will merely oscillate. The third question, closely 

related to the first, is concerned with the limitations of the 

stationary-state solutions. If the whole configuration of magnetic 

lines of force is more or less controlled by the flow external to the 
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neutral point, then of course the evolution of reconnection itself 

must be influenced by the external flow. This suggests that a 

stationary-state solution that does not depend on various external 

conditions may be an isolated state that the actual evolving system 

may not reach. The present study is unsatisfactory in clarifying 

these points, but it can be said at any rate that this is the very 

promising type of acceleration that efficiently yields high-energy 

particles as observed in solar flares and in the geomagnetic tail. 

     The other type of acceleration is the heating of particles by 

Joule dissipation due to an electric field induced by changing magnet-

ic field. The current seems to be concentrated near the neutral point, 

forming an intense current-core in its vicinity ; elsewhere the cur-

rent density is much less because there the induction electric field 

is cancelled by the fluid motion. The Ohmic energy dissipation is 

given by 

      J • E = JZEz=u02A . Ez(5.13) 

before normalization of the variables and this quantity becomes, after 

our scaling, 

          B2 

    2u1 [  02A  • E] ,(5.14)                TA 

where B2 / 2p is the magnetic energy density of the incoming fluid ; 

quantities enclosed by the square brackets are those after normaliza-

tion that can be known from Figs. 31 and 32. They show [ O2A• E ] 

  1 at times 10-2 - 5 X 10-2 for Rm= R = 5X103 and at earlier 
times in less viscous and/or more conducting fluids. This indicates 

that the magnetic energy injected is dissipated locally at the neutral 

point. Since the disappearance of magnetic flux through resistive 

diffusion does not in itself impart momentum to the system, the energy 

dissipated must appear as heat ( Stevenson, 1971 ; 1972 ). 
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In less dissipative fluids the region of enhanced currents is reduced 

in extent around the neutral point. This is, of course, an efficient 

way of heating particles where the electric field due to the rapidly 

changing magnetic field plays the essential role, but seems inferior 

to the other type of acceleration in bulk in view of the extent of 

the region available for the acceleration. 

5.5 Diffusion region vs convection region 

     The region for the magnetic field to be frozen in the fluid is 

not so apparent, since the magnetic field interacts weakly with the 

flow due to the numerical diffusion. Notably in Fig. 25 , the veloc-

ity of zipping back the front tip of reconnected lines of force can 

be estimated. This velocity is about 40, whereas the background 

fluid has velocity of about 2, so that the lines of force zip back 

at a speed 20 times faster than the fluid. The front tip of the lines 

of force, moreover, maintains its small radius of curvature while 

contracting toward the exit side. These features are probable evi-

dence for the magnetic lines of force being transported very diffu-

sively. We have, however, mentioned before that the slippage velocity 

increases rapidly in the vicinity of the neutral point, and that the 

region should be separated from the less resistive region far from 

the neutral point. The diffusive region in the vicinity of the neu-

tral point coincides well with the region of intense current where 

the current increases with time and also with the stagnation region 

of the flow. This might indicate that even in very highly conducting 

fluids the magnetic lines of force are dissipated locally by the re-

sistivity which is naturally induced by the inertia of current in the 

vicinity of the neutral point and that the so-called diffusion region 

may be formed with time. The extent of the diffusion region is not, 

however, well defined, although it may be more or less similar to 

those of Petschek (1964) and others insofar as the shape of the 
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diffusion region  is concerned. The above discussion suggests that 

in an actual, very highly conducting fluid the front tip of a recon-

nected line of force will become flattened with time as the effect 

of diffusion diminishes away from the neutral point.

