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                                Abstract 

     A theoretical study is made on stochastic fluctuations in 

power reactors. The theory is demonstrated by treating a 

specific but widely existing example of non-boiling liquid-

-cooled and -moderated reactor operated with either natural 

convection or forced circulation. 

     In Chapter  I, attention is first directed to the thermo-

dynamical analysis of the elementary transport processes of the 

energy released by fissions through the fuel and coolant. 

A set of equations for the lumped reactor system are derived 

for the state variables, i.e., coolant flow-speed, coolant 

temperature and fuel temperature. A noise source bringing 

about fluctuations of the coolant flow-speed is assumed to be 

the most influential among all the noise sources. This idea 

is taken into the stochastic model by using the Langevin method. 

     As a result of the above treatment, a stochastic descrip-

tion is given for the transport processes of nuclear, thermal 

and hydraulic quantities by deriving the Markoffian master 

equation and subsequently the moment equations. The theory is 

examined by reference to the neutron noise spectrum for the 

two kinds of the coolant flow pattern. It is shown that the 

theory can describe quantitatively, at least in part, the 

actual observed noise, in particular the anomalous growth of 

neutron noise spectra at lower frequencies. 

     In Chapter II, the model is extended to three different 

reactor systems: (a) where there exists A relaxation process



corresponding to the effect of buoyant flow; (b) where a control 

or fuel element vibrates randomly, due to coolant flow-rate 

fluctuations; (c) where there are fluctuations in the inlet 

temperature with a non-white spectrum. 

     The noise spectra  are derived for various state quantities 

with use made of the Langevin procedure. The theory is illust-

rated by referring chiefly to the neutron noise spectra, and . 

comparing with the results of observations. It is shown that 

the noise sources in question contribute significantly to the 

spectra, as compared with a low frequency component due to an 

inherent noise source in the coolant flow. In particular, 

a strong resonance peak of the spectra arises from the coupling 

between the random mechanical vibrations and the coolant 

flow-rate fluctuations. 

      In Chapter III, numerical calculations have been made of 

both noise spectra and relative standard deviations for fluctu-

ations in various quantities, such as neutron number, coolant 

temperature and coolant flow-speed. The calculations are based 

on a stochastic model of Chap. I and carried out for the case 

of natural convection cooling, at various values of reactor 

power up to 100 kW. Some of the results are compared with 

experiment. It is shown that the low-frequency fluctuations, 

caused by coolant flow-speed fluctuations, become significant 

at increased power levels, and above several kW, the fluctua-

tions in flow are visibly reflected in those of neutron number.
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                          Introduction 

     On account of the stochastic nature of neutron chain 

processes, the number of neutrons present in a reactor 

fluctuates. The fluctuations of neutron population in a reactor 

at zero-power and their space- and time-correlation have been 

O~byy.~ 
studied to full extent in theory as well as'v xperiments(1). 

The zero-power theories, however, are applicable only to a 

reactor operated at very low power-levels where thermal and 

hydraulic effects add only a small contribution to the 

reactivity. 

     One of the recent problems in reactor noise analysis is, 

therefore, to develop a theory of stochastic fluctuations in 

power reactors operated at higher power levels, as well as to 

investigate the fluctuations experimentally. The present paper 

is a theoretical attempt in this direction. 

      Until now, noise spectrum measurements have been performed 

in many liquid-cooled and -moderated reactors operated at 

higher power-levels by observing fluctuations in the neutron 

population, the fission gamma-rays, the coolant temperature 

and the coolant flow-rate(2)-(12). The experimental results 

show unusual frequency components of the neutron noise spectra, 

which can hardly be explained by the zero-power theory; for 

example, an anomalous growth in the lower frequency region, 

the appearance of resonance peaks at specific frequencies and 

so on. The measurements also give the following pieces of 

information on these components. The lower frequency component
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increases in its amplitude with rising power-level(2)(3)-(6) 

(8)(11) and the shapes of these unusual components change 

completely according to the type of the coolant flow, i.e., 

natural convective cooling or forced circulation(6)(9)(12)• 

The experimental results further show that there is a strong 

similarity between the noise spectral shapes of the neutron 

fluctuations and of the coolant temperature fluctuations(4)(9). 

      From these results, it is considered as follows. Neutron 

fluctuations are modulated by internal reactivity fluctuations 

induced mainly by fluctuations of the coolant temperature 

through the temperature coefficient of reactivity. And the 

temperature fluctuations, probably, arise from the statistical 

nature of such transport phenomena as heat transfer from fuel 

to coolant, convective heat currents created by the coolant 

mass flow, steam void generation in the BWR and so on. We 

note here that these phenomena are particular to flowing fluid 

or closely related to the property thereof. 

     Now, there have been in the past a number of attempts 

directed toward developing a theory of reactor noise(13)-(24). 

Above all, Nomura's noise analysis with the BWR is a study of 

high interest(z4). He showed that the dominant noise source 

is the random generation of steam voids and that the neutron 

noise spectrum is determined in large part by the behavior of 

the voids in the two-phase flow. His theoretical results well 

describe the power spectrum of neutron fluctuations in the 

JPDR. For other stochastic models of a reactor, the stochastic 

equations of the transport processes of heat energy have been
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given intuitively for the temperatures of either the whole 

reactor system(13)-(18) or solely of the fuel and coolant(19) 

(20)(22)# But the equations for the above two kinds of 

temperature are of such form that they cannot be derived 

without the assumption of little or no variations in the coolant 

flow-rate. This derivation will be given in Eq. (1.26). 

Thus their stochastic models for an at-power reactor are 

described, principally, for the heat conduction phenomena in 

the fuel, i.e., the heat energy production by fission and the 

heat transfer to the coolant, which are also the noise sources 

constituting a characteristic feature of these models. 

Consequently, it follows that the theories in question are 

applicable only to a reactor operated at low power-levels where 

the coolant flows so quietly as to have little influence upon 

the reactivity. 

. The principal purpose of the present paper is therefore 

to develop a theory of power reactor noise applicable to 

at-power reactors, such as for example a liquid-cooled and 

-moderated reactor operated at any level from very low power 

to full power with natural convection or forced circulation 

without coolant boiling. A reactor of this type is introduced 

into the theory as a power reactor model.

# In Refs. (21) and (23), a theory of power reactor noise 

is developed without the explicit use of stochastic equations 

for state variables.



The theory will be presented in Chapter I.
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     The basic concept adopted in the model is as follows(25) 

                                                                       The coolant flowing through a reactor core is usually accompanied 

by random variations in the flow-rate, which are responsible 

for fluctuations in the coolant temperature, and thereby in the 

internal reactivity, by virture of the temperature coefficient 

of reactivity. In order to ascertain how satisfactorily the 

present model can account for the anomalous growth of the noise 

spectra at lower frequencies, a semi-quantitative analysis has 

been made in the frequency domain for the power spectral density 

of the neutron fluctuations in a reactor operating under either 

natural convection or forced circulation, by comparing with 

the observations reported by many investigators(2)-(12). 

      In Sec. 4. of Chap. I, this analysis will be described.

       Now, a convincing number of experimental results obtained 

 on noise spectra, chiefly related to neutron fluctuations, 

 point toward the existence of some intrinsic noise sources 

and/or reactivity feedbacks besides those taken up in Chap. I, 

 which play a role in present-day power reactors. For example, 

 Yamada and Kage(6) have shown that a resonance peak observed 

 in the spectra on the Hitachi Training Reactor (HTR) was due 

 to the reactivity change caused by random vibrations of the 

 control rods, induced by coolant-flow fluctuations. A similar 

 resonance peak was also observed at the Oak Ridge Research 

 Reactor (ORR) by Stephenson et al.(z6) and Robinson(7) 

 Earlier, Boardman(2?) had pointed out that in the Dounreay 

 Fast Reactor (DFR) only a minor portion of the power fluctuations ,,,



 -5-

were due to the inlet coolant temperature fluctuations, and 

that there was a large low-frequency component in the reactor-

-power noise that was independent of the inlet coolant tempe-

rature instability. Experimental results obtained in other 

reactors have been reviewed by Thie(28). 

     Recently, Kosaly and Williams(23) have made an attempt to 

deal with the neutron fluctuations induced by the inlet tempe-

rature fluctuations and the random mechanical vibrations of 

a control rod. Their model of a reactor is based on the results 

of Robinson(7) who derived a distributed-parameter model to 

describe the dynamic behavior of a system with the aid of 

one-dimensional temperature equations for the fuel and coolant, 

where heat energy is produced by fission and transferred from 

the fuel to the coolant by conduction. For the inlet tempera-

ture fluctuations, the assumption of white-noise is taken, and 

for the reactivity changes due to the fluctuations, the functions 

given by Robinson are used. On the other hand, the reactivity 

changes due to the ,random mechanical vibrations are expressed 

in terms of the Lorentzian type of noise spectrum, which has 

been derived from the theory of random vibrations, making use 

of the work of Williams(29) and Reavis(30j. This form of 

spectrum which is the same as expressed by Eq. (2.38), is 

applied ,only for angular frequencies near a resonance peak, 

as will be seen later. It has been pointed out that the 

strong ascendance of the spectra towards decreasing frequencies 

at the left hand side of the peaks cannot be understood with-

out presuming other possible noise sources.
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     On the basis of a stochastic model of Chap. I, in which 

a noise source briging about fluctuations of the coolant flow- 

-speed had been taken into account, the present author studied 

theoretically an effect of possible noise sources in non-boiling 

liquid reactors on stochastic fluctuations in various state 

quantities(31) The model is extended to three different 

reactor systems: (a) where there exists a relaxation process 

corresponding to the effect of buoyant flow; (b) where a control 

or fuel element vibrates randomly, due to coolant flow-rate 

fluctuations; (c) where there are fluctuations in the inlet 

                        • temperature with a non-white spectrum. 

     The theory and its application will be presented in

I and 

that

Chapter II.  

Now the theoretical treatment and analysis in Chapters 

 II for power reactor noise has brought out many problems 

require further investigation. 

Some examples will be given in Sec. 5 of Chap. II.

      In order to ascertain how quantitatively the present 

stochastic model can describe the experiments, numerical analysis 

was made of both noise spectra and relative standard deviations 

for stochastic fluctuations in a natural convection non-boiling 

light-water reactor(32). Some of the results are compared 

with the observations(4)(5)(8)(33)(34)~ 

     The detail of the analysis will be described in

     Chapter III.  

     The present analysis 

convection cooling, but it

was treated the case of natural 

 is possible to apply our stochastic
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model to the case of forced circulation. When more experimental 

data are available, it should be very interesting to compare 

with such data the numerical calculations based on our stocha-

stic model. 

     Recent interest in power noise investigations stems from 

the need for a gaining a better understanding of the stochastic 

fluctuations in an at-power reactor in order to assemble 

information on the reactor kinetic parameters and/or to detect 

anomalous behavior of reactor components. Actually, a number 

of experimental studies have been pelf ormed with various types 

of reactor at many different power levels(35). One of the 

problems that have been drawing attention in the field of 

reactor noise analysis is therefore to formulate simple 

theoretical models of at-power reactors that provide results 

agreeing acceptably well with the observed data. Such a 

problem is left future investigation.
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          CHAPTER I 

Theory of Stochastic Fluctuations 

   in an At-power Reactor

S 1. Introduction 
      In order to develop a theory of power reactor noise, 

there appear to be two fundamental problems which require 

examination. The first is to investigate the noise sources, 

namely the random events occurring in the thermal and hydraulic 

transport processes of heat energy released by fissions. 

The second is to establish a set of stochastic equations that 

describe thermodynamically the state of the coolant and fuel. 

      The principal aims of the present chapter is therefore 

to obtain solutions to the two fundamental problems, for the 

purpose of developing a theoretical model of a reactor appli-

cable to at-power reactors, such as for example a liquid-

-cooled and -moderated reactor operated at any level from 

very low power to full power with natural convection or forced 

circulation withOut coolant boiling. A reactor of this type 

is introduced into the theory as a power reactor model. 

     First of all, we shall study the mean behavior of this 

reactor system by deriving the transport equations for mass, 

momentum and energy. In Sec. 2.1, a set of equations that 

express thermodynamically the non-equilibrium states of the 

coolant and fuel are introduced in the local forms with the 

aid of the theory of non-equilibrium thermodynamics(36)(37).
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In Sec. 2.2, these equations are transformed into equations of 

an equivalent lumped system and finally reduced to a set of 

equations for the three state variables, i.e., temperature 

and flow-velocity of the coolant, and temperature of the fuel. 

     This reductive derivation is performed by making use of 

the physical simplification of the present reactor model. 

We note here that the set of equations are connected with the 

conservation laws for the energy in the fuel and the momentum 

and energy in the coolant, including the conservation law of 

the mass, and further that every coefficient is expressed 

strictly in terms of the system parameters of this reactor 

model. Therefore it is clear that the set of equations obtained 

finally are soundly founded. 

      In Sec. 2.3, the set of equations are transformed into 

the dimensionless forms convenient for stochastic description, 

and the resulting equations are examined by observing the 

dynamical behavior of their linearized forms. Now, in order 

to discuss the thermal and hydraulic noise sources, we shall 

derive the set of stochastic equations by replacing the state 

variables with the corresponding stochastic state variables. 

Then it is easy to see that each term of the stochastic equations 

arises from the random occurring event and further expresses 

its rate of occurrence. 

      In Sec. 2.4, a number of noise sources are discussed in 

reference to a representative modern reactor, by classifying 

them into three kinds. The first is, the well-known nuclear 

noise sources arising from the branching processes within the
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neutron chain reactions(1). The second is the thermic inter-

nal noise sources due to the above-mentioned random events 

occurring in the transport processes of the energy. The third 

is the external noise sources of a kind that cannot be predicted 

explicitly from the set of stochastic equations, such as for 

example, a noise source bringing about fluctuations of the 

coolant flow-rate and the random vibrations of control or 

fuel plates. 

      The above-mentioned noise source bringing about flow 

fluctuations, which seems to an inherent noise source in fluid 

flow, is considered to be the most influential noise source 

for all the fluctuations considered as a whole in the present 

reactor model. This idea is taken into the model as follows. 

Assuming that this noise source has a white-noise spectrum, 

and using the stochastic equation for the coolant flow-rate 

as the Langevin equation, we can relate the amplitude of the 

auto-correlation for this noise source to'a variance of fluct-

uations of the coolant flow-rate with use made of the Einstein 

relation. The variance is easily estimated by the standard 

deviation of the fluctuations, which appears in the theory as 

a phenomenological parameter. 

     Now, the general formalism of the stochastic theory has 

been presented in detail(38)(39). A straightforward applica-

tion of this formalism to power reactor noise has been made 

by using the Markoffian master equation method and/or the 

Langevin method(13)-(23), Among these, Saito's works are 

representative of the practical application of the methods.
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In the present paper as well, the Markoffian formalism is used 

in a similar, but slightly more compact, fashion. The present 

stochastic processes, however, are described in such manner 

as to make its physical nature as clear as possible, by giving 

explicit forms to such quantities as transition probability, 

relaxation matrix and diffusion matrix. 

