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PREFACE

During the past ten years, considerable interest has arisen in
the subject of modern control theory. This body of theory is a direct

growth of the desire to place the theory of automatic control on &
firmer mathematical background. Much of the work done in this area

is derived from the theory and the design of optimum control, and the
problems are usually formulated and solved in the time domain using

the concepts of state matrix theory. Numerous contributions have
been made in this pursuit, unfortunately with considerable difficulties
in practical solutions of such a mathematical problem as a two point
boundary value problem, or an initial value problem which describes

the necessary conditions for optimality. The solution of these
problems is in general very complicated. Except for very simple
cases, it cannot be done without the aid of a modern high-speed digital
computer. As a result, although many of the techniques are very
useful and are often necessary in applications, the language and con-
cepts of optimal control are often beyond the comprehension of practic-
ing control engineers.

In this paper, the author proposes from an engineer's point of
view various methods of designing pseudo-optimal control systems
without the direct solution of these rather complicated mathematical
problems mentioned above and much attentions are emphasized upon the
relationship between concepts and the evolution of ideas rather than
upon mathematical rigor. This paper is divided into three main parts.

In Part I, the fundamental concept of sub-interval optimization
and its applications to the synthesie of bounded control systems with
deterministic inputs are presented.

In Chapter 1, the fundamental concept of a pseudo-optimization

which is named as a sub-interval optimization is described to obtain



the quasi-optimum structure of control system with bounded control.

The purpose of Chapter 2 is to show that the present concept of
sub-interval optimization applied to a final-value control problem
provides us a physically meaningful optimum solution.

The description in Chapter 3 is concerned with the quasi-optimum
control of a second order vibratory system with bounded control. A
few extensions of the sub-interval optimization technique is carried
out to derive the gquasi-optimum switching line. An experimental
study on the derived switching line by a digital computer is also
presented in this chapter.

Part II deals with the near-optimum approaches to the synthesis
of control systems under random environments.

An analytical method for synthesis of a near-optimum control
system with random inputs is described in Chapter 4 by introducing
the Taylor~Cauchy transformation. Discussions on the proposed
numerical procedure from mathematical viewpoints are also developed
in detail with digital simulation studies in this chapter.

The presentation in Chapter 5 is concerned with stochastic syn-
thesis of an optimum final-value control system with control energy
constraint under random environments. LPetailed descriptions on
control characteristics of the final-value control system are also
carried out.

Part III concerns with an on-line computer optimization approach
to non~linear control systems.

The description in Chapter 6 is devoted to establish the funda-
mental concept of an on-line computer utilization. This serves an
extension of the concept of sub-interval optimization cited in Chapter
1 to the more complicated design problem of non-linear control systems.

Two illustrative examples provide the detailed aspects of the present

- ii -



concept, Further discussions are also carried out, emphasizing the
exploration of the concept to the design problems of adaptive, or
self-optimalizing systems.

In every stage of this work, the author has benefited from many
invaluable suggestions and stimulating discussions with many indi-
viduals. First of all, he wishes to express his sincere appreciation
to Dr. Yoshikazu Sawaragi, Professor of Kyoto University, for his
helpful suggestions, criticism, and guidance. To Dr, Yoshifumi
Sunahara, Assistant Professor of Kyoto University, the author is very
grateful for his help in reviewing this manuscript and for making
numerous constructive criticisms.

The author wishes to express his heartfelt gratitude also to Dr.
Takashi Soeda, Professor of Tokushima University, and Dr. Takayoshi
Nakamizo, Lecturer of the Defence Academy of Japan for their encourage-
ment, and to the many individuals of Professor Yoshikazu Sawaragi's
Laboratory in Kyoto University for their constructive criticism and
invaluable discussions,

The author wishes to acknowledge the assistance he received from
Mr. Koichi Inoue, Mr. Yoshiharu Matsui, Mr. Toshiaki Ito and Mr.
Koichi Ito, graduate students of Kyoto University, in the preparation

of the manuscript.

December, 1965
Toshiro Ono
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Introduction

The mathematical description of the design problems of optimum

(35)(47) (48) o,

control is shown in various text books in detail.
author reviews it briefly through a short discussion about some of the
problems which are related to the present work, and the fundamental

concept of the methods of attack is outlined.

1, Review of Optimum Design Problems

Most of design problems of optimum control are developed in the
time domain using the concept of state and matrix theory.
In general, the basic approach to the problem is as follows :

(1) Define a cost function or performance index (some precise
mathematical measure of "goodness") of the control system to be
designed.

(2) Determine the dynamical characteristics of the controlled system
or plant in differential or difference equation from relating
the state variables and control variables.

(3) Specify certain equality or inequality constraints in the state
variables or control variables, or both.

The objective is as follows: Given (2), optimize (1) subject to
(3)., To make the idea more precise, let us consider the case that
the dynamical characteristics of the controlled system as shown in
Figs. 1 may be well=described by
i=2 = f (), (1)
where #=2(t) and uw=u() are the system state vector and the control

vector, respectively, and they are defined by

2= ¢+ x, (1) and #@)=  u,(1) "
x, (1) uy(t)

(2)

Xp(f) 1 - U, (4)



2 "1 Controlled [~ X,

i System

(a)
Controlled
u p! ““——;>
System [~ &

(b)

Fig, 1 Block diagrams of a controlled system

The control vector consists of r control variables. At each moment,
both the control variables u;and the state variables z, must satisfy

the inequality constraints
F(u) < g and B(x) <0 (3)

which reflect the restrictions imposed upon the control system. For
instance, when the control varizbles are bounded in magnitude, the
first inequality in Eq. (3) becomes

ay = g <b: (E=1,2, s, r] (4)
The control vector which satisfies the constraint conditions is refer-
red to as an admissible contrel vector.

The form of a cost function or performance index yields the many

types of optimum control problems. Among them, three basic modes of

optimum control are of fundamental importance. They are the minimum-



time control problem, the final-value control problem, and the minimum-
integral control problem.

The minimum-time control problem may be stated as the determi-
nation of an admissible control vector w so that the system is taken
from a specified initial state %, to a desired final state:@ in the
shortest possible time.

The final-value control problem may be stated as the determi-
nation of an admissible control vector # such that, in a given time
interval T, the system is taken from an initial state %, into a state
in which one or a combination of the state variables (for éxample,

z,) becomes as small as possible or as large as possible, and the re-
maining state variables have fixed values within physical limits.

In other words, for example, it is stated as the determination of the

admissible control vector which minimizes or maximizes the functional

Ji=x,(T=F, (3 .2, u,.t)ll_T, (5)
or
k
= élfi;-x‘{r):[‘z @osxyu, 1) | oo (6)

In Eq. (6), k<n , and x;(r) denotes the f-th state variable evalu~
ated at the end of control operation. A final-value controller is
then designed to achieve a desired response at one instant only, the
response at the earlier instant being arbitrary within physical limits.
The minimum=-integral control problem involves the optimization
of a system with respect to an integral. This optimum-control
problem may be stated as the determination of an admissible coatrol
vector w in such a manner that the integral
I= j""F(:c.w.n)dp (7)
0
reduces to a minimum during the time of movement ¢,-1¢, .

In a general formulation, the design problem of optimum control



stated above is usually viewed as a variational problem, There are
many possible variational methods for minimizing or maximizing a

functional, The commonly used methods in control system design are:
()

(1) The calculus of variations.

) Iy
(2) The Maximum Principle of Pontryaginf =

(2)

(3) Dynamic Programming.

The application of these variational methods to design problems
gives us two types of difficult methematical problems which describe
the necessary conditions for optimality. That is to say, the method
of the calculus of variations or the Maximum Principle provides a two

(42)

point boundary value problem. The method of Dynamic Frogram-

(BY paem

ming, on the other hand, formulates an initial value proktlem
respect to & partial differential equation. The solution of these
problems are often very complicated and except for very simple cases

it normally requires lengthly preliminary computations which are

unwieldy for present-day computers.

24 Fundamental Concept of a Pseudo-Optimization

As the author has already stated in the previous paragraph, the
solution of these difficult and rather unfeasible mathematical problems
is inevitable to obtain an optimum solution which minimizes or
maximizes the performance index. Even if such an optimum solution
could be found, the resulting control u would very likely be dif-
ficult to realize if it is impossible to instrument. Furthermore,
an approximate solution to the exact optimization problem may have
serious convergence difficulties and expensive to instrument. Hence
we may abandon the hope of finding either the exact or the approxi-
mate solution to optimum control problems. The scope of these

problems has increased to the point where the solutions may not be



economically feasible unless some valid formulation of a sub-optimal
or pseudo-optimal problem in such a way that the solution will be
reasonably simple and feasible to instrument. Several approximation

techniques for sub-optimal solution are already described in the

(L9) (44)(30)(6)

literature. This paper developes a new concept which

is directly based on approximating the optimization problem by intro-

(20)

ducing the concept of one-line control schema, instead of basing

the control law either on a simplified or approximate set of model

41) (49)

relations describing the controlled proceé

(6) (4l)

or on approximating
the minimum performance functional. The latter approaches

are often undesirable because the resulting approximate problem may
still be a very difficult optimization problem, especially under the
situation of bounded control variables. In contrast, however, the
concept of a suitable approximation to the original optimization
problem through on-line control features yields a pseudo-optimal
control policy very quickly. That is to say, in the formulation of
the optimization problem, a time interval for performing optimization
(optimization interval) is of considerable importance. This nust be
an appreciable portion of the time interval over which the control is
performed (operation interval), since one is usually interested in the
performance over the entire operation interval, for instance, by - t,

in Egqe (7 However, if a few restrictions on a duration of the
optimization interval is suitably assumed, the solution of & restrict-
ed problem may be simplified and carried out analytically. Thus, to ease
the: required calculation for the original optimization problem, a
shorter fictitious sub-interval into the future from any given time

can be taken as a tentative optimization interval. The duration of

a fictitious sub-interval depends upon the state of the system.

The optimization over the whole cperation (control) interval is car-



ried out through an on-line scheme which recomputes, utilizing the best
information available at present, the simplified optimization problem
at discrete intervals of time. Such a philosophy leading to pseudo-

optimal policies will be explored in the following chapters.



CONCEPT OF SUB-INTERVAL OPTIMIZATICHN
DART T AND ITS APPLICATIONS TO THE SYNTHESIS
OF BOUNDED CONTROL SYSTEMS WITH

DETERMINISTIC INPUTS



CHAPTER 1 SYNTHESIS OF QUASI~-OPTIMUM CONTROL
SYSTEMS WITH BOUNDED CONTROL

Lol Introductory Remarks

(18)(25)

The majority of theoretical studies on the problem of

designing the optimum control with bounded control has been concerned

with problems of the minimum-time control which minimizes the time

required for the system from the initial state to the desired state.
In recent years, by using such concepts of modern optimization

(2)

techniques as R. Bellman's Dynamic Programming

(42)

agin's Maximum Principle, much attention has been focused on

and L. S. Pontry-

solving problems of the optimum control with more general performance

(22)(23)

criteria. A, T, Fuller has calculated the optimum switching

line minimizing the integral~-error-squared value for the control

system whose transfer functiocn of the controlled element with the

(17)

magnitude constraint on its input is ks%. L. N, Fitsner has

also considered the same problem and derived an approximate solution.

(k0) P. J, Brennan and A, P. Roberts(g)

Subsequently, J. D, Peason,
have respectively showed that one of the ewxact solutions established
by A, T. Fuller was in close agreement with the digital and analog

computations of a two point boundary value problem obtained by L. S.
(50)

Pontryagin'’s Maximum Principle, W, H. Wonham has verified the

optimum system of A, T, Fuller's by solving the Bellman-Hamilton=

(2h)

Jacobi partial differential equation. A, Ty Fuller has also

discussed the fact that his optimum solution satisfies the Maximum
Principle. Although the analytical method established by A, T, Fuller
provides the scolution in the closed form, this is not applicable to

other types of controlled systems owing to their specialized features.



In this chapter, from a slightly different point of view, an
analytical method of designing the guasi-optimum control system with
bounded control is described by introducing the concept of sub-interval
optimization based upon the restricted-optimal control law which gives
us the best possible strategy in a certain restricted contrel situ-
ation. The present attention is directed tc determining the optimum
switching function of restricted-optimal control by using R. Bellman's
Dynamic Programming.(a) A new graphical technique for the determi-

nation of quasi-optimum switching lines is also presented by applying

the optimum switching function of restricted-optimal control.