§ 6. Concluding Remarks 

     We have numerically obtained time-dependent incompressible MHD 

solutions in two dimensions to study the evolutionary process in-

volving a reconnection of magnetic lines of force. Given an initial 

antiparallel magnetic field, or a current sheet, to which there is 

an injection of fluid in a transverse direction, we saw how the 

process of reconnection builds up. In this numerical experiment, 

special considerations were given to the confirmation of reconnec-

tion, the formation of X-type magnetic field, the speed of growth, 

conditions that control the evolution, acceleration of particles, 

the structure of the diffusion region and so forth. The findings 

are : magnetic lines of force can reconnect and grow to the X-type 

configuration in fluids of any finitely large hydromagnetic and 

hydrodynamic Reynolds numbers ; the conditions local to the neutral 

point are less important than the external conditions that set up 

global flow patterns ; acceleration of fluid in bulk concerns whether 

the X-type configuration grows to the comparably large extent or not ; 

and the electric field at the neutral point due to the rapidly chang-

ing magnetic field is less efficient to accelerate charged particles.
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                        Chapter 6 

DISCUSSION AND CONCLUSIONS

§ 1. Comparison with Relevant Laboratory Experiments 

     We have mentioned that laboratory plasmas containing X-type 

magnetic neutral points have been studied by some workers ( e.g., 

Bratenahl and Yeates, 1970 ; Syrovatsky et al., 1972 ; Ohyabu and 

Kawashima, 1972 ), but as yet we have few pieces of experimental evi-

dence to compare with our numerical computation. The only material 

to be compared is the magnetic field or associated current distribu-

tion near the neutral point and the transition layers observed with 

a laboratory device known as the double inverse pinch ( Bratenahl and 

Yeates, 1970 ). In the double inverse pinch shown schematically in 

Fig. 34(a) , dual currents are supplied to two rods by charged capac-

itor banks and the current returns to ground through the pre-ionized 

plasma. Initially the return current paths are cylindrical about 

both rods as shown in Fig.  34(b) . .However, the J x B force requires 

each cylindrical current sheet to move outward, carrying plasmas as 

they move. After 3 microseconds, the inverse pinches meet and recon-

nection begins. Figure 34(c) is a resultant pattern of magnetic 

lines of force, in which an X-type neutral point has been established. 

During the reconnection which follows, lines are carried in from 

regions 1 and 2, reconnect at the neutral point and merge as a line 

in region 3. Although there is an important difference between the 

field topology considered by our computation in chapter 5 and the one 
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Fig. 34 (a) Schematic side view of the double 
    inverse pinch device. Straight arrows  : 

    current flow ; curved arrows  : magnetic 
   field ; stipple : luminosity ; energy 
    source : two 150 uF capacitor banks, 20. 

   kV Max. (b) Top view and initial inverse 

   pinch waves. (c) Top view of the magnet-
    ic lines of force. The dark line is the 

    separatrix which divides the flux into 
    three regions. Region 3 is accessible 

    from regions 1 and 2 by reconnection 
    at the origin.
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considered here, it is common to both of the two that a pair of mag-

netic fluxes are injected from outside. The double inverse pinch is 

distinguished from the other experiments in that the induced electric 

field developes self-consistently from the plasma flow, while the 

electric field must be applied in the other experiments. As noted in 

the general introduction, the actual reconnection process is always 

accompanied by the induced electric field. 

     Figure  35  (a) shows contours of constant current density J
Z 

observed by the double inverse pinch ( Bratenahl and Yeates, 1970 ). 

The contours of constant density show a maximum at the X-type neutral 

point with ridgelike extensions running out along lines just down-

stream of the separatrix. The upstream side of this distribution has 

sharp gradients and the downstream side, gradients which are compara-

bly gentle, resulting in a very strong concentration of current in 

the pinch and the associated ridgelike extensions. 

     These features bear remarkable resemblance to our computational 

results where the simulation was made of an evolution of the X-type 

magnetic neutral point ( Baum, private communication, 1973 ). Note 

the similarity of the constant density contours of Bratenahl and 

Yeates to that of our computation shown in Fig. 35 (b) ( redrawn from 

Fig. 30 ). 

     It is worthy of notice that slow mode shocks actually exist along 

the separatrices ( Bratenahl and Yeates, 1970 ), and that plasmas are 

observed to be ejected from the downstream sides of the neutral point 

region, with the local magnetic Mach number which is nearly independ-

ent of the plasma conductivity and the passage of time ( Baum and 

Bratenahl, 1973a ).

