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CHAPTER 1

INTRODUCTION

Recently, the non-crystalline or amorphous state of solids is

attracting much attentions of scientists and engineers because

unusual but quite useful behaviors have been observed in many

physical properties of glasses and are now being applied to develop

new materials for device applications. Such unusual behaviors are

generally considered to be associated with the random or disordered

structure of glassy state. Since the vibrations of atoms in solids

are quite sensitive to the packing state of atoms, or to the atomic

arrangement, the knowledge of thermal properties is useful to obtain

information about the difference in structure between the glassy and

6)-8)
crystalline states. Among various thermal properties, heat capacity

is the easiest to be dealt with from a theoretical point of view.

As for crystalline state, the behavior of heat capacity is well

understood in a wide temperature range on the basis of Debye theory.

At very low temperatures, the heat capacity obeys the T law

prescribed by the Debye theory and the characteristic temperature

0n obtained from this relationship agrees well with the value

In the low-to-moderate temperature range, it follows the Debye

function based on 0-q well. However, this situation does not hold

for the glassy state.
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It has been known that vitreous S1O2, GeO2 and Se show extra

heat capacities at very low temperatures compared with their crystal-

line states. This means that the T law is inadequate to express

the heat capacity of a glass at very low temperatures. Zeller has

shown that a linear temperature dependent term is needed.

Although there are different types of glasses, they all show such

excess heat capacity. Thus, this phenomenon is considered to be

associated with a lack of periodicity or long range order.

Thus, in this temperature range, it seems possible to approach the

problem by considering a generalized simple disorder model.

A close look of the existing data of heat capacities of various

at low-to-moderate temperatures reveals that the Debye function based

on a single characteristic temperature is also inadequate to express

the heat capacity data in this temperature range Certainly, it

is easy to understand that the concept of Debye's elastic continuum

cannot be applied to multicomponent inorganic glasses, because

various types of atomic bonds exist due to the existence of framework

and interstitial cations connecting to bridging and non-bridging

oxygens. Thus, it is necessary to establish a more complicated

model in which all types of atomic bonds in the glassy state are

taken into consideration.

Other thermal properties such as thermal expansivity are

associated with atomic vibrations in a solid. Furthermore, the

Gruneisen parameter, which is important for the equation of state
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of a solid, depends also on the nature of atomic vibrations. Thus,

the above mentioned new models, either a generalized simple disorder

model suitable for the very low temperature range or a more compli-

cated model suitable for the low-to-moderate temperature range,

should satisfy the behaviors of thermal expansion and GrUneisen

parameter in the respective temperature range. Although a number of

studies have been carried out in the past on thermal properties of

glasses by various investigators, there exist little data useful to

examine the above models.

In the present study, two glass models satisfying the above

mentioned requirements were developed based on the theory of lattice

dynamics. The heat capacity, thermal expansion coefficients and

Gruneisen parameter were determined on alkali silicate glasses from

very low temperatures to moderately high temperatures, and were used

to examine the models developed. A particular emphasis was placed

on the interpretation of the effect of the addition of network

formers to silica network which is responsible to the pronounced

anomalous thermal behaviors. Furthermore, the measurements were also

made on alkali alumino silicate glasses to examine the applicability

of the model to interpret the data of more complicated glasses.

-3 -
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CHAPTER 2

LATTICE DYNAMICS AND THERMAL PROPERTIES OF GLASSES

In this chapter, the theories of lattice dynamics are applied

to describe the thermal properties of glass. The main emphasis is

to obtain the equations which can be used to interpret the experi-

mental data of thermodynamic properties of silicate glasses in a

wide range of temperature as well as to clarify the difference in

vibrational properties between glassy and crystalline states.

It is generally considered that the glassy state has no long

range order and hence no periodic symmetry. Therefore, at high

frequencies, or when the wavelength becomes comparable with the

interatomic spacings, the vibrational modes become extremely complex.

However, most of inorganic glasses are considered to have the short

range order similar to crystals, so that the basic concept, such as

quasi-harmonic approximation, may still be applicable.

In the crystalline state, the quasi-harmonic approximation, in

which the normal modes are taken to be harmonic but the frequencies

vary with volume, has been used successfully to describe thermal

properties of a solid. Since heat capacity is determined mainlv by

the normal mode frequencies of lattice vibrations and thermal expan-

sion is related to the volume dependence of the frequencies, it is

possible to discuss the thermal behaviors of a glass, once the vibra-

tional frequencv spectrum and its volume dependence of the glass

-7-



become known.

From this point of view, in this chapter, a simple glass model

system is assumed first, and the vibrational frequency spectrum for

this model at low temperature range is obtained by modifying the

existing theory of lattice dynamics applicable to crystals.

As will be described in Chapter 4, the result thus obtained explains

important features of thermal behaviors of fused silica and alkali

silicate glasses qualitatively for the first time. It is not precise

enough to describe the thermal behaviors of more complicated glasses

quantitatively. In order to take care of the compositional

variations and structural features of glasses in multicomponent

systems, more than two vibrational frequency spectra are required.

A theoretical approach to obtain the combined mode frequencies and

their volume dependence for such a system is extremely complicated

even at very low temperatures, and can not be made at the present

time. However, at high temperatures where all of the vibrational

frequency spectra follow closely to Debve or Einstein model, it

seems possible to describe the thermal behaviors of complicated

glasses by means of the combination of more than two characteristic

temperatures. On this basis, a model is developed in this section

for silicate glasses in binary or ternary systems.

8-



2.1 An analytically tractable simple model system

In order to interpret the experimental data of heat capacity

and thermal expansion based on lattice dynamics, it is required to

establish an analytically tractable model from which vibrational

frequencies of the system can be calculated. Such a model has to be

suitable to obtain an analytically closed expression for u(k), with

attention paid to its dependence on the local order in structurally

disordered systems. In order to simplify the model, a glass is

considered to be composed of atoms of a single species. Let Ua(n) be

the a component of the displacement vector U(n) of an atom located

at the equilibrium position n. Then the time independent eauation

of motion obeyed by the U(n) can be written in the form.

MO)2Un,(n) -ZEK Q(nm){u (n)-Uft (m) }= 0 (1)
u mg 01(3 P P

where oois the freauencv, M is the atomic mass and K is the effective

force constant. When a symbolic notation D is introduced as the

dynamical matrix determining the eigenfrequencies of phonons for a

fixed configuration of atoms in the system, Eq.(1) may be expressed

as (N(jJ2-K)U=0 or (oJ2-D)U=0 where D==K/M. When the distribution of

atoms in the system is assumed to be homogeneous, the quantity D

becomes diagonal with respect to k. Its explicit form is given by

＼R(k)=<(l/N)EZD (nm) [1-exp{-ik(n-m) }] >

where N is the total number of the atoms in the system.

2) 3)
Eq.(2) is easily transformed to be J>

9

(2)



Tag(k)= (6/M)/dng2 (on)Kag(on) {l-exp (ikn) } (3)

Here, g2(on) is the pair correlation function normalized to unity.

Also, <5=N/V is the number density of the atoms in which V is the

total volume of the system. It should be noted Eq. (3) reduces to

a conventional expression for the dynamical matrix for a crystal

lattice if all the atoms in the system are taken to be located at

lattice points as given by the following equation,

6go(on)=16(m-n) (4)

The main objective here is to obtain the qualitative properties of

the eigenfrequencies of excitation modes given by Eq.(3). So, the

interrelationship between such phonon-like excitations and crystal

phonon is examined first. Eq.(3), when combined with Eq.(4), can

V(k)=(1/M)ZK(on)[1-exp(ikn)]=DT (k) (5)

This is the conventional expression for the dynamical matrix for a

crystal lattice. In terms of this quantity, we re-express ＼(k) as

＼(k)=DL(k)+A4'(k) (6)

As is well known, the eigenvalue of the dynamical matrix D^k) is a

periodic function of k. Therefore, it vanishes at reciprocal

lattice points. The eigenvalues of the matrix AV (k) , however,

generally remain finite at a lattice point k=kf) in the reciprocal

lattice space. Due to this fact, there arises a frequency gap which

decreases with increasing local ordering and eventually vanishes in

10-



the limit of complete order corresponding to the crvstal lattice.

This result is to be expected from the lack of a kind of selection

rule,since the periodicity of the field is destroyed in our system.

Thus, a dispersion curve for frequencies mav have a form as illustrated

in ^ig. 1. It may be concluded that a dispersion curve as shown in

Fig. 1 is rather common to phonon like elementarv excitations in almost

all types of disordered systems composed of atoms of a single species.

In fact, such a behavior has been observed experimentally for liquid

lead. Several numerical calculations and also the results of

computer simulation of molecular dynamics in classical liquids have

given similar results.

w(k)

kO

Fig.l Schematic feature of phonon eigenfrequencies
co(k) in a structure disorder system
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Fig. 2 An analytical tractable model
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In order to solve Eq.(l) and compare the theory with the experi-

ments, the quantity g£(x)･d^V(x)/dx^ has to be expressed bv an

approximate simple form, which makes the above integral analytically

tractable, but contains an essential feature of the disordered

system. From a mathematical point of view, the product g2(x)v(x)

or g2(x)･d2v(x)/dx2 is very sensitive to the value of g2(x) at small

values of x. In the limit x->-0, g£(x) vanishes sufficiently fast,

so that the product should vanish. Thus, the peak value of the

product is obtained for x just above xm, when xm is taken to be the

smallest value of x for which g2(x)=0. This behavior is illustrated

in Fig.2. It is seen that the range of y(x), and the long range

behavior of g2(x) does not affect it. A dominant contribution to

the product g£(x)･d^v(x)/dx2, therefore, comes from the region

around x=a, where a is the average distance of nearest, neighbour

atoms in this model system. (Fig.3)

With these situations, we may use the following equation,

6g(x)(d2v(x)/dx2)=F(x)={!!2-b2(x-a)2? f°f *-h/b<x<a +h/b

The area S occupied by ^Cx) is S=4h3

7 otherwise

/3b

(7)

which is taken to be constant. Insertion of Eq.(7)into Eq.(3)

t.7*sr an r＼V＼f-a -fn

a,2(]O=2KL/M[1^{i!i2lM>+ ^f^- ^MML}cos(ka)] (8)

where d=h/b is the half-width of the curve of ^(x). As shown

above, Eq.8 can be rewritten as,

-13-



&o(k) = [u)L(k) 2 + Ao)(k)2]1/2

Here,

(9)

coL(k) 2= (2KL/M) (l-cos(ka)) is the sauared frequencv

of phonons when the system constitutes a crystal lattice with lattice

constant a.

Am/Vn2_9v /mm ii "*( sin (kd) .cos (kd) sinjkd) -iAu)(k) -2KL/M[l + 3/2{-1^ +
(kd)2 ^yy

}jcos(ka)

This quantity is called here a frequency gap. It is expanded in

powers of kd as follows;

00
z

p

(-1)P-1( 1 2P+2
(2P+1)!2P+3

(kd) 2Pcos (kd)) (11)

Thus, the quantity Aco is shown to be directly connected with the

width d. Here, an increase of the local order corresponds to a

2
decrease of d and therefore of Aw (k) . Now it is possible to

investigate the general behavior of phonon dispersion curves given

by this function of k.

d

S = 4hV3b

a

14

Fig.3 Schematic illustration

according to Eq. 10



In the long wavelength region, the contribution of Aoo(k)2 to

io(k)2 can be neglected as compared with to^(k), and therefore co(k)

is little different from ^(k). This result is of course to be

expected from the Debve theory. Tn this region, where the continum

model holds, phonon dispersion curves are generally insensitive

to the microscopic structure of the system. Tt is particularly

interesting in the behavior of w(k) near k=2fr/a. Tt is seen that

the phonon eigenfrequencies remain finite in the vicinity of k=2 rfa

due to the presence of the factor Aw (k) . It is then shown that

the function ^(k) has a minimum in this region with a gap which

decreases as the local order increases, ^s in the case in Landau

equation, let ko be the value of k at which such a minimum takes

place. We then obtain Taylor's series for w(k) :

U)(k)=o>(ko) + (l/4u>(k0) )[d2u)(k) 2/dk2] (k-ko)2+ (12>
k―kg

= A + {(k-ko)2/2y} (13)

where A = 00(k0)

is the frequency gap and y = 2w (kQ) / [d2to (k) 2/dk2 ] k=k(}

is an effective mass of the elementary excitations.

This equation is the same as the Landau formula for elementary

excitations in liquid helium.

Now the explicit expressions for kf), A an(j y defined above

are obtainable. For this purpose, Eq.ll is approximated bv

Aco(k) 2= (2KL/M) {(1/5) (kd)2-(3/280) (kd) 4+-･ ■}cos (ka) (14)

=(2KL/M)(1/5)(kd)2cos(ka)

- 15



By inserting this into Eq.8, an approximate value of V.qis

koa=27T-(4TT/5) (d/a)2/[l-{4Tr2/5) + (2/5) }(d/a)2] (15)

= 2tt-(4tt/5) (d/a) 2/[l- (47T2/5) (d/a)2]

A=(2/5) 1/2(JoL(d/a) (16)

(jO2 = 4KL/M

is the maximum eigenfreouencv of phonons in the case of the crystal

lattice. A similar procedure yields an approximate result

(d2aj(k) 2/dk2)k=kQ =l-(4tt2/5) (d/a)2 (17)

From Eq.13, it becomes

y=167T(d/a)/ [5
1/2

wLa2 ] -(4tt2/5) (d/a)2 (18)

By eliminating the factor co^ from Eq.16 and 18, the relationship

between A and y becomes,

u=(8TT(d/a)2/5) [Aa2{l-(47T2/5) (d/a)2}] (19)

It is seen that the value of y decreases as d/a decreases or the

local order increases. The results of numerical calculations of

phonon dispersion curves as given by Eq.8 are plotted in Fig.4, for

d/a = 0.1, 0.2, 0.3, 0.4, 0.5.and 0.6.

This figure shows how phonon dispersion curves are modified as the

local order changes.

- 16
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2.2 Frequency Spectrum and Low Temperature Specific Heat

It has become increasing clear that the low temperature specific

heat of solids in the glassy phase is larger than in crystal.

This difference is often referred to as an excess specific heat and

4),5)
expressed by a term linear in temperature after Zeller. To get a

clear picture of it, the existing data were analyzed by the formula

Cv=CiT + C3T3, and are shown as C/T vs T^ in Fig.5. The existence

of C^T term seems a characteristic of glassv state and insensitive

6)
to structural detail of glass. ^ulde and Wagner have proposed a

model in noncrystalline solids which can account for the low temper-

ature anomalies in the specific heat of amorphous solids. Anderson

has proposed an possible model where atoms occupy equally in

different equilibrium positions.