      In Sec. 3.1, the transport processes of nuclear, .thermal 

and hydraulic quantities are written in an explicit form of 

the Smoluchowski equation (Markoffian master equation), so 

that the moment equations are derived. By assuming a quasi-

-linear nature for the processes, we obtain in Sec. 3.2 the 

spectral density matrix as well as the first- and second-

moment equations. 

     Section 4 is devoted to illustrative examination of the 

theory and model. An example is given for a power reactor 

operating in either natural convection or forced circulation. 

A discussion is presented on the neutron noise spectrum by 

giving attention to its frequency dependence in the lower 

frequency region, such as its slope and amplitude. The theo-

retical.results are compared with the actually observed spectra 

measured in at-power reactors(2)-(8)(10)-(12). 

  2. Transport Processes of Heat Energy in a Reactor 

2.1. Mass, Momentum and Energy Transport Equations 

      In the present model, the coolant is considered to be a 

single component system, in which reactions such as void
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generation do not occur. The mass density /0()(,t)  obeys the 

equation of continuity: 

p 4 V(pv') = 0(1.1) 

where fi X,t) is the velocity of the coolant. The momentum 

is carried only by mass flow, and produced by the volume force 

fpXdXand by the surface force fcd$, whereXdenotes the 
v external force exerted on a unit mass such as buoyancy and 

gravity, while 0^, represents the stress tensor exerted on a 

unit area. In what follows, we shall assume that viscous flow 

has negligible influence on the state of the coolant, so that 

we have CT= -P1 , where P and 1 are pressure and unit dyadic 

respectively." Then the equation of motion can be written in 

the form 

   pv- 4 pr• vv = pX - v(1.2) 

This is a Navier-Stokes equation involving no viscosity. 

     Next, we obtain an expression of the thermodynamical state 

of a coolant that is exchanging heat and matter with the 

surroundings. The expression is written in the form of the 

balance equation for the internal energy, involving the heat 

and diffusion flow. However, with help of the phenomenological 

laws between the thermodynamic fluxes and forces, we can write 

down an alternative form of the energy transport equation, 

using the Maxwell and Gibbs relations(36)(37). In a system 

in question, we shall take the following equations for the 

absolute temperature T(a(,t) and the pressure P(7(,t), i.e.,
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   pC„*T+pC,,V•VT—410,4~ v•v— P- (1.3) 

PCwa-tP + pCvtt vP = k PCPv-v °;~ v-`2 , (1 .4) 

where Cv and C are the heat capacity of the coolant at a 

constant volume and that at a constant pressure respectively, 

while VIZ is the compressibility and am the coefficient of cubic 

expansion. On the right-hand side of the above equations, 

heat expansion and heat flow are taken into account. 

     The symbol I represents the second law heat flux flowing 

out of the system by heat conduction. The linear phenomeno-

logical equation for 4 is 

,(1.5) 

using VlnT for the force, and the heat transfer coefficient 

L for the phenomenological coefficient. Regarding two neigh-

boring systems as homogeneous, we obtain 

v £,T = -- - , dT = T —Tc > 0 ;(1.6) 

where TF and TC are the uniform temperatures in fuel and coolant 

respectively. Hence the heat flux is given by 

    4 = -(T) (TF --Tc) = - h (TF --T~)(1.7) 
where h=L/T is the heat transfer coefficient commonly used. 

     For the state of the fuel, in which nuclear fission and 

heat conduction take place, we can easily obtain for the absolute 

temperature the equation 

                                                   (1.8) PFCv T =-VHF-4- '2f QS
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where  pF is the fuel density, Cv the fuel heat capacity, q 

the fission energy, the macroscopic fission cross section 

and 95 the local neutron flux. For the two homogeneous systems 

considered in Eq. (1.6), it follows that the heat flux 94, is 

equal to -414 defined by Eq. (1.7). 

     For the reactor noise at higher power, we must consider 

a multi-component system such as a steam-water mixture associated 

with phase change. The state equations will be derived in 

local forms for the state variables, i.e., mass density of 

each chemical component, its flow velocity, temperature and 

pressure. These equations become more complicated, but they 

are indispensable for the stochastic description of this reactor 

noise. In particular, the kinetic equations for density and 

pressure will play an essential role, because we are dealing 

with high pressure and boiling phenomena. 

2.2. Transport Equations of a Lumped System 

     In this section, we shall simplify the state equations 

obtained in the previous section into a set of equations for 

an equivalent lumped system. Regarding the coolant as a homo- 

geneous system and carring out the integral V~1SdX over the 
Vc 

coolant volume Vc, we obtain from Eq. (1.1), 

     Pc+V~g(pV')•dS =0'(1.9)       at

and from Eq. (1.2), (See Appendix I) 

pc*it—~v~•s(p~)ds-C(Ant).dS-~poic.+-17~C-01•ds . 
s(1.10)



 -15-

Here the average density Pc and velocity Ir e are defined by 

Pc(t)=Vc)cP(X,t)o(x,vc(t)=pVJpcx,-Qvcx- dx .(1.11) 
The average external force is 

  XC=pcvc "vcp x dx ,(1.12) 
which can be written in terms of the buoyancy force, dependent 

on the average temperature Tc of the coolant, and of the 

gravity force: 

pc X0 = (p,„- Pc)9 

=[p.,-pw{i- 14"- ,(1.12)' 

where Tw and pware the temperature and density outside the 

system respectively, and 9 the gravity constant. Developing 

the right-hand side with respect to a m(Tc-Tw) and retaining 

only the linear term, we have 

PcXc = cb,,CTc-Tw)PW9 .(1.13) 

      In the same manner, we have from Eq. (1.3) 

c 

   CvPcTc=~-                {S°' Tc,ssp v • (As} 
       06., .as 

7{1.14) 

and from Eq. (1.4) 

    Cy,pctPc=--v--:{-3p Pv• o(S -~- PcI pv - QM } 

s 

                               ` —p c tv •v)o -KvSS(1.15)                                  `t • d S, 

where the average temperature Tc and pressure Pc are defined by 

  Tc =P~IVcJvPcx,t)Tcx,t~dx,P.=pocIP(x,t)Pcx,-t)dx.(~•lE )
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where again, Cv and are the heat capacities of coolant at 
constant volume and at constant pressure respectively. 

     The second term on the right-hand side of Eqs. (1.14) and 

(1.15) is a result of the following approximate procedure. 

Using Eqs. (1.2) and (1.4) in a stationary state, we  have 

  (V•V') _-d~,(v•`1)--CvK'P2V'Xd      •_:I:—"I% (v.q)(1.17) cpP6 { I - f3 ev2} c Pc , 

and from Eq. (1.7) 

 (v•v)ov.r(v•V')dX =pV~ ha(T) vo),(1.18) 
      106~Q~ 

where h0is the heat transfer coefficient and Sh the heat 

transfer area, i.e., h0 =hSh. 

     Thus we have obtained the four equations that describe 

almost exactly the thermodynamical state of the coolant. 

Further, for the model reactor operated at low power level, 

the fluctuations of density and pressure are not as important 

as those of temperature and flow-rate in determining the dyna-

mical state of the coolant, because there is neither boiling 

nor high pressure. Therefore, we assume that in Eqs. (1.10) 

and (1.14), the density pc(t) can be replaced by the steady-

-state value P
Oand that Eq. (1.15) can be written in the form 

of a steady-state equation: 

       P.poAre•dS Po—KwJs~•dS 1 (1.19) 
whose explicit expression can be obtained by using Eqs. (1.7) 

and (1.18). 

     Then we have the following equations to represent the 

thermodynamical state of the coolant.
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Po kite = v fVcfpVctS - SS pvA7- cis} 

dt,(ec- ew)Pw9 t v SS (-1'01-ds ,(1.20) 

CvPo- ecvfecf  pv•cts —feP1'ds} 

sitZCv•Via (`Z?3+ etc) + V ho(eF- et) , (1.21) 
where we have used Eqs. (1.7), (1.13) and the relation T(°K)= 

273+ a (°c) . 

     We now apply these equations to a coolant channel. The 

coolant flow can be regarded as a one-dimensional flow along 

the fuel element. Therefore the surface integral of a flux J 

can be written in terms of inflow J1, outflow J2 and flow area 

S c, i.e., 

-tics-5= (J2-J1)Sc(1.22) 
Under the assumptions of 

vac{) = 2 C V'^ -+• 'A (t) } , toms- • (1.23) 

etc+) z { A + e.a C-0.} , eMoms-~. ,(1.24) 

the state equations of the coolant become 

2 Po*UZ = v [ ( - V1)—(P2Up - piv;')] 

+d^..(e~-ew)PN9~'Vc]C-Po)1•dS,(1.25) 

      pet =         ~ty c Cec(PzU'2'P^U'i)-{('28c-6i)PzV''aPikri }~ 
— K (v•v)o(273+ etc) + v ho(eF- ec) . (1.26)*

It may be worth while to compare Eq. (1.26) with the
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corresponding equation in Refs. (19), (20) and (22). Assuming 

that there is little or no variation in the mass flow-rate of 

the coolant, i.e., P,Ui = P,,V'z= PoVo (constant value), and 

that the thermal expansion of the coolant can be neglected, 

i.e., am 0, Eq. (1.26) becomes 

                 c 

     Ce=2kr°C1,/g- e,) +ho CBF—ec),(1.26)'        no._ LC
where Cm C~ POVc is the total heat capacity of the coolant, 
and Lc=VcIScthe length of a coolant channel. 
     This equation, however, remains different from the corres-

ponding one in Refs. (19), (20) and (22), in which the coeffi-

cient of the first term on the right-hand side has been repre-

sented by Cmlro/Lc, and the inlet temperature 61 has not been 
described.

These equations are the conservation laws of momentum and 

energy including the conservation of mass flux. 

     At the end of this section, we shall examine Eq. (1.8), 

for the fuel, in a similar manner. Carrying out the volume 

integral Vr1S cbX over the fuel volume VF, we obtain 
yF

(n      PFCv*TF,—'VFJL'aS +Fcir,~o/X(1.27) 
where the average temperature TF is 

   TF(t)=VFf T(X,-t)Xd(1.28) 
"F 

The fission energy production can be written in the form 

~$ is = `r11'7-)-.N l{)(1.29) 

wheretr, Ef and N(t) are the thermal neutron speed, the macro-



 -19-

scopic fission cross-section and the total number of neutrons 

present in the core. Then the law of energy conservation in 

the fuel is expressed by 

PFctv,eF=-~Fk(OF-6~)+F~~7}ki.) • (1.30)             cit

which has the same form as used in the Refs. (19), (20) and (22). 

     As mentioned above, we have now been able to derive in 

definite form the set of equations for the three state varia-

bles in concise expressions of the conservation law. Every 

coefficient is expressed strictly in terms of the system 

                                                                             • parameters of the present reactor model. We note here that 

these equations are based on the various simplifications of 

the model. 

2.3. Properties of Transport Equations 

                 r 

      We now rew^ite the set of equations in dimensionless form 

convenient for the stochastic description of energy and momen-

tum. Firstly we replace with extensive values the intensive 

quantities used in the set of equations, taking heat energy 

released by one fission as an energy unit, to obtain

   F(t)&O v PFVF8F(t)'M(t)~Ov f Ovc 0c(t) 

                            0 Q(t)$OoSce2~2~2(t)'1=~O vScelt~1V 1 
_c    T1gOvPOV c61 'Tw= qOv P ovc e w 

where B2 is a steady-state value of 92(t)0 
     Secondly we rewrite Eqs. (1.30), (1.26) and (1. 

the form

(1.31)

25) in



 d F(t) = V2fN(t) _ ht(F-nM) 

le (t) = M (d2Q-d.iQ1) -{d2Q (2M-T1) -d1Q1Tl- (EO+eM) 

+ht(F_n M) 

dtQ(t) =2(Y d1Q1+d2Q)(d2Q-d1Q1)-2(d2Q2- v d1Q1) 
           + xB(M-T

w) + Q 

P where a number of coefficient are newly defined as fc 

                                       F 

1cvPFVF 
   ht=—~,-----h0 

     c
vvF•~l= c    PFcc                                  v.10c 

 d= qd= q  1'2b 

     cv poviceicvpovcp2 

     273Vca m1    E=
rC(7•ln0  q ,e =Ccc 

                                  Cvp0 

 xB l?am20 rY=PIam(82- e1) 
      Poc 

  Qp2 cvsce2I2 1( -PO )1. d5' 
                  P Ovcqs 

     We further investigate the kinetic behavior of t 

variables about the small deviations around the stead 

The deviations are defined by 

N(t) = N(t) - NO , it) = F(t) - F
O 

M(t) = M(t) - MO • t) , Q(t) - Q
O 

J where No, F0, Mo and Qo are the steady state values o 

variables. Taking the linear approximation, it follo
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    (1.32) 

(1.33) 

2) 
1 

(1.34) 

follows:

(1.35)

• 

 of the state 

steady-state. 

     (1.36) 

ues of the 

follows that
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        dt= Aio N -  (ht7µ1N0)F + (htn+112N0)M(1.37) 

     dM = htF -(b+h)Mtn- dQ(1.38) 

   dQ=xM-nQ(1.39) 
     (ItBQ7 

where the fission rate Af dependent on temperature is expanded 

in the form 

     At = Afo+ µ1F + p2M ,(1.40) 

while b, d and nQ are defined by 

   b = 2d2Q0 + e , d = d2 (M0-T1) , AQ = (3-r) d
2Q0 (1.41) 

     Thus, a set of linearized equations (1.37)-(1.39) have 

been derived definitely together with the various relaxation 

constants. These constants are specified completely by the 

many system parameters of the present reactor model, and are 

connected with the physical events related to the transport 

processes of heat energy. For instance, ht is the heat trans-

fer coefficient between the fuel and coolant, b and AQ strongly 

depend on the coolant flow-rate, xB arises from the buoyancy 

effect and d from the convective mass flow. Such knowledge of 

the relaxation constants will be very helpful in understanding 

the time-dependent behavior of the set of kinetic equations 

(1.37)-(1.39)• 

     We should here take note of the coupling between the 

deviations of the coolant temperature and flow-rate, which is 

expressed by the two coefficient d and xB. For at-power reactors 

in natural convection operation, this coupling plays an important
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role in the stability of reactor dynamics. Evidently, this 

coupling effect will be observed in experiments of power reactor 

noise. 

2.4. Noise Sources 

      Now let us discuss the noise sources characteristic of 

stochastic fluctuations in the present reactor model. In the 

present paper, noise sources will be classified into the foll-

owing three kinds. First is the nuclear noise sources, which 

arise from the neutron branching processes. These have been 

well described by the zero-power theory and its related 

experiment(1). 