§ 2.

rate

 Effective Electrical Conductivity in the Diffusion Region 

In a stationary-state analysis, it is necessary to attain a high 

of reconnection that the electrical conductivity is reduced 
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Fig. 35 Contours of constant current density 
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    double inverse pinch ( redrawn from 
   Fig.4 of Bratenahl and Yeates, 1970 ) 

    and (b) our computer calculation 
    ( redrawn from Fig. 30 ).
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selectively in the vicinity of the neutral point. It is not allowed 

for the reduction mechanisms to disturb much the surrounding field 

and flow. We argued that, in the absence of particle-particle 

collisions or wave-particle interactions, inertia of a particle is 

responsible for reducing the conductivity. In this case the lifetime 

of a particle in the system replaces the collisional mean free time 

in the expression for the conductivity. The inertial conductivities 

may be efficient in space, especially in the current sheet in the 

geomagnetic tail where they are about 8 - 11 orders of magnitude 

smaller than the collisional conductivity ( Speiser, 1970 ). Dungey 

and Speiser (1969) showed that two stream instability exerts only a 

small influence on the effective conductivity. 

     This is not to say that small-scale instabilities are not impor-

tant or that there are no wave-particle interactions in the current 

sheet. In fact, there may be small-scale effects which enhance the 

dissipation. For instance, Jaggi (1963) has pointed out that the 

steep field gradient across the diffusion region produces small-scale 

resistive instabilities ( see, e.g., Furth et al., 1963 ; Coppi and 

Friedland, 1971 ; Schindler and Soop, 1968 ; Biskamp and Schindler, 

1971 ) which effectively reduce the local size of the diffusion region 

and greatly enhance the effective dissipation. If the current sheet 

becomes so concentrated that the drift velocity exceeds the electron 

thermal velocity, the  Alfven-Carlqvist instability ( Alfven and 

Carlqvist, 1967 ; Carlqvist, 1969 ) and two-stream instability 

( Stringer, 1964 ; Buneman, 1959 ) arise, enormously increasing the 

effective resistivity and the diffusion of the fields ( Hamberger 

and Jancarik, 1972 ). 

     Concentration of current into thin sheets has been verified also 

by laboratory experiments ( Bratenahl and Yeates, 1970 ; Nardi, 1970 ), 

and Baum and Bratenahl (1973c) actually observed the ion-acoustic-wave 

spectrum of Kadomtsev (1965) at the X-type magnetic neutral point. 

     Parker (1973a), on the other hand, points out that the fluid 

between the opposing antiparallel fields perhaps escapes via the
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interchange and kink instabilities, permitting rapid close approach 

of the fields, with or without small-scale instabilities. 

    As yet, we can neither say quantitatively which mechanism plays 

a dominant role in actual astrophysical and geophysical phenomena, 

nor answer, in a convincing manner, even to the question whether the 

anomalous dissipation is the direct cause or an outcome of the recon-

nection process. It remains unsolved as a three dimensional problem 

in which magnetohydrodynamic aspect of the convection region should 

be simultaneously studied with the particle aspect of the diffusion 

region.

§ 3. Complementary Remarks to Particle Acceleration 

     As already mentioned, conducting fluid is always ejected at a 

velocity several times greater than the injection velocity, regardless 

of the magnitude of the injection velocity. This may successfully 

describe the ejection of plasma during the explosive phase, which 

accounts for the dominant part of energy emitted by a solar flare. 

     In highly conducting fluids, heating of particles by Joule dis-

sipation seems inefficient in view of the extent of the region 

available for the acceleration. However, the electric field induced 

by the rapidly changing magnetic field works, in the vicinity of the 

neutral point, for the acceleration of ions to very high energies 

such  as those observed following intense solar flare activity. 

     The particle orbit in the current sheet can be classified into 

two types ( Speiser, 1965 ; Hoh, 1966 ). In one type the ion does 

not cross the neutral plane. It gyrates and drifts in the magnetic 

field. The second type of orbit is one in which the ion crosses the 

neutral plane and moves in a " serpentine " path. It is the ions 

having the second kind of orbit that will be accelerated by the elec-

tric field. Friedman (1969) has shown that ions can gain high 

energies in the Petschek's model of the magnetic field, and that
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energy distributions similar to those observed can be obtained. He 

has also shown in a qualitative way that plasma turbulence prevents 

electrons from gaining high energy, consistent with cosmic-ray obser-

vations. 