In the previous section, phonon dispersion curve was obtained

for a homogeneous but structurally disordered system like liquid

helium. In this section, it is tried to show that the phonon modes

based on such a simple system can yield an extra phonon density of

states in the low frequency region, which can account for the above

mentioned anomalies in the low temperature heat capacity of non-

crystalline solids.

As obtained in section 2-1, the dynamical matrix H'(k) giving

the phonon eigenfrequencies as a function of wave vector k in a

7)

non-crystalline solid composed of atoms of a single species is given by

18-
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Fig. 5 The low temperature specific heat

for various glasses
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4/(k)=0)(k) 2= (26/M) /" dxg2 (x) (d2v(x)/dx2) {1-cos (kx) } (20)

Let oj(k) be the eigenfrequency of such phonon modes with

imaginary part T(to2)-

Within the framework of the harmonic approximation, the factor

arises if we take into account higher order correlations other than

pairs. Then its contribution to the frequency spectrum 6(a)) can

be expressed in the form

6(0)) = (2C0/7T) lm[ / f
<k)dk

o ]
,21n fi2 = co2 - ir(o)2)

where f(k)dk is the number of modes between k and k+dk and Tm[.A]

denotes the imaginary part of A. In the case of crvstal lattice,

the quantity f(k) is nonzero and becomes V/(2tt)j onlv in the first

Brillouine zone, where V is the volume of unit cell. In our case,

however, such a relation can no-longer be used since the conventional

reduced-zone scheme does not hold. In the followings, it is assumed

that both of u)(k) and f(k) are spherically symmetric. This approxi-

mation is equivalent to assuming the pair correlation function to

be spherically symmetric. Thus only those correlations which exist

in the case of simple liquids are taken into account. Although this

is a zero order approximation for glassy state, there exist some

experimental indications that the structure factor of several simple

substances in non-crystalline phase is not verv different from that

in liquid phase. Eq.21 reduces to

-20



6(0)) = 80) ia[ /" f(9k)k2dk? ]

0 ≪2-co(k)2
(22)

Insertion of Eq.13 in the previous section into Ea.22 gives

6(r) (u>)=8ucjlm[/Qdx I

k1 (x) = [2y(x-A)]
1/2

(24)

(23)

where r denotes the roton-like part of the frequency spectrum.

In view of the fact that in the case of a crystal lattice f(k) is

step function with a cut-off wave vector corresponding to the first

reciprocal lattice vector k, we take f(k) as shown in ^ig. 6

It should be noted that the uncertainty Ak in wave number k in

disordered svstems increases as k increases and that the integrated

value of f(k) over the whole wave number space must be equal to the

total number of atoms in the system.

The expansion of the function f(k i k') in Tavlor's series gives

f(k+k') = f(k) + f (k) k' +

By combining Eci.25 with Eq.24, it becomes

6(r)

(25)

(co)=16ywk2f (k) Im[/ ax(^2_J)k, (x)J

+16viu>{f (k)+2k(3f/3k) }lrol / ol-^l dx ]

= 6-[r) (w) + 6Jr> (w) (26)

Without detail calculations, the qualitative property of 6 (oj)

can be obtained. By setting T(co2) equal to zero, Eq. 24 reduces to

21



6 (W)=[2y(W-A)]1/^

+ 16yo){f (k)+2k(^|lTi) ) } [2y((Jo-A)]x/2

x (r) /
6io ≪≫)

+ 6(2r (UJ) (27)

Introduction of the imaginary part would generally modifies the

spectrum as shown in Fig.7. It also modifies the second term, but

this modification is not so pronounced as compared with that due to

the first term. The same result could be obtained bv analogy of the

energy spectra of electrons or phonons in disordered system. As

seen from Fig.7, thus the behavior of 6 (w) is almost constant in the

vicinity of co=A. The above result, when combined with the formula

for the specific heat,

Ar (r) = kB/du)6(r) (co)(
^-

)2
exp(WkBT)

ACv B kBT ' [exp(?ioj/kBT) -1] 2

0 v
= (kB/h) T/dx6 (r) (^x) ^I) 2 (28)

(r)
gives an excess specific heat ACv Here, kg is the Boltzmann

constant and fiis the Planck constant divided bv 2tt. The result

obtained here depends on the frequency gap A in the phonon disper-

sion curve, and characterizes the local ordering in disordered

systems.

As described above, the result bv Zeller and Pohl shov7S that the

specific heat of non-crystalline solids at verv low temperatures is

proportional to T. This proportionality can be obtained from the

present model. It is seen from 'Fig.? that the excess frequency

- 22



f(k)

*0 kL
k

Fig. 6 Schematic behavior of the wave-number distribution
function f(k). The dotted line corresponds to
the case of a crystal lattice

A

Fig. 7 Schematic behavior
Curves (A) and (B)
^20(r)(u>)
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in the close vicinity of a)=0 and cd=A ,respectively. By putting Eq.2S

into Eq.28, it becomes

ACvr) = (k|/h)Au)J T /Q
T-^rY}

2 dx + (kg/h)AT
(30)

where A is a constant. The quantities n and Wj_ are a positive

number greater than unity and a constant close to but smaller than ^

, respectively. These values characterize the behavior

(29)

(rVo

-24-

in the region co>ooj_ At verv low temperatures the quantity 0/T can be

taken to be infinity. Thus, the first term of Eq.30 gives an excess

specific heat proportional to T. The second term depends on 64 and n.

For liquid helium, the roton minimum in unit of degree Kelvin is

about 8K. In view of possible ordering in noncrystalline solids

higher than in the case of liquid helium, the quantity 04 may be

smaller than 5K. For a sufficiently small value of0^, the second

term in Eq.30 can be neglected in comparison with the first term.

Thus, the low temperature specific heat is expected to be linearly

dependent to absolute temperature. The validitv of this result will

be checked in Chapter 4.

and G is a temperature corresponding to a cutoff frequency of 6

spectrum 5
(r)(

of A . So, <5
(r

w) is almost independent of co above and in the vicinitv

(oj)can be approximated bv

*(r) , , r A0)n, u<ulf , 1}



2.3 Low temperature thermal expansion and Grllneisen parameter

deriving from the present simple model

Generally, a material expands on heating because the atomic

configuration corresponding to the minimum free energy changes with

temperature. The contribution to the free energy arises not only

from the potential energy of the atoms in the lattice but also from

their kinetic energy of vibration. In Orllneisen's theory of thermal

expansion, the vibrational frequencies of a solid are assumed to be

dependent upon the interatomic separation and hence upon the volume.

When the behavior of the -jth mode of vibration is conveniently

described by a dimensionless parameter, the Grllneisen parameter is

expressed by the equation, Yj= -dlnw./dlnV (31)

where (t)jis the vibration frequency of the jth mode and V is the

volume. Since vibration frequencies normally decrease as the

volume increases, the constant Y^ is positive.

When no external stress exist, the condition for minimum free

energy, -r= = 0, leads to the relation,
dv

dU/dV=l/V Ey^Ej (32)

where II js the potential energy and Ei the vibrational energv of the

jth mode. At very low temperatures, E. is small so that ~ = 0 ;

i.e., the volume corresponds to the minimum of the potential

energy-volume curve. At higher temperatures, the larger values of

Ej require that -r― become finite and positive, which is consistent
J dv

with a volume greater than that appropriate to the minimum of the

potential energy curve.
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Orflneisen made the simplifying assumption that all the vibrational

modes of a solid react in the same way to a change in volume and

this equation is a= YC 3/V, where ex is the coefficient of volume

expansion of the solid, 3 the compressibility and Cv the specific

heat. Since all frequencies are not equally affected by a change in

volume, the Orllneisen equation becomes a = B/V- Xyj dE ./dT (33)

(8)
For an ideal Debye solid, the frequencv spectrum js a function of

f (v )= av ≫ and is cut off at a maximum vm = &0/7z.

At this condition, Y i is equal to Y or- .,.,n,*", which is constant.
din V

In a real solid, Y becomes constant at higher temperatures

(Y=Yoo where T>9) or at very low temperatures

, dine0
(^0= " dlnv' where T<0)-

This constancy has been proved for a number of crystalline solids.

Furthermore, the difference between Yq and Yoois generally small.

For example, the experimental curve for copper after Barron shows

that Yoo-Y0< 0-3.

As described above, a number of glasses, particularly silicate

glasses with low alkali contents have negative values of thermal

expansivity at low temperatures. Two examples are shown in Fig.8.

From the above definition of Y=aV/3Cv> the Crtlneisen parameter must

become negative for these glasses, because other quantities V, 3

and Cv are always positive. On the other hand, almost all glasses

have positive thermal expansion, and thus a positive Orlineisen
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parameter. Although various investigators have attempted to explain

such variation in expansivity or OrUneisen parameter with temperature

or composition from a structural point of view, no clear explanation

has not been presented yet.

At any rate, whenever a model of glassy state is proposed, the

model should show such a wide variation in thermal expansion or

Grllneisen parameter from a negative to a positive value depending

upon glass composition and temperature. So, it is attempted here

to see whether the present simple model svstemsdeveloped Jn the

previous section satisfy this condition or not.

Since V is proportional to L , the Grllneisen parameter can be

expressed in terms of uj and L by

dlnw = _doi_ / dV = _Vfdaj.dL = __L_ dw mx
Y dlnV to / v a) 3L dV 3to dL

This indicates that the Grttneisen parameter can be calculated when

the variation ofwwith L is known. According to the results obtained

for the present analytically tractable model system in section 2.1,

03can be expressed bv

U)=const. (|) + (k^0)2 (35)

where a is the average distance of nearest neighbour atoms and d is

the half-width of the curve of F(x), which specify the local order

of the system. The above two equations give,

This equation shows that the behavior of depends on the variation
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in d and a with respect to L, and that Y becomes negative when the

first term in parenthesis, involving the change in d with respect to

L, is larger than the second term involving the change in a with L.

However, the effects of composition and temperature on a and d can

not be given at this moment, further discussion based on Eq.36 is

not possible.

In order to overcome this difficulty, an assumption is made that

the quantity td/a, which represents the "randomness" of the

disordered system, can be expressed as AL^. This choice is based on

the fact that the equations can be analytically solved without any

other assumption, yet retain the characteristic feature of the model

described in the previous section. Qualitatively speaking, the

disorder existing in the supercooled glassv state becomes less as

temperature is raised. Thus, it may be considered that N is related

to 1/T. By using this equation 3=ALN and differentiating the disper-

sion equations in Chapter 2.1 with respect to L, the following

equation can be obtained for y .
(37)

11+3 {cos (2irg)/ (2^3) 2-sin (2^3) / (2tt3)3}cos (2tt0)]

The results of the numerical calculations for different values of B

and N are shown in Fig.9. In this figure, the Lennard-Jones

potential is assumed as the interatomic forces. The crystalline

state, in which no variation in force constant exists, shows a
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constant value of Y=0.5 for any k. The glassy state, on the other

hand, shows a large variation in Y with k, as given in Fig. 9.

As observed in this figure, the energy density is highest at near

2Tr/a. Thus, in order to see the variation in y with 6 and N, the

values of Y at 2it/a are plotted in Fig.10 as a function of 8(=d/a)

with at constant N. Since $ is defined as the randomness of the

disordered system and thus is considered to be dependent on glass

composition, this figure gives the effect of glass composition on

Y at constant N. The same data are plotted in Fig.llas a function

of N at constant 8. Since N is related to 1/T, this figure gives

the effect of temperature on y. From this figure, it is clear that

Y becomes negative at low temperature easily for a glass having a

large degree of randomness, while Y stays positive for a glass

having only a minute degree of randomness even at extremely low

temperatures. This result will be applied to interpret the experi-

mental data in Chapter 4.
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2.4 Problems associated with application of the present

simple model to complicated glass systems

As described in the previous section, the phonon dispersion

curve for a disordered system is different from that of an ordered

system at low temperatures. However, at high temperatures, the

contribution due to such disorder to the total heat capacity becomes

very small and the continuum model of specific heat applicable to

crystals is suitable also for simple glasses as expected from the

analytically tractable model treated in the previous section.

In this case, the frequency distribution function of the vibrations

can be assumed to follow the Debye model where 3N frequencies from

zero to some vm are picked out of the infinite frequency spectrum

of the continuum vibrations. By introducing this limiting maximum

frequency ＼^,Debye's theory takes into account the atomic nature

of the structure of solids, but it assumes that the continuum is

isotropic and the propagation velocity of elastic waves does not

depend on direction. In this sence, the glassv state is an ideal

case. Then the thermal energy of a solid is taken to be the sum of

the energies of 3N waves corresponding to the excitation of the

energy levels of the lattice with frequencies from 0 to vm.

Although the continuum model of specific heat is only a first

approximation, it turned out to be very fruitful, mainlv due to the

fact that in this theory separate energy levels are ascribed to the
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normal modes of the lattice as a whole and not to vibrations of the

individual atoms. Bv using the simple frequency distribution func-

tion, Debye obtained the following equations for the vibrational

energy of a solid and the specific heat

m u. hv dv
U = /% ds = 9N/^ /^ ―_

0 0 hV/kT_1

Cv = 3R [12 (|)
3 0/

'o

T x3

X
e

dx

1

(38)

0/T
T7^

(40)

where, h Mn/kT = 0/T ; hv/kT = x

Debye's theory has been applied successfully to describe the

temperature dependence of specific heat in a number of solids.

The fact that the characteristic temperaturesof a simple solid

determined from Debye's theory coincide with those obtained from

elastic constants and other methods have proven the validity of

Debye's model. However, recent experimental and theoretical work

have disclosed that Debye's theory is not precise enough to a number

10)-17)
of solids. They include organic and inorganic high polymers having

chained or layered structures with metallic, ionic, covalent or

hydrogen bonds in both crystalline and amorphous state. This means

that the simple model described in the previous section is not
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precise enough to describe the thermal behaviors of more complicated

glasses quantitatively even at high temperatures, because the simple

modes involve only one characteristic temperature. Thus the simple

model has to be modified to take care the change in vibrational

frequency spectrum for complicated glasses in vrhich chained or

layered structures may exist.

It has been known that specific heat is very sensitive to the

structural features of solids, or to the way in which atoms and

molecules are bound each other. For example, the specific heats of

diamond and graphite, which are different modifications of the same

substance, differ approximately by a factor of 7 at about 100K and

by a factor of 23 at 50K. A similar difference exists also between

red and black phosphorus, or between rhombic and monoclinic sulfur.