      Second is the thermic internal noise sources, which are 

due to the physical events relevant to the transport processes 

of heat energy released by fissions. In order to derive this 

kind of noise source, we shall transform the set of equations 

(1.32)-(1.34) into a set of stochastic equations by replacing 

the state variables used therein the corresponding stochastic 

state variables. It will then be easily seen that each term 

of the stochastic equations corresponds to the random occurring 

physical event and its rate of occurrence, as has been mentioned 

in the previous section. All of these events are related to 

the transport processes of the energy. On account of the 

statistical nature of these random events, it is assumed that 

all of them occur at random so as to increase or decrease the 

related stochastic variables by one energy unit, being of 

magnitude q. The rates of occurrence of these events can,



•

 -23-

theref ore, be determined by the individual terms of the set of. 

stochastic equations (1.32)-(1.34). 

      Third is the external noise sources which are those of 

a kind that can not be derived from the set of stochastic 

equations. As actual examples, we can mention such noise sources 

as bring about fluctuations of some physical quantities in the 

coolant, i.e., flow-rate, inlet temperature, inlet flow-rate 

and so on. But their statistical nature is at present almost 

unknown. As other examples, we can give the random mechanical 

vibrations of control rods or fuel plates. 

      Now, some of these external noise sources appear to play 

an essential role in the present stochastic model, i.e., a 

liquid-cooled and -moderated at-power reactor operated with 

either natural convection or forced circulation. From among 

these noise sources we shall choose one that is predominant 

and which would appear to affect the fluctuations as a whole 

more significantly than the other noise sources, for instance, 

prompt neutron generation by fission at very low power level(1) 

and steam void generation in the BWR(24). 

      Relevant phenomena are considered as follows. Fluctuations 

of the coolant flow-rate are invariably present at any power-

-level in any at-power reactor of the present type. This is 

naturally expected from the fact that liquid flow through a 

narrow channel can scarcely be free from flow-rate fluctuations. 

These fluctuations of flow-rate, namely of heat removal rate, 

cause temperature fluctuations of the coolant and consequently 

lead to significant reactivity input through the negative
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temperature  coefficient.  Accordingly,  a  predominant  noise 

source in the present stochastic model is assumed to be that 

which causes fluctuations of the coolant flow. This noise 

source can be considered inherent in the statistical nature 

of turbulent flow and hence its complete description should be 

almost impossible even with the theory of turbulence, and far 

less with the present transport theory. 

     Nevertheless, the phenomenon can be easily taken into 

account in the present stochastic model by using the following 

Langevin equation for fluctuations of the coolant flow-rate, 

     aQ(t) = - A QQ(t) + CQ(t)(1.42) 
This corresponds to Eq. (1.39), except that the external f orc'e 

xB is neglected for the sake of simplicity. We will not inquire 

into the origin of the random driving force Q(t), but we assume 

that its correlation time is infinitely short, namely 

         Ql)CQ(t2)>= 2DQ8(t1-t2) •(1.43) 
Further, we introduce the Einstein relation 

  2DQ = 2A 4:4-2.>(1.44) 
This variance of Q can be related to a standard deviation a 

expressed in percentage by using the definition (1.31) for Q(t): 

   NI4n2------2         QQ >X100 =J<Uo X100 =Cr.(1.45)    0UZ 

Consequently we obtain the amplitude of the correlation function 

for the random driving force (4
,(t): 

                       2D = 2 AQ( aQ
0x 10-2)2(1.46)
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where a is introduced as parameter in the present model. 

     We here add some remarks on the relaxation constant AQ 

and the relative standard deviation a for the following two 

cases. In the case of natural convection, the expression (1.41) 

for will hold approximately, since there is little influence 

from the exterior of the system. Accordingly, a is the only 

parameter in this case. In the case of forced circulation, 

the mean mass flow of coolant is kept controlled, but the mass 

flow itself is largely disturbed. Therefore, the fluctuations 

of the coolant flow are determined by physical conditions 

prevailing, not inside, but outside the system, so that the 

relaxation constant AQ differs from the expression (1.41). 

In this case we consider both N. and a to be parameters. 

3. Stochastic Fluctuations in an At-power Reactor 

3.1. Markoffian Description 

      In this section, a stochastic formulation is made on the 

assumption that the present random processes are Markoffian. 

First, we shall define a state vector 0., whose components are 

the following random variables, i.e., the number of neutrons 

N, the number of precursors C, the fuel temperature F, the 

coolant temperature M and the coolant flow-rate Q. We note 

that the latter three variables defined by Eq. (1.31) will be 

regarded as discrete values describing the number of units of 

heat energy where each unit is of magnitude q. Consequently, 

a state vector is defined by
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                        N  
C 

a = F(1 .47) 

M Q / • 

     Next, we shall define the probability wAfQAt of a transition 

from a state Q. to another state Q in time At by any given 

event. A number of random events have already been discussed 

in Sec. 2.4. The nuclear and thermic internal events are 

defined fully in terms of their kind and statistical nature. 

In order to introduce into the present Markoffian formalism 

the inherent event of fluctuations in the coolant flow-rate, 

we denote the rate of occurrence of this event by f(Q), and 

assume that this f(Q) contributes little to the relaxation of 

flow-rate fluctuations, but greatly to the noise sources, as 

has been mentioned in Sec. 2.4. All of the random events are 

presented in Table 1.1. The neutron removal rate Ac includes 

both capture and leakage, and also depends on the fuel and 

coolant temperatures, like fission rate of in the expression 

(1.40); Pf(v) is the probability of v0 prompt neutrons, and 

v1 the precursors born in a fission. 

     Consequently, the transition probability wafgAt is defined 

as follows:• 

C4 4 = E ACN' oN' , N+1 + SSN' , N-1 + v, ' ̀ -N o Pf (v) sN'  N-v O+l X 
             SC,

,C-v1SF',F-1+ XC'SN'N-1SG'C-1+ ht(F'-r)M')X 

6F',F+16M',M-1 + {E0+eM'+d2Q' (2M'-T1)+M'd1Q,J X 
SM',M+1 + l.d1Q1T1+M'd2Q'}61M',M-1+ [xB(M_TW)+QP+
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    2Yd2Q1+di(Yd1Q1+d2Q') d2Q'+'C(Q' )J}                                              sQ,Q -1 + 

    {2d2Q2+.4_dz( Y d1Q1+d2Q')d1Q1} 6Q' ,Q+1JQt, (1.48) 
where 6.is the Kronecker delta; and when there is no varia- 

        1, J 

tion of a random variable in an event, the corresponding 

Kronecker delta is omitted, e.g., A(M')N'b
N'N+1SC'CbF'F 

6M,
,M6Q,,Q is written At(M')N'SN, N+1' 

     Following the theory of random processes(38)(39), the 

distribution function P(0.,t) of a state Q- at time t is written 

in the form of a.Markoffian master equation, or Smoluchowski 

consistency condition: 

P(..,t+ At) = P( ci,t)P(eil (X , At) 7 (1.49)                        0. 

where P( Gl ja,At) is the probability of a transition from a 

             f stateQ to a state O in time At. We assume that for small 

At this equation can be expanded into form 

Pm i a, M ) = b(a-a)(1- rAOt) + 4tW' (1.50) 

where TAt is the total transition probability out of a in time At 

rrAt WQQ AL 

= {AO  + S + /1fN + XC + ht (F-r)M) + (E0+eM) +' 

           d2Q(2M-T1) + Md1Q1 + d1Q1T1 + Md2Q + xB(M-Tw) + 

Q p + 2Yd?Q1 + (Y d, Qi +d1Q) Q + f (Q) + 2d2.Q + 

         -L(Yd1Q1+d2Q)d;Qi}.At .(1 .51)
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We can easily find that the transition probability (1.50) 

satisfies the normalization and initial conditions. The Marko-

ffian master equation (1.49) can be written in the form 

      -
s-afP(a,t) = F P(Q,t)W0.0. - rgP(Q.,t)(1.52) 

                                                                                                                   • The first term on the right-hand side represents the rate of 

transitions from all states Q to the state Ck, and the second 

the total of the transitions out of the state a. 

     Making use of the master equation (1.52), we can obtain 

useful moment equations including the effect of non-linear 

feedback, by introducing the n-th moment nn of the transition 

probability (1.48) in the form 

nl Dn( t ' )et. _ E T,lfaa(0.-(1)11nt(1.53) 

It then follows that 

t<a> = <A( (1)> ,(1.54) 
<e> = 2<aA( a)> + 2<D( a)> ,(1.55) 

ae> = 3<a2A(O ))' + 6 <C O) (0 )> + 6 <r3 (a )>, (1.56) 

where we use the drift vector NCO as an abbreviation for 

ID (a) and the diffusion matrix L(a) for )2(Q). From the 

expression (1.48), we obtain, respectively 

       - ACN + (vo-1) /\fN + XC + S 

        vl AfN -XC 

Atc0= AfN - ht(F-9M)(1.57) 

M(d2Q-d1Ql)-{d2Q(2M-T1)-d1Q1Tl}-(EO+eM)+ht(F-11M) 
       1 (Yd1Q1+d2Q)(d2Q-dlQl)-2(d2Q2-YdiQi)+xB(M-Tw)+ 
+Q + f(Q)
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         vl~A N-XC71-7:17 AfN 0 0      r 2DN  

 * 

      7/AfN+X C1^fN0 0 

 2  D(CO= * *AfN+ht(F-nM) -ht(F-17M) 0 (1.58) 

* **2DM0 

  * ***2DQ 
l 
  where * signifies a symmetrical element on account of the cyclic 

  property of 21)2, and 

 2DN = ACN + (v0-1)2/1fN + xC + S(1.59) 

2DM = M(d2Q+dlQl)+{d2Q(2M-Tl)+dlQlTlc+(E0+eM)+ht(F-nM),(1.60) 
  2DQ=at.(Yd1Ql+d2Q)(d2Q+d1Q1)+~(d2Q2+YdiQi)+xB(M-Tw)+ 

+Q + f(Q) .(1.61) 

       We note here that the matrix (1.58) is also the autocorre-

  lation of the Langevin noise source(38)09) and that f(Q) in 

  Eq. (1.61) can be written from Eq. (1.46) in the form 

f(e) = 2 AQ( aQox 10-2 )2 ,(1.62) 

The moment D n for n�3 can be obtained in the same manner, 

  but it is then necessary to assume some further conditions in 

  respect of predominant noise source f(Q). 

        Generally speaking, these moment equations may be analyzed 

  by expanding V n((1) for deviations from the steady state values, 

and by adopting certain approximations to deal with what is 

  known as the hierarchy(21)(38) for the higher moments. However, 

  it is difficult to consider that such a higher order effect
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should make any significant contribution to fluctuations. 

The effect, possibly, would become a small correction at most, 

and more probably negligible, because of the quasi-linear nature 

of most noise problems. Thereof ore we assume that the stocha-
stic processes in the present theory can be treated as quasi-

-linear. 

3.2. Quasi-Linear Processes and Noise Spectrum 

      Let us now define the absorption and fission rates depen-

Gent on the fuel and coolant temperature by 

na= n+nf = Aao(e;,O:){1-03OF-04ec} 
                                                 (1.63) 

of A(6F,e°){1-DlJOF-02ai 
   titi 

where6F and 6c are small deviations from the respective steady 

state values, and Di (i=1,2,3,4) should be determined by a large 

number of material parameters of the system. The total multi-

plication rate and the temperature coefficient ae are written 

in the form 

/fit + v0 ni = 14( r  -0) -al a F-a2 g } (1.64) 
with 

a1 = -03(1-/D)+01(1-0) , a2= -04(1-/))+02(1-0)(1.65) 

and 

ae =-al - a2[(6k/k)/deg.](1.66) 

where the customary kinetic parameters are used, i.e., neutron 

generation time Q , reactivity P and delayed neutron fraction 0. 

     Furthermore, we rewrite Af and -A+70A.in the form
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  of=Q+  µ11 + µ2M?(1.67) 

   -nQ+v`0A =f'~s-+µ3F+µ4M 7(1.68) 
using the definitions of Eq. (1.31), with 

   q1  q    µ
1=-`QCF FvF~1'µ2 FtCCv02 

    vPVI0c 
                                                (1.69) 

   1 q-1 q  µ
3 =-1CFFvF"1, µ4--QCCva2 J • vivroc 

     Now we shall expand into powers of t(=Q- IIO the drift 

vector A(0.) in Eq. (1.57) and the diffusion matrix 21)((k.) 

in Eq. (1.58), and retain only the non-vanishing terms of lowest 

order. Using Eqs. (1.37)-(1.39)' with the results (1.67) and 

(1.68), we obtain 

A(a) = A(ao) - Act ,(1.70) 

2D(Q) = 21D(ao) =23)(1.71) 

The steady-state values 0.0 should be chosen so that 

A(a,0)= 0 7(1.72) 

where we have employed the mass conservation law for the steady 

state, i.e., d2Q0=d1Q1, and have supposed that f(Q0) is far 

less effective for the equation of mean regression. 

     The relaxation matrix A leads to 

/ -41 -7\ -µ3N0 -µ4N00 
     --QA -v1µ1N0-7p12N00 

A(1.73) A- -A0 0 ht-µ1N0, ,_htrl-µ2N0,0 

    00 -htb+ht”d 

  00 0-xA           eQ~
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Making use of Eq. (1.72), we obtain the diffusion matrix 2i) by 

(2DNN ( v, (\f;Z .«v,)n),^NO (77.-1)/131,N0  0 0 
* (77,i +37 )/Ij-.NO N0 0 0 

2 D =**- 2A+.N0 —At0N0 0(1.74) 

***2 DMM0 

  ****2DQQ 

with the definition 

2DNN = v0(v0-1) ACO-1)A+ 2(-1)N0 )(1.75) 
2Dmm = 2'f Af°N0 + d2Q0(Mo-' TI)}(1.76) 

7 

      2DQQ = (6+2 Y) d2Q0 + 2 AQ ( 0. QO X 10-2) 2(1.77) 

where we replace f(Q) in Eq. (1.61) by Eq. (1.62), which is 

assumed to be the predominant noise source in this model. 

     Consequently, the equations of the first moments and the 

variances become 

d<cx> = —/l«c>>(1.78) 

         <a. C.>  = 2D—/1< cca>—< cm> /\+(1.79)   

where /I+ is the transpose of A. The steady state moments 

<4310k> can be obtained by solving the stationary form of Eq. 

(1.79), which is the concrete expression of the Einstein relation. 

     For the case of linear regression laws as in Eq. (1.78), 

we can easily find the correlation function matrix and the 

spectral density matrix with use made of the matrixes (1.73) 

and (1.74)(38)(39). We write here the spectral density matrix
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    P(w) =  2GrC4.w) 2DGC-kw)+ 7(1.80) 

where the Green function matrix G(iw) is given by 

GC iW) = (WE  -F A)-',(1.81) 

together with the unit matrix E. 