     This mechanism of acceleration can be classified as Fermi-type 

acceleration, since an ion gains energy in the event of " collisions  " 

between two moving magnetized plasmas. In the Fermi mechanism, how-

ever, it is necessary for an ion to gain an energy of, for instance, 

10 GeV, that the plasma between these moving regions is compressed 

 105 times, which seems unreasonable. Using reconnection model, it 

can be seen that difficulties of this sort are avoided by allowing 

the plasma to escape from the region of acceleration. 

§ 4. Concluding Remarks 

     We have been concerned with a theoretical investigation on the 

reconnection of magnetic lines of force with a view to applying it to 

the acceleration of solar and terrestirial plasmas. 

     In chapter 1, we first discussed a concept and kinematics of 

magnetic lines of force. Then, a pair of antiparallel magnetic lines 

of force were schematically shown to be broken off and reconnected 

with each other at a magnetic neutral point. Then we mentioned that 

the reconnection of magnetic lines of force is considered as of major 

importance in : acceleration and heating of plasmas due to the anni-

hilation of magnetic energy and quasi-stationary penetration of an 

electric field parallel to a plane at rest. Finally, we referred to 

some astrophysical and geophysical phenomena, especially to those of 

the earth's magnetosphere and solar flares, in which the reconnection 

process is likely to play a crucial role. 

     Chapter 2 was devoted to the classification of magnetic neutral 

points in an infinitely conducting fluid. The so-called X- and 

0-type magnetic fields as well as the one with a magnetic neutral 
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line were classified appropriately. The possible existence of some 

other types of neutral points, e.g., spiral and node types, was 

pointed out for the first time. Then, the volume force acting on the 

fluid was described by the similar topological analysis. Finally, we 

 discussed, though in a very qualitative manner, an evolutionary pro-

cess which may account for the higher rates of energy conversion than 

those expected in X-type neutral points. 

     Chapter 3 concerned with a critical survey of current models for 

the stationary-state reconnection at an X-type neutral point, exam-

ining whether the reconnection rate of each model might be large 

enough for the explosive phase of largest solar flares. There have 

been two opposing points of view concerning what determines the rate 

of reconnection. One is that the rate is essentially dependent on 

the effective electrical conductivity near the X-type neutral point, 

while the other is that it is likely to be determined by conditions 

far from the neutral point where reconnection actually takes place. 

They regarded the anomalous resistivity in the vicinity of the neu-

tral point, respectively, as the direct cause of a reconnection pro-

cess and as an outcome of the process. These views said it possible 

to account for the time and energy of the explosive phase, however, 

we cannot approve of their results, since they could not completely 

succeed in the matching of the solutions which were investigated 

separately in the diffusion region and in the convection region. 

     Therefore, in chapter 4, we studied numerically the magnetic 

field and flow with an X-type neutral point in a finitely conducting 

fluid which has no such a clear-cut distinction between the two 

regions. Although the Reynolds numbers used are much smaller than 

the actual ones, the resulting solutions exhibit that the magnetic 

field and flow make a smooth transition in their properties from the 

diffusive in the vicinity of the neutral point to the convective far 

from it. The electric currents are concentrated in the vicinity of 

the neutral point and along the transition layers. The magnetic 

field is regarded as almost frozen in the fluid in other current-free 
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regions, even in the case of moderate conductivities. The current-

core over the neutral point is accompanied by a remarkable shear of 

currents, which may contribute to reducing the local electrical 

conductivity effectively. The reduction may be more remarkable as 

the conductivity is larger. Thus the reconnection of magnetic lines 

of force may be possible even in very highly conducting fluids. It 

has also been shown that the overall features are not essentially 

influenced by dissipations due to finite electrical conductivity or 

viscosity, but definitely by external conditions such as the applied 

electric field in the magnetic field and flow. 

     Chapter 5 was given to the numerical study of time-dependent 

incompressible  MHD solutions i9 two dimensions which describe the 

evolutionary process involving a reconnection of magnetic lines of 

force. Given an initial antiparallel magnetic field, or a current 

sheet, to which there is an injection of fluid in a transverse direc-

tion, we sought to see how the process of reconnection builds up. 