Moreover, the specific heat of graphite does not obey Debye's T^

law exactly. It is clear that the frequency distribution of the

eigenvibrations is different from that of Debye's theory and that

the frequency distribution function of the model must contain the

spectra arising from such structural features of a solid. '

The contribution of such structural features may be obtained

by considering the existence of macromolecules with chain-like or

layer structures, as treated by Tarasov. Let us assume first that

a solid is composed of a large number N of atoms which do not

interact with each other. On the basis of the Debye assumption,
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the vibrational state of a linear chain of atoms can be represented

as eigen vibrations of a one dimensional continuum. By introducing

a cut off frequency in the vibrational spectrum to account for the

discrete atomic structure of the chain molecule, the number of

frequencies dS^ in the interval ( v, vfdv) , becomes,

dsi=qi (V)dV=3NV^1dV (41)

where N and vm are taken to satisfy the following condition.

Vm '^m
/ g(vJdV + 2/ g(vJdv = 3N (42)
0 I 0 c ;

This separate writing of the frequency distribution functions for

different directions of polarization, and therefore of the specific

heat relations, is due to the fact that the longitudinal and trans-

verse vibrations can have entirely different frequencies for the same

wavelength. For a two dimensional network of atoms, the number of

frequencies dS2 in the interval ( v, vfdv) ; becomes,

g2(v)dv = 6NV22vdv (43)

When generalized, the waves of one direction of polarization in

p-dimensional continuum can be expressed-

Polarization jn an p-dimensional continuum can be expressed by

g (v)dv = pNv'P vp"1dv (44)
p m

The distribution of eigenvibrations of a P-dimensional continuum

(p=l,2 or 3), and the Plank-Einstein expression for the mean energy

per degree of freedom yield
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-1 ]
-10

T
(47)

Up = / %v(exp^ -1)-1PNV-P vP"1 dv (45)

for waves of one direction of polarization, and a total energy of

3Up, assuming elastic isotropy and taking the mean value ofvm.

Setting, as before,

we obtain

value.

hy and Q ^X kT

U =pR

P=2; D2

m kT

9/T

ex-l

-38

(46)
Tp+1

0P

Differentiating, we find from dUm/dT, the specific heat

Cp = p(p + 1)R( T .p r XPdX 9
e ) /o i^T " pR t [ exp

Taking, as in Debye's theory, some average value of the characteristic

temperature for the longitudinal and transverse vibrations, the total

specific heat for all the 3N modes is effectively threefold the above

T P R/T xP^v P) Pi -1
Cp=3p(p + 1)R( | )P /0 i-Si^- 3pR

g.
[exp

£ _u
(4g)

Integrating-by-parts as we did in deriving (40), this boils down to
p 0/T p+1 x

cp =3PR( | ) fQ jpr^yz dx (49)

This yields in the three possible cases.

a) Debye's three-dimensional continua

p-3, D3(|3).9Il(T3)3/^5l5^ (50)

b) lavers or two-dimensional continua

(
R2, ,n, T 2

rQ/T x3exdx csn
( T )"6R(

0
> '0 "(P^IT2 ( }



c) chains or one-dimensional continua

91 , T . ,Q/T x2exdx ,,,>.
p=l; Dx( - )=3R( §i) /o (eM)2 (52)

When the equation ex/2-e~x/2=2sinh(x/2)is used,

a)

b)

c)

p=3; 3 6R(
£

)3
03

T 2
P=2; 12R( ^ )

P=l; 3R(

c1

0/T

0/T
'o

0/T
'o

(

(

x ,4 -2 x. ,
― ) sh r)dx

2"
)3

<f>2

sh"2 (|)dx

(53)

(54)

sh~2(|)dx (55)

The above equations hold when no interaction between molecules exist.

In solids, however, chain-like or layer-like molecules can not exist

independently and thus some interactions should appear among them.
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2.5 A model for complicated glass svstem

So far, the frequency distribution functions have been derived

for the models in which atoms of one kind are dispersed homogeneously

20)-23)
in space or they form polyatomic chains or layers. The question

naturally arise as to what extent the theory of specific heat of

monoatomic materials is applicable to glasses, which are mainly

polyatomic and complex systems. It is considered that the freauency

distribution functions at extremely low temperatures for the glasses

containing more than three kinds of atoms become extremely compli-

cated as the distance of nearest neighbour atoms ( (a) in Fig. 2)

varies depending upon the species chosen as well as the chemical

composition of glasses. Thus it is almost impossible to obtain the

frequency distribution function at extremely low temperatures

suitable for estimating low temperature heat capacities of these

complicated glasses. At moderate to high temperatures, however, it

seems possible to treat the problem based on the fact that the heat

capacity of crystals having a simple structure but containing more

than two kinds of atoms can be described quite well in this temper-

ature range by only one Debye characteristic temperature.

As described in the previous section, the glass structure may

consist of chained or layered molecules. Therefore, the strong

interaction forces between the atoms inside the chain or the layer

as well as the weak interaction forces between atoms in adjacent

chains or layers have to be taken into account.
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Obviously, a structure of interacting chain molecules by no

means has the frequency spectrum of a linear continuum cut-off

at v .In the low frequency part of the spectrum, where the
TO.3.X

wavelength is much larger than the maximum distance between neighbor-

ing chains, the solid behaves as a three-dimensional isotropic

continuum, and therefore the low frequencies are governed by the

Debye formula. For the high frequencies, on the other hand, it is

important to know the frequency spectrum of interacting macro-

molecules. Thus, the spectrum of an interacting chain structure

may be divided into two parts.

1) 3Ni high frequency modes from V to V]_ vzith a one dimen-
IIIcLX

sional continuum distribution ( increment dSi )

2) 3N2 low frequency modes from v1 to 0, with a three-dimensional

continuum distribution ( increment dS3 )

where 3N=3Ni+3N? and

and 3N1=3N - /q1 dS3, while dSi = 3N1 (V^^V^ ~1dv (56)

dS3=9N2V^3 V2dV (57)

Thus, we can obtain the frequency density function g(v)=-―^-

according to (56) and (57).

The number of frequencies in the interval (vmax'^l) i-s approximately

in direct proportion to viand in inverse proportion to the maximum

frequency vm , 3N =3N ^- , 3N-,=3N(l-^-]― ) (58)
2 vmax J- Vmax

From(56)and(57), we obtain for the vibrational energy U]_ 3 of the
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interacting chains,

Ul,3=3Nl(vmax-Vl)
-1

c; ■≫-<≪*& -1)

+ 9N2V'3 /q1 hv3 (exp^ -l)"1dV

From (58) setting
hV

c1=
hVm

k '

^dv

(59)

hVl

we obtain for the specific heat C]_ 3 of the interacting chains,

T ,Q1/T x2e* dx' G3 r 3RT
03/Tx2ex

dx

Cl,3 = 3R 9n f0 {e*-l)z " 0!
L 03

0
(ex-l)^

9RT3 .Q3/T X4ex dx

0

A c―^ ]
(e*-l)z

(60)

The frequency spectrum of a solid consisting of interacting two-

dimensional layers is similarly divided into two parts. Then, the

temperature dependence of the specific heat of a structure with inter-

acting layers become

c *
, * ,2 ,92/T x3eX dx , 93 2 6RT2 .03/TxVdx

2,3 = 6R ( e2}
;0

T^TT2 " ( Q2) [e7~ f0 (P^I)^

9RT3 r°3/T x4ex dx
ep- f0

(ex-i)^
] (61)

Thus, it becomes possible to describe the heat capacity of a solid

with interacting macromolecules bv two characteristic temperatures.

The characteristic temperatures c]_, 02 and 03 have a definite

meaning. For chain-type structures 0j_is the characteristic temper-

ature of the solid when considered as a one-dimensional continuum.

0^ is determined by the elastic constant of the main bonds and is a
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measure of this elasticity. R3 is the characteristic temperature of

the chain structure when considered as a three-dimensional isotropic

continuum, in which the chains are linked by lateral interactions.

c3is obtained, independent of the calorimetric measurements, from

the sound velocity propagating across the chains. Fig.12 shows

curves of the specific heat versus T/q-j^ The top curves correspond to

the pure chain structures. The bottom curves represent Debye's theory.

The intermediate curves corresond to different degrees of interaction.

To extend the preceding treatment to more complicated glasses

such as containing modifying cations, alkali silicate and alkali

alumino silicate glasses, the vibrational energy of modifier in the

SiO2 networks must be considered. In the present study, it is

assumed that the contribution of modifier-oxygen bonds can be given

by an Einstein function, following the treatment of Kelley for

crystalline silicates. Then, the heat capacity of these glasses

can be represented by three characteristic temperatures, two Debye,6l

and 63, and one Einstein, 0E ･

Since c1 and 63 are properties of the glass lattice, their contri-

bution to the heat capacity is best described by the Debye model.

However, modifying cations result in local modes, which are considered

to contribute independently to the vibrational specific heat, in the

form of one Einstein function with the characteristic temperature Og .

Consequently, 0g depends on the kind of modifying cations but not on
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their concentration.

The representative expression of the present three band model

for the specific heat capacity, including these characteristic

temperatures, is

Cv = C1/3 + 3Rlx2ex/(ex-l)2J (x= 0E/T) (62)

Once the heat capacities of glasses are measured at various temper-

atures, Ql,03 and 9j? can be determined numericallv by a computer

to verify the experimental data. However, in the case of low modifier

content, the heat capacity due to modifying ions is small compared

to the total heat capacity as expected from Eq.62. Thus, the uncer-

tainty in Ge increases with decreasing modifier content. Although

the real structure of silicate glass is unknown, it may be regarded

as consisting of chains of SiC>4 tetrahedra connected by metal poly-

hedra, similar to those of silicate crystals. These chains may

differ in the bond length, bond angle, number of tetrahedra in the

repeat units, and type of interconnection, depending on the kind and

amount of modifier in the glass. Such differences should cause a

change in the lattice vibrational frequency spectrum and thus the

value of cland c3. Therefore, it is possible to discuss the effect

of modifier on the structure of the glass network by comparing 6]_

and c3 for various silicate glasses by the present three band model.
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SUMMARY TO CHAPTER 2

Two glass model systems were considered theoretically to estab-

lish the vibrational frequency spectra and equations suitable to

interpret the thermal properties of silicate glasses. The main

results are as follows:

1. A homogeneous but structurally disordered system was found to

possess the thermal property characteristic of the glassy state at

very low temperatures. The phonon dispersion curve of the excitation

modes for this system yielded an extra phonon density of states

in the low frequency region, which gives an excess heat capacity at

very low temperature. The phonon dispersion curve changed its shape

depending upon the degree of local disorder of the system.

Thus the magnitude of the excess heat capacity may be used to discuss

the local disorder of glass. The same simple glass model system also

gave the linear dependence of heat capacity on absolute temperature

at very low temperatures, in accordance with the experimental results,

2. The Grflneisen parameter becomes negative at low temperatures

easily for a glass having a large degree of randomness, while it

stays positive for a glass having a minute degree of randomness

even at very low temperatures. In addition to the randomness of the

disordered system, which depends on the glass composition, the effect

of temperature on Gruneisen parameter was introduced by considering

two independent parameters, and a diagram showing the variation in
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Gruneisen parameter with composition and temperature was constructed.

3. A more complicated glass system involving three different charac-

teristic temperatures was formulated to represent the heat capacity

data in the low-to-moderate temperature range, These three charac-

teristic temperatures were taken to be related to the elastic inter-

chain bonds of glass network, the lateral interaction of chains and

the independent modifier-oxygen bonds. Thus, the nature of atomic

bonds in various glasses or their structures can be discussed based

on these three characteristic temperatures.
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CHAPTER 3

METHODS OF THERMAL PROPERTY MEASUREMENTS

Among various thermal properties, heat capacity and thermal

expansivity were investigated in detail in the present study by using

Low temperature calorimetry and Low temperature dilatometry.

Low temperature calorimetry was carried out by a newly constructed

calorimeter in order to determine the heat capacity of various glasses

and crystalline compounds as a function of temperature from 1.6K to

400 K. Low temperature dilatometry was undertaken on glass samples

by two types of dilatometers, one suitable for the measurements from

77 to 700 K , and the other for a very low temperature range from

4.2 to 400 K.

There are some problems associated with the measurements of heat

capacity and thermal expansivity at low temperature. Heat capacity

and thermal expansivity are important to the theories of thermo-

dynamics and the equations of state of solids, and they are defined

as the temperature derivatives of length and heat content, respec-

tively. Thus, it is better to determine the change in length or

heat content in a very small temperature interval, which requires

accurate measurements of temperature and length ( or heat content )

as well as stability of the apparatus in the temperature range in

question. Most of the commercially available systems of measuring

thermal expansion and heat capacities are for a wide temperature
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range from room temperature to high temperatures but not for low

temperatures. Thus, it was necessary to construct the svstems

suitable for the present study.

In this chapter, the systems constructed and used for the

present studv are described in detail. The systems were tested by

measuring some standard materials, the results of which are also

given.
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3.1 Low temperature calorimetry

The heat capacity at constant pressure is generally obtained by

measuring the heat added on a calorimeter vessel insulated thermally

from its surrounding and the resulting temperature change AT after

maintaining the calorimeter at a certain temperature. The general

requirements for the vessel are mechanical and chemical stabilities,

good thermal diffusivity, and low electric conductivity among others.

To satisfy these requirements, the system capable of measuring heat

capacity of solids from 1.6 to 400 K was designed and constructed.

It is basically similar to the one successfully used bv Sekj, for

various solids, and consists of cryostat, calorimeter, and measuring

D,2)
system.

Cryostat

The cryostat used was of adiabatic type and made essentially of

metallic materials. The primary function of this cryostat assembly

is to maintain a calorimeter vessel at any desired temperature in a

thermally insulated state, so that virtually no heat is exchanged

between the calorimeter and its surroundings even when an electric

heater of the calorimeter vessel is turned on during measurements.

In order to eliminate heat exchange between the calorimeter and its

environment due to gas convection and establish adiabatic conditions,

it is necessary to maintain a high vacuum ( less than 10 mmHg at

room temperature ). To achieve this condition, the vessel was connect-
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ed through pipe to a separate evacuation svstem equipped with a liquid

nitrogen trap, an oil-diffusion pump and a rotary pump.

Various precausions were taken to minimize the heat conduction

through electric lead vires in the crvostat. The wires were drawn

into the cryostat through the inlet of leads. After passing through

the evacuation tube, these leads were thermallv anchored to the thermal

station. The leads were then anchored to the smaller cylindical part

of the liquid nitrogen container. All the lead wires were vanished

tightly with glyptal lacquer ( G.E. adhesive No. 7031 ), particularly

at the place where they were thermally anchored.