4. General Features and Neutron Noise Spectra 

      In what follows, we shall discuss the general features of 

the present stochastic theory and model, referring to the noise 

spectrum of neutron fluctuations. In particular, we take note 

of the frequency dependence of the noise spectrum in the lower 

frequency region, namely its slope and amplitude. And we 

compare these dependences with the corresponding ones of actually 

observed noise spectra. A comparison of this kind will permit 

simple verification of the validity of the model and theory. 

     Let us first consider the general features of the noise 

spectra. From Eq. (1.80), the (r,^) component is 

s 

     P (iw) = 2 E G(iw)(2D.)G.(-iw)+(1.82)     I'S4 ,x.1 riijs• 

In this ,model, there are two predominant noise sources, one 

being the neutron generation by fission constituting a nuclear 

noise source, the other being the thermodynamical noise source 

existing in the mass flow of coolant, causing flow fluctuations. 

The former has been already elucidated clearly by the zero power 

theory, and the latter is assumed in the present theory. 

     Therefore we take the following simplified spectrum based
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on the definitions (1.75) and (1.77): 

Pr s(iw) = 4DNNGri(iw)Gs1(-iw)+4DQQGr5(iw)Gs5(-iw) .(1.83) 

The autocorrelation spectrum PNN(iw) of neutron noise is 

                                G•(iw) 22D 

)}.   PNN(iw) = 4DNN1G11(iw)I21+                         G11(iw) (2D)QQ•(1.84)              11NN 

The Green function G11(iw) is the transfer function with the 

notation T(iw), which includes the various feedback reactivity 

mechanisms. Moreover we define the input noise source I(iw) by G1(iw) 2(2D,,); 

                               Q 

   I(iw) = 4DNN 1+.d. ..-2.7.1w25(1.85) 
                 11NN • 

4.1. Neutron Noise Spectra in Natural Convection Cooling 

     As a typical example of the present model, i.e., a liquid-

-cooled and -moderated at-power reactor, let us consider the 

case of natural convection cooling with light-water. In such 

a reactor, the reactivity feedback largely depends on the 

variations in the coolant temperature, so that 

1-il ft 0 , 112 ,~ 0 and u3 0(1.86) 

From Eq. (1.81), the transfer function is given by 

            1  
                                    -p+p 

s+ Q  
 T(s) 

 1  XAfo 1+ ht(s+AQ) 

           s+— p+1i{s+QIA/4,N0 (s+n)P(s) +xBd(s+ht)}(1.87)    lQ  e1 

with 

   F(s) = (s+ht)(s+b+htn)-0) (1.88)
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The transfer function is shown in Fig. 1.1 together'with the 

noise sources as random driving forces. The physical meaning 

of this block diagram are clear from Eqs. (1.37)-(1.39) and 

from the Langevin viewpoint. 

     The input noise source is written in the form 

2 iw+ht2( 2DNN)t.89)2DQQ I(iw) = 4DNN l+(}14Nod) (i
w+ A Q)E(iw)+xBd(iw+ht) 

Assuming nCC1 from the definition (1.35), we take the approxi-

mation 

      F(iw) C (iw+h.t)(iw+b) ,(1.90) 

. and neglecting the effects of heat expansion and buoyancy from 

the definitions (1.3 .5) and (1.41), i.e., 

nQ C b c 2d2Q0 and xB = 0(1.91) 

the input noise source can be expressed in the form 

         1(p4N0d)2(2DQQ)}       I(iw) 4D1+(1.92)                NN
(w2+b2)22DNN 

     In the case of w <b, we obtain 

   I(iw)4D1ict+NO ^ (e°..e )12(X210-4(1.93)         NNQ"04_02 2 1 2b 7 

where we have used the definitions (1.31), 11.41), (1.69), • 

(1.75) and (1,77). The second term between the brackets can 

be easily estimated by making use of the following values in 

common use: 
r 

v = 2.6 , v0(v0-1) = 5.3 

(1.94) 
Q = 10-4 (sec]'a 2= 10-4 C(bk/k)/•C] 

and the predicted values at 100 kW then become
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      N0= 1012  [neutrons  3 

0 (1.95) 
9, -81 = 2 ['C1 , b = 0.1 rsec-1] • 

Here, b is determined by the definitions (1.31), (1.35) and 

(1.41): 

     b = 2d2Q0 = 2{(Vc/Sc)/1I2}-1'(1.96) 
while with use made of the parameters(40), 

       Vc 
        = 60 [cm) ,11-

2 = 3 [cm/sec) •(1.97) 

Consequently, the input noise source (1.93) reduces to 

     I(iw) ti 4DNN{l+ 105x21for w« 0.1 . (1.98) 
Now, 2DQQ has been expressed in terms of the standard deviation 

a of fluctuations in coolant flow-rate. From Eqs. (1.77) and 

(1.91), it is 

  2DQQ = {8d2  + 2X 10-4a2,1,2 

                                              d 

         2 X 10-4(X2bQ0forQ'>~2 X102--2 {%1(1.99) 

which has been used in Eqs. (1.93) and (1.98). 

     To estimate d2 defined by (1.35), if we adopt 

    Cc P 0Vc= 2.80X  102 [kw/' C],62= 36.0[°C J 
                                                    (1.100) 

    q = 3.23 X 10-14 [ kw-sec] 

the condition requisite to permit use of Eq. (1.99) as 2DQQ is 

   (X » 1.1 X 10-6 (%(1.101) 

This clearly shows how effective the noise source for turbulent 

flow is to the present reactor model, as has been mentioned for
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the external , noise source in Sec. 2.4. Supposing that the 

standard deviation a is equal to only 1 %, 2DQQ is completely 

dominated by the noise source for turbulent flow, and thereby 

the input noise source (1.98) shows an increase of amplitude 

beyond comparison with the nuclear noise source. This increment 

is the same in the neutron noise spectrum PNN(iw). 

     In the case of w > b, we easily obtain the frequency depen-

dence of the input noise source in the form 

                                     2D       I(iw)4-DNN{ 1+w-4(}i~NOd)22DQQ(1.102) 
                                      NN 

and the noise spectrum PNN(iw) also has the same dependence, 

since the transfer function of a low power reactor is almost 

constant in a frequency region for which X< w < - (P-3) /Q • 

     Now, neutron noise spectra have been measured in light-

-water-cooled and -moderated reactors under natural convection 

at various power-levels up to 100 kW, e.g., HTR(6),xUR()(5), 

and TTR1(8). In comparing the experimental observations with 

the theoretical results (1.98) and (1.102), it is seen that the 

present stochastic model not only has correct qualitative 

features, but also reveals semi-quantitative agreement with 

the experiments. 

      In passing, let us consider another stochastic model for 

a power reactor, which contains no contributions from fluctua-

tions in the coolant flow-rate, i.e., a reactor model such as 

could be described by the usual equations for neutrons and 

precursors,E p,q. (1.30) for the fuel temperature and Eq. (1.26) 

for the coolant temperature, together with the related noise
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sources. This means that the inherent noise sources of the 

power reactor arise solely from the elementary events relevant 

to the coolant temperature fluctuations, principally, heat 

transfer from the fuel to the coolant. The input noise source, 

therefore, can in this case be written in the form 

                   G14(iw) 22D,    I(iw) = 4DNN{1+G11(iw) 21N 
                       2 (iw+ A Q)(iw+ht) 2(2Dmm 

            4DNN1+(u4 -NO) (iw+AQ)F(iw)+xBd(iw+ht) 2D 

                   (u4N0)22D 
      C:"..:4DNN 1+ 2 22~~(1.103 ) 

              w +bNN. 

Consequently, it follows that 

I(iw) 4DNN{1+ 5.9 X 10-61'1for w~0.1 (1.104) 
 /2D          ti4DNN{l+ w-2(u4N0)2(2for w>“0.1 (1.105) 

NN 

where we have used the definitions (1.31), (1.35) and (1.76), 

and the above-mentioned values (1.94), (1.95) and (1.100). 

These results evidently disagree with the actual observed noise 

spectra(4)-(6)(8). Most of the theoretical studies for power 

reactor noise, however, have been discussed on a stochastic 

model of this kind(19)(20)(22) or else on an even simpler 

one(13)-(18).
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  4.2. Neutron Noise Spectra in Forced Circulation Cooling 

       As an another example of this reactor model, we. shall 

  consider the case of forced circulation. Attention is first 

  directed to the relaxation constant AQ of fluctuations in the 

  coolant flow, which will differ from the definition (1.41), as 

  noted in Sec. 2.4. Accordingly, it is presumed as follows. 

       There are three types of relaxation phenomena. First is 

  the slow relaxation due to the regression of fluctuations • 

  through the whole recirculation flow. This kind of fluctuations, 

even if the amplitude is very small, appear to have a marked 

  effect on the other fluctuations in the reactor system, on 

  account of the large coolant flow-rate. In the present study, 

  this phenomenon is expressed with the Langevin equation (1.42) 

 and estimated in Eq. (1.46) in terms of two phenomenological 

  parameters, a and /Q. The second phenomenon is the fast rela-

 xation due to the local fluctuations of turbulent flow, which 

 we shall not discuss in this chapter. The third is the osci-

  llatory relaxation which arises from the random mechanical 

 vibrations of the control rod(3)(6), fuel plates and other 

  structural components. This will be di.scussed in a next chapter. 

       For the time being, we shall only outline roughly the 

  frequency dependence of the input noise source, as well as the 

 noise spectrum. In the case in question, the flow—speed of 

  the coolant is in general fast enough to consider, on account 

 of (1.96) , that 

              nQ 4 .  

                          0 

        b oC V2(1.106)
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Therefore, the input noise source (1.89) can be written in the 

form 

     Mu4N0d22DQ4 I (iw )-- 4DNN 1+(2T—for w«A(1.107 ) 
A b NNQ f 

                      pNd22D 4DNN1+ w-2\4b0 (2D)}for/~Quw«b (1.108) NN 

                                   2121         =.4DNNl+ w-4(14NOd) 2(2Dfor w b NN7(1.109) 

where we have taken the approximation (1.90) and neglected the 

effects of thermal expansion and buoyancy. From these expre-

ssions we may state as follows. If the flow-rate is not very 

high, i.e., b ti11Q, the input noise source will take the form 

of the frequency dependence (1.107) and (1.109), which has a 

close resemblance to the case of natural convection. On the 

other hand, for sufficiently large flow»speed, it will be 

expressed by (1.107), (1.108) and I(iw) ^4DNN for w*b. 

Therefore, its frequency dependence is w-2, which can be termed 

characteristic of the case of forced circulation. 

     Now, let us try to compare these two cases with the neutron 

noise spectra observed in at-power reactors of forced circula-

tion cooling with light-water. The former case, probably, 

should correspond to the spectra in HTR(3)(6) (where the flow 

speed is about 16 cm/sec with forced circulation and 2 cm/sec 

at 100 kW with natural convection), except for the resonance 

peaks actually observed due to control rod vibration. The
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latter case should be applicable to the spectra from JMTR(11) 

(flow speed about 7 m/sec with forced circulation), KUR(10) 

(about 10 m/sec with forced circulation and 3.7 cm/sec at 100 

kW with natural convection(4o)), ORR (see Fig. 6 in Ref. (7) 

or Figs. 1 and 4 in Ref. (23)) and MURR (see Fig. 10 in Ref. 

(12)). In this latter case, the above-mentioned second and/or 

third relaxation phenomena are quite conspicuous. 

     We shall here compare our results with the power spectral 

density measurements conducted on the Sodium Reactor Experiments 

(SRE)(2). In'such a liquid-sodium-cooled reactor, hydraulic 

flow fluctuations cause variations in reactivity by varying 

the the amplitudes and gradients of fluctuations of the coolant 

temperature. Hence, the present stochastic reactor model should 

be applicable to the SRE. The shape of the input noise spectrum 

given by Eqs. (1 .107), (1.108) and I(iw) ^—' 4DNN for w>>b, corres-

ponds to the driving function noise spectra (Fig. 4 in Ref. (2) 

). And the frequency dependence of the neutron noise spectrum 

taken in the form w-2 agrees with the observed spectra (Figs. 

6 and 8 in same) . 

     It is important to note that the standard deviation of 

fluctuations for turbulent flow need not nearly be as large as 

the case of natural convection. The reason is as follows. 

The flow speed, i.e., Q0, is very large, so that the noise 

source 2DQ in Eq. (1.46) becomes extremely large. If we take 

the same order of magnitude for the input noise source as the 

case of natural convection, the standard deviation a will 

become a very small value.
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g 5. Concluding Remarks 

     In what precedes, we have fulfilled the two principal 

aims stated in the beginning: 

     (1) Of determining the noise sources occurring in the 

          transport processes of heat energy 

     (2) Establishment of a set of system equations for the 

          thermal and hydraulic state variables 

     Here it should be emphasized that the present thermodyna-

mical investigation, though it has been made on the mean beha-

vior, provides us with a reliable basis for the study of power 

reactor noise. This has permitted us to proceed to a stochastic 

description of the random processes. 

     The present theory has been proved to be fairly reliable 

upon comparison with actually-observed neutron noise spectra. 

In the case of natural convection, assuming that there are a 

few percent of fluctuations in the coolant flow-rate, the theory 

gives a semi-quantitative agreement with the noise spectra 

measured in reactors, e.g. KUR(4)(5), HTR(6) and TTR1(8). 

In the case of forced circulation, with much lower proportion 

of fluctuations, the theory can explain in a satisfactory 

manner the noise spectra in HTR(3)(6),JMTR(11)~R(10)~ 

ORR(~), MURR(12) and SRE(2). Consequently, we conclude that 

the theory is widely applicable to the present type of at-power 

reactors.
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Table 1.1 Elementary events in an at-power reactor

Elementary Event Its rate Net Number by event

Neutron Removal  AcN -1 neutron

Neutron Source  S 1 neutron

(v0-1) neutrons

Fission AfN vl precursors

0. energy in fuel
1 m

-1 precursor

Decay xc

1 1 neutron

-1 energy in fuel

Heat Transfer ht (F-r1M )
1 energy in coolant

Heat Expansion E0+eM -1

Energy Inflow d1Q1T1 1
energy in

Energy Outflow d2Q (2M-T1) -1 coolant
Mass Inflow Md1Q1 -1

Mass Outflow Md2Q 1

Buoyancy xB(M-T w) 1

Pressure Q 1
p

Momentum Inflow
2 2 2d

1Qi
1 I momentum of

Momentum Outflow 2dQ2 -1 ! coolant outflow
2

Mass Inflow a-(Yd1Q1+d2Q )Q1 -1

Mass Outflow (Yd1Q1+d2Q) Q 1

Unknown event f(Q)
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                     CHAPTER II 

           Effect on Stochastic Fluctuations 

               of Possible Noise Sources 

            in Non-Boiling Liquid Reactors 

S 1. Introduction 

      In the present chapter, we shall treat stochastic fluctu-

ations in a system at power, where there are, chiefly, three 

kinds of noise sources, i.e., the statistical nature neutron 

chain reaction, the inherent noise source in fluid flow as in 

Chap. I, and noise arising from: The effect of buoyancy in the 

coolant flow random vibrations of a control or fuel 

element, and the inlet temperature fluctuations

# In Chap . I, this effect is first incorporated in the 

model, but then discarded from consideration further on in the 

same chapter when is undertaken. 