1:2 Formulation of the Problem and Definition

of the Restricted-Optimal Control

Desired Signal

vir)
Control Confrofled Error
Signal k Signal I+ Signa
ut)  |ls+as+b| XA =7 ef)

Figs lo.1 Block diagram of the system to be considered



We consider a system as shown in Fig. 1.1, in which the dynamical
characteristic of the controlled system is represeunted by a transfer
function of the form %/(54a)(S+4+5) between the control signal u{t)
and the controlled signal x(¢), The desired input v(t) is assumed
to be a step signal with the magnitude dy. The control signal is
subjected to a magnitude constraint as

ey | < L, (1.2-1)
where L is a pre-assigned positive constant,

The principal problem considered here is to design the control-
ler so that the integral-error-squared value for a finite control

interval, namely,

T
Ja= fo e(p)?dp e e P

is minimized, for any initial state of the system at the time ¢ =0,
In Eqe (1l.2-2), T is also a pre-assigned constant which expresses
the final instant of control operation.
Another problem to minimize the integral-error-sguared value for

an infinite control interval,

M==j:'e(,o)’dn (1.2-3)

is simultaneously treated as the special case of the former problem
shown by Eq. (1l.2-2).
Let the state variables of the controlled system be expressed

by x,(¢) and =z, (¢), The system dynamics can be expressed as

2,0 = —b x,(t) + z,0), %, (0)=¢, 1 (1.2-l)

A= —aty )+ ku(n,  z0=c, )

where x,(t)=z(f) and "." expresses the symbol representing the dif-
ferentiation with respect to the time variable ¢. By using the

corresponding state variables of the error signal, e, (2) and e,(¢},



and considering the fact that the desired input is a step signal, Eq.

(L.2-4) becomes

?l(t)z "b“l )+ e , egll)= h=d~c¢ (1.2
e,(0=—ae¢(t)4abd,~ku(t), e, ()= l,=0bd, —¢,” " 1.2-5)
Let us define the new variables as*
?:a!
¢, =de, kL W
%, —ae, /KL
ﬁ;u/f J ’ (1.2-6)
Egs. (1,2-1), (1,2-2) and (1.2-5) become
@) <1, (1.2-7)
-~
T & s
Jo= (kL) /o efd ap ,
: A (1.2-8)
‘él (?):—ﬂ :3\! ("\) +€z (?) ] 33 (O):?x L
&=~ &,0rpd,u(y, So=1,/ ° (1.2-9)
A A 4
where A=b/a,l=ar,dy =%, /kL, h=a*b /kL and [,=al, /kL,
From Eq. (2.2-8), we obtain a relation;
min J,= (kL)* /o’ min J
y e TR A & (1.2-10)
lul<L lal<1
where
AT,
.= [ &@ido. (1.2-11)

The problem is therefore reduced to find the normalized control
signal &(f) which minimizes the functional f; given by Egq. (1.2-11)

taking the constraints shown by Egs. (l.2-7) and (1.2-9) into account.

* This transformation ceases to be valid in the case where a=b=g,
The treatment for this limiting case will be presented in

Appendix-A.

= 1B =



For the simplicity of present description, we shall omit the chapeau
"a" henceforth, unless it is necessary.

(3)

By applying the concept of Dynamic Programming, the problem

is reduced to solve the following partial differential equation;

O iy 9 as
ﬁ'r_m,_:n {ef — (Bey~¢e) Ez— (e,mAdytu) e, }'

(lca"'lE)
i< 1
with the initial condition;
$=0 (r=0) . (1.2-13)
where ¢—¢(e, ye, ;r)and this is defined by
. - T
9 (1, ¢, 57)=min [ e(fdo, (1L.2-1%4)

lul<<1
and r expresses an auxiliary time variable which is introduced for
the convenience of present discussion and is called the reversed
time variable, i.e., ==r-t.
From the right hand side of Eq. (1.2-12), the optimum control
signal u(¢) which makes Eq. (1.2-11) minimum can be obtained as

w(t)= sgn [ z(f)] 1
2(M)=0¢/de, [ (1.2-15)

where

sgn[z]:l (z;u)}
=-1 (z<<0) J °

(1.2-16)

From Eqg. (1.2—15), the configuration of the optimum control system
with bounded control becomes a relay control system as shown in
Fig. le2, where the on-off state of the relay element depends upon

the sign of the function z(» in Eq. (1.2=15) %

* Tn the later discussion, the terminology ''switching function" is

used to express z(r)

I



vir) +-~el/) 22 LAy X(/)
5 i s+a)(s+b)| [

7

Optimum  Switching Function
Generator

Fig. l.2 Optimum configuraticn of the control

system with bounded control

In order to obtain the switching function, we subszstitute Eq.
(1.2-15) for u(¢) into Eq. (1.2-12), the following non-linear partial

differential equation is derived;

8¢ a¢ d¢

e =¢6- (Fei—er) 76, = (amfditsen g . (1.2-17)

As the solution of Eq., (1.2-17), if we assume that the following
(34)

quadratic form;

¢ (&1, e, | T)= k(@K (7) e, +k,()e,
+ky(r)ese, +h () e, kg (Fle] (1,2=18)

then Eq. (1,2-17) with the initial condition Egq. (1l.2-13) becomes
the following set of non-linear simultaneous differential equations;

k) ()= (Bdi=sgn (5(@)}) kulr) \
: k@) =—Fk )t (fdy~sgn [ %(r)) ) ks()

kg (0= ky(r) = ka()+2 (Bdy—sgn (2(5)])k,(r)
kjr)y=2k ()= (B+1) kylr) ' (1.2-19)
k{ tF=1~24k, ()
K (o= k () =2k (7)

e

with the initial conditions;

w18 =



kf (U):U (i=0,1-2- """ . 5) ] (1.2‘"20)

where "." expresses the differentiation with respect to the reversed

time variable r and the switching function #(f) is expressef by
ZO)= kylr)+ky (t) ey +2ks(2)e, (1,2=21)

On the other hand, changing the variable t by the reversed time
variable r and substituting %(f) for a(t) into Egq. (l.2~9), we have

81’(1') = fe;(1) — ¢,(7), EJ('T)=11 }

e} (N= €&(M=fdi+sgn (z(0)) , e =1, (1.2-22)

The design problem for a finite control interval is therefore
reduced to a two point boundary value problem which consists of Egs.
(1s2-19) and (1.2-22). Because of the difficulty in solving a two
point boundary value problem the following assumption is made.

Assumption: The final instant, T, of the control operation is
suitably chosen beforehand so that the optimal control
might be performed by no more than one switching
operation within this control interval, (0,7 ), which
depends on bhoth the initial conditions and the
system parameters.

Furthermore, the terminology, "restricted-optimal contrel", is
defined as follows:

Definition: The terminology, "restricted-optimal control", is

introduced to define the restricted control situation

satisfying the assumption mentioned above.*

* The importance of this specialized contrel situation will be

discussed in section l.k4%.

w U -



1.3 Determination of Switching Functions realizing

the Restricted-Optimal Control

We express the time instant of the switching operation with
respect to the reversed time by’rz”k. This time instant is equiva-
lent to tg in the real time, ¢.

Assuming that the sign of relay output at r—0 is negative, Eq.
(142-17) can be replaced by the combination of the following two

linear partial differential equations;

- e
2 et-tper—ed 5y = (apdi=1) Fe (1.3-1),
for g-f < 0 '
€
a¢” 99" 84~
;’; :ﬁz"(ﬂex—ez)a_el _(ez_ﬂdl—f-l)a'_ez (103"1)2
a
for il > 0.
de,
By using the relations;
+
¢ !r::O-HU
o= =¢t]
T=Ts =7
ag=, _ ¢+
de, I = de, | .
Tr=r: T="%s

the solution of Eg., (l.2-17) is obtained as

¢=¢+ for =t=10
(1-3-3)
=¢ for TZ =71,
The two-point boundary value problem stated in the previous

section can therefore be converted into the initial value problem

as follows :

a 4 -



‘l ko= (Ad, 1) Ko, ket O)=0

b em—pkt o+ a1 K, kYo=0
kaﬁtﬂzkﬁr)—kﬁr}-{-z @Bd D) ke, BTO=0 &
k=2 kit - (AHD KO, kto=o0 [,
k.""(z)::l—Zﬁk;l'{-r], k.+(u)=—_0 (1.3=4)
ke wr=kitn -2k, k=0 .
|
and
K= (fdy —Vk; (), ki @)=k" (rs)
k= Ak (0 (A= 1k (1), k )=k ()
ko= kK (-k 042 Bdi=D k70, b GI=k () o1 2
e — P - la s
ky ()= 2k{ (©) = (A+1) k(1) ke )=k (5 | o 2
| K o=1-28k] (@), K (r)=ki (x)
| kTE=k () -2k, =k @)
where k;(r) and k;*?} (§=0,1,..... ,5) express respectively the
coefficients in the gquadratic forms of solutions;
$ (e ¢, 3 DI=K @k D e+ K e,
+k;|-(r}ele g+k:+'(f] e:"’"k—:—{‘r) e: » (103"’5)1
and _
(e 6 5 1) =k Ok (et kalde,
K (De, e, F kel + kT ek (1.3-3),

By a similar procedure presented in Appendix-A, from Egs.
(1.5-4)1 and (1.3-4)2, the optimum switching functions of restricted-
optimal control for positive trajectories of the system response
become as follows* :

(1) In the case where a—é=0, the switching function is

2 1 &

1 e
Z‘!-’}-H + - r—'z (1.3_6)

z+-
RES

Il

b

* The optimum switching functions for negative trajectories can
easily be obtained by considering the symmetric property of the
switching line with respect to the origin of the phase coordinate,

except for the case whereax0 and b0,

= 15 =



(2) In the case where af 0 and d=0, the switching function is

2
ZRESE [ar-}-exp (~at) -1} Eyn [ar+exp (-ar) —1J ‘;c_zx
i (2{01‘4-6:([) (~ar) -1} (1,3%-7)
= {1-exp (~a7)} }*] :—zz,
(3) In the case where a#0 and b#e, the switching functicn is
+ at

ZRES™ F7 (g (1-exp (-b%) —f{1-exp (-ar) }

! - . ex - : 7 _.___2_ e e ﬂ_fg;

1 1 i o e

t Gawn " Gomr P C2 0 Gapape Sxels G )
~Fap o G2

(1.3-8)

where cﬁ+5abd1/kL+1 and f=ba.

l.4 Sub-Interval Optimization Technigue

1.4=1 Basic Concept of a Sub-Interval Optimization Technique
As the author has already stated, since there is no items to he

mentioned here in the case where the restricted-optimal control can

be realized during the time interval (0,T), then the technique intro=-
duced here is to provide a pseudo-optimization strategy for the
control interval which does not satisfy the assumption realizing the
restricted-optimal control,

The fundamental idea may be stated along the illustration of

Fig. 1.% as follows:

(1) By taking into account of both initial conditions and system
parameters, determine the fictitious final instant of
sub=-interval which satisfies the assumption realizing the
restricted-optimal control.

(2) Solve the fictitious restricted-optimal contrel problem where

- 16 -



The n-th Optimization
interval by the iostricted-

Optimal Control Law
The 2nd Optimization

Interval by the Restricted-
Optimal Control Law

Initial Instant
of Control
Operation

Final Instant
The Ist Optimization of Certrol

Interval by the Restricted- Operation
Optimal Control Law

Fige 1.3 Translation of the sub-interval with respect to time

(3)

(4

T nitinik is tentatively considered as the final instant and decide
the control law for the optimization of the first fictitious
sub-interval.

Compute the system states at the termwinus of the first fictitious
interval P sonibini and examine whether the rest interval satisfies
the assumption with respect to the computed system states or

not.

If the terminus of the first fictitious interval Tsub-l does

not satisfy the assumption, then compute the valuve of & -
coordinate corresponding to e, =0 after the first change over.
Determine the second fictitious final instant Tsub—a by consider-
ing the values of e, calculated above and e,—o0 as the initial

conditions for the given optimization problem and decide the

control law for the second fictiticus interval.

w PF o=



(5) Continue the iterative procedure listed above until the n—th ex-

tension involves the final instant of time 7.