In this numerical experiment, special considerations were given to 

the confirmation of reconnection, the formation of X-type magnetic 

field, the speed of growth, conditions that control the evolution, 

acceleration of particles, the structure of the diffusion region and 

so forth. The calculated contour of constant current density showed 

the good similarity to that of the laboratory experiment with the 

double inverse pinch. The findings are : Magnetic lines of force can 

reconnect and grow to the X-type configuration in fluids of any 

finitely large hydromagnetic and hydrodynamic Reynolds numbers ; the 

conditions local to the neutral point are less important than the 

boundary conditions that set up global flow patterns ; acceleration 

of fluid in bulk only concerns whether the X-type configuration grows 

to the comparably large extent or not ; the electric field at the 

neutral point due to the rapidly changing magnetic field is less 

efficient in accelerating charged particles. 

Finally, the correct picture for a complicated phenomenon such 

as the reconnection problem can be obtained only through a balanced
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interplay between observational evidence and physical insight with 

mathematical reasoning based upon acceptable and tractable model. 

In this context, the computer calculations and the laboratory exper-

iments will be the promising girders of the bridge spanned between 

the distant banks, or between the observational evidence in actual 

space and the purely physical insight.
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                                            Appendices 

A. Method of computation 

     In Fig. 15 the origin is the null point in the magnetic field , 

as well as the stagnation point of the flow. The rectangular domain 

enclosed by thick lines is 0.70  x 0.35 in size and is replaced by 

70 x 70 rectangular cells for computations. The length ratio of two 

sides of the cell is, therefore, such that Ax / Ay = 1 / 2. Though 

there are several kinds of difference schemes for a differential 

equation, we will use the most familiar form, such as 

ao1    (
ax)__2Ax( of+l,j—i-1,j )(A.1) 

                                                                     ' i,j 

where 0ij indicates the approximation to the value of 0 at the cell 

point ( iAx, jAy ). The central difference form is adopted for 
second-order differential coefficients, anda?~                                            (a

x2)i,jis given by e.g. 

a2~ _1     (
ax2)i_j( Ax )2((1)i+l,j - 2i.j+i-1,j ) .(A.2) 

The fourth-order differential coefficient at some point is therefore 

approximated by the value there and those at the nearest four points, 

two each in the left and right cells ( or in the upper and lower ). 

So we need two outermost rectangular cells, and we have 74 x 74 cells 

in all ( as is shown in Fig. 15 ). The values at points outside the 

axes are determined by symmetry conditions such that 

   0-i,j= -0i9j, A-ij= A. ( i = 1, 2 )(A.3a) 
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for the y-axis, and 

    41,i
,-j= -(1)i,j, A1,-j=  Ai.j( j = 1, 2 )(A.3b) 

for the x-axis. On the other hand, values at the cell points outside 

the other two boundaries ( where conducting fluid as well as magnetic 

lines of force are either injected or ejected ) are extrapolated in 

terms of a third-order algebraic expression satisfied by the four 

nearest points inside, such that 

          - 
i,j-1 - 64)i,j-2 + 44)i,j-3 - i.j-4 

( i = 0,...,69 ; j = 70, 71 ). (A.4) 

It is the same for (I)i
tj's ( i = 70, 71 ; j = 0,.......,69)*. These 

two non-axis boundaries are for computational purposes, and are 

rather lacking in physical reality. One should note, however, that 

the computed results approximately satisfy the condition E + V X B = 0 

throughout the domain of these artificial boundaries. 

     When we assign suitable values to each cell point as a starting 

approximation, we can solve the simultaneous difference equations 

approximating the differential equations (4.25) and (4.26) by the 

over-relaxation method. If the starting approximation is appropriate, 

it will converge very rapidly to the exact solution, though princi-

pally it will be reached from any starting approximations in the case 

that the equations have a unique solution. 