Calorimeter

The cross sectional view of the calorimeter constructed in the

present study is shown in Fig.l-A. The main body of the calorimeter

consisted of a sample container, an adiabatic jacket, an upper flange

of the calorimetric envelope with pipes for evacuating the system to

the order of 10 mmHg and for feeding in a heat conduction gas of

helium. It was attached to the flange of vessel by means of a ring

shaped well-annealed copper spacer. The sample container was suspended

by four thin constantan wires from the top portion of the adiabatic

jacket. The adiabatic jacket was in turn suspended from the upper

block of stainless steel. The sample container (Fig. 1-B) was made of

copper (0.1 mm in thickness) with a central well for setting a heater.

The eight radial fins silver-soldered to the well and to the inside
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wall of the container provided a good thermal contact of the sample

with the container. The size of the main body of the container was

30.8 mm diameter and 52.3 mm long. The total weight of the container

was about 20 g.

Although the well was machine-drilled so as to be fitted with the

heater assembly, it was necessary to fill the gap with beryllia cement

at the entrance portion of the well and with silicon varnish on the

heater in order to reduce the temperature gradient in the container.

The adiabatic inner jacket was a thin walled copper cylinder with a

diameter of 4 cm, and a length of 9.0 cm. The metallic bodv of the

(a)

Cap ~~――-__

hook

vessel

thermo-
meter

copper
holder
bundle
heater

radiation
radiation

plate -

Germaniu
tnermome

5 cm

Ftp. 1-fR") Spptional drawine of the calorimeter vessel
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jacket V7as coated with thin aluminium seal and the manganin heater of

200 ohms insulated with GE cement was fixed on the jacket non-induct-

ively . The same heater was also attached on the outer jacket.

The temperature difference between the outer surface of the

container and the inner surface of the jacket, was detected by a three

junction chromel-alumel thermocouple. The junction of the thermo-

couple was insulated with a small thin piece of cellophane adhesive

tape and inserted tightly into copper bands. The voltage difference

between two thermocouples at the jacket and the sample container was

amplified with an microvoltmeter ( ±10)jV in full scale ). This

amplified voltage was fed into a servo-circuit, which controls the

heater current of each portion of the jacket. The output current was

adjusted automatically from 0 to 500 mA, responding to the measured

temperature. The adiabaticity between the inner jacket and the outer

jacket was checked by two thermocouples placed on them and maintained

in the same way as described above.

After a powdered sample was packed into the sample container,

a small amount of helium gas was introduced through a narrow copper

tube in order to help the container to reach an thermal eciujlibrium

state in a short time. The tube was pinched off to keep it gas-tight

after dehydration in vacuum.

The electric power produced in the calorimeter heater was obtained

by measuring the current and the voltage applied on the heater.

57



The potential drop across the calorimeter heater v?as measured in the

conventional way with a DC volt meter, using a standard resistor

(10 ohm) as a reference. The heating interval, usually 900 sec, was

measured on a digital counter, which was also used as an automatic

digital on-off switch. The energy supplv was so adjusted that the

temperature elevation in this heating period was 10 deg. in the loaded

condition. For such heating rate, interval equilibrium in the sample

container could be attained within 5 minutes after heating was stopped. .

The EMF of a working thermocouple was measured by a potentiometer in

conjunction with a galvanometer. The output voltage of the galvano-

meter was recorded on a X-T recorder. When the automatic adiabatic

control was working in order, the temperature difference could be

kept within 10~z deg. at any temperature below room temperature for

the period of equilibration. The whole circuit is shown schematically

in Fig.2(,A). The servo circuits for automatic control system and

relay are shown in Fig.2(B) and 2(C).
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Fig.2(B) Servo circuit for automatic control system

Fie.2(C) Servo circuit for relay.
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3.2 Low temperature dilatometry

Among various methods of measuring the change in length with

temperature, a vitreous silica differential dilatometer using a differ-

ential transformer was designed and constructed. The system was

suitable for the temperature range from 4.2 to 300 K. It consisted a

base plate, two inner chambers, the dilatometer system and the cryo-

stat, as shown schematically in Fig. 3.

Dilatometer system

The dilatometer system consisted of the quartz parts, the alumin-

ium sleeve and radiation shields shown in Fig. 3. A quartz support

tube of 53 cm long was attached by epoxy resin to the base plate.

The inside of the support tube was bored to provide precision sliding

fits with the quartz platform and quartz push rod guide. The push

rod was a 600 mm long quartz tube. The specimen was about 5 mm in

diameter and 30 mm in length and its ends were ground flat and paral-

lel. It was placed in a 7 mm OD, 20 mm long copper holder to reduce

the temperature gradient along the specimen length. The Au,Co-Cu

thermocouples and a germanium thermometer were attached to the speci-

men to measure the specimen temperature. The bottom of the holder

was ground flat and perpendicular to the side wall. Both the specimen

and the holder were removable through a window in the support tube.

The specimen and the lower portion of the support tube and push rod

were positioned inside an aluminium cylindical sleeve, which served

as a heat shield to minimize the temperature gradient in the specimen
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62



environment.

Electrical circuit

To achieve an accurate constant heating rate of the dilatometer,

a program controller with a SCR unit was used. The temperature was

monitored by a Pt resistance thermometer. The electrical circuit is

shown schematically in Fig. 4. The equilibrium temperature was also

measured with the germanium resistance thermometer in conjunction

with a six-dial double thermofree microvoltmeter.

The output voltage from the differential transformer, which

corresponds to the expansion of dilatometer, and that from thermo-

couples were alternatively measured on a digital voltmeter and printed

every ten seconds, or in a time interval corresponding to a rise of

one degree. These printed data were fed into a computer and the

calculation was made by using the least square method to obtain the

thermal expansion coefficient at various temperatures.

Fig.4 Electric circuit for thermal expansion measurement
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3.3 Calibration of thermometers and thermocouples

The determinations of thermal quantities that appear in any

second law equation requires the temperature measurements on the

thermodynamic scale. In the present study a germanium thermometer

and various types of thermocouples were used. For high temperatures,

the Plank radiation formula may be used to determine the values of

temperature on the thermodynamic scale, ^or low temperatures, the

measurement of magnetic susceptibility of an ideal paramagnetic salt

which obeys the Curie's law or the Curie-Weiss law is suitable, to

2)
determine the temperature. In anv case, accurate measurements of

values of temperature on the thermodynamic scale are fraught with

experimental difficulties. The usage of any method or system requires

some calibration beforehand.

Calibration of germanium thermometers

The germanium resistance thermometer (Cryocal, Inc., CR1000)

used in this study was calibrated against the standard germanium

thermometer, which belongs to the Low Temperature Laboratory in the

Faculty of Science in Kyoto University. The resistance value of

these germanium thermometers was ca. 1000 ohm at 4.2 K and the

calibration current of ca. 5 microampere was chosen to avoid excessive

joule heating. The values of resistance measured are shown in Fig. 5

as a function of temperature.

In the case of germanium thermometers, no established functional

relationship exists between temperature and resistance, but the cali-
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bration data were generally fitted to the following

T=£ cof■(logR)J

3)
formula.

For the present thermometer, the data were arranged by dividing the

temperatures into three range and using the following equations.

From 1.6 K to 10 K,

T=COF(l,5,l)(logR)° + COF(l,5,2)(logR)1 + COF(1,5,3)(logR)2

+COF(l,5,4)(logR)3 + COF(l,5,5)(logR)4

From 10 K to 60 K,

T=COF(2,5,l)(logP)° + COF(2,5,2)(logR)1 + COF(2,5,3)(logR)2

+COF(2,5,4)(logR)3 + COF(2,5,5)(logR)4

From 60 K to 100 K,

T=COF(3,8,l)(logR)° + COF(3,8,2)(logR)1 + COV(3,8,3)(logR)2

+C0F(3,8,4)(logR)3 + COF(3,8,5)(logR)4 + C0^(3,8,6)(logR)5

+COF(3,8,7)(logR)6 + COF(3,8,8)(logR)7

The COF values
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2)≫ 0.216599^739810+02
3)≫ -0.573203932972D+01
4)* 0.573395216695D+00
5)- -0.200917910759D-01
1)= 0.419030539577D+03
2)≫ -0.252267361458D+03
3)≫ 0,28700133321^D+02
4)= 0.170253315658D+02
5)* -0.685705612353D+01
6)- 0,1081260831460+01
7)=≪-0.81953no79577D-01
8 )- 0 .247421322414D-02
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Fig. 5 Calibration of germanium resistance thermometer

67



The calibration of thermocouple

Among many ways of measuring cryogenic temperatures, the usage

of thermocouples is simplest and most useful. In the present study,

three thermocouple combinations, Chromel versus Alumel thermocouple,

Constantan versus Copper thermocouple and Oold-2.1 at % Cobalt versus

Copper thermocouple, were used depending upon the temperature range

studied. Constantan versus Copper and Chromel Alumel thermocouples

are suitable for use above liquid nitrogen temperature but not below,

because of their relatively low sensitivity at verv low temperatures.

Gold-Cobalt one has sufficiently large thermoelectric power against

copper at near liquid helium temperature so that it can be used

together with Germanium resistor thermometer. A number of thermo-

couples were tested by determining their thermoelectric potential

at two different temperatures at liquid nitrogen and ice or liquid

helium temperatures. From this test, only thermocouples which showed

4),5)
the same values listed in the literature, were selected. However,

some thermocouples, particularly the one with gold-cobalt alloy were

found to vary in thermoelectric power with time. Therefore, many

measurements were carried out to test the time variation.

Three thermocouples were tested over a period of a month, and the

thermocouple which showed only about 1% change was selected.
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3.4 Preliminary experiments for testing measuring systems

In addition to the calibration of thermometers and thermocouples

all the systems constructed in the present study for determining heat

capacity and thermal expansivity were tested by measuring these quan-

tities of a standard material.

Calorimeter system

The reliability of the present calorimeter was examined by

measuring the heat capacity of a standard sample of ot-Al~Oofrom 77

3
to 300 K. The deviation of the present values from these of Furukawa

is shown in Fig. 6. Most of the observed points fall within ± 2%

in relative deviation from the smoothed curve. This agreement was

sufficient for the present study.

u

<D
Q.

<

A

0

A

0 100 20C 300

T / K

Fig. 6 Calibration of the calorimeter about a-Al90o
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Dilatometer system

By the present system, the difference in thermal expansivity

between the specimen and vitreous silica is detected. Thus, the

thermal expansion of vitreous silica used for the support tube has

to be added to obtain the true thermal expansion coefficient of the

sample.

The thermal expansion of a vitreous silica sample, which was

cut from the same rod used for the dilatometer, was measured in the

capacitance dilatometer. The experimental procedure has been

described in detail by Nakamura. The sample was in the form of

cylinder ( 2mm in diameter and 5mm in length ) in the capacitance

cell, as shown schematically in Fig. 7. The result is shown in 'Fig.8

8) ,9)
, which also gives the data for Spectrosil by Gibbon. A small amount

of difference between Gibbon's is observed at 20K. This may be

attributed to experimental error or to a difference in fictive

temperature or thermal history of glasses, which are known to exist

in different glass samples.

However, the present values of vitreous silica are not so much differ-

ent from those of Gibbon, and in the range of 80 to 293 K they may

be expressed by the following equation.

a x 106 = -1.416 + 9.581xl0~3T

-5.991xl0~6T2 - 1.564x10-8t3

At lower temperatures, thermal expansion was so small that the poly-

nomial function a=-f3.S+0. l')xlO~1OT3degK-1 In order to obtain thermal
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expansion coefficient of a sample at low temperatures, thermal expan-

sion of vitreous silica, at 5 K, 10 K, 15 K etc, was taken from the

thermal expansion curve given by Gibbon and added to the thermal

expansion of sample determined at the same temperature. Indeed,

these values were tried to fit to a fourth order equation.

Thermal expansion coefficient was obtained by differentiating this

equation. Although the correction for finite AT has to be made, the

magnitude of the correction them at low temperatures is estimated to

be about 0.06xl0~°/K, which is negligible in our purpose.

The dilatometer was tested against copper as a standard

copper is the first of a series of materials that are to be certified

･―1
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Fig. 8 Result of

vitreous silica
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A heating rate of 3.0°C/min. was used for all measurements. The

fourth order polynomial was fitted to the expansion data for each of

the five specimens in the temperature ranpes from 10 to 50 K and 50

to 300 K, in order to obtain the values of expansion coefficient.

A comparison with the data in literature is shown in Fig. 9.

The maximum probable inaccuracy in expansion is ±3.0% at 10K,

±1.8% at 20 K and +1.5% at 30 K. Relative or random errors between

samples are considered to be less than this.
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SUMMARY TO CHAPTER 3

The methods used in this study to determine heat capacity and

thermal expansion coefficient from very low temperature to moderately

high temperatures were described in details,

1. The low temperature calorimeter system, newly designed and

constructed, was found to be useful for the measurements from 1.6

to 400K, by using (X-AI2O3 as a standard sample. The deviation of

the measured values from those in literature was within + 2% in the

entire temperature range.

2. The vitreous silica differential dilatometer designed and const-

ructed by using a differential transformer, was suitable for the

temperature range from 4.2 to 300K. The standard sample used was

copper and the agreement between the measured and the reported value

was within 3% at 10K, 1.8% at 20K and 1:5% at 30K.
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CHAPTER 4

THERMAL PROPERTIES OF ALKALI SILICATE GLASSES

AT UFRY T.OW TtfMPF.RATURF.S

As described briefly in Chapter 1, many silicate glasses show

anomalous excess specific heat near 10K. This phenomenon is certainly

related with other anomalous behaviors of silica glass, such as

negative thermal expansion, and the positive temperature and negative

pressure derivatives of elastic moduli. White et al. has suggested

that these anomalies are associated with low lying modes of atomic

vibrations. In silica glass, these modes are considered to be bond

bending motions of network formers, that is Si-O-Si. If so, the

addition of network modifiers such as alkali oxides to the network

formers should suppress these modes by hindering the bond bending

motions of Si-O-Si, since the inside space of network is filled by

network modifiers. Thus, it might be expected that the anomalies

mentioned above should become less with increasing alkali content.

This trend has been observed experimentally in thermal expansion and

elastic moduli of alkali silicate glasses. However, no data exist

on low temperature heat capacities of alkali silicate glasses.