Fige. 1.4 shows the logic flow chart of the pseudo~optimizaticn
procedure., Since the necessary condition realizing the restricted=-
optimal control is expressed as an inequality which is described by
system initial conditions, system parameters and the final instant of
control operation, then the necessary condition is assumed to be ex-
pressed by the relation, f (l,L:p:T)< 0 , in Fig. Ll.4. However,
it is in general difficult to derive the relation?<g( ksl 3 F# ) from
S L,1, 3 A3 T)Y=O because it is a transcendetal inequality. 8o the
following graphical method is applied to determine the final instant
of a fictitious optimization interval without using the function
Lt 585 1)=0,

l,4-2  CGeometrical Interpretation of the Necessary Conditicn
realizing the Restricted-Optimal Control

As a preliminary consideration, let us calculate numerically the
intersections of the system response trajectorieswith the switching

i:==3 in the phase plane.* FTor simplicity, we

RES

consider the limiting case where the system parameters, gqand b in Eq.

line expressed as z

(L,2-5), become zero. From Eq. (1.3-6), the normalized switching

line of restricted-optimal control for positive trajectories in this

case is
1 2 An
I'}=+_§{322+3i:0 , (1.4-1)
where
N
T==Tr -l
é\l:el/k[. (10"‘!"‘2)
32-—'_'-— e, kL ’

* Strictly speaking, the two dimensional state space must be used
for this term.(27)
- 18 -
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Fig. l.4 Logic flow chart of a pseudo-optimization procedure

On the other hand, by setting a=p=0in Eq. (1,2-5) and integrat-
i ' 5) wi : iable ¢
ing the second relation of Eq. (1.2=5) with respect to the variablet ,

the following equation which expresses the normalized e -coordinate

- T -



Envelope of the Swifching

Lines of Restricted-
Optimal Contrat

- \ 32
—-20} 2.9 :
// 2.7
Plot of the Intersections

of Egs.(1.4-1) and {i.4-3)

Fig, 1.5 Plot of the switching lines of restricted-

optimal control for a=bmyp

of the positive trajectory of the system response can be obtained as
A A AA
es=1l,—(r-r), (1-4—5)

wherengz/kL and sz respectively.-

- 20 -



By using Egs. (1.4-1) and (1.4-3) and considering the value of
F as a parameter, we calculate the intersections stated above and the
results are plotted as the solid curves in Fig. 1.5, in which we can
set the initial condition E: to be zero without any loss of general-
ity. In Fig. 1.5, as well in the following figures showing the
switching lines of restricted~optimal control, it must be noticed
that only the switching lines for positive trajectories are illustrat-
ed. The switching lines for negative trajectories are easily plot-
ted from the symmetric property of a switching line.

In order to explain the role of restricted-optimal switching in
detail, we consider the particular value of ?:1.1 and shows sSchemati-
cally the figure of switching line as shown in Fig. l.6 by extract-
ing the curve corresponding to ?:1.1 from Fig. 1l.5. In Figs 1.5 and
1.6, the dotted line expresses the envelope of the plot of the inter-
sections, which indicates the right boundary region of the restricted-
optimal switching,. In other words, this means that the plots of the
point of restricted-optimal switching do not locate in the hatched
aree of Fig. 1.6. The left boundary region is obtained as the e, -
axis from the consideration of taking the 1limit of the variable
to zero in Eq. (l.4-1). TFurthermore, from the definition of the
restricted-optimal control, it is evident that the effective(optimal)
switching line of restricted-optimal control becomes the part of the
curve running downward from the point of tangent to the envelope @ if
we fixed the final instant of control operation ? to be 1.1. Since
we can draw a positive trajectory so as to run across at the point @,
we express the point of intersection between this positive trajectory
and the gl-axis by Q. Since we can also calculate the Qi—coordinate
of the intersection Qi if we represent this by the symbol l,, 4 then

the relation ?};320 has the equivalent physical meaning of the neces-
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sary condition realizing the restricted-optimal control in the case
where ;El.l, in Bqe (1.2-2) and l,=0, e=b=0inBg.(1.2-5). Since the
envelope means a set of the critical point for the fixed T like Q,

it is concluded that the envelope gives the boundary switching line

of the restricted-optimal control. It is revealed from the

e,

Pseudo-_|,.  Optimization by the
\\ Optimi- Resiricted-Optimal Control Laow
\ Zation

<t | ———— ]
more than {only one
one swifching | switching

i

Q(Z10,0)

m

no switching

Envelope of the Switching Lines of

Q Restricted-Optimal Contro.
% /
</<///
%
%
%
&
%
NEffective Switching Line of
S Restrict :d-Optimal Conirol
for the given Confrol Interval
A
(T =1.1)

Fig. 1.6 Illustration of the geometrical meaning of the
switching lines of restricted-optimal control

.



discussions presented above that, by obtaining the envelope of the
restricted-optimal switching line in the phase plane through the
graphical method, we can get the necessary condition realizing the

restricted-optimal control in & geometrical sense.

1.4~3 Geometrical Interpretation of the Sub-Interval Optimization
Technique

As the author has already mentioned, the basic concept of the
sub~interval optimization technigue is introduced to give a pseudo-
optimization rule for the control interval which does not satisfy the
assumption realizing the restricted=-optimal control. This means
that the concept provides a pseudo-switching rule for a smaller
initial condition’ﬁ than Lo in case of a fixed control interval,

In this paragraph, let us consider the geometrical meaning of
sub~interval optimization technique.

Fig. 1.7 shows schematically the basic concept of sub-interval
optimization technique from the graphical point of view. In Fig.
1.7y let us consider the optimization problem with respect to the

AA
initial state F(ln:lz)from which the response trajectory will across

the ;l-axis at the point R nearer to the origin than the point Q'.

In this case the response trajectory meets the boundary line for thé
realization of restricted-optimal control at the point R. The inter-
section of the response trajectory with the restricted-optimal switch=-
ing line derived for the given control interval will be, on the other
hand, occurred at the point R, Then we must introduce the sub-
interval optimization technique for this problem. The procedure
stated in 1.,4-1 can be interpreted as follows: Firstly we consider the
fictitious  sub-interval [0, Tsubml] of which the critical point

of restricted-optimal switching will be occurred at R Then the

response trajectory switched at R will run toward the point R, .

- 2% -
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FPige 1.7 Tllustration of the geometrical meaning
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Since the time duration ¢ which the response changes the states from
these of the point F to these of R, “can easily be obtained, then we
can calculate both the rest of control intervel Ty,=r-#, and the e,-
coordinate of the point R,. Secondly, we must examine if the rest

of control interval satisfies the assumption realizing the restricted-
optimal control regarding to the newly computed system states, l.e.,
the ;'-coordinate of R,”, By considering the results of examination
mentioned above, we may carry out either the determination of switch-
ing time by using the restricted~optimal switching rule, or the
further computation deriving the second fictitious sub-interval. The

procedure presented above have to be continued until the final stepe.

1.5 Quasi=Optimum Stationary Switching Lines

From discussions stated in the previous paragraph, it turns out
that the envelope of switching lines of the restricted-optimal control
provides a pseudo-optimal switching rule for the infinite-control-
interval problem which minimizes the functional M, given by Eg. (1.2-3).

Definition: A switching line which realizes a pseudo~minimization
of the functional M, is referred to as a quasi-optimum
stationary switching line.

This section is devoted to show the plausibility of using the
envelope of switching lines of restricted-optimal control as a quasi-
optimum stationary switching line.

1.5-1 In the case where a=b=0,

It is in general difficult to derive the analytical form of the
envelope stated above. Fortunately, however, it can be done in this
limiting case.

Letting a=o in BEq. (1.4-3) and substituting Eq.(1.4-3) into

Bq. (1.4-1), Eq.(1.%-1) becomes
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1 A 2 A
2 (6t D) ’+§ (8T 6,+%, =0, (1.5-1)

Differentiation of Eg. (1.5-1) with respect to the parameter 7 gives us

1 A A 2
-2-(ea+T)+-§ &e=10. (1.5-2)

From Eqss (1.5-1) and (1.5-2), we obtain the guasi-optimum stationary

switching line for positive trajectories of the system response as
=g =0 (1.5-3)

By considering the symmetric property of the switching line, the
quasi-optimum stationary switching line can be derived as
S 04444 0,08 | =o0. (1.5-4)
On the other hand, since the optimum soluticn derived by A. T.

(23) 5

Fuller s

e+ 0444670 |6, |=0, (1.5-5)
then the plausibility of our proposal is analytically verified.
ls5-2 TIn the case where a# (0 and b=0

From Eq. (143=7), we can derive the normalized switching line

as

{Thexp (=7) =1 )42 {T+exp (=F) -1} 5
+ (2{7+exp (=7) =1} {1-exp (=7) }2) &,=0,

(1.5=6)

AN A : : .
wherer,e, and e, are the normalized variables respectively expressed

by
T—ar
A
¢,— ae; kL ' (1-5'7)
Qz: ae, /kL

By integrating the second relation in Eq. (L.2-22), the following

relation holds;
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a=0h expl~@-D ) - (a—expi=F-D }) . (1.5-8)

By lettingf}:t)in Eg. (1,5-8), and performing a similar procedure
described previously, we can obtain numerical plots as shown in Figs.
1.8 and 1,9. In Fig., 1.8, the quasi~optimum stationary switching

line is plotted by the dotted line. It is also interesting to compare

g,
0 0.1 0.2 0.3
01 T i 1
P
'327\ /Switching Line given by

\ / P.J.Brennan & A F Roberts

—04-953&?/
| q.?\/&

\ ,Quasi-Optimiuw Searnionary

<D 2 09 f\ y

. Switching Line for G #0
- = " /
06F i / \(} end b=0
— 13 A\,
Ry
il l D— 5 ‘\
- o Y
faeree ™ == ‘? . b
R e et
=N
— 3 P e
—3 '?,%::—{"’r N
o semmrx . X
—-1.0¢

Piot of the intersections
of Egs.(1.5-6) and (1.5-8)

Fig. 1.8 Plot of the switching lines of restricted-

optimal control for 2#0 and b=0
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our result with the switching line obtained by P. J. Brennan and A, P,
Roberts which is also shown by the bvoldfaced solid line. Fig. 1.9
shows the quasi-optimum stationary switching lines with the value of

a 245 a parameter.

1.5-3 In the case where a#0 and b#0

In this case, from Eq. (1.3~8), the normalized switching line

becomes
1 bd R
ﬂ.l(l__ﬁ)a (lfakLl)[l_exp(-—ﬂr)-.ﬁ{l._exp(_{;) }]l
1 1 2 . .
+ars — ma=p ox° C¥OTaTaaT exe (- D F)) &

1 5
+ram G o 29
4 1 P
T apa-pr Pl G- Gy e (D] &=0.  (1.5-9)

e

, are the normalized variables given by Eq. (1.5-7).

A A
where r' 4 e, and

By a similar way the results are obtained as shown in Figs, 1,10 and
1.11, where we set di=0 , i,e.,a+E:14 for simplicity.

In Fig. 1.10, the guasi-optimum stationary switching line is
plotted by the dotted line. Fig. 1,11 shows the quasi-optimum

stationary switching lines with the value of # as & parameter.
In the cases where system parameters are not egual to zero

simultaneously, it is difficult to derive analytically the equation

of the envelope. In order to perform it, we shall make the use of
a curve=fitting procedure.(lO) However, our discussions are confined
to show the plausibility of the substitution of the quasi-optimum

stationary switching line for the optimum stationary switching line.

1.6 Quasi-Optimum Non-stationary Switching Line

In this section, we consider the determination of the quasi-
optimum switching line for the finite control interval where the
switching functions, Egs. (1.3-6), (1.3-7) and (1.3-8), of restricted-

optimal control cease to be optimal.
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Our attention is directed to utilizing the optimum switching line
of restricted-optimal control with the quasi-optimum stationary switch-
ing liney and to provide a pseudo-optimal switching rule for an infinite-
control=interval problem which minimizes the functicnal i, given by lLg.
(L.2-2),
Definition; A switching line which realizes a pseudo~-minimization
of the functional J, is referred to as a quasi-optimum

non=stationary switching line.