    Sonnerup (1970) and Yeh and Axford (1970) observed that in the 

ideal hydromagnetic fluid ( perfectly conducting and inviscid fluid 

free from thermal conduction ) there are two rotational discontinui-

ties dividing the domain into three regions each of which contains a

* The extrapolation was not complete, and 

calculation, especially near the inlet and 

press unphysical irregularities, we carried 
for values of A and near the boundaries, 

to those of the outer regions. 
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uniform flow and magnetic field when the hydrodynamic pressure is 

uniform. There are jumps in neither mass density nor mass flow  ; 

thermodynamical quantities are continuous across them, and the mag-

netic field rotates around their normal directions without changing 

its magnitude. The tangential component of the fluid velocity is 

changed according to the discontinuity of the magnitude of the mag-

netic field. As shown in Figs. 16 (a) and (b). the potential func-

tions of the magnetic field and flow in regions 2 and 3, and the 

wedge angle between the two discontinuities are determined by virtue 

of the boundary conditions in terms of the  Alfven Mach number M of 

the incident flow in region 1. Here M is equal to E / B ( normalized 

and then identical with E ( normalized ) in region 1. The potential 

functions for each region, which are only another transformed expres-

sion of Sonnerup's solution, are 

        =-My
l 

        

I for y <_ M x ( region 1) (A.5) 
A = -x JJJ 

M 1 
_ - y - — x 

2+Vl 

                        1forMx < y <<1-44Yx( region 2-1 ) 
 A =( y -1M~x )(A .6) 

1 M  114i x >     A =
( 1+v) ( 2-V)(Y -M 

            1+1/Y ( 1+V ) 2            f or  x < y<   x ( region 2-2 ),(A.7)
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 =-( 1+/ )x 
l 

M 

                 1for y >( 1 M )2x ( region 3 ) . (A.8) 
A = 

1+may 

Figures 16 (a) and (b) show, respectively, the magnetic lines of 

force and stream lines in the case of M = 0.5. 

     We adopt Sonnerup's solution as the starting approximation, then 

solve the simultaneous equations (4.25) and (4.26) by the over-

relaxation method. We define two parameters 

                  Am+l - Am  —sl =R2i,jmi,j(A.9a) 
         i,jAi

,3 

and 

m+l m 

      1Ck~i,j -  
s2 =

K2G m(A.9b) 1
,j 

where K is the total number of cells in a column ( or row ) of the 

rectangular cell space ( here K = 70 ), and the index m counts the 

number of iterations. Convergence is considered to have been attained 

when 

  sl < E and s2 < E(A.10a,b) 

where E is a sufficiently small constant and assumed to be 10-3 - 10-4
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B. Difference scheme of Eqs.  (5.9 ) and ( 5.10 ) 

     The conservative MHD equations are written generally in an 

( N+1 )-dimensional rectangular space-time as 

 au+v •F= 0 (B.l)    at 

where, for example, u is the six-component vector 

u= ( u, B ) 

in the incompressible fluid and F = F( u ) a flux tensor. The 

Friedrichs-Lax scheme, which is adopted in our computation, approxi-

mates the differential coefficient au/at by such a difference form as 

au  un+1 - un 
at At(B.2) 

where unis the spatial average in the neighborhood of the points 

where the flux is evaluated. This introduces a numerical diffusion, 

or correctly, a linear viscous term and the scheme really represents 

an approximation to the differential equation 

  au +VF =°2------o2u -At2U(B.3) a
t2NAt 2 ate 

where A is the mesh size. If c is the maximum propagation velocity, 

       2  au < 
c202u(B.4) a

te 

and the scheme should be stable if the condition 

 At < p / ( c,I )(B.5) 

is satisfied. It is, however, inevitable that the artificial diffusion 
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thus introduced causes any initial conditions to be smoother in the 

course of time and so we must say that some important features ex-

pected to be revealed in the evolution of the reconnection of magnetic 

lines of force have been lost during our numerical experiment.

- 112 -



REFERENCES

 Alfven, H., and P. Carlqvist, Solar Phys., 1, 220, 1967. 

Arnoldy, R. L., J. Geophys. Res., 76, 5189, 1971. 

Aubry, M. P., C. T. Russell, and M. G. Kivelson, 
              J. Geophys. Res., 75, 7018, 1970. 

Axford, W. I., Space Sci. Rev., 7, 149, 1967. 

Axford, W. I., Rev. Geophys., 7, 421, 1969. 

Baum, P. J., and A. Bratenahl, J. Plasma Phys., In press, 1973a. 