In order to know quantitatively the effect of network modifiers

on the excess heat capacity and thus the number and frequencies of

the excess modes associated with network formers, an attempt was made

in this study to measure the specific heats of several sodium silicate

glasses at very low temperatures. Then, the thermal expansions of
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the same glasses were measured in the same temperature range in order

to obtain the correlation between thermal expansivity and heat capa-

city. In addition, the thermal expansions of lithium and potassium

silicate glasses were measured to obtain the effect of the size of

network modifiers. These results were used to discuss the conclusions

derived theoretically on the basis of a simple glass model in Chapter

2.

4.1 Preparation of glass samples

Several glasses in the system NaoO-SiOo were prepared from

reagent grade Na2CC>3 and SiO2. The batches of the prescribed compo-

sitions were melted in Pt crucibles in a silicon carbide resistance

furnace at 1200°C to 1500°C depending on composition, stirred with a

Pt rod, allowed to stand until bubble-free, poured into a stainless

steel mold, and annealed in a furnace. The glasses obtained were

crushed into powder (150 mesh in size) , and then lastly cooled

through the glass transition region at a rate of about 25K/min. to

give them a constant thermal history. In addition to sodium silicate

glasses, lithium or potassium silicate glasses were also prepared in

the same manner as sodium silicate glasses but with reagent grade

Li2CO3 or K2CO3.

4.2 Heat capacity at very low temperature

The heat capacities of glass samples were determined by using

a calorimeter described in Chapter 3. The values of Cp for sodium
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silicate glasses of the compositions of Na2O-1.5SiO2, Na2O*2SiO2,

Na2O-4SiC>2 and SiO2 from 1.6 to 60K are listed in Table 1-4.

The lowest temperature of 1.6K was attained by using evacuation of

liquid helium. Fig.l is the plot of Cp/T3(j/mol-K) against T,

2) 3)
together with the result for vitreous silica by Flubacher. '

This figure shows that the values of Cp/T^ are not independent of T

for all glasses, indicating that the specific heat of these glasses

do not obey the Debye continuum theory at very low temperatures.

It is clear that other temperature dependent terms than a T^ term is

required to describe their specific heats. A close look of this

figure also shows that the excess specific heat is not so sensitive

to the compositional variation. This means that the quantity of

excess modes in silicate glasses does not vary so much with the

addition of sodium oxide.

It is generally accepted that sodium oxide separates linked SiO4

tetrahedra, fills the inside space of the network and thus leadsto a

general weakening of the network structure. If the low modes were

to arise only from the bending of the Si-O-Si angle, they should be

greatly affected by the change in angular ordering which take place

by adding sodium oxide. However, the present experimental result

does not support this consideration. As described in Chapter 2,

it is expected from a simple glass model system that an excess heat

capacity appears even though no bending motion exists. Thus, it

may be concluded that the excess heat capacities of silica glass
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and alkali silicate glasses do not reflect the easiness of bending

motions of the network structures but they are mainly due to the

randomness of glass structure.

Fig.l(B) is shown for an another plot, Cp/T versus T^-
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Table 1 Heat Capacity for SiO, glass

T

K

1.99

3.15

4.28

5.12

6.09

7.05

7.95

9.32

10.08

11.25

12.06

13.23

14.15

15.23

16.05

17.29

18.15

19.03

20.16

30.31

41.32

50.98

Cp/T3

J/mol-K4 xlO4

1.16

1.15

1.42

1.71

1.98

2.18

2.30

2.38

2.43

2.42

2.37

2.33

2.26

2.11

2.10

2.00

1.95

1.86

1.83

1.17

0.75

0.53

Cp/T3

J/g-K4 xlO6

1.93

1.91

2.37

2.84

3.29

3.64

3.83

3.96

4.05

4

3

04

95

3.88

3.77

3.50

3.50

3.33

3.25

3.10

3.05

1.95

1.25

0.89
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Table 2. Heat Capacity for Na2O-1.5SiO2 glass

T

K

1.84

2.23

3.13

3.80

5.01

5.50

6.51

7.10

7.70

8.51

9.49

10.56

11.90

13.60

14.12

15.51

24.90

30.21

33.72

41.52

46 53

66.24

Cp/T3

J/mol-K4 xlO4

4.33

3.94

3.36

3.31

2.69

3.34

3.59

3.86

3.95

3.98

4.29

4

4

38

70

4.71

4.87

4.70

3.89

3.28

2.89

2.43

2.16

1.26

85-

Cp/T3

J/g-K4 xlO6

2.85

2.59

2.21

2.18

1.77

2.20

2

2

36

54

2.60

2.62

2.82

2

3

88

09

3.10

3.20

3.09

2.56

2.16

1 90

1.60

1.42

0.83



Table 3. Heat Capacity for Na,O-2SiO7 glass

T

K

1.83

2.26

3.10

4.07

5.51

6.51

7.65

8.50

10.03

11.99

15.51

24.92

34.01

46.01

65.63

Cp/T3

J/mol-K4 xlO4

5.44

4.81

4.68

4.34

4.42

4.70

5.44

5.49

6.44

6.19

6.21

4.88

3.86

2.44

1.55

-86-

Cp/T3

J/g-K4 xlO6

2.99

2.64

2.56

2

2

2

38

43

58

2.99

3.01

3.53

3.40

3.41

2.68

2.12

1.34

0.85



Table 4. Heat Capacity For Na2O*4SiO2 glass

T

K

1.80

2.19

3.13

3.72

4.12

4.57

5.01

5.45

6.14

7.02

7.57

8.67

9.59

10.62

12.05

13.77

15.79

17.36

19.32

20.84

23.07

24.66

34.84

40.55

48.43

69.02

Cp/T3 Cp/T3

J/mol-K4 xlO4 J/g-K4 xlO6

7.47

7.07

7.13

7.92

8.64

9.34

10.82

11.00

11.99

12.51

13.30

12.85

13.21

13.09

12.85

12.75

12.12

11.79

11.58

11.39

9.91

8.55

6.01

4.62

3.63

2.12

2.47

2.34

2.36

2.62

2.86

3.09

3.58

3.64

3.97

4.14

4.40

4.25

4.37

4.33

4.25

4.22

4.01

3.90

3.83

3.77

3.28

2.83

1.99

1.53

1.20

0.70
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4-3 Thermal expansion at very low temperatures

The thermal expansion of glass samples was determined by using

a dilatometer described in Chapter 3. The raw data were smoothed

out to obtain thermal expansion coefficients as a function of temper-

ature. Fig.2 shows the results for sodium silicate glasses containing

0 to 40% of sodium oxide, together with potassium oxide. The effect

of the addition of sodium oxide on thermal expansion coefficient is

shown in Fig.3, where a versus composition is plotted for different

temperatures. This figure indicates that a increases with increasing

Na20 content at low temperatures. Fig.4 shows the results of lithium

silicate glasses containing from 0 to 30 mol% lithium oxide. The

effect of the addition of lithium is shown also in Fig,5 where a

versus composition was plotted for different temperatures. In all

cases, the thermal expansion coefficients appear to be essentially

a linear function of alkali oxide content. In comparison with the

results of sodium silicate glasses, this figure shows that the thermal

expansions of lithium silicate glasses are low. The lithium silicate

glass containing 10% Li20 possesses negative thermal expansion coeff-

icients below 35K. Fig. 6 shows Tjj, below which thermal expansion

coefficient has a negative value. It is clear that the addition of

sodium oxide gives a large effect on thermal expansion coefficient.
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Grflneisen parameter and simple glass model system

In Chapter 2, it has been shown that the GrUneisen parameter

of a simple glass model system is negative but it tends to become

positive as the disorder or asymmetry of the glass system becomes

less. This tendency can be examined based on the thermal data

obtained in the previous sections. In order to obtain the thermal

Gruneisen parameter, the knowledge of compressibility or bulk modulus

for the glass is required. The values of bulk modulus for alkali

silicate glasses were calculated from the sound wave velocities and

density, and were shown in Table 5 along with the elastic Debye

temperature. Since the temperature dependence of bulk modulus is

very small, the values listed in Table 5 were used to calculate the
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Gruneisen parameter at all temperatures. The error introduced by

neglecting the temperature dependence of bulk modulus is estimated

to be about 5%.

The values of thermal Gruneisen parameter are shown in Fig.7

as a function of normalized temperature, together with those obtained

by White. A small difference of about 5% between White's and the

present values is considered to be due to the experimental error in

thermal properties, particularly thermal expansion coefficients.

It is clear from this figure that the negative Grtfneisen parameter

of vitreous silica is very much larger in magnitude and persists to

much higher temperature than those of alkali silicate glasses.

It reaches to a value of -5.5 at near T/0D=0,01, which is lower than

the limiting value of y=~2.36 calculated from the elastic data of

4)
Anderson. The similar behavior of Borosilicate glass indicates that

the substitution of small percent of boron atoms to silicon sites

has little effect on the modes responsible for negative Gruneisen

parameter. This result might be expected if these modes are associ-

ated with the transverse modes of the oxygen atoms.

On the other hand, the addition of network-filling atoms such

as sodium ions in Fig.7 has considerable effect, and suppresses the

negative Gruneisen function. At 40% Na2O glass, y becomes almost

constant at all temperatures. In order to examine the effect of

the difference in alkali ion, the temperature dependence of y(T)

for alkali disilicate glasses was obtained and is illustrated in
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Fig.8- The value of y decreases in the order, Cs>K>Na. Clearly,

the Gruneisen parameter varies depending on the kind of alkali ions

in the glass network. These structural aspects are connected with

the packing density, which is represented by parameter i―L discussed
dL

in Chapter 2. The increase in both amount and size of network

filling atoms causes the increase in -tt-and thus the decrease in y.

In order to compare these experimental results with those obtained

in Chapter 2 on the basis of the simple glass model system, the data

are plotted as a function of 1/T so as to superimpose with the y-N

curves in Fig.11 in Chapter 2. A good agreement can be seen between

these curves. Thus, it is concluded that the theory developed in

Chapter 2 is suitable to explain the anharmonicity of alkali silicate

glasses qualitatively.
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Composition cm3) V (km/s) V (km/s) Ks(Kb) 9D(K)

Na O-2SiO2

K2O-2SiO2

Cs

Na

0- 2SiO2

2O.9SiO2

2Na2O-8SiO2

4Na O-6SiO2

2.495

2.456

3.629

2.288

2.383

2.520

5.361

4.640

3.185

5.565

5.382

5.401

3.038

2.522

1.570

3.478

3.251

2.993

409.0 422.4

333.2 331.1

253.1

338.8

354.5

430.6

198.5

467.0

443.2

418.1

Table 5 Elastic constants and density for alkali silicate

glasses

>-

2

1

0.1 02 0.3 04 0.5 0.7 1.0

T/eD

Fig.8 GrUneisen function for alkali disilicate glasses
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SUMMARY TO CHAPTER 4

The heat capacity and thermal expansivity of vitreous silica

and alkali silicate glasses were determined from 1.6K to 300K and

the results were compared with the behaviors of thermodynamic

properties of the simple glass model system obtained in Chapter 2

The main results obtained are summarized as follows.

1. The heat capacities of alkali silicate glasses at very low

temperature did not obey the Debye continuum theory, and required

other temperature dependent term than a T^ term as prescribed by

the simple glass model system. This excess heat capacity was not

so sensitive to the compositional variation, indicating that this

excess heat capacity does not reflect the easiness of bending

motions of the network structures but arises mainly from the

randomness of glass structure.

2. The thermal expansion coefficient increases with increasing

Na2<I)content at very low temperatures, This similar results were

obtained for lithium containing glasses. The temperature Tfl,

defined as the temperature below which thermal expansion coefficient

becomes negative, was found to be essentially a linear function of

alkali content.

3. The Griineisen parameter y of vitreous silica was very much

negative but this negative value was suppressed by the addition

96-



of network-filling atoms such as sodium ions. At 40% Na20 glasses,

y becomes almost constant like that of a stable crystalline solid.

The tendency of alkali ions to suppress the negative behavior of

y was stronger with increasing alkali ion size. These results

may be interpreted by the change in packing density due to the

introduction of network modifiers into glass network.

The effects of temperature and compositional variation on Grilneisen

parameter were in agreement with the general tendency of Gruneisen

parameter of the simple glass model system obtained in Chapter 2.
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CHAPTER 5

THERMAL PROPERTIES OF ALKALI SILICATE GLASSES

AT LOW-TO-MODERATE TEMPERATURES

In the low-to-moderate temperature range, the phonon dispersion

is no more significant, because the exciting frequency behaves as

the Debye continuum. However, as described in Chapter 2, the simple

Debye model is not suitable to describe the mode frequencies of

multicomponent glasses, and the combination of more than two charac-

teristic temperatures is required. The knowledge of these characte-

ristic temperatures or the frequency distribution function obtainable

from analysing heat capacity in the low-to-moderate temperature range

is useful to discuss the nature of bond and structure of silicate

glasses.

As for thermal expansion, many experimental studies have been

carried out on various silicate glasses at room and high temperatures

and it has been found that the expansion is sensitive to glass

composition. However, in spite of its importance in discussing the

anharmonic nature of chemical bonds in glass structure, the temper-

ature dependence of thermal expansion coefficient has been studied

little. So, the thermal expansion behaviors of alkali silicate

glasses were determined in the low-to-moderate temperature range

from 77 to 350K.
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5.1 Heat capacities

The heat capacities of alkali silicate glasses including mixed

alkali glasses were determined by using a calorimeter described in

Sec.3.1. The glass samples were prepared in the same manner as

described in Chapter 4.1. The values of Cp measured for various

alkali silicate glasses from 80 to 300K are listed in Table 1-7 and

shown in Fig.1-2. It is clear that the heat capacity increases as

alkali ions are changed from Na to K and from K to Cs, when compared

at the same temperature. The results for mixed alkali disilicate

glasses are shown in Table 8, 9, 10 and in Fig.3.

In order to compare the heat capacity data of glasses having

different alkali oxide/ silica ratios, the gram-atomic heat capacity

was calculated by dividing the heat capacity per formula weight by

the number of atoms in the formula. The values of the gram-atomic

heat capacity for mixed alkali glasses at 300K and 80K are shown in

Fig.4 and 5, respectively. While Cp decreases rapidly in all systems

as alkali ions of large size are substituted by those of small size,

Cp does not increase so much when small size ions are replaced by

large size ions. In other words, Cp deviates downwards from a linear

line drawn between the values of two end members.

In order to show that the simple Debye model is not suitable

to describe the heat capacities of alkali silicate glasses, an attempt

was made to analyze the heat capacity data by means of the Debye

theory.
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Fig.4 The specific heat capacity of mixed alkali silicate
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If the Debye model were applicable, the corresponding Debye characte-

ristic temperature calculated from the heat capacities at various

temperatures should be constant over a wide temperature. The results

of calculation for various alkali silicate glasses are shown in Fig,

6. Also included are the results for fused silica based on the hear

capacity data by Westrum."1"'The values of 0q appear to vary with

temperature. It is evident from this figure that the Debye theory

is inadequate to represent the temperature dependence of heat capa

city for alkali silicate glasses and other expression, such as the

three band theory developed in Chapter 2, is required.