** The inlet flow fluctuations have already been studied in 

Chap. I. In the case of forced circulation, the coolant flow 

of a core will fluctuate in one block, roughly in a single 

phase, owing to the very high flow-speed. It then follows that 

the fluctuations in question can be expressed in terms of Eq. 

(1.42), embodying a parameter /Q. On the other hand, in the 

case of natural convection cooling, we have discussed fluctu-

ations in the outlet flow-rate, and thereby assumed the flu-

ctuations in question to be white noise.
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     A theoretical treatment is applied, making use of the 
(38) (4) 

Langevin method , on the basis of the stochastic model 

presented in Chap. I: A set of linearized equations (1.37)-

-(1.39) embodying thermodynamic and hydraulic state variables 

are adopted as the Langevin equations, which contain source 

terms to represent random driving forces. The random forces 

have white noise spectra, whose amplitudes are given by the 

corresponding components of the matrix (1.74). We shall 

furthermore take the linear Langevin equations of first order, 

considered to govern variables representing the displacement 

of the randomly vibrating element and the inlet temperature. 

In the present paper, these equations are taken as starting 

point for further analysis. Explicit expressions are derived 

for the noise spectra associated with the above-mentioned 

variables. Examples of the spectra thus determined are compared 

with the results of observation. 

      In Sec. 2, some simplifications on the model presented 

in Chap. I are considered, and also, the effect of buoyancy 

acting on the coolant flow is studied. In Sec. 3, we shall 

consider a system where random vibrations are induced in the 

control or fuel element by fluctuations in the coolant flow-

-rate. In Sec. Li., we shall study a system characterized by 

inlet temperature fluctuations, which have been assumed in 

Chap. I to be white-noise. Sec. 5 is devoted to a short 

summary and a brief discussion on the theoretical treatment 

of at-power reactor noise.
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S 2. Buoyancy Effect in Coolant Flow 

2.1. Simplified Model Reactor 

     Let us define the Markoffian random processes discussed 

in Chap. I with use made of the Langevin equation: 

r 0((t) _ - AO( (t) +(t) ,(2.1) 

where iZ(t) represents the fluctuations in the set of state 

variables defined by (1.47), referred to the respective steady-

-state values, and A is the relaxation matrix defined by 
               ti 

(1.73). The random driving forces /(t) are governed by the 

relationships 

    = 0 ,(2.2) 

        (t) ~(u)> = 2t6(t-u) ,(2.3) 

where 21D is the diffusion matrix given by (1.74). By Langevin 

treatment of the linear Markoff processes(38)(41), we obtain 

the noise spectrum matrix 

      r(w) = 2(iuwE+/,)-12b(-iwE+A+)-1,(2.4) 

where n+ is the transpose matrix of A, and E the unit matrix. 

     Let us now discuss the noise spectrum relevant to the 

simplified model reactor (SMR) based on three assumptions: 

(a) that the strongly influential noise sources affecting the 

fluctuations as a whole are the neutron generation by fission 

and the noise source bringing about fluctuations in the coolant 

flow-rate, i.e., in the matrix (1.74) , 

  all Did = 0 but D11 = DNN k 0 and D55 = DQQ k 0 ; (2.5)
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(b) that the reactivity feedback largely depends on the vari-

ations in the coolant temperature through the changes of the 

total multiplication rate of neutrons, i.e., in Eqs. (1.67) 

and (1.68), 

         = µ
2 = µ3 = 0 and µ4 \ o ;(2.6) 

and (c) that the ratio n of the total specific heat between 

that of the fuel and that of the coolant is very much smaller 

than unity, so that Eq. (1.88) reduces to 

    F(s) = (s+ht)(s+b) .(2 .7) 

2.2 Discussion 

     For the neutron fluctuations, the noise spectrum can be 

written in the form 

     PNN(w) = JT(iw)I 2I(w) ,(2.8) 

where the transfer function T(iw) is given by the expression 

(1.87) combined with Eq. (2.7), and the input noise source 

               (dµN)22D 
I(w) = 2(2DNN)1+ 2402222DRQ(2.9) 

                {w-(bA +x8d)}+w(b+AQ)NN 

This function clearly reproduces the resonance-like structure 

observed on the spectrum, which is due to coupling between the 

fluctuations of the coolant temperature and those of the cool-

ant flow-rate brought about by the effect of buoyancy. 

In fact, for xB 0,' the input noise source reduces to 

     1(w) = 2(2DNN)1+(µ4N0)22d22 22(21--,(2.10) 
W b w  NN
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which means that the hydraulic flow fluctuations governed by 

the decay constant AQ cause variations in reactivity by vary-

ing with a decay constant b the amplitudes and gradients of 

the fluctuations in the coolant temperature. A further discu-

ssion on input noise source of the form (2.10) has been given 

in Chapter I. 

     Now, buoyancy brings upon a power reactor a negative-

-feedback effect, since an increase in the coolant temperature 

due to an increase in the energy transferred from the fuel 

leads to an increase of the coolant flow-rate, which in turn 

decreases the coolant temperature, as is seen from Eqs. (1.38) 

and (1.39). Hence it should be of interest to examine in some 

detail this feedback due to buoyancy. Applying the expressions 

(1.91) and (1.96) to bAn, and (1.31), (1.35) and (1.41) to xBd, 

we obtain 

     bAQ = {2t1°2  12(V2)2,(2.11) 
Cc 

xBd^-'2am`j.--( O-61)oC(ec- el) .(2.12) 

It follows from this that the feedback effect due to buoyancy 

appears distinctly in the neutron noise spectra of reactors 

that are operated with natural convection cooling at full power, 

on account of the relatively slow coolant flow combined with 

a large temperature difference between the moderator-coolant 

and the inlet flow. 

     We next discuss the noise spectrum PQQ(w) of the coolant 

flow-rate fluctuations, which can be written for the SMR in
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the form 

PQQ(w) = 2(2DQQ) w2+b222 

                1w2-(b AQ+xgd)2+w( b+ AQ) 

                              x)2 2D 
            X1+ITO(iw)I2 2(ht2f0d2 3NN(2.13) 

                          (w+ht)(w +b )QQ 

with the zero-power-reactor transfer function 

   T0(s)P -f3(2.14) 
                   a -~ S+ 

Here we have let p4=0  on the supposition that variations in 

the reactivity emanating from coolant temperature fluctuations 

are far less influential on fluctuations in the coolant flow-

-rate. This noise spectrum also reveals a resonance-like 

structure induced by buoyancy. For x/3=0, Eq. (2.13) reduces to 

     PQQ(w) = 2(2DQQ)212(2.15) 
                         w+AQ 

which follows directly from Eq. (1.42) combined with the rela-

tion (1.43). 

     Other noise spectra, if necessary, can be easily obtained 

from the matrix (2.4) on the SMR, with consideration given to 

the influence of buoyancy effect. As examples, the auto-

-correlation noise spectrum Pmm(w) of the coolant temperature 

fluctuations and the cross-correlation noise spectrum PNM(w) 

between the neutron and coolant-temperature fluctuations are 

given in the Appendix II. All the spectra mentioned above 

have been calculated numerically as function of power-level. 

The results of this calculations will be shown in a next chapter
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  3. Random Mechanical Vibrations 

3.1. Stochastic Model 

     We shall adopt 

         Q(t) = _IQQ(t) + fX(t)+(t) (2.16) 

       --X(t)   = _AX(t) - g(t) +x(t) 7 (2.17) 

as the phenomenological Langevin equations for the coolant 

flow-rate fluctuations Q(t) and the displacement X(t) of the 

element. Here Q(t) and x(t) are the random driving forces, 

/1Q and A, the relaxation constants, and f and g (fg >0) the 

coefficients representing the coupling between the flow-rate 

fluctuations and the random mechanical vibrations. These two 

equations can be written in the form of a second order differ-

ential equation in Q(t): 

       d2
2Q(t) + Aoait) + w't) =~(t) ,(2.18) 

dt 

withn
o = nQ + nx ,(2.19) 

w2 = nn+ fg,(2.20) 0Qx 

                           • 

            o(t) = AX Q+fix+atQ •(2.21) 

This is essentially an equation representing the damped harmonic 

oscillator, and agrees inform with what follows from an 

inspection of the noise spectra of coolant flow-rate fluctua-

tions observed in the HTR(6), in which it was found that 

resonance peak was due to the random vibrations of a control rod.
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     We now discuss the random driving forces in Eqs. (2.16) 

and (2.17), which are required to satisfy the conditions 

 = 2D
QQ6(t-u) ,(2.22) 

    1 ~ 

< &Q(t)C
x(u)> = o ,(2.23) 

<&x(t)&x(u)> = 2D
X6(t-u) . (2.24) 

With the help of the Einstein relation(38)(41) it then follows 

that 

         1(Ax+w0)(2DQQ) + f2(2Dxx)    '<(Z)2>=2
n w2'(2.25)                                00 

                (A2+w0)(2D) +g2(2D) .44=2Q0xx 2QQ(2.26) 
                              A0~'0 

For convenience, we take a case where the coupling does not 

exist, i.e., f= g=0.Then the variances become 

<(Q)2 7 = 1(2DQQ)(2.27) 

                  2 

                 Q 

   <2> = 2;(2Dxx) .(2.28) (X) 

The noise source 2DQQ, if necessary, can be evaluated with a 

standard deviation of fluctuations in the coolant flow-rate, 

as in Eqs. (1.45) and (1.46), while 2D
xx is related to the mean 

amplitude of random vibrations of a control or fuel element. 

3.2. Stochastic Formulation 

     Let us describe the random processes of the present system 

by using the Langevin equation as in Eq. (2.1). The stochastic
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model is the same as employed in Chapter I, except for the 

existence this time of the above-mentioned coupling condition. 

Accordingly, the state vector 0 consists of a set of random 

variables, i.e., 

e's +- N I^ - I~ -         = (N,C,F,M,Q,X) ,(2.29) 

and the relaxation matrix A can be written in the form 

                    0 0 
1             /~I00                ~`OI0 0 

  A =d 0(2.30)• 
             0 0 0 -xB AQ -f 

ii 0 0 0 0  Ax g 

where A() the matrix given by the upper left-hand 4X4 sub- 

matrix of (1.73) . The amplitude 200  of the correlation 

function for ,(t) now becomes 

    /I 0 0                  00 
200 i0 0 

210 = i 0 0 (2.31) 
             0 0 0 0; 2 DQQ0 

1 

            0 0 0 0 1 0 2Dxx 

where 21)0is the matrix defined by the upper left-hand 4X4 

submatrix of (1.74) . • 

3.3. Analysis 

      In order to illustrate the influence of the random mecha-

nical vibrations on the fluctuations as a whole we shall take 

the noise spectra associated with the neutron fluctuations and 

the coolant flow-rate fluctuations in the SMR. The neutron



noise spectrum can be 

function T(iw) and the

expressed in terms of both the 

 input noise source  I(iw): 

     1  

si-• 
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transfer

T( iw) - 

1-1Vx+ µ4NOhtnf0 '(2.32) 
           s+=L''Qs+xBd (s+ht) (s+nX) Q(s+ht) (s+b) + 2 

                                      s+A0s+w20S=iw 

d2(µ4N0)2 
I( iw) = 2(2DNN)1+  22 2- 

                   I(s +AOs+wO) (s+b)+xad(s+ Ax) I 

                         22DQQ22Dxx                 Xfis+Ax)2llNN+ f 2-N. (2.33)                                                             s-om 

Note that for xB 0 Eq. (2.33) becomes 

I(w) = 2(2D)[l+:2{(w2~A2)(:)+f2(:)}I.d2(uN)2•NNllNN • 
(2.34) 
      Thus the neutron noise spectrum has the resonance compo-

nent dominated by a single angular frequency w0 and damping 

constant A0. The transfer function ,(2.32) reflects the effect 

of the coupling phenomenon, by which the charges in coolant 

flow-rate due to the random vibrations of the element immedia-

tely affect the displacement of an element randomly vibrating 

from its mean position. This effect acts as temperature reac-

tivity feedback, as can be seen from Eq. (1.87) and Fig. 1.1. 

     On the other hand, the input noise source (2.33), and also 

(2.34), exhibit a certain resonance peak. Let us now consider 

two special cases. 

(i) In the underdamped case (w0>)A0), the function reaches



 -55-

a maximum at w=w0, whose magnitude depends on both the stand-

ard deviation of the coolant flow-rate fluctuations and the 

mean amplitude of the random mechanical vibrations, by virtue 

of the relations (2.27) and (2.28). The sharpness Q w0of a 

resonance, namely the half width of this maximum, in the 

expression (2.34) is 

Aw04=AO(1-2w .(2.35) 
0 

which shows that the half width is roughly described by the 

two relaxation constants AQ and n x, in other words, by the 
regression of fluctuations through the recirculation flow as 

a whole (cf. Sec. 4.2 of Chapter I) and the damping characte-

ristic of random vibrations of the structural elements. This 

statement should be valid in approximation at the resonance 

frequency w0 in view of the relation (2.20). In particular, 

if AQ has a flow-speed dependence like that in the expression 

(1.41), 'AQ increases with the flow-speed, so that w0shifts 

toward higher frequencies. This behavior has been observed 

experimentally in the ORR by means of power-spectral-density 

measurements (see Figs. 1 and 2 in Ref. (26) and Fig. 6 in 

Ref. (7)). 

     Let us now turn our attention to the frequency dependence 

of the input noise source of the form (2.33). In this instance, 

we shall take the example of forced circulation cooling, in 

which the value of b, defined by Eq. (1.96), becomes very 

large, the flow-speed being in general very fast. For the 

case in which the random mechanical vibrations significantly
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contribute to the input noise source (2D xx~) 2DQQ), we obtain 

I(w)d2(µ4N0)22 2Dxx 
     2(2DNN)22 2 2A212 2f-05"--I(2.36) 

              {(w0w ) +w/10}(w+b) NN 

which leads to- 

     22 

1(w)_d(ptN)2D 

    NN— w4b20f2215--for w< w0   2 2    0(2.37) 

                                           2 

                 1d(}14N0)22Dxx       ti 2222f2$_Nfor W=w0 
           {(w0-w)+(/10/2)}w0bNN (2.38) 

                                                                     ^ d2(u N )2 w-4 b20 f2(2Dxx)2DNNfor wo<w< b,                                                  (2.39) 

                             2D 
         ^'w-6d2 (u

4N0) 2f22`i5xxfor b < w .           NN(2
.40) 

These results will be later compared with observations. 