Baum, P. J., and A. Bratenahl, Phys. Fluids, In press, 1973b. 

Baum, P. J., and A. Bratenahl, In preparation, 1973c. 

Biskamp, D., and K. Schindler, Plasma Phys., 13, 1013, 1971. 

Bratenahl, A., and C. M. Yeates, Phys. Fluids, 13, 2696, 1970. 

Buneman, 0., Phys. Rev., 115, 503, 1959. 

Carlqvist, P., Solar Phys., 7, 377, 1969. 

Chapman, S., and P. C. Kendall, Proc. Roy. Soc. Lond., 
            A271, 435, 1963. 

Chapman, S., and P. C. Kendall, Phys. Fluids, 9, 2306, 1966. 

Coppi, B., and A. B. Friedland, Astrophys. J., 169, 379, 1971. 

Domingo, V., and D. E. Page, J. Geophys. Res., 76, 8159, 1971. 

Dungey, J. W., Phil. Mag., 44, 725, 1953. 

Dungey, J. W., Cosmic Electrodynamics, Cambridge Univ. Press, 

               p.98, 1958. 

Dungey, J. W., Proc. 1962 Les Houches Summer School, Gordon and 
               Breach, p.503, 1963. 

Dungey, J. W., and T. W. Speiser, Planet. Space Sci., 17, 1285, 

Elsasser, W. M., Phys. Rev., 95, 1, 1954. 

Evance, L. C., and E. C. Stone, EOS. Trans. Amer. Geophys. Union 
              52, 904, 1971. 

                                   - 113 -

1969.



Friedman,  M., Phys. Rev., 182, 1408, 1969. 

Friedman, M., and S. M. Hamberger, Astrophys. J., 152, 667, 1968. 

Fukao, S., and T. Tsuda, J. Plasma Phys., 9, 409, 1973a. 

Fukao, S., and T. Tsuda, Planet. Space Sci., 21, 1151, 1973b. 

Fukao, S., M. Ugai, and T. Tsuda, In preparation, 1974. 

Furth, H. P., J. Killeen, and M. N. Rosenbluth, 
             Phys. Fluids, 6, 459, 1963. 

Giovanelli, R. G., Mon. Not. Roy. Astron. Soc., 107, 338, 1947. 

Gold, T., and F. Hoyle, Mon. Not. Roy. Astron. Soc., 120, 89, 1960. 

Green, R. M., Proc. IAU Symp. on Solar and Stellar Magnetic Fields, 
              Amsterdam ( ed. R. Lust ), p.398, 1965. 

Green, R. M., and P. A. Sweet, Astrophys. J., 147, 1153, 1967. 

Hamberger, S. M., and J. Jancarik, Phys. Fluids, 15, 825, 1972. 

Hoh, F. C., Phys. Fluids, 9, 277, 1966. 

Jaggi, R. K., J. Geophys. Res., 68, 4429, 1963. 

Jaggi, R. K., Proc. AAS-NASA Symp. on the Physics of Solar Flares, 
              Greenbelt ( ed. W. N. Hess ). NASA SP-50, p.423, 1964. 

Kadomtsev, B. B., Plasma Turbulence, Academic Press, New York, 
               p.71, 1965. 

Meng, C. I., J. Geophys. Res., 75, 3252, 1970. 

Mestel, L., and P. A. Strittmatter, 
               Mon. Not. Roy. Astron. Soc., 137, 95, 1967. 

Morfill, G., and J. J. Quenby, Planet. Space Sci., 19, 1541, 1971. 

Morfill, G., and M. Scholer, J. Geophys. Res., 77, 4021, 1972. 

Nardi, V., Phys. Rev. Letters, 25, 718, 1970. 

Newcomb, W. A., Ann. Phys., 3, 347, 1958. 

Nishida, A., and K. Maezawa, J. Geophys. Res., 76, 2254, 1971. 

Nishida, A., and N. Nagayama, J. Geophys. Res., 78, 3782, 1973. 

Northrop, T. G., Rev. Geophys., 1, 283, 1963. 

Ohyabu, N., and N. Kawashima, J. Phys. Soc. Japan, 33, 496, 1972. 

Parker, E. N., Phys. Rev., 107, 830, 1957. 