£

100 150

Vk
200 250 300

Fig. 6 The corresponding Debye characteristic temperature

bv the annlnration of Debve model
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0

60 100 UO 180 220 260 300
Fig.7 Temperature dependence of specific heat in sodium

disilicate glasses

The same data were analyzed on the basis of the three band

theory by fitting them to the equation (62) in Chapter 2 with an aid

of a computer at Kyoto University. An example for Na2Si2C>5 glass is

shown in Fig.7- The calculated curve represents the one for 01=1300

, 03=400 and 0g=23OK. A good agreement between the experimental and

calculated values is seen in this figure.

5.2 Comparison of characteristic temperatures 01, O3 and 0g

The independent analyses of the data shown in Table 1-4 based

on equation gave the value of 0e=22OK for Na2O-2SiO2 glass and 260K

for Na2O6Si02 glass. As can be seen in Eq.62 in Chapter 2, a small

variation in 0e for a glass containing low alkali content should not

cause any noticeable change in the best fit curve. Furthermore, the

above values of 0f are close each other.
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When the three band theory was developed in Chapter 2, it was

assumed that M-0 bonds vibrate independently as the Einstein's

model requires. Thus the value of 220K, which was obtained for the

glass containing the highest amount of sodium oxide, was chosen as

Gg for all the sodium silicate glasses, and the values of 0^ and O3

were calculated. The results are shown in Fig.8 as a function of

alkali mole ratio in glass composition. The standard deviation

based on these three characteristic temperatures were about the same

as the first try. This may be taken as a proof that the vibrations

of alkali ions in silicate glasses are influenced little by the Si-0

chains and they may be regarded as those of independent vibrators,

as postulated by the Einstein function.

As described in Chapter 2, the first characteristic temperature

Gi is associated with the strength of elastic interchain Si-0 bonds.

The value of 0i=155OK for vitreous silica corresponds to the frequ-

ency of about 1080 cm~l, and this is very close to the main peak of

infrared absorption of vitreous silica. The second characteristic

temperature O3, which represent the lateral interaction of the chains

, is very low for vitreous silica in comparison with 0^ and thus the

ratio Q3/O1 is small (0.09). The introduction of alkali ions causes

a decrease in Oi and an increase in 63, resulting in an increase in

03/01 as shown in figure. As Na20 is introduced into the SiO2

network, the Si-0 chain is broken and the directional bonding nature

of Si-0 bonds diminishes, resulting in weakening of the strength of

- 110-
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elastic interchain Si-0 bonds and strengthening the lateral inter-

action of SiO2 skeleton. Thus it may be considered that Q3/O1 is

a kind of measure for non-directionality or ionic component of

bonding in silicates.

The effect of the kind of alkali ions in silicate glasses on

the characteristic temperatures is shown in Fig.9 for alkali disili-

cate glasses. It is clear that Qj?increases in the order of Cs, K

and Na, which can be expected from the bond strength. Furthermore,

Gg for a mixed alkali silicate glass falls on a line drawn between

the values of two members. This additivity shows that there is no

mixed alkali effect on the vibrational modes of M-0 bonds and these

bonds vibrate independently, satisfying the assumption of the present

three band theory.

Both Qi and 63 decreases as Na is substituted by K or Cs, in

the same manner as 0E. This result indicates that higher vibrational

frequencies are observable when SiO4 tetrahedra are connected by

metal polyhedra of lighter atoms or the ones with strong interatomic

binding forces. This is consistent with the observations of infrared

spectra on alkali disilicate glasses that the stretching vibration

frequencies decrease in the order of Na, K and Cs.

The value of Q3/Q1 was found to vary little from 0.31 for Na2O*2SiO2

glass to 0.28 for Cs2O-2SiO2 glass in spite of a large variation

in Q^and Q3. As discussed before, G3/Q1 is considered as a measure

of ionic component of bonding in silicate glasses. Thus, this

- 112-
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constancy in 63/01 for alkali disilicate glasses indicates that the

ionic components of bonding for these glasses are about the same.

This result is consistent with the fact that the ionicity of M-0

bond based on electronegativity is about the same for Na-O, K-0 and

Cs-0 bonds. Thus, unless the ratio of M2O/SiC>2 is changed, the

ionic component of bonding in silicate glasses is expected to remain

almost unchanged.

For mixed alkali disilicate glasses, both 6^ and 63 show little

positive deviations from the linear additivity, indicating that the

Si-0 chains are tightened slightly by mixing two kinds of alkali

ions. This tightening effect might be related with the mixed alkali

8)―20)
effect found on other physical properties.
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T Cp

K JK^mol'1

T Cp

80.2

89.3

100.2

111.3

120.8

130.7

141.2

150.8

160.3

171.2

179.6

189.8

37.7

43.5

50.7

56.5

62.0

66.1

71.2

75.3

79.5

84.1

87.1

90.4

200.3

210.2

221.0

230.1

241.2

250.8

261.0

269.8

280.2

291.0

300.3

93.3

95.4

98.4

100.5

102.6

104.2

105.9

108.0

108.8

110.1

110.2

Table 1. Molar heat capacity of Na2O-SiO2 glasses
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T

K

80

91

3

8

100.5

110.3

121.2

129.8

141.0

150.9

159.7

170.9

181.2

190.3

Cp

JK""1mol~1

53.6

64'. 0

70.7

77.9

85.8

91.3

98.4

104.7

110.5

116.4

121.4

126.0

T

K

200.1

210.5

220.3

230.2

241.0

250.2

260.9

270.2

279.5

290.2

300.5

Cp

JK^mol"1

130.6

134.4

138.1

141.5

145.3

147.8

151.1

154.0

156.1

158.2

160.3

Table 2. Molar heat capacity of Na2O.2SiO2 (Na2Si205) glasses
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T

K

Cp

JK'^ol"1

T

K

Cp

JK^mol"1

80.1

90.3

100.2

110.1

120.3

130.1

140.2

150.0

160.2

170.5

180.4

190.4

63.9

74.4

85.1

95.3

103.4

112.5

120.6

128.7

135.8

140.9

14 8.0

154.1

200.2

210.1

220.0

230.5

240.6

250.2

260.3

270.9

280.3

290.4

300.2

160.2

165.2

170.3

175.4

179.4

183.5

187.5

191.6

195.7

198.7

201.7

Table 3. Molar heat capacity of Na2O-3SiO2 glasses
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T.

K

80.1

90.4

100.5

111.3

120.6

130.7

141.2

150.9

159.7

170.2

181.2

190.1

Cp

JK'-'-mol"1

73.4

87. 3

101.2

111.3

122.7

132.8

143.0

153.1

160.7

168.3

175.9

183.4

T Cp

K JK'^ol"1

200.2

210.5

220.3

230.1

241.3

250.2

260.9

269.8

280.2

291.0

300.3

191.0

196.1

202.4

208.8

213.8

218.8

222.7

229.0

232.8

237.8

241.6

Table 4. Molar heat capacity of Na2O-4SiO2 glasses
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80.8

90.1

99.3

110.1

119.7

130.1

140.8

150.3

161.1

169.8

180.2

189.8

Cp

JK~1mol~1

102.8

122.3

141.5

155.8

171.6

185.9

199.2

214.3

226.2

235.6

246.3

255.8

T

K

200.5

209.3

219.8

229.3

240.8

249.9

261.0

270.2

279.3

290.5

300.1

Cp

JK^mol"1

267.4

274.6

284.1

292.2

299.1

306.3

312.1

320.6

325.8

332.3

338.3

Table 5. Molar heat capacity of Nao0-6Si02 glasses
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T

K

80.5

90.1

100.5

110.8

120.5

130.8

140.9

150.3

161.2

170.8

180.9

190.3

Cp

JK"1!!!c!"1

65.3

75.3

85.8

95.9

103.0

110.9

117.6

123.9

130.2

135.6

140.2

144.4

T

K

200.8

210.2

220.9

231.2

241.5

250.8

261.0

270.6

280.3

291.2

299.8

cp

JK mol

148.6

152.8

158.6

159.1

162.4

164.5

167-0

169.1

170.8

172.5

172.9

Table 6. Molar heat capacity of K2O-2SiO2 (K2Si205) glasses
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T

K

80

92

2

0

101.8

110.6

120.3

130.6

142.0

153.5

162.2

169.6

182.3

191.8

Cp

JK"1!!!c!"1

91.3

103,0

112.6

120.6

128.9

136.0

142.7

150.0

154.0

157.0

162.4

165.3

T

K

200.3

211.3

220.8

230.6

241.3

250.9

261.3

270.8

279.8

291.2

300.8

Cp

JK~1mol~1

168.7

171.6

173.7

175.8

177.9

181.3

182.1

183.3

184.2

185.0

185.4

Table 7 . Molar heat capacity of Cs2O2Si02(Cs2Si205) glasses
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T

K

(NaQ

Cp

JK"1mol~1

66K1.34)Si2°5

80.1

90.3

100.5

110.3

120

131

139

150

8

0

9

0

161.1

170.3

180.2

191

200

0

5

210.2

221.3

230.1

240.8

251.3

260.9

270.1

280.1

291.2

300.5

57.8

65.7

74

82

5

9

90.0

97.X

103.0

109

115

121

126

131

7

1

0

4

0

134. 8

137.7

143.2

146.9

150.7

154.0

156

159

6

1

161.6

164.1

165.3

T

K

(Na

Cp

Jk'-'-mol"1

0K1.0)Si2°5

80.6

89.8

100

111

4

2

120.4

130.6

140.0

151.8

160.5

170.4

180.4

190.2

200.5

211.4

221.

230.

240.

0

4

8

250.6

260.2

270.6

280.9

291.5

300.4

55.7

63.6

72

80

87

0

8

9

95.0

101.3

107.6

113.9

118.9

124.3

128.5

133.1

136.0

140.6

144

148

8

2

151.5

154.5

157.0

159

161

163

5

6

3

T

K

(Na.

80

90

100

110

120

130

Cp

JK'-'-mol"1

34K0.66)Si2°5

1

3

5

4

e

3

140.9

151.3

160.3

170.2

180.1

190.1

200. 9

210.9

220.3

231.0

240.5

250.3

260.8

270 2

280.7

291.0

300.4

54.4

62.8

71.6

80.0

86.7

93.8

100.0

106.3

113.4

118

123

128

131

0

1

1

9

135.2

139

143

147

4

2

8

150.7

153.6

155.3

158.2

156.1

162.0

Table 8 Molar heat capacity of (NaoO.K^O)
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T

K

Cp

jk'^oi"1

(K0.6Cs1.4)Si2°5

80.3

90.5

80.0

89.6

100.2 97.1

111.0 105.1

120.7 113.0

130.8 120.6

140.2 128.1

150.9 133.5

161.3 139.0

170.0 144.0

179.8 148.6

190.4 152.4

200.7 156.6

210.8 160.3

220.3 163.7

230.8 167.0

240.3 170.0

250.9 172.5

260.2 175.0

270.4 176.2

280.5 177.5

291.3 178.3

300.7 178.7

T

K

(K1.0
Cs

80.3

90.5

100.2

111.2

120.4

130.8

Cp

1.0)Si2°5

72.8

82.0

91.7

92.5

109.3

116.0

140.9 122.2

150.9 128.1

160.2 134.0

169.5 139.0

180.0 144.1

190.2 149.0

200.7 153.2

210.1 157.0

220.5 159.9

230.3

240.6

163.3

165.8

250.0 167.9

260.1 170.4

270.9 172.5

280.2 174.6

290.7 175.8

300.1 177.1

T

K

(K1.4CSO

80.1

90.2

100.8

110.3

120.2

130.9

Cp

jk'^oi"1

6)si2o

70.7

80.4

90.0

90.8

107.6

114.3

140.0 120.6

150.1 126.4

160.2 132.3

170.9 137.3

179.3 142.3

189.3 147.3

200.2 151.5

210.9 155.3

220.1 158.2

230.2 159.0

240.2 164.1

250.3 166.2

260.8 168.7

270.8 170.8

280.3 172.9

290.7 174.1

300.8 175.4

5

Table 9. Molar heat capacity of (K20-Cs20)-2SiO2 glasses
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T

K

(Na

Cp

JK'^ol"1

38Cs1.62)Si2°5

80.3

90.4

100.4

110.9

121.0

130.2

140.6

150.9

159

170

8

3

180.3

190.2

200.3

210.5

220.7

231.0

240.6

250.2

260.1

269.8

280.7

290.3

300.3

70.3

80.4

89.2

90.0

106

113

119

125

3

4

7

6

131.0

135.6

141.1

146

152

155

159

161

164

5

0

7

1

e

5

165.8

168

171

172

173

174

3

2

0

3

6

T

K

(Na1

80

90

oCsi

8

2

100.4

110.7

120.2

130.7

140

150

160

169

3

1

6

2

180.8

190.2

200.5

210.3

220.9

230

239

250

260

3

7

8

1

270.4

280.4

290.1

300 6

Cp

0)Si2

63.2

74.1

80.0

88.7

96.7

103.8

110.5

116 8

122.6

127.7

132.7

136.5

141.1

145.7

149

153

156

159

161

164

9

2

6

5

6

5

166.6

168.7

170.4

°5

T

K

(Na
1.2Cs

80. 1

90

100

110

119

130

140

150

160

170

5

5

7

8

2

7

2

3

2

180.6

190.3

200.2

210

220

230

240

249

260

8

4

5

6

9

8

270.0

280.3

290.1

300.4

JK~1mol~1

0.8)Si2°5

59.4

67.0

75.8

84.6

92.1

98.8

105.5

111.8

117.6

123.5

128.5

133.1

136

141

144

9

1

8

148.6

152.4

155.7

157.8

160.3

162

165

167

4

3

4

Table 10. Molar heat capacity of (Na2O,Cs2O)
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5.3 Thermal expansion

Although the thermal expansion coefficients for the binary

21) 22)
lithium, sodium, potassium, rubidium and cesium silicate glasses '

have been reported by some authors between 25°C to 200°C, there

exist no precise data on temperature dependence of thermal expansion

coefficient. The thermal expansion coefficients were determined for

alkali disilicate glasses between 77 to 350K by means of the preci-

sion dilatometer described in Chapter 3. All samples were prepared

by grinding flats on opposite faces. The results of thermal expan-

sion coefficients for alkali disilicate glasses are summarized

in Fig.10. As shown in this figure, the thermal expansion coeffi-

cient increases with increasing a cation size in the order from Li

to Cs. This observation is consistent with the tendency of bond

stretching of Si-0 with the addition of alkali ions in IR spectra.