     (ii) In the strongly overdamped case ( A0>> w0) , e.g., 

                                                                  where the flow-speed of the coolant is extremely slow, or where 

a randomly vibrating structural element is rapidly restored to 

its original place (namely AQ«Ax, fg c.7.0), the input noise 

source (2.33) is reduced to 

I(w)dµ4N022DQQ      2 2DNN1 +1(iw+Ala)(iw+13-)+xBd2DNN• ,(2.41) 
                                                                  This is the input noise source given by Eq. (2.9), which has 

been discussed in detail in Chapter I and in the previous 

section. 

Let us finally consider the noise spectrum associated with
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fluctuations in the coolant flow-rate: 

                    z2 

    PQQ(w) = 2(2DQQ)-2w2n22221+2f22 2llxx(2.42) 
                 (w0-w)+wn0w+"xQQ 

where we have put p4=0 and xB 0, as in Eqs. (2.13) and (2.15). 

We shall now discuss two particular cases: 

      (i) The underdamped case, where the spectrum exhibits a 

resonance peak, and whose frequency and half-width are the 

same as in PNN(w). In a system where a control or fuel element 

should vibrate significantly on account of a large quantity of 

coolant flow, Eq. (2.42) leads to 

                               2 

  P(w)= -------------------1f(2D ) forw;w•(2.43)    QQ( w0-w)2+(/`02)2w20xx0 

      (ii) The strongly overdamped case, when Eq. (2.42) is 

reduced to the form of Eq. (2.15). 

     Other noise spectra, if necessary, can be easily obtained 

from the component of the matrix (2.4) in combination with the 

matrixes (2.30) and (2.31). 

3.4. Discussion 

      In actually operating reactors, the random mechanical 

vibrations of a• structural element should probably exert an 

effect, not upon the whole coolant flow, but upon only a port-

ion thereof. This portion will then obey the Langevin equation 

of the form taken by Eq. (2.18), while the remaining portion 

of the coolant flow will be described by Eq. (1.42). Accord-

ingly, it follows that stochastic fluctuations in such a system
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are subjected to the coolant temperature fluctuations induced 

by the two kinds of fluctuations in the coolant flow-rate: the 

one arising from the noise source 2Dxx and the other from the 

2DQQ given by Eq. (1.77) together with Eq. (1.42). 

     As an pertinent example, we shall take up the neutron 

noise spectrum for the case of forced circulation cooling, 

which has two different types of frequency component: one of 

resonance-like structure given by the input noise source (2.36) 

with the transfer function (2.32), and the other of the form 

taken by the expressions (1.107), (1.108) and (1.109) together 

with (1.87). This result, in particular the predicted slope 

of the spectrum, is qualitatively in agreement with the obser-

vations obtained on the ORR (see Figs. 1, 2 and 3 in Ref. (26) 

and Figs. 6, 12 and 13 in Ref. (7)). 

      Considerations along similar lines can be pursued in 

respect of the noise spectrum of the coolant flow-rate fluctu-

ations to derive the components represented by the expressions 

(2.15) and (2.43). This result should, in prRiple, correspond 

to the spectra from the HTR (see Fig. 7 in Ref. (6)). 

     As an another example of forced circulation cooling, we 

shall consider the. case where the flow-rate is not very high, 

but where, nevertheless, a structural element vibrates randomly. 

We have, in this case, 

b A0 and 2D
xx~t2DQQ,(2.44) 

so that the input noise source (2.34) may be written in the 

form
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  I(w) d2(uN0)22D2D2    D`—2nx(2~-+f2xx).for w<A0, (2.45) 2 241l                                     2D   NNEw
0bNNNN 

        d2 (U N) 22D2D 

             402llQQ+w`2f22Dxxfor A <w<w0 , (2.46) 
     w4NN 

              1  d2(114N0)222DQR2 (2Dflxx 
            (w0-w)2+(/\02)2w0W0 2DNN 44.2llNN 

                                              for w=w0, (2
.47) 

           w-4d2(u4N0. 22D(213QQ)4. w-2f22Dxx, for w >wo 
           NNNN1 

(2.48) 

These results should be applicable directly to the observed 

neutron noise spectra at 50 Watts on the HTR, in which the 

coolant flow-speed is 16 cm/sec at any power level in forced 

circulation, (see Figs. 4 and 6 in Ref. (6)). Introducing 

the low-frequency component in the expressions (1.107)-(1.109) 

into the present case, the above results can be compared with 

the neutron noise spectra observed on the HTR at various power 

levels (see Figs. 1, 5 and 8 in Ref. (6)). 

S 4. Inlet Temperature Fluctuations 

4.1. Stochastic Model 

     We consider a system subjected to fluctuations in the 

inlet temperature of the coolant on the basis of the model 

adopted in Chapter I. We now assume the Langevin equation
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  for the fluctuations: 

a Tl(t) = `/T1(t) + &i(t) ,(2.49) 
 where i(t) corresponds tothefluctuations in the inlet tempe- 

 rature e1(t) in reference to the definition (1.31), and Ai 

  is a relaxation constant regarded as a phenomenological para-

 meter. The random driving force i(t) has the property 

 = 0 ,(2 .50) 

(t) ) = 2Dii6(t-u) . (2.51) 

 The amplitude 2Dii can be easily expressed in terms of a stan-

 dard deviation ai of the fluctuations as in Eq. (1.46): 

2Dii = 2/\i(a.T1X 10-2)2 .(2.52) 

       Next it is necessary to regard the constants el in Eqs. 

  (1.24) and (1.26) and T1 in Eq. (1.33) as variables. The 

  linearized equation (1.38) for the coolant temperature is 

  therefore rewritten in the Langevin form: 

aM'(t) = htF(t)-(b+ho)M(t)-dQ(t)+pTl(t)+ M(t) ,(2.53) 
 where the coefficient p is newly defined by 

      p = d2Q0 + d1Q1 } 0 , (2.54) 

 and the random driving force CM(t) has the same properties as 

•(t), except that the amplitude 2D is as defined by Eq.                                     MM 

  (1.76). The linearized equations for the other vhriables, 

 namely Eqs. (1.37) and (1.39), are valid without modification.
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4..2. Noise Spectra 

      We now define the whole random processes of the present 

system by using the Langevin equation of the form represented 

                ti 

by Eq. (2.1). The fluctuations c4 from the respective steady-

-state values are given by 

      NN,vNn.lnl(2 .55)           a_ ( N,C,F, M,Q,T) 

The decay matrix is written in the form 

I 00 

                AA00               /mo
oI00 

   A = I d -p(2.56) 
             0 0 0 -xB AQ 0 

          0 0 0 0 0Ai 

where we have used Eqs. (2.49) and (2.53) together with Eq. 

(1.78) for the other variables. And the diffusion matrix, 

defined in Eq. (2.3), becomes 

2D.1 0 

211) =--------------- (2.57) 

0 2DQQ0 
                           0 2Dii 

whose element can be seen from Eqs. (2.3) and (1.74) together 

with. Eq. (2.5). Thus the noise spectrum matrix P(w) of the 

form given by Eq. (2.4) is completely determined. 

4.3. Analysis and Discussion 

      (1) Noise Spectrum for Neutron Number 

      Let us consider first the neutron noise spectrum for the
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SMR. From the (1,1) component of the matrix P (w) , we obtain 

the desired spectrum: the transfer function T(s) is of the 

same form as Eq. (1.87) with Eq. (2.7) for F(s), and the input 

noise source takes the form 

                       d2(11,N0)2 2DQQ 
      1(w) = 2(2DNN) 1+

2222 2~                           (bA +x
dd-w)+(b+)wNN 

2 2 2 (2D)11. 
x 1+2-2w2+AzB1(2.58) 

d w +niQQ 

This is identical with the expression (2.9) for the case 

2Dii=0 or p=0, and with the corresponding Eqs. (1.89) and 

(1.107)-(1.109) for both the above cases and xB 0. 

      In what follows, therefore, we shall confine our attention 

to an analysis of the quantity written between the curly brackets 

in Eq. (2.58). This quantity is the ratio of frequency compo-

nent between that arising from the inlet temperature fluctuations 

and that from the flow-rate fluctuations. The contribution of 

this quantity to the neutron noise spectrum can be easily 

estimated according to whether the ratio is much greater than 

unity or not so much. Now the quantity in question becomes 

                 2 AQ2D.. 
      •1 +

d2DQQforw «AQandni' (2.59)                   n. 

                  22D.       1 +d2Q                           for w~~AQ and ni(2.60) 

Thus a difference between those two quantities arises from the 

value of AQ2//4. The expression (2.59) can be rewritten in the
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form 

            AQ«i2e1 2 
       1 + 4 A

iae0-eQ( 2.61)                    c1 

where we have used the expressions (1.41), (1.77), (2.51) and 

(2.54) for d, 2DQQ, 2D p respectively together with 

the definitions (1.31) and (1.35). This result shows how 

sensitively the inlet temperature fluctuations influence the 

neutron noise spectrum. 

      For example, in the case of natural convection cooling, 

we can make use of the parameters presented in Eqs. (1.95) 

and (1.100) to obtain the result 

(  32x1          1 + a (2.62)                     A
i 

Assuming AQ ^—. Ai,thecondition of afor obtaining a value 

of the expression (2.62) much greater than unity is 

     ai>>32a(2.63) 
This is an expected result. 

      (2) Noise Spectrum for Inlet Temperatyre 

     Let us now consider the power spectral density Pii(w) of 

the inlet temperature fluctuations and the cross power spectral 

density PNi(w) between the neutron and inlet-temperature 

fluctuations. From the (6,6) and (1,6) components of the 

matrix 1)(w),  we obtain for the SMR 

Pii(w) = 2(2Dii) (uit+ Ai)-1,(2.64)
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                            2 1 (iw+ AQ )        PNi(w) =2(2Di;)(w+1)4   (iw+AQ)(iw+b)+xad 

         X p4N0T(iw) 9(2.65) 

with the transfer function (1.87) for T(s). Neither of these 

spectra contain components arising from the noise sources 2D
NN 

and 2DQQ. 

     From the spectra (2.58), (2.64) and (2.65), we may state 

as follows. There is a correlation between the neutron and 

inlet-temperature fluctuations, but it would be expected to 

                   • be small because of the presence of the noise sources 2D
QQ 

and 2DNN. This can be seen clearly if we consider the 

coherence function 

          Ni(m)1  
  CNi(w) - 

        J(2.66)              'NN(w),[P..(w) 

        (bAQ+xBd-w2)2+(b+AQ)2w2w2+AZ 2DNNd)2(w2+/2DQQ2 
1+ ------------------------------------

(1414N0)2 w2+A2 2Dii+p2(w2+AZ)2D..                                              Q 

5 1 .(2.67) 

(i) In the lower frequency region where I(w)*2(2DNN), 

the function can be written in the form 

CNi(w) iy. 1(2 .68) 

                         d2 w2+ A2DQQ                     I+
p2w2+A2 2Dii 

     (ii) In the higher frequency region where I(w)a 2(2DNN), 

we have 

          w-2(:)Dii         CN1(w) ^~PIµ 4N0I15NN .‹G 1(2.69)



 -65-

It  follows  from  these  results  that  the  coherence  is  signifi-

cantly different from unity when an inherent noise source in 

fluid flow constitutes a possible noise source in non-boiling 

liquid reactors. 

      Now, it has been reported by Boardman(27) that in the 

reactor noise measurements on the DFR, only a few of the power 

fluctuations are due to the inlet coolant temperature noise, 

and that in particular, there is a large low-frequency compo-

nent in reactor-power noise which is not due to the inlet 

coolant temperature as measured by the plenum thermocouple. 

                                                      • Our results, though qualitative, are compatible with his 

observations.. 

      (3) Noise Spectrum for Coolant Flow-rate 

      We shall here draw attention to the coherence function 

CNQ(w) for fluctuations in the neutron number and the coolant 

flow-rate. For the SMR, the noise spectrum PQQ(w) for the 

coolant flow-rate fluctuations and the cross noise spectrum 

PNQ(w) between the neutron number and coolant flow-rate fluctu-

ations are given by 

  PQQ(w) = 2(2DQQ
.)(w2+ A2)-1(2.70) 

     PNQ(w) = 2(2DQQ)T(iw)(-di1~N0)(iw+b)-1(w2+ /1Q)-27(2.71) 

which have been obtained from the (5,5) and (1,5) components 

of the matrix P (w), with xB 0 for simplicity. The cross noise 

spectrum PNQ(w) consists of two kinds of amplitude response 
                ti 

function to the random driving force &Q:



         (-iw+  AQ) , 

and 

T(iw) (-dp4N0) (i.w+b) (iw+ A
Q) . 

The former corresponds to that of the coolant flow-rat 

the latter to that of the neutron number, and thus the 

meaning of PNQ(w) becomes clear. 

      Now, the coherence function in question is writte 

form 

I PNQ(w))    CNQ(w) = 

           JPNN(w) JPQR(w) 

                                                             • 

         {1+2DNN (w2+/1Q) (w2+b2)2Dii p2(w2+/1Q)            ~Q ------------------d2(II
4N0)22DQ d2(w2+ R.) 

where we have used Eqs. (1.87) and (2.58) for T(s) and 

respectively with xB 0. A discussion on the frequency 

dence of CNQ(w) can be made in the same manner as pres 

in Eq. (2.67). 

     It follows from our results for CNi(w) and CNQ(w) 

it may be possible to derive the major noise source in 

present type of power reactor by observing experimenta 

values of CNi(w) and CNQ(w) in an appropriate frequenc 

If we have ,the result 

CNi(w) < CNQ(w) 

it would be expected that the coolant flow-rate fluctu 

contribute more significantly to the system under cons
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        (2.72) 

        (2.73) 

 flow-rate and 

 thus the physical 

is written in the 

- - - \

or T(s) and 

e frequency 

ner as presented 

and CNQ(w) 

e source in 

experimentally 

to frequency 

rate fluctuations 

 under considera-

 2 

depen-

nted 

that 

the 

ly the 

region.
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tion than the inlet temperature fluctuations . 

     Recently the coherence functions C
Ni(w) and CNQ(w) have 

been determined by Batch and Klickman(42) in the core of the 

Enrico Fermi reactor At three power levels : 0.05 Mwt, 56 Mwt 

and 88 Mwt. They concluded that two major noise sources 2D
QQ 

and 2Dii are present independently of each other, and that the 

inlet temperature fluctuations influence reactor power more 

than the coolant flow-rate fluctuations. 

S 5 Short Summary and Some Remarks 

     On the basis of the stochastic model presented in Chapter 

I, we have studied the frequency responses of a system to the 

random driving forces of: (a) buoyancy effect, (b) random 

mechanical vibrations and (c) inlet temperature fluctuations. 

These responses were all considered over the whole range of 

frequency through combination with the low-frequency component 

due to an inherent noise source in the fluid flow. Thus we 

have been able to compare satisfactorily these theoretical 

results with th.e observations. An illustrative analysis has 

been made, principally for the neutron noise spectra, but 

other noise spectra, if necessary, can be readily obtained 

and illustrated. 