&
00 02 04 06 08 10
v 1 I Ll

1

a=1.0
=075

0.5
0.25

Fige 1a9 Behavior of a quasi-optimum stationary switching line

affected by the changes of a system parameter a (b=0)
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-0.4 Switching Line for
- 0.7 -
. b B=05(a#0)
0.9
-—0.6//_
//'

-1.0

Plot of the intersections
of Egs. (1.5-8) and (1.5-9)

Fige 1410 Plot of the switching lines of restricted-

optimal control for @#0 and b0 (d,=0)

In order to examine the possibility of using a quasi-optimum
stationary switching line as a gquasi-optimum switching line in a
longer control interval than that of restricted-optimal control, we
evaluate the difference of the control performances between the system
with the guasi-optimum stationary switching line and that of the
optimum one with the restricted-optimal switching line, The compar-
ison is numerically carried out under the most undesirable situation
Figs.

where two switching lines yield the most different feature,

1.12, 1l.13 and 1,14 show the graphical comparison of these control

performances in the case where a=b=0, In Figs, 1,12, 1.13 and l.1%,



-1.0

Figs 1,11

Behavior of a gquasi-optimum stationary

switching line affected by the changes

of system parametersf=bé/a (d,=0)
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Fige 1.12 Graphical comparison of performance indices
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~

J

, denotes the performance index of the optimum system with the re-

stricted-optimal switching line. On the other hand, j; expresses the
performance index of the system with the gquasi-optimum stationary
switching line. It is evident from Figs., 1,12, 1,13 and l.14 that,
since the maximum discrepancy between ?, and };is only limited to
1~ 141 percent of the value of,ﬁ', and furthermore since it occurs
in the most undesirable usage of a quasi-optimum stationary switching
line, then from the viewpoint of practical engineering the instanta-
neous difference between }. and }: with respect to time in the range
of a longer control interval than that of restricted-optimal control

may thus be neglected. This means that the guasi-optimum stationary

e BB
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(L=L4» i:=0)

switching line may be used for a pseudo-optimum non-stationary switch-
ing line in the time range stated above. The guasi~optimum non=-
stationary switching line for an arbitrary finite control interval
can, therefore, be obtained by connecting the restricted-optimal
switching line with the quasi-optimum stationary one. The graphical
procedure is illustrated by an example as shown in Fig. 1.15. Fig,
1.16 shows an example of the response of the system subjected to a
step input for the finite control interval, E::I.S and i;= 0. In
Fig. 1416, the points indicated by C,, 4 ¢,, and ¢,, Show initial
points of trajectories and the points represented by E, , E, and Eyy
indicate their termini respectively.

The discussions developed for the case where ¢ =bml, are also

o B
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Fig. 1.15 Graphical determination of a gquasi~optimum

nen=-stationary switching line

(f=1.3 and T,=0)

extendable to the cases where e and b are not equal to zero.

1.7 Configuration of the Quasi-Optimum Control System

with Bounded Control

From the discussions given in the previous sections, the block
diagrams of the quasi-optimum control system for a finite control

interval and the one for an infinite control interval can respective=
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Fig. 1.16 Tllustrative example of the response trajectories
of the system with a quasi-optimum non-stationary

[a N
switching line (=1,3 and [,=0)
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Fig. 1l.17 Block diagram of the guasi-optimum control

system for a finite control interwval
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Figes 1.18 Block diagram of the gquasi-optimum control

system for an infinite control interval
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ly be shown in Figs. 1.17 and 1,18,

The quasi-optimum switching function generators in both Fig. 1,17
and 1,18 mean the physical realization of the switching lines obtain-
ed by the procedure stated above. Although it is important to
consider the practical realization of switching lines given by the

author, this will not be discussed in this chapter.

148 Concluding Remarks

In this chapter, an analytical technique for the synthesis of
quasi-optimum control systems with bounded control is developed.

The principal line of attack is directed to convert the two
point boundary value problem formulated by using the method of
Dynamic Programming into an initial value problem providing the neces=-
sary condition for optimality in a certain restricted control situ-
ation, which is referred to as a restricted-optimal control. A new
concept of sub-interval optimization based upon the restricted-
optimal control is introduced to provide a pseudo-optimum control
strategy. By applying the concept, the quasi-optimum stationary
and non=stationary switching lines are obtained by 2 graphical
procedure.

The guasi-optimum switching lines are to be constructed as the
non=-linear function of the state variables of the error signal. It
will be expected that the method proposed here can be extended to any
system with two state variables even if when performance index is the
integral of the modulus of the error signal raised to a positive

power not equal to zero.
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SYNTHESIS OF AN OPTIMUM FINAL-VALUE
CONTROL SYSTEM WITH BOUNDED CONTROL

CHAPTER 2

2al Introductory Remarks

The author has already proposed in the previous chapter an
approximate method of designing the optimum control system with bound-
ed control which minimizes the integral-error-squared criterion. In
this chapter, the previous method is extended to the case of a final=-
value control problem. A linear second-order dynamical system with
boupded control is considered as a contrclled plant.

Our present attention is directed to showing that the concept of
sub-interval optimization technique provides a physically meaningful

(3)

optimum solution without solving a two point boundary value problem,

Control Controlled
Variable Variable
s S
v{f) | K x(7) | E X(7)
o o) , -5
: s+a s+b |1
(reeeed e é

Controlled Plont

Figse 2.1 Block diagram of the system to be considered
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2el Statement of the Problem

We consider a linear second order controlled plant as shown in
Fige 241y of which the dynamical characteristic is represented by a
transfer function of the form k/ +4a) (s+5) between the control varia-
ble #(¢) and the controlled variable x(¢)., The control variable is
subjected to a constraint on its magnitude as
lutg| < L, B
where L is a pre-assigned positive constant. By using the state

variables of the controlled plant, the plant dynamics cenbe expressed

as

-’E! ()= - bx;“)"" x, (8), %y () — ¢4 } (2.2-2)

() = —az () +ku (), x,(0)=c,
where the symbol "." expresses the differentiation with respect to a
time variable. In Eq. (2.2-2), ¢, and e, denote the initial states
cf the controlled variables respectively,
The problem considered here is to design the controller which

minimizes the performance functional

Jy= (%4 —2(D) +u (%0 =2, (T)) 2 (2.2=3)

for any initial states of the controlled plant at the time #=0.

In Eq, (2.2-3), x,, &nd z,, respectively express the desired values

d
corresponding to the state variables x,(#4) and =,(t) of the controlled
plant at ¢=7, where I is also a pre-assigned constant which expresses
the final instant of control operatiocn. For the convenience of our

discussion, we assume B gy B O 3m Eq.(2.2-3) without any loss of

i
generality.
The design problem is therefore to find the control variable u(#)

which minimizes Eq, (2.2-3) under the constraints given by Egs.

(2.2-1) and (2,2=2),
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Let us define the new variables as*

?——. al

5&‘,: a*xy / kL

%= ax, /kL - (2.2-4)
8= usL

Egs. (2.2-;). (2.2-2) and (2.2-3) become

[E@® | <1 (2.2-5)
B= (kD /et - (%, (T)r +25.(T) } , (2.2-6)

and

ﬁ| (E)=“ﬁ&: (?}+£a(?) ’ 5’\1 (0):21532"5;/"[4

2 =20 +0(H, £ =4 ac, kL }’

(2.2-7)
where ﬁ:‘_;a”,u v f=bra and fE aT,
From Eq. (2.2-6), we obtain a relation;
min Jy= (kL)*/a* « min _;Jr
w [} (2.2"'8)
lei<L =<1
where
I, S5,y +a% @) (2.2-9)

The problem is therefore reduced to the one which minimizes the
functional‘b y given by Eq. (2.2-9), taking the constraints shown by
Egs. (2.2-5) and (2-2-6) into account, For simplicity of the present
description we shall omit the chapeau "~'" henceforth, unless it is

necessary.

* This transformation ceases to be valid in the case where the plant
parameters @ and b become zero simultaneously. It is necessary

to treat the case where a=6=0 separately.

=



2e3 Configuration of the Optimum Final-Value Control System

By applying the well-known concept of Dynamic Programming, the

problem is reduced to solve the following partial differential equation;

0 o4 5
=g an ( (-A=+2x,) é:'l+(—3.+u) 7z, |
]ulgl (203-1)

with the initial condition;

= (T)*+ux, (T)* |, (2.%=2)

where pzp(x,, 2., r) is defined by

¢(xlnx,;f)=m;n {x;(i')2+ﬂxz(r)’ b s
el 1

(EUB"})

and r=T~¢ denotes an auxiliary time variable which is introduced for
the convenience of the later description and is called the reversed
time variable.

From Eq. (2+3-1) the optimum control variable m(y can be obtain-

ed as

Z(t)=—sgn [z (r)) }, (2.3=4)*

f(r)= 609,

where the function ¢ is the solution of the non=linear partial

differential equation;

¢ ¢ d¢ d¢ a¢
5= (Fx=a) 55 —m gt - o5 s (50) (2.3-5)

with the initial condition given by Eg. (2.3-2).
Thus the optimum configuration of control system subjected to the
constraint on its control variable becomes a bang-bang control system

with an optimum switching function as shown in Fig. 2.2.

* sgn (:}=1 (£>0), -1 (2<0)

- Lo -



In Eqe (2.3=5)4 if we assume the solution ¢ is of a quadratic form;

¢=ko{r)+k1(r) xl + kz(r} xg

+ ks(r) %, %, + k(1) 25 + ky(r) x? (2.3=6)

then the following set of non-linear simultaneous differential

equations can be derived as

kg (r)= —ky7) sgn (2(1))

K )= —=f ki(r)—ky(r) sgn [z(r))
ky ©)= ky(r) = kq(r) = 2k, (v) sgn (2] (2 )
K o= 2 k)= (F4+1) k(o) > STy
ki (r)= =28 k()
by (5)== kytr)— 2 ky (r) )
with the initial conditions;
koy=0 (=0, 1, 2, 3)
g , (2.3=7)>
ks@=1, k(O=2

where "»" expresses the differentiation with respect to the reversed

time variable r and the switching function #(r) is expressed by
2 (1) = ko(n)tky (0% +2ks (0) 7, . (2,3=8)

On the other hand, replacing the time variable ¥ by the reversed

Optimum
Control Variable

L= u Kk | X

—te S 4+a s+b

Xz
Opt. Switching |eat——
Function X,
Generator

NI

|

Fig, 2,2 Configuration of the optimum control system
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time variable r and substituting 4(¢) for 2(¢) into Eqe. (2.2-7), we

have

% (€) = fx, (1) — %, (7) )
2, (1) = %(r) o Sgn (KalD+hy ()% + 2k, (0)%5) } (2.3=9)

I
I‘m= c,, x2m=c2

The determination of awitching function is therefore reduced to solve
the two point boundary value problem which consiste of Egs. (2,3=7)

and (EI3-9) *

2ok Switching Functions realizing the Restricted-Optimal Control

Assuming that the final instant of control cperation 9 satisfies
the assumption realizing the restricted-optimal control and performing
a similar derivation presented in Appendix-A, the coefficients neces=-
sary for the switching function of restricted-optimal control can be
obtained from the following set of equations;

ke —p kit~ k.0 Ko =0
(2,4-1),

Kt = ke —kdm - 2k,0 , kTo)=0

for the positive relay output at ¢=0, and for the negative relay output

at t=9Q,

kK~ ()=~ k@) + ks (1) K0=0)
k: TE=kTr) = ki@ 2k() , k(=0 _(

(2.4-1}2

where the functions k,(f) and k,(7) are respectively derived from the

last three equations in Eq. (2.3-7),as
ks(r)zl_z_—ﬂ{ exp (-2f7)—exp (—(A+1)T) } . (5.4.0)

and

k)= _G{_W { exp (=7) —exp (=f7) }'+uexp (=27) .

(2.4-3)
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From BEgse (2,4-1),, (2.4-1),, (2.4-2) and (2.4-3), the switching function

of the restricted-optimal control can be expressed as
zE SO+ b em 2k, (2.4-4)
ES
where
[

Eo=F o (exp (=F7) = exp (1) )

A(1-4)*
X ({1—exp (=fr) }=F{1-exp (=f1)}] (2l
F2uexp(—-r){1—exp(-r) }
In Eqe (2.4-4), ngs (r) expresses the switching function for positive
trajectories corresponding to the positive sign of the relay output -at
t—=0, and Zggg(r)denotes the one for negative trajectories.

Since Eg. (2.4-4) with Egs. (2.4-2), (2.4-3) and (2.4-5) expresses
the switching function with respect to the normalized variable de-
fined by Eg. (2.2=4), the switching function with respect to the
original variables is expressed as

x _ 1

ZRES 1§ a-5:

(1—exp(=b1) —=f{1l—exp(—ar) }JF2x exp(—r){l—exp(-7) }

{ exp (=br) —exp (—ar) } X

—+ T%-E{ exp (—2br) —exp (-—- (b-i-a)r] )ak:;',

1

2z 2z ax,
(l_ﬁ)z{exp (—at) —exp (—br) }24a?p exp (—2a7)) iL

+(

(24lm6)

where pg= b/a.