It should be noted that at room temperature the thermal

expansion coefficient varies with temperature for lithium and sodium

silicate glasses but not so much for the potassium, rubidium and

cesium silicate glasses. This behavior is similar to that of heat

capacity.

The compositional dependence of thermal expansion coefficients

for binary alkali silicate glasses are shown in Fig.11. In all

cases, the thermal expansion coefficient increases with increasing

alkali content.

The thermal expansion coefficients of mixed alkali silicate
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glasses are shown in Fig.12-15 for the disilicate composition and

Fig.16-19 for the pentasilicate composition. It is clear that the

temperature dependence of thermal expansion coefficients for mixed

alkali silicate glasses are different from that of the single alkali

glasses. In order to observe these behaviors, thermal expansion

coefficients are plotted against the composition at various temper-

atures in Fig.20 and 21. From these results, both series of sodium-

cesium and lithium-cesium silicate glasses show a negative deviation

from additivity, whereas both series of sodium-potassium and potas-

sium-rubidium silicate glasses exhibit such a peculiar behavior that

the deviation changes from negativity to positivity as the temper-

ature increases. The data shown in Fig.20 and 21 can be used to

determine the relative mixed alkali effect due to various pairs of

alkali oxides. These figures indicate that the mixed alkali effect

on thermal expansion coefficient is depending on the radius ratio

of mixed alkali ions: the magnitude of the negative deviation from

additivity at constant temperature decreased in the order of K-Rb,

Na-K, Cs-Na and Li-Cs. This behavior is very similar to the results

23),24)
obtained from internal friction studies of identical glasses,

which exhibit a large damping peak when two kinds of very different

alkali oxides are present in the glass.

21)
According to Shelby, the mean expansion coefficients between

200-300°C for Na-K and Na-Rb glasses show a positive deviation from

- 127-
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additivity. However, the present results give that a negative

deviation from the additivity exists for Na-K glasses at lower

temperatures, even though a positive deviation is noticed at high

temperatures. Since the thermal expansion coefficient generally

decreases with increasing bond strength, a larger negative deviation

means that the bond is tightened more in comparison with the case

that the bonds of two end members are simply mixed.

It is interesting to compare these thermal expansion data with

the heat capacity data in the previous section. From the analyses

of the heat capacity data, it was found that both Oi and O3 showed

a positive deviation from the linear additivity, indicating the

strength of lattice modes for Si-0 bond are increased by mixing two

kinds of alkali ions. On the other hand, 0E approximately showed

the linear additivity. The degree of the positive deviation for

Ol was larger for sodium-cesium silicate glasses than sodium-

potassium or potassium-cesium glasses. Thus, the tightening of

Si-0 chains was stronger for the glasses having two kinds of alkali

ions of dissimilar size than that for those having alkali ions of

similar size. This is consistent with the above results of thermal

expansion coefficient.

The cause of peculiar temperature dependence of thermal expan-

sion coefficient for the glasses having alkali ions of similar size

is not clear at this moment. A possible interpretation is the effect
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of mixing two alkali ions which leads to produce the another volume

dependent frequency, maybe the existence of R-O-R1.

This vibration may be very sensitive to the change of temperature

and the strength of bond, as indicated by the study of dielectric

relaxation and electrical conductivity.

As for the effect of total alkali oxide content on the magnitude of

the deviations from additivity, the degree of deviation for alkali

pentasilicate glasses (R2O'5SiC>2) was about the same for alkali

disilicate glasses (R2O'2SiO2). This seems to indicate that the

excess bonding, R-O-R1, is independent of Si-0 bonds.
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SUMMARY TO CHAPTER 5

The heat capacity and thermal expansivity were determined on

simple and mixed alkali silicate glasses in the low-to-moderate

temperature range from 77 to 400K. The results were analyzed by

the three band theory developed in this study, and the structural

interpretation of thermal properties of alkali silicate glasses

was made. The main results obtained are summarized as fnlinus.

1. The temperature dependence of heat capacity in the low-to-

moderate temperature range could not be expressed by a simple Debye

temperature, but it was represented well by the three band theory

developed in Chapter 2. The first characteristic temperature Oj,

associated with the strength of elastic interchain Si-0 bonds,

was found to be 1550K for vitreous silica and decreased with increas-

ing sodium content. The second characteristic temperature G3,

associated with the lateral interaction of the chains, was 150K

for vitreous silica and increased with sodium content.

These behaviors of 0^ and O3 were attributable to the breakage of

Si-0 bonds and the decrease in directional bonding nature of Si-0

bonds caused by the introduction of sodium ions into glass network.

The third characteristic temperature, 0E, was found to be almost

constant satisfying the assumption of Einstein's independent vibrator

concept in the present three band theory.
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2. The substitution of sodium ions by larger alkali ions caused

a decrease in all three characteristic temperatures. This is

consistent with the theoretical consideration of lattice vibrations

based on the bond strength of alkali metal-oxygen bonds. For mixed

alkali silicate glasses, Q＼ and 83 showed a slightly positive

deviation from the linear additivity, while GE followed the linear

additivity. This was. attributed to the tightening of Si-0 chains

caused by mixing two kinds of alkali ions.

3. The thermal expansion coefficient increased with increasing

cation size in the order from Li to Cs. The change in thermal

expansion coefficient with temperature at near room temperature

was large for lithium silicate glasses but became less with

increasing cation size, as expected from the lattice dynamical

theory as well as the above results of heat capacity. The behavior

of thermal expansion coefficient for mixed alkali silicate glasses

was different from that of single alkali silicate glasses and showed

a different deviation from the linear additivity of two end members

depending upon the temperature and glass composition. The deviation

was found to be negative at low temperatures for most of the glasses

but became positive for a few glasses at high temperatures.

The magnitude of the negative deviation from the linear additivity

decreased in the order of K-Rb, Na-K, Cs-Na and Li-Cs.
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This order was consistent with the behavior of Q]_ and Go of mixed

alkali silicate glasses.
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CHAPTER 6

THERMAL PROPERTIES OF ALKALI ALUMINO SILICATE GLASSES

In the previous chapters, the applicability of the theoretical

models developed in this study to analyze the heat capacity and

thermal expansion data of glass systems was examined on alkali

silicate glasses and the structural interpretation was made based

on the results obtained. However, most commercial glasses are more

complicated in their compositions. Thus, it is important to know

that the similar treatment can be made for more complicated glass

systems.

From the structural point of view, oxides are classified in

three categories depending upon their glass forming tendency:

the network former, intermediate and modifier. In this chapter,

the effect of intermediate ions on the thermal properties of glasses

is described. The glasses used were lithium alumino silicate and

sodium alumino silicate glasses of R2O-Al2O3#nSiO2 composition.

In these alkali alumino silicate glasses, no breaking of network

structure takes place in theory. In practice, however, it is likely

that occasional terminations in the oxygen bridging may occur, and

these may be compensated for by the formation of triclusters and,

to a less extent, (A106)3~ octahedral groups. Nevertheless, the

alkali ion will be predominantly associated with the margin of (AIO4)

tetrahedra.
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The study on these compositions presents, therefore, an oppor-

tunity to investigate the effects with introduction of alkali metal

in the near absence of non-bridging oxygen and to compare with alkali

silicate glasses which possess the non-bridging oxygen, as described

･ u c3)-5)in Chapter 5.

6.1 Preparation of glass samples '> '

Seven alkali alumino silicate glasses used in the present study

were Li20-Al203-nSi02 (n=2,4,6), Na2O'Al2O3-nSiO2 (n=2,4,6) and

K2O*Al2O3-6SiO2. The glass batches were prepared from reagent grade

Li2CO3, Na2CO3, K2CO3, AI2O3 and S1O2. The glasses were melted in

platinum crucibles in a silicon carbide resistance furnace.

After complete fusion, the melts were stirred several times with a

Pt rod and poured onto a stainless steel plate. In order to obtain

homogeneous glasses, the procedure of melting in an electric furnace

for approximately 2 to 3 hours, cooling and crushing was repeated

three times. The samples were lastly cooled through the glass

transition region at a rate of about 20K/min. to give them a constant

thermal history.

6.2 Heat capacity

The experimental molar heat capacities obtained for the glasses

of the composition of L^O-A^C^-nSiC^ (n=2,4,6) are shown in Table

1-3 and Fig.l. The molar heat capacity of glass was calculated by

the formulae weight such as LiAlSiQOg. The temperature rise in
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T

K

80.1

84.8

90.1

95.2

99.9

104.8

109.6

114.8

119.6

125.0

130.2

135.1

139.8

145.7

149.8

155.8

159.0

164.6

170.6

175.2

179.1

185.2

189.4

JK^mol"1

37.2

39.8

42.2

46.0

49.3

51.0

53.5

56.0

58.3

60.2

63.2

65.1

67.5

70.0

72.1

74.2

76.5

78.3

80.0

81.5

83.4

85.3

87.1

T

K

194.3

199.2

205.1

210.0

214.8

220.0

224.9

230.1

235.0

239.8

245.3

250.1

255.0

259.1

264.2

269.1

274.8

279.9

285.1

289.1

295.3

299.2

Cp

JK~1mol'1

88.5

90.0

91.4

92.6

94.6

96.2

97.5

98.5

99.6

100.3

102.5

103.6

104.2

105.1

106.2

106.5

107.3

108.7

109.0

110.1

110.0

111.1

Table 1 Molar heat capacity of LiAlSiOA glass
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T

K

79.1

85.2

89.2

94.9

99. 8

105.6

109.8

115.8

120.1

126.0

130.1

135.8

140.1

145.6

149.2

155.8

159.7

165.8

169.5

176.0

180.1

185.8

189.1

Cp

JK mol

52.5

55.6

59.0

64.0

68.1

72.5

76.5

79.8

82.0

85.2

89.1

92.0

95.3

97.5

101.4

105.0

107.3

109.9

112.0

114.1

117.3

120.7

122.0

T

K

196.1

200.1

205.7

209.3

214.1

218.2

225.0

229.8

235.6

240.2

245.8

249.9

255.1

259.2

265.1

269.2

275.6

281.1

286.0

289.9

295.2

299.3

Cp

JK mol

124.5

127.2

129.0

130.3

132.3

134.5

135.0

138.0

139.1

140.9

142.8

144.0

145.7

147.3

148.5

150.0

150.5

151.6

152.5

153.0

155.1

156.0

Table 2 Molar heat capacity of LiAlSi2O6 glass
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T

K

80.0

85.1

89.8

95.0

100.1

105.2

109.8

114.7

120.1

125.9

129.8

135.1

139.7

145.0

149.5

155.2

160.1

165.2

169.1

175.1

180.1

185.8

189.8

Cp

JK mol

64.5

70.1

74.2

80.0

84.3

89.9

94.0

97.8

100.3

105.1

110.0

113.5

117.2

121.9

125.8

128.8

132.5

136.0

139.2

141.6

145.0

147.9

150.0

T

K

195.8

199.8

205.0

209.8

214.2

219.1

224.8

229.8

235.1

239.3

244.6

249.8

255.2

259.8

264.5

270.1

275.2

280.0

285.6

290.1

295.2

300.1

Cp

JK^mol"1

153.2

156.5

159.5

162.0

164.5

166.8

169.0

170.5

173.0

175.5

177.5

179.0

180.3

181.5

184.0

185.8

186.5

187.6

189.5

191.5

192.5

193.2

Table 3 Molar heat capacity of LiAlSi3O8 glass
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T

K

80.1

85.3

90. 1

95. 1

100. 2

105. 3

110.4

115.2

119. 8

125.5

130. 2

135.7

140. 1

145. 2

150. 2

155.1

160. 8

165.1

170. 3

174 .9

180.1

185.2

189.4

JK

CP

1mol

37.5

39.0

41.4

45.2

49. 5

51.8

56. 3

59.0

61.1

64.1

66.5

69.2

71.0

73.2

76.5

78.7

80. 5

83.1

83.4

86.8

88.1

90.2

92.0

1

T

K

195.2

200.2

205.3

209.8

215.2

219.8

225.2

230.1

235.3

240.1

244.9

250.1

255.3

260.8

265.1

270.3

275.2

280.2

285.3

290.2

295.1

300.2

JK

Cp

1
mol

94 .1

96.0

97.8

99.8

101.2

103 .0

104.1

105.2

106.3

107.0

108

110

8

1

110.8

111.5

112 .8

113.3

114.6

116.5

116.8

118.2

119.0

120.8

1

Table 4 Molar heat capacity of NaAlSiQ, glass
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T

K

80.2

85.3

89.9

95.1

100.5

105.2

111.0

115.4

120.6

125.8

130.3

135.6

139.9

145.1

150.2

155.1

160.7

165.3

170.0

175.4

180.9

185

189

1

5

Cp

JK'Aol"1

54.2

58.6

62.7

66.8

71.1

76.3

79.5

83.6

86.0

90.8

94.0

96.5

100.5

103

108

9

2

112.6

114.4

118.2

120.1

123.5

126.0

127.9

129.8

T

K

195.3

200.2

205.6

210.1

215.1

220.7

225.1

230.9

234.9

240.0

245.4

250.5

255

260

1

8

265.2

27010

275.7

280.3

285.1

290.2

295.1

300.2

Cp

JK^mol"1

133.4

135.5

137.5

139.7

142.6

143.8

146.8

148.9

150.8

151.1

153.7

155.4

157.2

158.5

159.7

161.6

162.7

163.7

164.9

166.6

168.9

168.9

Table 5 Molar heat capacity of NaAlSi-O, glass
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T

K

80.1

85.2

89.9

94.7

100.1

105.6

110.7

115.4

120.0

125.7

130.3

135.6

140.2

145.3

149.8

155.4

160.0

165.5

170.7

175.2

180.1

185.0

189.4

Cp

JK'^ol"1

64.7

70.2

75.3

81.6

86.9

91.2

95.6

100.3

104.7

110.0

114.2

118.4

121.8

126.3

129.6

133.2

137.4

142.1

144.6

147.9

151.1

153.2

155.5

T

K

195.8

199.5

205.1

210.4

215.6

220.1

225.8

230.3

235.0

240.2

245.7

250.2

255.4

260.2

265.0

270.1

275.4

279.9

285.1

290.0

295.3

300.1

Cp

JlT^-mol"1

158.4

160.7

166.0

168.1

171.2

174.7

177.2

178.4

181.7

183.5

183.5

186.8

188.8

189.4

192.9

195.3

196.3

196.3

198.4

200.5

201.8

202.2

Table 6 Molar heat capacity of NaAlSi3O8 glass
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T

K

Cp

JK^mol"1

T

K

Cp

JK^mol-1

80.1

84.9

90.3

95.4

100.1

104.9

110.6

114.8

119.8

125.3

131.0

135.6

140.7

145.1

150.3

155.4

160.1

165.6

170.1

174.8

180.2

185.1

190.3

69.4

74.2

79.2

84.0

89.2

92.1

96.2

101.2

104.9

110.5

113.2

116.4

119.3

123.1

128.5

131.2

134.1

139.2

141.5

143.8

148.5

150.4

154.2

195.3

200.2

205.1

211.1

215.2

220.3

224.8

228.9

235.4

240.1

245.2

251.0

255.1

259.7

265.0

270.1

274.9

280.3

285.7

291.0

295.1

300.5

156.8

159.9

163.6

165.9

169.2

171.9

173.8

176.1

179.7

180.8

182.5

186.9

190.5

192.8

195.3

197.5

199.5

202.2

203.5

205.4

208.4

211.5

Table 7 Molar heat capacity of KAlSi3Og glass
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each measurement was about 5K and raw data were plotted in Fig.l

6)
without any correction. The molar heat capacities for Na2O-Al2O3-

nSiO2 glasses (n=2,4,6) are shown in Fig.2 and Table 4-6, and those

for K2O-Al2O3-6SiO2 glasses in Table 7.