      Now the theoretical treatment in the previous and present 

chapters for a study of at-power reactor noise has brought 

out many problems that require further investigation. To give 

some examples:
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       (i) Noise sources strongly influencing the entire 

fluctuations 

       A parameter has been introduced into the model in the 

 form of a relative standard deviation of fluctuations in the 

 coolant flow-rate, but the theoretical estimation of its 

 magnitude remains to be undertaken. Another question is the 

 number of effective noise sources existing in a power reactor. 

Thie(28) has pointed out that there are many kinds of intrinsic 

 noise sources in various types of at-power reactors. 

       (ii) The choice of a set of random variables 

       A set of random variables required to describe the kinetic 

 behavior of a reactor system can be chosen with the aid of the 

 theory of non-equilibrium thermodynamics, as has been done in 

 Chapter I. These variables will constitute a set of variables, 

 sufficient to permit a Markoffian description to be formulated. 

In practice, however, we shall deal with fewer variables in 

 order to simplify the model in so far as possible. Attention 

 should first be directed to the problem of how we can systema-

 tically carry out this reduction of variables. Next, we must 

 consider a random variable that assumes a number of different 

 values in a system, e.g., there may be a number of different 

 kinds of coolant-flow speed in a core. 

       (iii) Local fluctuations of temperature and flow-rate 

      We have hitherto dealt with the fluctuations in a lumped 

 system. In actual noise experiments, however, local fluctua-

 tions in the state quantities are usually observed. The 

 relation between the actually observed quantities and the 

0
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theoretical values has not yet been made adequately clear. 

      (iv) Description of nonlinear processes 

     As a general expression of nonlinear feedback processes, 

a convolution form has been employed. In the previous and 

present chapters, the feedback processes have been expressed 

in terms of linearized equations of first order. It should 

be of interest to discuss this problem together with the 

correlation function of random driving force.
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                              CHAPTER III 

                Analysis of Stochastic Fluctuations in a 

                      Natural Convection Non-boiling 

Light-water-Reactor 

S 1. Introduction 

         In the present chapter, we have calculated numerically 

   for the stochastic model of Chapter I, both the noise spectra 

   and the variances of stochastic fluctuations in neutron number, 

   fuel temperature, coolant temperature and coolant flow-speed. 

   The calculations have been made for various levels of reactor 

   power for the case of natural convection cooling, using a 

   plausible set of parameters for a typical light-water reactor, 

   for example, the Kyoto University Reactor (KUR)(5). The results 

   have been illustrated in terms of an analytical expression 

   derived for the simplified model reactor (SMR), which has 

   already been obtained in Chapter II on the basis of the model 

   of Chapter I. Some of the results are compared with the obser-

   vations of Utsuro et al.(5) and Utsuro(4) in the KUR, and 

Nomura($) in the TTR1. It will be seen that our model is valid 

   for explaining in a satisfactory manner the experimental results 

   obtained by Yamada(3) and Yamada et al.(6) in the HTR, though 

the resonance like behavior of the noise spectra is not taken 

   into consideration. 

         In Section 2, a number of model parameters used here are 

   shown. And we shall choose the value of th.e,parameter a (%)
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which is introduced in the present model as an adjustable 

parameter to express a relative standard deviation of fluctu-

ations in the coolant flow-rate for the case of xB 0 (see Sec. 

2.4 of Chap. I) . 

      Numerical calculations of the noise spectra have been 

made for a delayed critical system (/)=0) for five different 

values of the reactor power P from 10 W to 100 kW. For these 

calculations, we have adopted an analytical expression of the 

spectrum obtained from an element of the noise spectrum matrix 

       P(w) = 2(iwE + A)-12i)(-iwE+A+)-1,(3.1) 

where A and 2i) are given by the expressions (1.73) and 

(1.74) respectively, and E is the unit matrix. The results 

of these calculations will be shown and discussed in detail 

in Section 3. 

      Section 4 is devoted to the discussion of the variances 

and the relative standard deviations obtained numerically. 

The calculations have been performed for a delayed critical 

system (P=0) from P=1 W to P=100 kW, and for a subcritical 

system from reactivity I) _ -104((P^—'10 mW) toI~4                                                  _ -106 

(P .100 kW), by using the algebraical equation 

      2 D = 4<oco<> + .0o1o(> A(3.2)



 -72- 

  2. Model Parameters and Steady-state Values 

      Numerical calculations were performed with use made of 

a number of nuclear and material constants and model parame-

ters, whose values are presented in Tables 3.1 and 3.2. Our 

values of those parameters were chosen to be applicable to a 

typical light-water reactor, such as for example the KUR(5), 

and it has been assumed that the values are independent of 

variations of the reactor power level P (kW). 

      The present calculations were made, furthermore, on the 

assumption of the following two relations: 

ljo = 1.16P0.25 (cm/sec) ,(3.3) 
empilically obtained from measurements of the coolant flow-

-speed U
c at various power levels on the KUR(40); and 

         h0= 11.7(A°- e°)°'33 (kW°C-1),(3.4) 
for all power levels. Such a relation has been employed in 

the case of heat transfer by natural convection(43). The 

coefficient has been so determined that the heat transfer 

coefficient h0becomes 20 kW°C-1 when the temperature differ- 

enceeF-e~is 5 °C at P=100 kW. Herethevalue of h0has 
been computed from the stationary form of Eq. (1.30) for the 

applicable fuel temperature, i.e., 

      h0= P/( 6°-e°).(3.5) 

      Let us now express the steady-state values of the state 

quantities as a function of P. To determine the number of 

neutrons present in a reactor, we find that in a delayed
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critical system it is 

       N==~P , (3.6)          pq n
fpP 

while in a subcritical system, we obtain from Eq. (1.72) 

Np=PS(3.7) 
as a function of the reactivity /3, from which we can readily 

determine the reactor power by making use of Eq . (3.6). 

For the number of delayed neutron precursors, we have 

              vP 
    c0=x1

q(3.8) 

     From the stationary form of Eq. (1.26) and the relation 

(1.18), the coolant temperature can be written in the form 

P _ -mot"
_ e~+2Sccrp))l(KPccv() ec=Cc),3.9 
            -F 

2-------------Sc C,. v° K Pc---------c• 

together with th.e relation (3.3) for VC, so that the coolant 

outlet temperature becomes 

       92 = 2 e°e1 (°c) ,(3.10) 

in view of the relation (1.24). An expression for the fuel 

temperature is obtained from•th.e relation (3.4) and (3.5), i.e., 

aF = e°+(47)0.75 (°C) . (3.11) 

In Fig. 3.1, the steady-state values of state quantities 

obtained above are plotted as a function of P. 

     Using the relations (3.3)-(3.11), an analytical expression



 -74-

  was obtained as a function of P or P for such quantities as 

the thermo-h.ydraulic variables defined by Eq. (1.31), the 

  relaxation constants by Eqs. (1.35), (1.41) and (1.69), and 

  consequently each element of the matrices (1.73) and (1.74) 
  for A ̀ and 2i) respectively' . In Fig. 3.2, typical relaxation 

  constants are shown for various values of reactor power. 

        In order to calculate numerically the noise spectra and 

  the variances, we need to know the value of the parameter a 

  defined by the expression (1 .45). Then we have computed the 

  neutron noise spectra for different values of a at P=100 kW 

  and P=0. The value of a was chosen such that a reasonably 

  good fit with the experimental results of Utsuro et al.(5), 

  and Nomura(8) was obtained. The result was that 

           a = 1 % for TTR1 
                                                        (3.12) 

= 4 % for KUR 

 The values of a, chosen here, were adopted for our calculations 

 made for various power levels up to 100 kW. This treatment, 

  though undoubt9dly quite crude, has, nevertheless, revealed 

 many interesting features of our stochastic model, as will be 

  seen later. 

 § 3. Noise Spectra 

 3.1. Noise Spectra for Neutron Number 

        In Fig. 3.3, we have compared the calculated neutron noise 

  spectra with th.e results of measurements performed in the 

KUR(5) and TTR1(8). We have also shown the theoretical noise
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spectra for the two different cases: (a) when power level is 

1 kW, and (b) when it is 4 kW, of which 1 kW is produced as a 

result of nuclear fissions and 3 kW is due to the other reac-

tions, such as for example, fission-product gamma heating. 

The results of this experiment may be confirmed indirectly by 

observations in the KUR on the fission-product decay heat 

energy . But whether this should hold true in the present 

case remains to be proved experimentally. 

      The transfer function and the input noise source are 

plotted in Fig. 3.I for five different values of P. Corres-

ponding analytical expressions applicable to the SMR are 

represented by Eqs. (1.87) and (2.9), respectively, together 

with Eq. (2.7) for F(s). 

      With the foregoing choice of values for the parameter a, 

it is seen that the general configuration of the calculated 

spectra roughly agree with the corresponding experimental 

results in respect of both break frequency and slope of the

# Recently, measurements of fission-product decay heat have 

been performed in the KUR by observing the coolant mean flgw-

-speed 50 hours after shutdown upon 100 hours of operation at 

(4o) 5 MW The decay heat energy was about 10 kW. This experi-

ment was undertaken later.th.an when the noise spectra shown in 

Fig. 3.3 were obtained, at which time the full power of the 

KUR was 1 MW. The decay heat corresponding to this smaller 

power may hence be estimated to have been about 2 kW.



 -76-

low-frequency component. It may be judged from this that the 

low-frequency fluctuations result from the coolant flow-rate 

fluctuations: its characteristic relaxation constants depend 

on the mean flow-speed of the coolant as indicated by Eq. (2.11), 

and its amplitude on the deviations of the flow speed from the 

mean value as given by Eqs. (1.44) and (1.77). The higher the 

power level, the faster becomes the flow speed, which increases 

the low-frequency component. This relation is shown in Fig. 

3.4. Such behavior was also observed by Yamada(3) and Yamada 

et al.(6) ii the HTR. 

      We shall now present some remarks on the experimental and 

theoretical neutron noise spectra. First, there is the possi-

bility that the low frequency fluctuations in the neutron 

number arise from a combination of several kinds of reactivity 

change caused by corresponding local fluctuations in the coolant 

temperature, which, in turn is generated by variations in the 

flow-speed of the coolant. Such local fluctuations should be 

considered to have their inherent relaxation constant and noise 

source. The neutron noise spectra would thereby acquire a 

complicated structure. In fact, as shown in Fig. 3:3, there 

is a significant difference in the experimental results obtai-

ned from the KUR at P=100 kW for the two kinds of core config-

uration embodying either four water plugs (triangles in Fig. 

3.3) or none (open circles in same). 

     Secondly, it is seen from Figs. 3.3 and 3.4 that the 

calculations reveal an obtuse peak in the neighborhood of w= 

0.2 rad/sec at higher power levels. This peak is due to the
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effect of buoyancy in the coolant flow, as discussed in Sec. 

2.2 of Chap. II. 

      Thirdly, the origin of the low-frequency fluctuations is 

not always dependent on reactor power level . For example, in 

a reactor at low power level, and carrying a large fission-

product inventory, the coolant flow will be caused, chiefly, 

by the decay heat energy, so that the low-frequency behavior 

\0.S', 
would not be coupled directly to power level,'/a case that was 

observed in the FNR(9). 

      Finally, we note here that, in the frequency region above 

0.1 rad/sec, the shape of the calculated noise spectra is 

roughly the same as given by the zero power reactor transfer 

function for power levels below a few kW. Hence it follows 

that, at such high frequencies and low power levels, the zero 

power reactor noise theory can be validly applied to describe 

the noise spectrum in question. 

3.2. Noise Spectra for Coolant Temperature 

     Figureg3.5 shows the noise spectra associated withthe 

coolant temperature fluctuations, whose analytical expression 

has been given by Eq. (A3) of Appendix II for the SMR. The 

general shape of the spectra is almost independent of reactor 

power for the power levels shown. It is determined, mainly, 

by a frequency component generated by the coolant flow-rate 

fluctuations. Hence it is possible to write the spectra in 

the simpler form
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 P (w) =d2. 2(2D) (3.13)        MM{ w2-(b /1Q+xBd))2+w2(b+AQ)2QQ 

The characteristic relaxation constants are, therefore, AQ 

and b. The frequency dependence is w-4. These characteristics 

are the same as those of the low-frequency component in the 

neutron noise spectra. It follows then that the neutron 

fluctuations at lower frequencies are caused by fluctuations 

in the coolant temperature through the temperature coefficient 

of reactivity. 

The theoretical results are compared with the coolant-

-temperature noise spectra observed on the KUR at a power level 

of 100 kW(4). Fairly good agreement is obtained on the whole: 

the characteristic features revealed from our calculations as 

expressed in terms of the relaxation constants and the frequ-

ency dependence, is in conformity with the observations, as 

can be seen from Fig. 3.5. A similar agreement with experiment 

is also obtained in the case of measurements performed in an 

out-of-pile natural convection heat transfer loop by Nishiharaf3 

The present results, however, disagree with those observed in 

the FNR at low power levels from 1 kW to 5 kW, reported by 

Lehto et al.(9). Their experiments show a frequency dependence 

related to w-2. We have no explanation for this difference in 

observed characteristics.
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3.3. Noise Spectra for Coolant Flow-rate 

     Figure 3.6 gives the noise spectra obtained for fluctua-

tions in the coolant flow-rate. Its analytical form has been 

given by Eq. (2.13) on the SMR. For the power levels shown, 

the nuclear noise source 2DNN is scarcely responsible for the 

spectra in question, so that we can rewrite Eq. (2.13) in the 

form 

                                  w2+b2 
   P(w)=2(2D) ----------------------------------------------(3.14)        Q QQQ 1w2-0:41QB+xd)}2+w 2 (b+ AQ) 2• 

The coupling effect due to buoyancy is reflected in the curves: 

a resonance structure appears in the vicinity of w=0.1 rad/sec 

for higher power levels. The spectra have a frequency depen-

dence related to w-2 at higher frequencies. This dependence 

has been observed also in the HTR(6), though, in addition, a 

resonance peak has been found at w0.--8.2 rad/sec. 

3.4. Cross Noise Spectra for Neutron Number and Coolant 

      Temperature 

     (1) Magnitude 

     The magnitude of the cross noise spectra PNM(w) between 

the coolant temperature fluctuations and the neutron number 

fluctuations is shown in Fig. 3.7. An analytical expression 

of this PNM(w)has been given for the SMR by Eq. (A4) of Appen- 

dix II. 1Our calculations show that the spectra for the power 

levels shown can be expressed in the simpler form
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    PNM(w)= 2(2D ) uNOd2T0(iw) (3.15) QQ {w2_(bf+xBd)1Z+(b+AQ)2w2 • 
This simplification consists in assuming that a frequency 

component due to the nuclear noise source 2DNN contributes 

little to the spectra PNM(w), and that for higher frequencies 

above 0.01 rad/sec the shape of the transfer function T(s) is 

nearly the same as the zero power transfer function T0(s) (see 

Fig. 3.4) . 