From Eq. (2.8<4), we can also derive the switching functions of
restricted-optimal control for the other cases where a or & , or both
are equal to zero as follows*:

(1) In the case where a0 and k=0, the switching function is

* The detailed procedure of derivation is presented in Appendix B.
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+
FRES = F{1-exp (a0 } ({ar+exp (—ar) =1} —a’ 4 exp (—ar))

a’x,
+{1l—exp (—ar)) i
+ [(1—exp (-ar) }*+a’u exp(—z'”)]‘:;_a;,2 (2.4-7)

(2) In the case where c=b=0 , the switching function is

+ s ] Xy Xy
z =F (r +2.Hf)+2rkL+2 ('r'*’-|_,u)ﬁ' ‘

RES (2.4-8)

2.5 Application of the Sub-Interval Optimization Technigue

" to a Final-Value Control Problem

It is evident from the exposition of sub-interval optimization
technigue in 1.4 that the pseudo-optimization rule is based upon the
restricted~optimal control. Then, the behaviors of the restricted-~
optimal switching line must be investigated before the introduction
of pseudo-optimization procedure.

245-1 Restricted-Optimal Switching Line
As a preliminary discussion, let us calculate numerically the

intersections of the system response trajectorieswith the switching

=+
RES

consider the case of a double-integrator plant where system parameters

lines expressed as z =0 in the phase plane. For simplicity, we

e and & in Eq. (2.,2-2), become zero. From Eq. (2.4-8), the switch-
ing line of restricted — optimal control for negative trajectories in

this case is expressed as

P421x,+ 2008, +2u (T+%,) =0. (2.5-1)

where both ;: and ;' are the normalized state variables respectively

defined by

%y=% /kL and Xy==z, /KL (2.5-2)

o i =



On the other hand, by substituting the condition a=mb= g into Eqg.
(2.2-2) and integrating with respect to the reversed time r, the

system response corresponding to the negative relay output at #=0 are

obtained as

gl(r)zél‘l'gz(r—— )= (T=-1)2r/2 )

i 2 s (215-3)
Zry=cy— (T'-r)
where 2. =¢ /kL and ¢, =c. kL.
X,
1.0 2.0
0}3 T ! 7o
‘ [Q(C‘O 'o,

_I.O_ 0 . /1
<~ Envelope of the

. .‘ Switching Lires of
= Restricted-Optimal
Lontrol for pu=0

Ameier is the Final Instant

of Control QOperation

Fig., 2.3 Plot of the switching lines of restricted-

optimal control in the case where # =0
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By using Egs. (2.5-1) and (2,5-3) and considering the value of T ors
as a parameter, we calculate the intersections staten above and the
results are plotted as the solid curves in Figs. 2.3, 2.4, and 2.5 in
which we can set the initial condition é: to be zero without loss of
generality. Fig. 2.3 shows the loci of intersections with respect
to the initial condition ¢: and the control interval T, where # =0,
Fig. 2.4 illustrates, on the other hand, an example of the loci of
intersections where # ¥0, and the behavior of the loci of intersec-

tions is plotted in Fig. 2.5 considering the value of # as a para-

meter, where T=3,0,

P

00 1.0 2.0

o \\\ |.55

P
S, \”'—"H-— -5 ~
- — 26
\"\HR ":’\ ‘“_“““‘-s—.__‘_“_ <
’,,-'M%\ T 3.0

SN —— 34

~20F -~ S =

Envelope of the Switchirn ™

Lines of Restricted-Optimal
Control for u=0

Fig, 2.4 Plot of the switching lines of restricted-

optimal control in the case where 2 = 1,0
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245=-2 Envelope of the Restricted-Optimal Switching Lines for & =0
In the problem presented in Chapter 1, the switching lines of
restricted-optimal control have always the envelope which pleys an im=-
portant role in the sub-interval optimization technique. In this
problem, on the contrary, the existence of an envelope dependse upon
the value of u . In other words, there exists an envelope in the
case where &4 = Q, In the case where g0 , no such an envelope
exists. However, there is no problem in application of the sub-
interval optimization technique. For, it turns out from Fig. 2.5 the

envelope of awitching lines for a=( gives a set of critical point

Fnveicpe of the Switching Lines
=30 of Rectricted-Qptimai Jonirel
for f=0

Fige 245 Plot of the switching lines of restricted-

optimal control in the case where T = 3.0
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for the fixed T, like @ in Fig. 1.6 or 1.7, even if in the case where
ux0 . Mathematical verification of the above presentation is as
follows: In order to perform the verification, it is enough to show
that the a-free relation satisfies the equation expressing the en-
velope of switching lines for u—Q.
By eliminating the parameter gz from Eq. (2.5-1), B -free re-

lation is expressed as

P42 5 +20 £,=0

T+ R=0 } ’ (2.5-4)

where r is a parameter.

Elimination of the parameterr from Eq. (2.5-4) gives us the relation

2H—m=0. (2.5-5]

On the other hand, setting #=0 in Eg. (2.5-1), the eliminationof the
variable r from Eg. (2.5-1) provides us an equation expressing the

envelope of switching lines for #=0 as

2%, — 2 =0 . (2.5-6)

Since Eg. (2.5-6) coincides with Eq. (2.5-5), then the verification

is over.

245=% Physical Meaning of the Sub-Interval Optimization Technigue
According to the presentation developed in l.4=3, the envelope

of switching lines realizing the restricted-optimal control gives a

pseudo=-optimal switching rule for the control interval which does not

satisfy the assumption realizing the restricted-optimal control.

On the other hand, it turns out in Egq. (2.5-6) that the equation

expressing the envelope coincides with the optimum switching line for

(18)

a minimum-time control problem. In other words, this fact means

that the point corresponding to R; in Fig. l.7 coincides with the
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origin. In general, as concerns a relay control system with time-
minimum switching function, it can be considered that the origin
becomes a stable equilibrium point. Then the response trajectory
once reached the origin should be stayed there during the rest of
control interval. In that control situation, there exists the region
of initial points, any point of which can be transferred to the origin
within the time duration of r. This region is expressed as the

intersection of two regions defined by the following inequalities;

1 1
as-T G+D+z T, (2.5-7);

.

Xz

1.
© /Es(y=a.0}

/
-2¢ | E,f0/C. 20 Cs 40 X,

] 1 i
_
Egfpu=0)"
__IQ Lt
/

Fige 2.6 Illustration of response trajectories

of the optimum control system
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and

1 1
£ == (& - T =mpt (2.5-7),

Then, the switching rule obtained by the sub-interval optimization
technique is as follows: If the initial states of the system satisfy
Egs. (2-5-7)1 and (2-5~7)2 simultaneously, we use the minimum-time
switching function, Eq. (2.5-6). If not, then we use the switching
function given by Eqg, (2.4-8). An example of response trajectories
of the system with such a switching logic cited above is illustrated
in Fig. 2.6, where both cases of #=—Q and #%0 are simultaneously
shown. In Fig. 2.6, points expressed by €4, Cp and C¢ are initial
points and points indicated by £4, Eb and B¢ are corresponding final
points of trajectories. Since the switching lines for #%0 as shown
in Figs. 2,4 2.5 and 2.6 are meaningful only for negative trajectories,

(lg)along the

then there never occurs a sliding or chattering mode
switching line of restricted-optimal control. An example of reali-
zation of such a switching line is illustrated in Fig. 2.7. As shown
in Fig, 2.7 the optimum switching function generator consists of
three parts, i.e, the minimum-time switching function generator, the
restricted-optimal switching function generator and the switching
rule selector. The former switching function generator is reali-
zation of Eq. (2.5-6) and the latter is instrumentation of Eq. (2.4=8),
The switching rule selector corresponds to a channel selector based
upon Egs. (2.5-7)1 and (2.5—?)2.

It is emphasized that the sub-interval cptimization technique in
this case does not provide a pseudo-optimal switching rule but an
physically meaningful optimum switching rule. It ise also examined

that these properties of the sub-interval optimization technique

applied to the final-value control problem are independent of the
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mathematical form of controlled systems of second order with real poles.

2.6 Concluding Remarks

In this chapter, a method of designing the optimum final-value
control system with bounded control is described. The controlled
plant of linear second order dynamics with bounded control is treated
directly, without assigning any penalties on the performance criteriomn.
A physically meaningful optimum solution is obtained by applying the

concept of sub-interval optimization technique.
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A ! Swifching Rule Selector
B : Restricted-Optimal Switching Function

Generator
C : Time-Minimum Switching Function Generator

Fig. 2.7 Configuration of the optimum final-value

control system with bounded control
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CONSIDERATIONS ON THE QUASI-OPTIMUM
CHAPTER 3 CONTROL OF A SECOND ORDER VIBRATORY

SYSTEM WITH BOUNDED CONTROL

3.l Introductory Remarks

In the previous two sections, the author shows several examples
in which the proposed concept of pseudo-optimization is effectively
applied to derive a physically meaningful quasi=cptimum solution for
the original control problem. However, the presentation has been
confined to the control of second order systems except for a vibratory
one. The purpose of this chapter is to obtain the corresponding
quasi-optimum switching line which minimizes the functional J, or M,
in Chapter 1 for a second order vibratory system. An experimental
study by a digital computer is also carried out to examine the derived

guasi-optimum switching line.

Bigl Statement of the Problen

Let us consider the controlled system as shown in Fig. 3.1, of
which dynamical characteristic is described by using the state

variables of the error signal as

e, ()= e,(t) , a0y =1, }

- ( t2-l)
e,(t)= — wh e (t) —ku(t), e0)=0 2

where e,—¢ , e¢,—¢& o, and "." denotes the differentiation with res-

pect to t, The control signal u(?) is bounded as

IM(I)I S L, (5.2_2)

where L is a pre-assigned positive constant.

The problem considered here is to design the controller which
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Controlled System

Figse 3.1 Block diagram of the system to be considered

minimizes the performance functional J: or M: in Chapter 1, for any
initial states of the controlled system at #=0, i.e., e (0)= 1, ,

By performing a similar consideration as presented in Chapter 1,
the original problem is reduced to solve a partial differential
equation and to determine the optimum switching function for the relay
type control element. That is to say, the necessary condition for
optimality in regard to the minimization of J, is expressed by the

following partial differential equation;

a ]
a-—¢=min {ef—l—e.‘.—g—-ufneta—q-ku;}
ar n 68‘ dey Ca (1| > 5)
lul<L ; -
=10 (T=0) &



where

¢ (e,,e; ;r) =min [ ep)ids, (3,2-4)
0

and T—=T~t

From Eqs (3.2-3), since the optimum control signal § Dbecomes as

assangRl (342-5)
=8¢ /e, ’

in order to determine the optimum switching function z,then, we must

solve the partial differential equation as follows:

a6, 09 , @b 39
ue . R bl AP ¥, o [
gr % e’&e, i de, = Iae,l}

(3 02"6)
g =0 (r=0)

3.3 Switching Function realizing the Restricted-Optimal Control

Let us consider the solution of Eq.(3.2-6) from the viéw point
of the restricted-optima% control. Assuming that the final instant
of control operation T satisfies the assumption realizing the rest-
ricted-optimal control, by following the procedure of derivation
presented in Chapter 1, we can calculate formally the switching

functions for positive and negative trajectories as follows;

ZR:IEZ:S Ekzi ki) e, + 2k, (1) ¢, (3.3-1)
where

"‘;ﬂ:(f)——-iz_: (1-coswar)?, (3-3-2)1

h&mrzi% (1=cos 2w,r) (3.3-2)2
and

ks(ﬂzi_z%'; (2wpt~sin 2w,7) , (3.5-2)3
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Hence zﬁ%é denotes the switching function for positive trajectories

and zgés does for negative trajectories respectively.