The heat capacity data for alkali alumino silicate glasses

were interpreted in terms of the theory of the three band phonon

spectrum. The results of the calculations are given in Fig.3 and

listed in Table 8, together with the infrared spectra. Fig.3

indicates that the values of Oj? for Na-0 bond vibrations are almost

constant for all sodium alumino silicate glasses and furthermore

close to those of alkali silicate glasses, As expected from the

CD 11

^^zrr?=―-

%-*
A

0 0

O Nc^O-SiC^system

･ Nc^O-AljOySiO,

A Li2OA(2qjSiq2

A

30
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Sample 01 03 QE Si-0 bond
(cm-1)

L1A1S104

LiAlSi2O6

LiAlSi3O8

NaAlSiO4

NaAlSi2O6

NaAlSi3O8

1209

1220

1258

1195

1201

1250

360

349

344

314

312

310

571

580

593

223

232

239

1031

1037

1052

1030

1038

1050

Table 8. The characteristic parameters for alkali alumino

strength of M-0 bonds, Og of lithium alutnino silicate glasses is very

much higher than that of sodium alumino silicate glasses,

The values of 0^ appear to be also close each other, although

slightly lower than those for sodium silicate glasses with the

same sodium contents. Thus, it is clear that the addition of

aluminium oxide does not disturb the vibrations of network structures

as well as of network modifiers. Thus, it may be said that Al-0

bond behaves as the Debye chain continuum similar to Si-0 bond

rather than behaves as an independent vibrator. In other words,

all the (AlSiO^) or (AlSi205) are included in the continuum and

vibrate in an unique monolithic system. As for the parameter

(O3/O1) , which represents the degree of non-directionality jj
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or ionicity, it almost remains constant irrespective of SiC>2 content

in the both systems of lithium and sodium alumino silicate glasses,

while it varies in Na2O-SiC>2 glasses as shown in Fig. 4. This result

will be discussed later.

035

Q30

#

Q25

Na£)-5iO2

O "^"^

0

__# ･
･ Na^-A^OjSiC^

ALKALI MOL ･/.

30

6.3

Fig. 4

The homodynamic

coefficient of

silicate glasses

Thermal expansion

The smoothed values of thermal expansion coefficient, a, were

obtained at rounded temperatures as a function of temperature.

The thermal expansion coefficient of lithium alumino silicate glasses

of the composition Li2O*Al2O3-nSiO2 (n=2,4,6) are shown in Fig.5,

and those of sodium alumino silicate glasses of the composition
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Na2O-Al2O3-nSiO2 (n=4,6) in Fig.6, For Na2O'Al2O3-2SiO2 glass, it

was not possible to obtain a bulk sample large enough to measure

the thermal expansion and elastic constants. As expected, the

effect of increasing silica content in both sodium and lithium system

is to decrease the thermal expansion coefficient, which is similar

to binary alkali silicate system. Furthermore, these figures also

indicate a in lithium containing glasses is lower than that of

sodium containing glasses when compared with the same molar content

of SiC>2- The effect of the addition of Na2O or I^O is shown in

Fig.7, where a versus composition is plotted at different temperatures

. This figure also indicates that a increases with increasing I^O

and Na2<3 content.

9

8

7

6

≪3

2

1

Fig. 5

The temperature depen-

dence of thermal

expansion coefficient

of lithium alumino

silicate glasses
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6.4 Grtlneisen parameter

In order to examine the glassy state in the absence of non-

bridging oxygens and also the influence of the substitution of ^

aluminium for silicon in the network, the anharmonic parameter such

as Gruneisen parameter is useful. To obtain Gruneisen parameter for

alkali alumino silicate glasses, the knowledge of bulk modulus and

density is required in addition to heat capacity and thermal expan-

sion coefficient.

The density of the glasses were determined by using Archimedes'

method and are shown in Table 9. As the silica content in lithium

alumino silicate glasses is varied from a molecular ratio of 1:1:2

to 1:1:6, the density varies from 2.447 to 2.386. The density of

the glasses in the system of Na2O-Al2O3-nSiO2 also decreases with

increasing SiO2 content.

12)
The measurement of elastic constants was made using the cube

resonance method, which was reported previously.

The results are given in Table 9. The bulk modulus decreases with

increasing silica content, for both I^O-Al2O3≫nSiO2 and Na2O≪Al2O3-

nSiC>2 glasses.

14)
The Gruneisen parameter of alkali alumino silicate glasses

calculated from these data are illustrated in Fig. 8 as a function

of temperature. In spite of a difference in the kind of alkali

oxide and in the amount of alkali oxide content, the Gruneisen

parameter behaves in a similar manner. In the case of alkali silicate
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Composition

Density (g/cra

Coeff. expansion
U/K-106)

Bulk modulus
(kbar)

Heat capacity
(J/raol-K)

Gruneisen
parameter

LiAlSiO.

2.447

7.60

558.9

110.8

0.59

LiAISi _0£ LiAlSi.O- NaAlSi-Oc NaAlSi,O_
Z b Jo ≪o Jo

2.426

6.66

493.3

155.8

0.49

2.386

5.25

456.9

192.7

0.33

2.458

7.80

4C6.5

169.1

0.46

Table 9. The density and bulk modulus of alkali alumino

silicate classes

0.1 0.2
T

03 0A 05 06 0.7
T/0o

Fig.8 Grtineisen function of alkali alumino

silicate glasses
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399.7
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0.45



glass, the Gruneisen function of alkali silicate glasses varies

largely depending upon the glass composition, because non-bridging

oxygens are introduced with alkali ions. On the other hand, the

introduction of aluminium ion with alkali ions into silica glass

does not bring in non-bridging oxygens as described before.

Consequently, the behavior of Gruneisen parameter is not so differ-

ent, even if the alkali content varies from one glass to the other.

This similarity in the behavior of Gruneisen parameter is reflecting

in the constancy of (03/0^) described in the previous section.

In other words, the main difference in thermal behaviors between

alkali silicate and alkali alumino silicate glasses results from

the existence or lack of non-bridging oxygens, although the three

11)
band theory is applicable to both glass systems
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SUMMARY TO CHAPTER 6

The heat capacity and thermal expansivity were determined

on alkali alumino silicate glasses of Li20- AI2O3 -nSiC>2 (n=2,4,6),

Na2O-Al2O3-nSiC>2 (n=2,4) and K^O-A^C^ -6SiO2 compositions in a

wide temperature range. The results were analyzed by the three

band theory and the effect of aluminium ions on thermal properties

of glass was discussed. The main results obtained are summarized

as follows.

1. The temperature dependence of heat capacity of alkali alumino

silicate glasses was found to be expressed well by the present three

band theory. The third characteristic temperature 0£ was almost

constant irrespective of alkali content, and was about the same

value found for alkali silicate glasses. The first characteristic

temperature 0^ was slightly lower than that for the alkali silicate

glass of the same alkali content, and changed little with alkali

content. The ratio of 63/61, which represents the nan-directionality

or ionicity, remains almost constant for all glasses.

These results were explained by the intermediate nature of aluminium

ions that aluminium ions are incorporated in glass network and

thus behave as the Debye chain continuum similar to Si-0 bonds.

2. The thermal expansion coefficients of alkali alumino silicate

glasses increased with increasing alkali and aluminium oxides.
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When compared at the same temperature and the same alkali content,

a lithium containing glass has a lower thermal expansion coefficient

than a sodium containing glass, as expected from the values of 0e

or the bond strength of alkali ion-oxygen bonds.

3. The behavior of Grttneisen parameter was about the same for all

alkali alumino silicate glasses in spite of the difference in alkali

content or ionic size. This behavior was kind of alkali oxide or

alkali content. This behavior was explained by the effect of the

trivalent state of aluminium ions on network modifying alkali ions,

or the disappearance of non-bridging oxygens by coexistence of

aluminium and alkali ions. This effect also explains the constancy

of 03/01 for alkali alumino silicate glasses.
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Summary

For the purpose of obtaining informations about the thermal

behavior of glass and its relation to glass structure, a detailed

experimental study was carried out on heat capacity and thermal

expansivity of alkali silicate and alkali alumino silicate glasses

from very low temperatures to moderately high temperatures, and

the glass model systems were considered based on the lattice dynamic

theory.

In Chapter 1, the general background and purpose of the present

study was outlined. The difference in thermal behavior between the

glassy and crystalline state was described, and the usefulness of

the lattice dynamic theory for interpreting the thermodynamic data

of glasses and obtaining information about glass structure was

pointed out.

In Chapter 2, the application of the lattice dynamic theory to

the thermal properties of glasses was described in detail. Two

glass model systems were established in the present study to obtain

the equations which are applicable to interpret the experimental

data of thermodynamic properties of silicate glasses in a wide

temperature range. The first model system, a homogeneous but

structurally disordered simple system, was found to be useful to

clarify the difference in vibrational properties between the glassy

and crystalline states at very low temperatures. The effects of
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compositional variation and temperature on the Gruneisen parameter

were derived and a diagram showing these effects was made for

vitreous silica and alkali silicate glasses. The second model, a

more complicated system involving three different characteristic

temperatures, was established to express the heat capacities of

multicomponent glasses in the low-to-moderate temperature range.

These three characteristic temperatures were taken to be associated

with the interchain bonds of glass network, the lateral interaction

of chains and the independent modifier-oxygen bonds. The way of

structural interpretation of thermal properties of glasses was shown

In Chapter 3, the experimental methods and the systems used in

the present study were described in detail. The structure and

performance of a newly constructed low temperature calorimeter

system and a low temperature dilatometer system were presented.

The test results of these systems for the standard samples were

given and the deviation was found to be within 3% of the reported

values in the entire temperature range from 1,6 to 400K.

In Chapter 4, the results of the measurements of heat capacity

and thermal expansion coefficient for vitreous silica and sodium

silicate glasses in the very low temperature range were presented.

The specific heat of these silicate glasses did not obey the Debye

continuum theory, but showed an excess heat capacity at about 10K.

This excess heat capacity did not vary with composition, indicating
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that this anomaly is related to the randomness of glass structure

rather than the bending motions of glass network. A large anomaly

in thermal expansion coefficient and its compositional dependence was

found, whi'ch reflected to the variation in Gruneisen parameter with

glass composition and temperature. The Gruneisen parameter for

vitreous silica calculated from heat capacity, thermal expansion

and elastic constants becomes negative below 150K and showed a large

negative value at very low temperatures. When the network-filling

sodium ions were added to silica glass, this negative value became

less with increasing sodium content and disappeared with addition

of 20% soda. This effect of alkali addition became more pronounced

with increasing size of alkali ions from Na to K and to Cs.

Such temperature and compositional effect on Gruneisen parameter

were found to be in accordance with the diagram constructed theoreti-

cally in Chapter 2 based on the simple glass model system.

In Chapter 5, the thermal properties of simple and mixed alkali

silicate glasses at low-to-moderate temperatures were described.

The heat capacity was measured and analyzed by using the three band

theory. For vitreous silica, the first characteristic temperature

<z>iassociated with the Si-0 stretching modes was 1550K and the

second characteristic temperature 63 associated with the lateral

interactions of networks was 140K and the ratio 63/61 was small

(0.09). Introduction of alkali ions to the vitreous silica network

caused a small decrease in 0i and a large in 63, which was considered
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due to the breakage of glass network by alkali ions. The third

characteristic temperatures Gg associated with alkali metal-oxygen

bonds independent of network vibrations were 220K for Na-0 bonds,

150K for K-0 bonds and 50K for Cs-0 bonds. This order was in

agreement with the bond strength of alkali metal-oxygen bonds.

In the case of mixed alkali silicate glasses, both 0^ and O3 showed

a little positive deviation from the linear additivity, indicating

that the Si-0 chains are tightened by mixing two kinds of alkali

ions.

The thermal expansion coefficient became larger with increasing

alkali content as well as with increasing alkali ion size. However,

the temperature dependences of thermal expansion coefficients of

mixed alkali silicate glasses differed from those of simple alkali

silicate glasses and could not be obtained from the linear additivity. . .

This behavior became more pronounced for the glass containing two

kinds of alkali ions of two very dissimilar ionic size.

This was attributed to the interaction of two dissimilar ions.

In Chapter 6, the thermal properties of alkali alumino

silicate glasses at low-to-moderate temperature were described

and the applicability of the three band theory was examined.

The heat capacity data were found to be represented well by the

three band theory. The addition of intermediate cations such as

aluminium to silica network showed only a slight decrease in Gi
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and Go from those of a sodium silicate glass having the same sodium

content and gave almost no change in 0g. This was interpreted on

the basis that the Al-0 bond in alkali alumino silicate glasses

behave as the Debye chain continuum similar to Si-0 bond rather

than as an independent vibrator like network modifiers, because

aluminium ions are incorporated into the glass network. The thermal

expansion coefficient at any given temperature increased with

increasing alkali content as observed in alkali silicate glasses.

However, the behavior of Grilneisen parameter for alkali alumino

silicate glasses was different from that for alkali silicate glasses

in such a way that the dependence of Grilneisen parameter on alkali

content was quite small. This independent nature was attributed

to the lack of non-bridging oxygens in alkali alumino silicate

glasses where no breaking of network structure takes place unlike

in alkali silicate glasses.
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