Parker, E. N., Astrophys. J. Suppl. (77), 8, 177, 1963. 

Parker, E. N., Proc. XI COSPAR Symp. on Solar Flares and Space 
               Research, Tokyo ( ed. C. de Jager and Z. Svestka ), 

p.412, 1969. 

Parker, E. N., Astrophys. J., 180, 247, 1973a. 

                                  - 114 -



Parker, E. N., J.  Plasma Phys., 9, 49, 1973b. 

Petschek, H. E., Proc. AAS-NASA Symp. on the Physics of Solar Flares, 
              Greenbelt ( ed. W. N. Hess ), NASA SP-50, p.425, 1964. 

Petschek, H. E., and K. S. Thorne, Astrophys. J., 147, 1157, 1968. 

Pneuman, G. W., Solar Phys., 2, 462, 1968. 

Priest, E. R., Astrophys. J., 181, 227, 1973. 

Russell, C. T., Proc. Joint COSPAR/IAGA/URSI Symp. on Critical 
Problems of Magnetospheric Physics, Madrid 

               ( ed. E. R. Dyer ), p.1, 1972. 

Schindler, K., and M. Soop, Phys. Fluids, 11, 1192, 1968. 

Schmidt, H. U., Proc. XI COSPAR Symp. on Solar Flares and Space 
              Research, Tokyo ( ed. C. de Jager and Z. Svestka ), 

              p.331, 1969. 
Sonnerup, B. U. 0., J. Plasma Phys., 4, 161, 1970. 

Sonnerup, B. U. 0., and L. J. Cahill, J. Geophys. Res., 73, 
             1957, 1968. 

Speiser, T. W., J. Geophys. Res., 70, 4219, 1965. 

Speiser, T. W., Planet. Space Sci., 18, 613, 1970. 

Stern, D. P., Space Sci. Rev., 6, 147, 1966. 

Stevenson, J. C., J. Plasma Phys., 6, 125, 1971. 

Stevenson, J. C., J. Plasma Phys., 7, 293, 1972. 

Stringer, T. E., Plasma Phys., 6, 267, 1964. 

Sturrock, P. A., Proc. IAU Symp. on Structure and Development of 
Solar Active Regions, Budapest ( ed. K.O.Kiepenheuer ), 
p.471, 1968. 

Sturrock, P. A., and C. Barnes, Astrophys. J., 176, 31, 1972. 

Sturrock, P. A., and B. Coppi, Astrophys. J., 143, 3, 1966. 

Sweet, P. A., Mon. Not. Roy. Astron. Soc., 110, 69, 1950. 

Sweet, P. A., Proc. IAU Symp. on Electromagnetic Phenomena in 
CosmicaZ Physics, Stockholm ( ed. B. Lehnert ), 

               p.123, 1958. 

Sweet, P. A., Ann. Rev. Astron. Astrophys., 7, 149, 1969. 

Syrovatsky, S. I., Soviet Astron., 10, 270, 1966. 

Syrovatsky, S. I., Proc. XI COSPAR Symp. on Solar Flares and Space 
               Research, Tokyo ( ed. C. de Jager and Z. Svestka ), 

p.346, 1969. 

Syrovatsky, S. I., A. G. Frank, and A. Z. Khodzhaev, 
              Soviet Phys., JETP Lett., 15, 94, 1972. 

                                   - 115 -



Takayanagi, A., J. Sakai, and H. Washimi, 
             Kakuyugo-kenkyu Suppl. (4), 29, 1, 1973. 

 Uberoi, M. S., Phys. Fluids, 6, 1379, 1963. 

Uberoi, M. S., Phys. Fluids, 9, 2307, 1966. 

Uchida, Y., Pub. Astron. Soc. Japan, 21, 128, 1969. 

Van Allen, J. A., J. F. Fennell, and N. F. Ness, 
              J. Geophys. Res., 76, 4262, 1971. 

West, H. I., Jr., and A. L. Vampolar, Phys. Rev. Letters, 26, 
             458, 1971. 

Yeh, T., and W. I. Axford, J. Plasma Phys., 4, 207. 1970. 

Yeh, T., and M. Dryer, Astrophys. J.', 182, 301, 1973.

- 116 -