3,4 FEnvelope of the Switching Lines of Restricted-Optimal Control

Let us calculate numerically the intersection of positive trajec-
tories with the corresponding switching line of restricted-optimal

control.
The equation expressing positive trajectories is described as

el(r):—kL+(ll+kL) COSwn (T"‘f}
et)=—(L+ kL) wrn sinwa(r—r) | ' (3.4-1)

By using Egs. (3.3=1) and (3.4-1), we get the loci of the intersection

€
0 | 2 3 4

. Envelope of the Switching
/ Lines of Restricted-Optimal
Control

i e [ o m—
f i P8 e
@ \\\::\““\\“\‘ 2.6 —

Fige 3.2 (a) Plot of the switching lines of

restricted=-optimal control
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Fige 3.2(b) Plot of the switching lines of

restricted-optimal control

as shown in Figs. 3.2 (a) and 3.2 (b) where e =th & /KL e, =w, ¢; /kL,.
and ?EEWnT is taken as a parameter. In both figures the broken line
is the envelope of switching lines of restricted-optimal control.
Fig. 3.3 illustrates the behavior of envelope affected by increasing
the final instant T. In Figs. 3.2 (a), (b) and 3.3, the point @
eXpresses a stationary point on 5}, at which the relation between the
envelope and switching lines is essentially changed. That is, in
Fig. 3.2 (b), while the part of envelope OQ cxpresses the right

boundary line of restricted-optimal switching as well as the envelopes
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EF

: T=9.0~100

Fige 3.3 Plot of the envelope of switching lines

of restricted=-optimal control

in Chapter 1, the part of envelope G} denotes the apparent left
boundary line of restricted-optimal switching for T=23,5 and 4.0,

It is evident from Figs. 3.2 (b) and 3.3 that the envelope of
the switching lines of restricted-optimal control shows a strange
feature from the envelopes illustrated in Figs. 1,5, 1.8 and 1410,
In other words, for the controlled systems discussed in Chapter 1
there exists a continuous envelope uniquely and it gives us the
corresponding geometrical meaning to the necessary condition realiz=-
ing the restricted-optimal control without regarding the value of
control duration.}. On the contrary, in this case the envelope has

several discontinuities as shown in Fig. 3.3. It seems to be natural
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to consider that the occurrence of the strange phenomenon concerning
the envelope is related to the fact that the controlled system has no
real poles. In such a controlled system, if we pre~assign a larger
value than a certain critical cne to the final instant ?, the pre-
assigned ? does not satisfy the assumption realizing the restricted-
optimal control whatever large values may be tentatively assumed for
the initial state agzw:l‘//kL . Therefore, the physical interpretation
of the envelope in this case should be considerably changed from what
we have discussed in 1.4-2. Then it is necessary to find the critical
value of ?, or the corresponding phase point.

In order to derive a critical point, let us consider the time-
dependent characteristics of the switching function given by Eqe.
(3.3=1). Since Eg. (3.3-1) is a time-variant linear switching line,
then it is enough to examine the time-dependent characteristics of its
gradient and intersection to the ¢, -axis.

For simplicity, let us consider the switching function for positive

trajectories. The corresponding switching line is rewritten as

~ ras
/\z=_2n(1—c‘os ry_ ln—cos-er Q. ’ (3.4-2)
2r—sin 27 27 —sin2r

where T= war .

By using Eq. (3.4~2), we can calculate the time-dependency of both

gradient and intersection to the Q,—axis, and the results are plotted

in Fig. 3.k4. In Fig. 3.4 the solid line shows the time-dependency

of gradient and the broken line illustrates that of the intersection.
Fige 3.4 emphasizes that the switching line becomes parallel to

the ?,-axis at the time T=n= 40 BN —" On the other hand, since

it is evident from Eq. (3.4-1) that the phase trajectory is a circle

and it revolutes in time 2 , then the only meaningful time interval
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Fige. 3.4 Time dependency of the gradient and

intersection of the switching line

for the restricted=-optimal switching is confined to 0<
By considering the behavior of the switching line, it is concluded
that there should exist a stationary point along the line sz-—%--
This is the very point expressed as @ in Figs. 3.2 (a), (b) and 3.3,
Since the ;,—cpordinate of Q is obtained numerically as ¢ =2.085, then
we can calculate the corresponding final instant ?; by using Fg. (3.4=1).
That is, since the normalized form of the second relation in Eq.
(3.4-1) becomes

&= = (LE1Y sin (P=2) , (3.4-3)

then we get the relation as

= Bl =



:?, A e é\z
— T sin { Tx'l"l} : (3 lnli)
On the other hand,by eliminating a time variable % from Eq., (3.4-1) we

have the equation of phase trajectories;
A 2 Asa __ o 2
(e + 1)+ (&) = (L+1)* . (3.4=5)

Since by eliminating ?;, from Eqs., (3.4%-4) and (3.4-5), we derive the

relation

Iy
€y

B Yoo (3.4~6)

A
A .
T—r—-sin

then by setting

>

= =47
&= 2085
» (3.4-7)
rTr— =m
in Eq. (3,4-6), we obtain the corresponding final instant
I
Ty = 8.543 (3.4-8)

On the other hand, the corresponding Ll—coordinate, b, , of initial

point Q@° can be calculated from Egs, (3.4-5) and (3.4=7) as

lyg = 2256 . (304-9)

It is evident from Fig. 3.2 (a) that as concerns the part of
envelope 6b the circumstance is guite similar to the derived envelopes
in Chapter 1. Then it is of no doubt to use the part of envelope &5
as the geometrical expression of the necessary condition realizing the
restricted=-optimal control for the range of initial state 2}5 Zo .

On the contrary, no rigourous informations on the switching rule for
a larger control interval F:>§§ will be expected from the switching
function of restricted-optimal control. However, it comes from Fig.

3.2 (b) that the line 66"(a tangent at Q) seems to play the role in

an apparent boundary for formally calculated switching lines of

s B2 =



A 55
restricted-optimal control with respect to § > I,, . Then, let us

make an adventurous supposition on the quasi-optimum stationary switch=
ing line for I, > l,,
Supposition: The compound curve which is synthesized by using the
curves 6b and QQ" may be used for the quasi-optimum

stationary switching line for positive trajectories.

2,5 Experimental Considerations on the Quasi-Optimum

Stationary Switching Line

This section is devoted to show the plausibility of the supposi-
tion cited above. The method of attack is application of L.S. Pont-
(42)

ryagin's Maximum Principle and solution of the derived two point

boundary value problem is carried out by a digital computer.

%3.5-1 Formulation of a Two Point Boundary Value Problem
According to the Maximum Principle, the Hamiltonian function in
this case has the form

H=p e,+ p, (—wn e, +ku)+p, e . (3.5-1)

Furthermore, we obtain the system of equations

p=wap—2p €, pO=0
P="P p,n= 0

P;:O' -p:m: =k

- (3-5-2)

By taking the maximization of Eq. (3.5-1) with respect to a , we get

the optimum control variable u as

u=-L sgn (p] . (3.5-3)

Then, substitution of Eq. (3.5-3) into Eq. (3.2-1) gives us the

eguation of optimum trajectories

8, Sy o e O =1

€, = ~wype,+kL sgn (p), e =0 [ (3.5=4)
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It is evident from Eq. (3.5-3) that solution of a two point
boundary value problem which consists of Egs. (3.5-2) and (3.5-4) is
inevitable to obtain the explicit form of optimum control variable.
345-2 Sclution of the Two Point Boundary Value Problem by a

Digital Computer

First let us normalize the problem. By using the relations

A
b= wnpt

i 2

ey= wy € kL

&= w, ¢, /kL (3.5-5)

in Egs. (3.5-2) and (3.5-4), we get the following system of normalized

equations
6" =@g » 21(0): " \‘x
Y " N ~
G=-G+sen (B). So= |
B =5+2e, =0 _ (3.5-6)
BN e i ~
P — "ﬁl * P,(?'J:O
where }/’:Ew;ﬁ/ki. ; and I/’;EW,:Pz/kL . For the convenience of

computation, we replace a time variable f by the reversed time variable

t=f-%. Then Eq. (3.5-6) becomes

G=-%, , =1, -

) ~ N AN

€&, — ¢ —sgn (p], e, =10

. i . (3.5-7)
Ph— B _281 ’ P =0

A N Fal

P;= Py =0 _

Then, the next step is to solve Eq. (3.5-7).
It isa difficult problem even though we use a computer. However,
since the author's desire is to check the gquasi-optimum stationary

switching line, then we set suitably small arbitrary values to the

- =



initial conditions of ;: and E‘, and we only solve a set of simulta-
neous equations without assigning the value of T and ﬁ ‘ For this
purpose an analog computer seems to be suitable(g) because the solution
is given by a chart of trajectories. From the vievpoint of accuracy,
however, the author uses a digital computer. Fig. 3.5 shows the

result of the computation, where two ftrajectories are plotted by solid

Quasi-Optimum
Stationary
Switching
--5C Line

b e v e

Ai(-0.373,0.909) Ax{2065 , -1.268)
Bi(-1.073 , 1.2979) B.{3.088 , ~1.275)
B,(-5.086 , 1.275) B..7.086 , -1.275)

Figs 3.5 Plot of optimum trajectories
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¢urves, and the broken curve is the guasi-optimum statiomary switching
line. It is reasonable to consider that the points expressed by B,
B, and B, are corresponding to switching points which provide us a
stationary switching rule. Furthermore, since the E'ncoordinate of
these points have the same value of magnitude 1.275, then it is con-
cluded that the switching line for a large initial condition of a
becomes parallel to the e, -axis. On the other hand, since the guasi=
optimum switching rule for a large initial coordinate ?,:>?m supposed

4
by the author is é‘._.:::t;=:+: 1.273, then it turns out from Fig. 35

that the supposition cited above may be concluded to be plausible.

3.6 Further Discussions

%3,6=-1  On the Sub-Interval Optimizatiocn Technique
As the author has presented in 3,4, the switching lines and their
envelope of restricted-optimal control are only meaningful in the case

A A — . . q ; :
where T< T, Furthermore, this switching rule is free from the

8.
initial value of a < In other words, the sub-interval optimizaticn
technique based upon the restricted-optimal switching wule is only
meaningful for the case where ?;g i_ On the contrary, for the case
where %;>ﬁ some modifications should be necessary to the sub=-interval
optimization technique‘described in lo4. The modified part of pro-
cedure is concerned with the determination of fictitious sub-interval
¥t and is expressed as follows:
(1) Check whether the control irnterval I is less than 3 54 /wa or not.
If not, jump to the step (& ).
(2) Switch a relay at the time ¢; (iZ1.2.....)

4 kL

x (w’ i

-1

T 1
== — gi{im
2 w,

kD b, (3.6~1)
k)

llj,-"
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where I ;_, denotes an e ~coordinate of the intersection of a
trajectory to the e -axis, i.e., I ;_ =e¢ (1), ¢ (=0,
(1ii) Compute the traveling time ¢, which is defined in 1,4-3, and
check whether the rest of control interval, Ty==-T~ 4y is larger than
Ty or notse If so, repeat from the step (ii).
(iv) Appiy the procedure presented in 1.%4.

The physical interpretation of the above procedure is that the
leﬁgth of sub-interval is supposed to be equal to 4;/bn.
346-2 On the Quasi-Optimum Non-Stationary Switching Line

Since the definition and the synthesizing methed of the quasi-
optimum non-stationary switching line are presented in 145, then no
further discussions seem to be necessary on the gquasi-optimum non-
stationary switching line which minimizes the functional Jyin Chapter

lg il&.' Eq. (102—2)¢

2,7 Concluding Remarks

In this chapter, the problem of determining the quasi-optimum
stationary and non-stationary switching lines is treated for a second
order vibratory controlled system. The method of attack is appli=-
cation of sub-interval optimization technique presented in 1.k,

A supposition is made to derive a quasi-optimum stationary switching
line, which is used to determine the length of a sub=-interval
(fictitious optimization interval) in the case where both the initial
value of error (I, and the control interval I are larger than the
corresponding critical wvalues., The derived quasi-optimum stationary

switching line is examined by an experimental study, and is found to be

reasonable,
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SYNTHESIS OF NEAR-OPTIMUM CONTRCOL SYSTEMS
PART II
UNDER RANDOM ENVIRONMENTS



ANALYTICAL METHOD FOR THE SYNTHESIS OF A NEAR-
CHAPTER 4

OPTIMUM CONTROL SYSTEM WITH RANDOM INPUTS

L,1 Introductory Remarks

During the past decade, design problems of optimum control
systems have received widespread attention owing to the increasing
demand for control systems of high level control performance.