     From the spectrum (3.15) as well as from Eq. (Aid) of 

Appendix II combined with the above assumptions, it follows 

that small deviations of the coolant flow-rate are responsible 

for fluctuations in the coolant temperature and the neutron 

number through th.e response functions, respectively, of 

d{(-iw+Ac (-iw+b)+xBd}-1 ,(3.16) 
and 

      Tp(iw)µ4NOd{(iw+/IQ) (iw+b)+xBd}-1.(3 .17) 
These response functions have already been taken up in the 

discussion of the spectra PNN(w) and Pmm(w), so the physical 

meaning of the results of our calculations is clear. 

     On comparing the P=100 kW curve with the experimental 

points, it is seen that for cull  rad/sec a reasonably good 

agreement is obtained on the whole, but for w >1 rad/sec the 

coincidence is not so good. This difference may arise from 

local fluctuations in the coolant temperature, as has been 

discussed in Sec. 3.1.



 -81-

      (2) Coherence 

      An interesting behavior of PNM(w) is noted for 'the 

coherence function of the form 

       CNM(w) = IPNM(w)I(3.18) 
V PNN(w)JPmm(w) 

The results of our calculations for CNM(w) are shown in Fig. 

3.8. For higher power levels, on account of the inherent 

noise source in the coolant flow-rate fluctuations, the great-

est coherence occurs between the neutron number fluctuations 

and the coolant temperature fluctuations, which is 1.0 at lower 

frequencies. For lower power levels, another kind of coherence 

appears in the higher frequency region, though this is very 

weak. This is due to the random generation of neutrons by 

nuclear fission. 

      On the SMR, the coherence function in question can be 

written in the form 

1

C (w) _' NM 

e = (d 

In writing E. 

for PNN(w), 

that we can 

region, CNM(

J 1+e-1(w4+(b2+ AQ-2xBd)w2+(bt +xBd) 

     22DQQ 
 4N0) 2DNN 

q. (3.19) we have used Eqs. (2.8), (3. 

MM(w) and PNM(w) respectively, on the 

place T(iw) by T0(iw). In the lower 

has the form given by 

1  

  CNM(uu) =J 
1+6- 1(bAQ+xBd)2

3 (3.19) 

    (3.20) 

13) and (3.15) 

 supposition 

 frequency 

    (3.21)
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In particular, for higher power levels, this is nearly equal 

to 1.0, because a becomes very large. At higher frequencies, 

Eq. (3.19) reduces to 

                    1 

     CNM(w) =2w-2•(3.22) 

These results are reflected on the curves of Fig. 3.8. A break 

frequency wB can be easily obtained from Eqs. (3.21) and (3.22): 

         weilJe+(bAQ+xBd)2 •(3.23) 

It follows from this that the coherence in question is depen-

dent not only on the relaxation constants, but also, greatly 

on the relative magnitude of the noise source 2DQQ. 

     (3) Phase 

      In what follows, we shall deal with the ratio between the 

imaginary and real parts of PNM(w), which corresponds to the 

phase of the complex function PNM(w). In Fig. 3.9 we have 

plotted the phase response of PNM(w). From an inspection of 

the curves, one very important result emerges: for higher 

power levels, the general behavior of the ratio is nearly the 

same as given by the zero power transfer function. Namely, 

using Eq. (3.15), we have 

           ImPNM(w) ImT0(iw) 
          RePNM(w) ReT0(iw) 

w(1+S X 
w2+X2  

                       P+~w2(3.24)                         _
( (w2+x2
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However, as reactor power decreases, there is increasing 

deviation from Eq. (3.24). An oscillatory behavior of the 

ratio is seen at higher frequencies, which is due to the 

contribution of the noise source 2DNN to the spectrum PNM(u1). 

S 4. Relative Standard Deviations 

4.1. Fluctuations in a Delayed Critical System 

     Using Eq. (3.2), we have calculated the variances and 

the relative standard deviations of fluctuations in state 

quantities as a function of P for two different values of 

a=1 % and 4 %. In Fig. 3.10, we have plotted the relative 

standard deviations which have been expressed in percentage. 

Also shown in Fig. 3.10 are the experimental results of the 

neutron noise measurements performed in the KUR by Oka et al. 

(34) . It will be seen that the curve for a=1 % has a fair 

resemblance with the experimental results, while for a=4 % 

a reasonably good fit was obtained with the observed neutron 

noise spectra of the KUR at P=100 kW. We note here that the 

experimental point at 10 W assumes a value of about 0.22 % 

which is quite close to the value of 0.30 % calculated for the 

neutron fluctuations not in a critical system, but in a sub-

critical system, as will be seen from Fig. 3.12. It follows 

from this that there is a possibility that the experimental 

data for P=10 W were obtained in subcritical state. This 

surmise is supported by the fact that in the KUR there is a 

considerable contribution of the neutron source resulting 

A
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                                                                                                                                                        . from the (T , n) reactions in the D
20 column. 

      At higher power levels, fluctuations in the coolant flow 

speed are somewhat moderated by a feedback effect due to 

buoyancy. We should note here that the quantity a (%) which 

was introduced in theoretical derivation in the form of an 

adjustable parameter plays an important role in determining 

the amplitude of a noise source of the coolant flow speed 

fluctuations for the case of xB 0, as seen from Eqs. (1.42)-

-(1.46) . Therefore, the parameter a corresponds to the rela-

tive standard deviation of the fluctuations when we consider 

the case xB 0 in our stochastic model. 

     At higher power levels, the flow speed fluctuations, while 

their relative amplitude is only a few percent, have a dominant 

effect on fluctuations 'in the other state quantities shown, 

while at lower power levels a noise source due to the random 

generation of prompt neutrons by nuclear fissions contributes 

significantly to the fluctuations in the neutron number and 

thie fuel temperature. This result is as expected. 

      In Fig. 3.11, we have shown how influential are the nuclear 

noise sources and the thermo-hydraulic noise sources on the 

neutron fluctuations. Making use of Eq. (3.2) for the variance 

a2 of the fluctuations in question, two kinds of the variance 

__.a2 and at can be defined by 

2 an = 4((N-N0) 2>n= E f(2D)i9(3.25) 
i, j=1 

                       5         Qt= <(N-NO)2>t=E fij (2D)ij 1 (3.26) 1,j=3
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 so that we have 

2 = <(N-N0) 2)= an+ at' (3.27) 

where fij is a quantity composed of all elements of the matrix 

A. In other words, Qn and at -correspond to the amplitude 
responses of the neutron fluctuations to the nuclear and 

thermo-hydraulic noise sources respectively, and in the parti-

cular case of the SMR, to 2D
NN and 2DQQ respectively. We have 

plotted in Fig. 3.11theratios a2/a2 and at~a2. It is seen 
from the curves in this figure,.as well as in Fig. 3.4, that 

as P increases, low frequency fluctuations become more and 

more dominant, and thereby the neutron fluctuations undergo 

a marked variation in the wave shapes in the vicinity of P=1 

kW for a=1 % and of P=200 W for a=4 %. This behavior can be 

expected to be substantiated by experiment. 

      We shall here compare our calculations with the observa-

tions of Nishih.ara(33), who has carried out coolant temperature 

fluctuations measurements in a natural convection heat transfer 

loop decoupled from neutronics. In his work, the relative 

standard deviation is 0.11 % (the root mean square amplitude 

is 0.04 °C) and 0.15 % (0.05 °C) for an electric power of 200 

W and 300',respectively. It is estimated that the KUR reactor 

power of 100 kW is equivalent to an electric power level some-

where between 200 W and 300 W. In the present study, for 

P=100 kW, it is 0.067 % (0.022 °C) for a=4 % and 0.017 % 

(0.0056 °C) for a=1 %. Judging from the crudeness of our 

calculations where the lumped parameter model was used, this
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difference can probably be attributed to the local temperature 

fluctuations which have been measured by him. 

4.2. Fluctuations in a Subcritical System 

      In Fig. 3.12, the relative standard deviations of fluctu-

ations in state quantities are shown as a function of the 

reactivity /)043-(0).In the same figure, we have also shown 

the results calculated for the neutron fluctuations with the 

zero-power reactor-noise theory. Its analytical expression 

is given by

      ~Q21 {v0v0-1)A +43+13 j(i+'°+r) NX loo =—XRc X loo (%) 
     02(1+ 1 -PQ0) 

                                                   (3.28) 

where 

           A f01f                   -7+0C+30717.--7)1 
                          < -S . (3.29) 

              v0(v0-1,/\f0+2(--21-1=1)  

      For the very subcritical state, the curves for the neutron 

fluctuations are the same as that given by zero-power reactor-

-noise theory. But as the core goes critical and the power 

increases, the departure from theory accentuates due to feed-

back from the coolant temperature fluctuations. ForIPIti 3X10-2 

(t, the neutron fluctuations are largely perturbed by fluctua-

tions in the coolant flow-rate through the temperature coeffi-

cient of reactivity.' Such a behavior is similar to that 

presented in Fig. 3.10. 

      For the fuel temperature, our calculated values decrease

I
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for large absolute values of P. This result is different 

from that in Fig. 3.10. The rkon is as follows. The variance 

is related to the corresponding noise spectrum through 

                                  vo 

      <(F-F0)2 > =- fPFFw)dw .(3.30) 
                                     0 On the SMR, the spectrum PFF(w) for the fuel temperature is 

given by 

        PFF(w) = 2(2DNN)IT(w)I2 ^f0(w2+ht)-1 ' (3.31) 

where we have neglected the thermo-hydraulic contribution of 

the noise source 2DQQ, since our attention is focused on very 

low power levels below 10 W. With decreasing values of P, 

the transfer function T(iw) tends to show a behavior similar 

to the zero power reactor transfer function T0(iw), as shown 

in Fig. 3.4. Therefore, in a delayed critical system, the 

amplitude of T(iw), and hence of PFF(w), becomes very large 

for small values of w. This is reflected in the curves of 

Fig. 3.10. On the other hand, in a subcritical system, _ the 

amplitude decreases with diminishing /c), so that we have a 

result as shown in Fig. 3.12. 

The above-mentioned behavior is discernible, though. only 

faintly, in Figs. 3.10 and 3.12 for the coolant temperature 

fluctuations at lower power levels. For the coolant flow-rate, 

our calculated results are nearly the same as shown in Fig. 

3.10.
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3 5. Concluding Remarks 

      The main conclusion of the present chapter is that our 

stochastic model can be considered to account reasonably well 

for the experimental facts regarding random fluctuations in 

natural convection light-water reactors operating at various 

power levels up to 100 kW. An adjustable parameter a introduced 

here plays a significant and quantitative role in determining 

the noise spectra and the variances. Our calculations suggest 

that we require more experimental data on fluctuations in the 

temperature and the flow-speed of the coolant. 

      The present study has treated the case of natural convection 

cooling, but it is possible to apply our model to the case of 

forced circulation, for which, however, we require a proper 

choice of the values of the two adjustable parameters and a 

for different values of flow-speed of the coolant. When more 

experimental data are available, it should be very interesting 

to compare with such data the numerical calculations based on 

our stochastic model, particularly in respect of phase response 

and coherence of the neutron number—coolant temperature cross 

noise spectra. 

      In the present paper, we have adopted the lumped parameter 

model based on both thermodynamical analysis of the mean beha-

vior of a system and phenomenological considerations on the 

th.ermo-hydraulic noise sources. We might point out here that 

such a theoretical approach should help in understanding the 

experimental data and in suggesting new experiments on random 

fluctuations in various types of reactor, such as BWR and PWR.
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Table 3,1 Nuclear and material constants

Constants Values Constants  Values

v 2.59 a m (0C-1)
1 ooxlo-4

v (v-1) 5.31 Cc • Cc (cal -10C-1)
1 00

7.55)(10-3 y (atm 1) 2 00X10-s

(sec-1) 7.70X10-2 Pc (9 cm-3 ) 1 00

q (Mev ) 200
•

Table 3.2 Model parameters

 ParametersI Values

-12 (seb-1)•1.00X10-4

S (sec-1)106

a1 (Sk/k/°c) 5.65x00-7

a2 (Sk/k/°C) 1.13)(10-4

°1 (°C-1) 1.77x10-5

1.3oxio-4

el (°C)30.0

VFPFCF (Kca1 °C-1)1 18.?

Vc(p )` ——~ ----67.9
S

c
(cm2)  1.05X103

Reference 

(1.64)

Eqs.

(1.57)b^ (3.6)  

   (1.64) 

(1.63)

 (1 

(1. 

(1. 

(1.

.24)  

8)& (1.2?) 

9) • 

22)

(ae = -a
1 -a2)
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Fig, 3.3 Comparison of theoretical neutron 

     with experimental results (Refs. 5 

     (normalized at w = 20 rad/sec)

noise spectra 

and 8)

----------- calculated for a = 4 %----- 

 for a = 1 

—•—•—•— with the theory of zero power reactor noise 

o : 100 kw in KUR(a0 -1X10-4Sk/k/ °C) 

A : 100 kw in KUR(ae+1)(10-515k/k/°C) 

• : 1 kw in KUR(ae°f -1X10-45k/k/ °C) 

A : 1 kw in KUR(ae4 +1X10-5(5k/k/ °C) , 

o : 100 kw in TTR(as= -1.28X10-46k/k/°C) 

^ : 10 kw in TTR (ae= -1.28X10-46k/WC)
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Fig. 3.10 Relative standard deviations of fluctuations of 

state quantities as function of reactor power 

level in a delayed critical system 

The open circles denote experimental results of 

                                                                        • neutron noise measurements (Ref. 34). 

Curve A : Number of neutrons 

       B : Temperature of the fuel 

       C : Temperature of the coolant 

       D : Flow-speed of the coolant
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Appendix I 

     Equation (1.10) is obtained as follows. 

     Combining Eqs. (1.1) and (1.2), the momentum conservation 

is rewritten in the form 

~t(ev) +V•(pV1V) = ox -V.131(Al) 

Carrying out the volume integral, we have 

n(PeVf) + Yc(p Vtr)•dS = pc7^c-yj(-P1)•dS(A2) 

which leads to Eq. (1.10) with the aid of Eq. (1.9). The Eqs. 

(1.14) and (1.15) are similarly obtained using Eq. (1.1). 

• Appendix II 

     The noise spectra PMM(w) and PNM(w) for the SMR: 

      rI-------------------------- 2     P(w) - 2(5 +/1%)(5+6)71-jhNo ---------------htA+°(5)}lX-8 
(s+6)(s+ kt)° 

                                         2 X{d~(2Paa) 41To(5)Stk-tI(.2Dr10 } (A3 ) 
s-itu 

                                             2     PNr~(w) = 2T(s)~E(s-04)(S+6)+Xadl1/~'4Nod2 T3(5)--1(2%0 

         tits w~~+n4                St{~tl (S+Aci)(5+6)+Xsa l (Z'[3NN)}(A4) 

r
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