Design techniques of optimum control systems have also been developed
by various research workers, based upon such mathematical approaches

as Re Bellman's Dynamic Programming,(3)L.S. Pontryagin's Maximum

o L
Pr1nc1ple( 2 and others.(gl)
Recent investigations by C, W. Merriam, 1111(34) J. D. Kramer,
z L
Jr.f)l) Je J. Florentin,(BO) S Katz(zg) and J. D. Pearson< )have

presented the design problem of optimum control systems from the
viewpoint of Dynamic Programming. All of these works have provided
the equations of optimum control for machine computations to determine
the configuration of optimum control systems. That is, using concepts
of Dynemic Programming, the synthetical problem on the optimum control
system with random inputs can be reduced to solve the partial differ~
ential equations whose solution yields the value of performance index,
Especially, in the case of problems with linear plant dynamics,
generalized quadratic performance indices, random signals, all with
time-varying parameters, the partial differential equations which

must be treated are reduced to a set of non-linear ordinary differential

equations whose form is well suited to machine computation.
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In this chapter, from a practical viewpoint, an analytical method
for the synthesis of near-optimum control systems with random inputs is
developed without the direct usage of a digital computer, Our prin-
cipal line of attack is made by using the method of Taylor-Cauchy

transform by A, A, Wolf, et al,(jz)

which is efifective for the solution
of non=linear ordinary differential equation of higher order. A
numerical procedure which provides an approximate solution of a set of
non-linear ordinary differential equations cited above is developed.

Use is made of conceptual extension of the concept of sub-interval

optimization.

4,2 Mathematical Formulation of the Problem

As shown in Fig. 4.1, we consider that the controlled system or
the plant which is to be controlled is adequately represented by a set

of known differential equations;

- D
x=A4()a+D() } (4.2-1)
J 1

20)=%=col. [%, x5, =, %

where #=#(t) (an n-column vector, i.e,, *=1cOl. [Z1y Xy sserey %, ]
and s—u (¢)(anr—column vector, i.e., w=col. (U1, U, go0secy u, )
represent the state of the controlled signal and the control signal to
the system respectively. In Eq. (4.2-1),4(t) (an p x n time-dependent
matrix) and p(¢) (an » X r time-dependent matrix) are the state matrix
and the driving matrix of the system respectively.

Tt is also assumed that there is a random desired signal v—*¢(¢)

(an n-vector valued function of time, i.eay ¢ = col. [® 4 ¥, ysssss¥]))

with known statistical properties. The performance index of the

system is given by a2 performance functional;
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X=AX+DU =

Controlled System

Fige %41 Block diagram of the system to be considered

T (0,05 u (¢')=e( f;[‘m}@ e+ uOR @ wln] do)
(UStIST) (4'2-2)‘

wiere e=e(i) is the system error (an n-column vector, i.e., ¢ =col.
(exv €3 1020ce 4 g,] ) defined by

et)=o(1) —x(1) ., (4.2=3)
In Eq. (4.2-2), @(t) and R(t) express nxn and rXr symmetric time=
dependent matrices respectively. Furthermore, € denotes the ensemble
average of what appears to its right under the condition of observing
the present state variables of the system.

In order to present the statistical properties of the random
desired signal, it is convenient to rewrite the system eguation, Eq.
(4.2-1), in terms of the error signal e(t) and the desired signal
v(1). That is, by substituting Eq. (4.2-3) for # (¢) into Eq. (4,2-1),

the following equation can be derived;

* 'A denotes the transpose of a matrix 4 .
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e=A(t)e —D)u+ E 1 —

= a 0
e()=¢e,=col, [31 » By reveenes L gnuJ J

where &= 8(¢) (an n-column vector, i.e., §=col. (& E,'......,f,,_])is
the apparent random disturbance to the system described by Eq. (4.2-4)
and i% is defined by
E=w—-d(s) v, (4,2-5)

We assume that the apparent random disturbance, g 4 is a multi=-
dimensional Gaussian white noise process with mean value m= m (1)
(an m-column vector, i.e.,m=col. (my, my yeecreaem_ ) ) and variance-
covariance¥=z(#) (an n X n positive definite matrix, isé.,SZZﬂﬁj”i)-
The desired signal is thus assumed to be equivalent to the output signal
of the system, which is expressed by Eq. (4.2-5), subjected to the
Gaussian white noise process g mentioned above. The optimum control
problem is to determine the control signal , which minimizes the per-
formance functional, Eq. (4.2-2). We observe that the optimum control
signal w depends upon such important factors as (a) the initial state
of the system output # (0 =4, (or the initial state of the system error
¢(0)=e), (b) the statistical properties of the desired signal »(t) and
(¢) the description of a performance functional.

4,3 Equations of Optimum Control

With the help of Appendix C, the following partisl differential

equation of the optimum control can be obtained;

9¢

ar

i}
:'-ml'n{te@ ¢+ ‘IJRM'I"[A'C—DM-}-MJ £
w

1 9 . o)
+-?E (G2 (53¢t (4oB=1)

where ¢ denotes an auxiliary time variable defined by r =T-f and refer-
red to as a reversed time. As the optimum control signal v which
minimizes Eq. (4.3-1), from Eg. (4,3-1), we have

_ Y p-1e,98
s Rl (4.3=2)
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If R is singular, thenﬂ'l is to be taken in the sense of the general-

(39)

ized inverse of matrix, which roughly means that a suitable set
of linear equations can be described by this expression. By substi-
tuting Eq., (4.3-2) for , in Eq. (4.3-1), it follows that

a¢__ 1 ¥.09¢ - & aé it
By [g;]@ﬁ D)+ e Qe

o¢ ) 8
+(Ae +m) 7t -;—’[a—e] Izl . (4,3=3)

No special conditions on state of the system have to be met at the

final instant, r=0 (i.e., ¢=7), and the boundary conditions are

¢ (e 0)=0 for any e , (4,3=4)
We assume that
3 t
¢ (e ;) =kir+ K,r)e+eKr)e (4,3=5)
where k&, (r) is a scalar, ﬁf,(ﬂ is a vector (an a-row vector, i.€.,

EK,I_II‘OW (kl, k,’...ll‘ [ kn])’ andKl(t') isamatrl}c (an nx n

positive definite symmetric matrix, i.e., Ko=) kg ll o kiy=kj s

and all k-coefficients depend only on the reversed time .
Substituting Eq. (4.3-5) for ¢(¢ir) inte Egq. (4,3-3), and making

extensive use of the properties of symmetric matrices, the following

non-linear differential equations can be obtained for the coefficients

in expanded series Egq, (4.3-5);

h=-1 kDR ‘DK, + 5 3 0.7 ki
I ﬂK'+i:: =1 0T
II.(,:—IK, DR™! zDK,-l— rK, A+2 'nk,

(4,3-6)
K,=0 DR 'pK, + ‘4K, +K,4 /

with boundary conditions &, (0)= K, (0)=k, (0)=9. Therefore, using the
coefficients satisfying Eq. (4.3-6), we can rewrite Eq. (4.3-2) as

follows:
T::::El-ﬂ-l D K, +2K, ¢) . (4e3=7)
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U= {RD[K +2K, €]

Fige o2 Configuration of the optimum control system

The structure of the optimum control system with a Gaussian random
signal can be described by a typical feedback system with time=-varying
control elements as shown in Fig. 4,2,

The design problem of optimum control systems can thus be reduced

to solve a set of simultaneous non-linear differential equations;

‘K-.'1= -K, DR—l tBK=+ ‘K‘ A+2 ‘MK, 4 ‘Kl(U):O
: (4.3-8)

K,=Q-K,DR" "DK+ ‘4K, +K, 4 , K,0) =0
The following discussions are, therefore, focused on providing an
analytical technigue for the solution of Eg, (4,3-8), TUse is made of
an extension of the method of Taylor-Cauchy transform introduced by

A, Wolf, et a1, 3?)

bk Taylor-Cauchy Transformation

The direct form, k4, , , of Taylor-Cauchy transformation of a



function.Hw)(() » Wwhere v corresponds the order of the highest deriv=-

atives of the system equation, is defined by

{(P{CJ

1
T [H‘”’{c)]—hn,r::“;- f i 4 (4ak=1)
and its inverse form is
Tollha, ) =E"%0= 3 ba,, ¢" >
c n, ¥ = — ny v ' (4.4=2)

where n is a running discrete positive index taking values 0y, 1y 2yese-
In Egse (4o4~1l) and (L4,4-2), H@)(f) and ¢ respectively express the
v=th derivative of a function H({) with respect to a complex variable
¢ and a closed contour enclosing the singularities ofl?wk() in the
¢=plane.
With the help of Appendix D, the author summarizes several useful

formulae for the present discussion in the following:

(1) A formula of the direct transformation for the product, i}(f ) .

H (¢ ) of two complex functions is presented by

Te (B OHO)=f,, B +F,) (L.4-3)
where
ff,':zﬂ for n=0
n=1 ’
hy=Hy0) , (bate=ti)
- _ pf) N
fp,n'—'% (FF({)] f d( L (L|’n -L")s
and
H,0
=T ()= S 6 CRY

(2) A formula of the direct transformation for the triple product,

E;(()ﬁ;(( JH, (¢ ), of three complex functions is described by
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Te (H,OF OH,0))

- , (hab-5)
=hyhyfo, b, ) R EDT Lp "0
where
B =0 for n=0,1
n:"z Eo '
=2 fou€,, for n =2 (4.4-6))
@T’;'—'U for n=0, 1
nE-z fpr o By e = 2 for n>2 '
Ty @) (eu—1) (4_4.‘5)2
hy=H,(0) and k= Hr), ("-I-.,"-l--6)-,5

and hp‘n, h,,n and .ﬂ.u express the direct transformations of H,(<¢ ),

H (¢ ) and F, (¢) respectively.

L,5 The Method of solving the Equations of Optimum Control

We consider the equations of optimum control described by

K=K WK, +K A+2 ‘mK, , Ko=0

5
Kzz@_’KdWKz‘l'tA'Kz +K: 4 KO0=0 | (il

where W denotes an n X a time dependent matrix equivalent to DR™' 2‘9
in Eq. (4.3-8).
In order to apply the Taylor-Cauchy transformation to Eq. (k.5-1),
we extend the real time functions K, (@),K,@) ., A ,me), W)
and @Q(ry to complex time functions K ,K,), 4¢) .m$) W0
and @), respectively, by using the principle of analytical con=

(1)

tinuation., Thus, Eq. (4.5-1) becomes

. t ;
K0 =K, OPOK0+ K 0 40+2 m0K © . Ko=0 £z o

!_é,(n = @0 - KWKo+ 40K © HLOAQ) , KO=10



g :
where both f;() and%&ﬁ? express the derivatives of complex func-
tions, K,() and K,{) respectively. In Eq. (4.5~2), both ‘{Qm
and !12{51 are complex functions of vector form. On the other hand,

K€, 7€) A€) v ana Q(¢) are matrices defined by

K= row (K K@)r e Kal@)]) (4.5-3),
mO = row (MO MO s s HalD] (4.5-3),
K, = | KijtQ [+ Ciyj=1,2, w=- v ) (3.5-3)3
o= ;0 ll, Grj=1,2,n), (545-3)
4(0-_-: ||A.J(Q s Gy =152 y B) 4 (q.5_3)5
and
0O =11 Q@ ll+ Cij=1, 2,y n) . (4e5-3)¢
By performing the direct transformation on Eq. (4.5-2), we have
Te (‘K©0)=-T. ('K 0 70 K.0)
+7e ('K ©A0]) +27, (‘'m0 K, )
Te K0]) =T (€©) T (K, Q%0 K,©0) ' (Lo5~4)
+7: (F40K©0) +T, (K0 40)
-
where
To (K@) = row (T, (KO » To (K, (] oreoreee
creneane jrc [K?I(CJJ ) (405-5)1

—_— row (ki”"kz,“, ......... ~ kn' " ) 5

jc [ff_f.(Oé(sz row (}117(: (Kro.d”({)] '
z;:_ljc (PR I

n
......... ,2_17,,[1(.-{04”(0] )
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Te ('mOK,0) = row (Z T K, ),

2, Te (MAOK:, @] , v

--------- T (0Krn©) ) (4.5-5),
r—1

Te (K@POKL ) =tow (£ Z T o (KyQ) WoelO Ke i)

p=19=1
2 2T (G OmOKu0) e (4.5-5),,
""" ’ pi:.l;—;—lyc [KPU:)%Q(O an{(}) ) ]

Te (&)= Il T, (Kij @) 1=l ks, u]] (h25-5),
(,‘ R j:I ) 2, e, n,) "

J} WHGJ:::“xTC[QﬂﬂQJ ” (4.5_5)6
(i, j—_-l R JRETTERY . n)

Te KA = |l 2 T Kir0 4,50] | h e}
(i » f:l ] 2 I ¥ R) v ?

Te (‘40 K.10) = || r;n‘_'lj.: (dri Kz 0] ||
{:i N j=1 g 2y ey, n_) " (405-5)8

and
Te (‘KW O K0)=I1 £ 2 Te (K, i€ 5,00 K300 ) ||
-~ — - pe=lg=1

(J-:j"-‘-llh, """"" n) (4.5_5)9

By applying the direct transformation, Egs. (4.4-3) znd (4.,4-5), to

Eqs. (4.5—5)2' (4.5—5) (4.5'5)4, (4-5"5)75 (4.5"5)8' and (Q-E"B)g! a

3!
set of recurrence relations with respect to coefficients ki,» and

: ; ” b
kijym Cigj=1, 2, veey n) with Min, @ifn, Gig, m and w;; , can be
derived, where

1 Mill)
2?&.’;‘ ] c"""‘l

mi,n= o (M:0] = & UE=leZaesynd s (hsa6),

L g

i



v, m=Te (4g0) = 5o [ AL e Gz, e, ) (4.5-6),

1 . iy
qi!‘, m:?;.'. [Qi}({}] =2_R,-J C%i% df (i L] j:]- ] 2 | B R) ’ (Li'l5-6)5

and

- Y — L i .
w.;.m—i?éGV.mJ—E?fc—r—m e =12y n) o (4,5-6),

By applying the inverse transformation to ki,m and kijjm (i,j=1, 2,..

soy B4 ‘K,({j and ’SAO can be obtained as

k o
&@—rw(z l_CHIE.ﬁﬁgﬁl ......

M1 =T i (‘!4'.5-7)1
amd 0 e .éo%}(’""”’ ¥ o
(o_n{:m “' < (i,j=1,2,m,n), (k.5-7),
The final results are expressed by
e [E 2 o4, B b pai (he5-8),

and

o s . .
Ke=Il 2 285 o™il Gy =12, men) (h.5-8),

By substituting Egs. (4.5-8)1 and (4.5-8)2 forK, and K, in Eq., (4.3=7),
the complete description of the controller operation can mathematical=-

ly be performed.

L,6 A Method of Approximate Calculations

Since Egs. (4.5-?)1 and (4;5—7)2 are described by infinite series
expansions, it is very tedious to calculate them directly., In order
to simplify these calculations, a numerical procedure is presented im
this section by using the concept of sub-interva% optimization.

Assuming that K, (¢ ) expresses an arbitrary component of both

functions '{(,(C) and &(¢) , the function K,((¢) Tbecomes

= T8 =



L k
K= 2 —e EiE Rl e S (4,6-1)
nr—N-|-1

In general, if we choose a certain number N, then there exists a some
'
constant {, such that

N

k n n
K=z 2™, O=<e<¢)) | (ka6-2)

Since Ege (4,6=2) can be considered as the first step approximation of
Eq. (4,6=1) with respect to ¢ , we introduce a new symbol,
Y Rin 1 , -
Kioy=2 ==~ ¢ for 0=¢<¢ |
n—
% a (4.6-3)
=0 for { > (: J
Under the mathematical concepts of analytical continuation,(l) we can
thus rewrite Eq. (4.6-1) as follows:

K.0= K,(¢), for 0<C¢<¢) (4,6-L)

I

=K ¢’ )l+§ €=" for ¢> ¢/

r

n
& (4.6-4)

2
where k,,, expresses the direct transformation of K, ({i) which is the
derivative of a translated function Kp (i), where {,=¢-¢/ , and
K (&) represents an arbitrary component of K, (¢, and K, (&) satis-

fying the follewing equations;

E((l):_;_(l((1)_@((,)E,(QH-‘EI(CJJ_.(C;)-i—g‘r:r((l)ﬂ(GJ } (4.6-5)
K@) =0, Q-K (T K+ A€ok () Ha ()4 () |

with initial conditions;
rK’({_)_lz lﬂ-{.. ((’0’)15 row [1(1 (fo’)x :Kz({gjlu """ o K"C(o’)ll} (“_ 6—6)
KO=K (&)= Kij (&)l iy j=1,2,0m) |7

where Wi ((, ), 4 (cl),*rg,(c,) and @ (¢,) express W+ dG+05mGHD)

and @ (¢,+¢,’) respectively. Since Eg. (4.6-4}2 can be written as

.I’ ! /

& a2 B
p(c)_lﬁ;((.,).-i-z, ”"‘ (c=h ""+}_:,M 1 (c—c;)

n—+1

(4,6=7)
for C>6'
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o
then we can choose a some constant ¢ for a certain number N'y and

the following relation can be derived

/

¥ ok
Ko O=K, ¢/ LSBT e by WL
P(O_ (fo )l+n?_—0 41 (‘: fu )

for ({ch(ﬂ”_ (4,6-8)

From Eqs (4.6-8), we can define the second step approximate solution

K0, » for Kp(¢) as follows:

N’ o

i n—+1 A

K =K, 4 b R 1 . sl ; o
2(0)2 P(c°)l+éo e (¢ (a} for ﬁ‘angfu l\) ("-0-.6-9)

=) for ¢>¢ J

By repeating a similar procedure, we derive the following recurrence

formula for the m-th step approximate solution, g, . for K, (¢),

i.04 )
’ (=D A T g 3
KP(O ;u:Kp ((‘.o. - )m—l +m§0 '-E:':T‘ (C - Cn ) |
for cfm-ngc’gcﬁm) i'\’
=D for ¢>¢,™ | (4.6-10)

/
- (. 50— & o
where Kp(0Do=K, (), (=0, k£, » = Fkp,n, ang k, . = eXpresses the
direct transformation of the derivative of a translated function,

{ m= ” 1 F
Ky(Cno1 )y where Cai=1(=( 1), and £p({x-1) is an arbitrary component

of both IJT_Q (Cn-1) and K; {=»-1) satisfying the tollowing equations;

K (CaD=="K - (CaD & (Cur) ]
+ % Qa1 ) sy Cp) 2 Ca DK (Casy) i
; == g W, ’
K (D=0 (Cnt) Ko (Com ¥ (Cn Mo (o) '* s

+ ' (o) Ky (Cne) e (Cny) dy € ) )
with initial conditions;
. — (m—l} ™
Ko=% @ " = row & @D K6 s |
|
|

m—i m -
,{EZ(D).:& (Cn( ))m--l = || -Kij 2 1))m_1 H

(I:,j:l,Z,""",n—) J
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where ¥y (¢, ) o+ A4 (Coy )y m(c, 1) and T O S expressf@__l.}.fo(”‘l)),

At Dy m (o e (71D

(2)

(3)

(4)

(5)

(&)

(7)

(8)

(9)

and ¢ ( (mﬂﬁ—g(m_o ) respectively.
The successive steps are summarised as follows:

Perform the direct transformation of Eq. (4,5-2) and derive a set
of recurrence relations with respect to k;, and kq,u,

Calculate a sequence of coefficients ki n and kij,n for mml, 2,

T —

Plot the truncated series of Egs. (4.5-7)1 and (4.5-7)2, and
estimate the value of ¢/ from a graphical point of view.

From the step (iii), determine the tentative first step approxi-
mate solution.

By replacing the variable ¢ by ¢{=¢-¢,’ , obtain the translated
differential equation Egq. (4.6~5) with Eq. (L4.6=6) as the initial
condition,

Perform the direct transformation of the translated differential
equation considering initial conditions, and derive a set of
recurrence relations with respect to k;:n and k&)n

Calculate a sequence of new coefficients k;" and kq’n for n=1,

2, 0000009 N’y and plot the new truncated series expansion of
Eq. (4.6-7).

Check whether the connection of the first step approximate solu-
tion to the second one at the estimated time C::(J is smooth or
not., If not, then the estimated value {! ceases to be reasorable
and another smaller value musi be selected as an estimate of &',
and the procedure is repeated again from the step (4). If so,
on the other hand, the determination of the first step approximate
solution is completed.

Determine the value of Gbﬁ and obtain the m-th step epproximate

solution, applying the graphical checking procedure stated above,
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and repeat the procedure until the m-th step approximate solu-
tion comes near around the stable solution* of Eq.(4.5-2), or

it covers the whole control interval (o0, T],.

ko7 Illustrative Examples

Two simple examples are provided in this section to throw light

upon the details of numerical procedure in 4.6,

Gaussian Random Signal
ul#)

ul?) | d X(7) *a(r)
S+a ~ -

Fige 443  Block diagram of the controlled system in example 1

* If the original problem is stationary, i.e., 4,D,@ and R are
constantsy then the control signal becomes 2 stationary function of the
state as the final instant 7 takes a large value.(26) The control
coefticients %ﬁ and K: for the stationary state can thus be found by
taking the time derivatives as zero in Eq. (4.5-1) or (4.,5-2), and

solving the quadratic algebraic equations with k;° and k™ which

constitute the elements of stable solutions for the stationary state.
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bo7=1 Optimization of a Plant of First Orger

We consider a system as shown in Fig. 4.3. The controlled system
is described by
;F,Z—ax,+du1 v 0= =} (4,7=1)
where =z, —ux,() and u,=—y,(1) express the controlled signal and the
control signal to the system respectively. As the author has already

stated in 4.2, the error signal e—e¢ (g is related to the control

signal as

e, =—ae, —du,+ € , (4,7-2)
where & is

&=mn +av, (i.7-3)
and. {4 can be considered as a Gaussian white noise with mean value m

and variance o2, The following performance index is considered

here, i.e.,
I (e(t), t 5 u,y (!‘):2{];?[31(,0)2+ru! (p)*)do} , (L.7=4)
(<tU<LST) .

In Eq. (4,3-8), by letting

A—=—=a, D=d ; m=m; , X=a,’ }

@_1 Bt (4-7-5)

we have the following equations corresponding to Egq. (h.3-8) as

i‘: () =—ak, () +2m, k“(r) —--(-i; k, () kn (), ko= 0

. 2 : (4.7-6)
k“(‘r):]_—Za,kn{r)—? ka(z)? k) =0

where both kr) and k, (r) express time-dependent coefficients in

Egse (443=5).
From Eq. (4.7-6), it follows that
. az
K= —aK0+2m K@) - 7 KO Ka©) 1 Ka ()= 0

(417-7)
. 42 ‘
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By applying the direct transformation formulae, defined by Egs. (4.4-3)
and (404-5)' to ECI_- (LI‘-?"?)

y We obtain the following equations correse

ponding to Eg. (4,5-4);

a 2m d?
k‘-":-"';?kn n"'1+_f kn-ﬂ-l_?' E::Ir: (4.7-8)
— 2a _ a? 1131
ku 1"_6".—_’1_ lkll.n"‘-l _".' Eﬂ,:: (4.7-8)2

where 6, expresses Kronecker's delta function, defined by

8a=1 for n=g 3

= for nxg J ' (h7-9)
and €M, and €% , defined by Eq. (D-22), are
=0 for n=10,1)
- W a— e j (4.7=10)
T %o e ToF S
and
Ci=0 for n=0,1
i k [ (Llo?"'ll)
= k:llnu g t-u—2
= — =2
2 DG Tor 822

The coefficients, %,, and k,,, can be obtained by calculating the
recurrence formulae given by Egs., (4,7—8)1 and (4.?—8)2.
On the other hand, since, the respective inverse transformation

of coefficients, k,s» and %,,» is given by

[e%e} k -
Ko=2 ot (h.7-12)4
and
el S
Kn(()—_‘f‘ nt'—l ("+1 5 ("4’-7—12)2

then the solution of Eg. (3.7-6) can be obtained as follows:
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%k
=8 for ek )
(7) 2 T ’ (L|..'? 13)1

n+1
o‘-u.\ k 1 2 1
kumzéoﬁl—-r"‘* . (ha7-13)

By using these results, the optimum control signal #,(y can finally

be given by

- d
u,(:):ﬁ; {ky (T= ) +2k, (T-t) et } (4,7-14)

where r is the final instant of control operation. By applying the
numerical procedure stated in the previocus section, we derive the
approximate solutions of the first and the m-th steps. The first
step approximate solutions, K, and Ky(¢): » are obtained by the

direct application of Eq. (4.6-3) to Egs. (4.'?-12)1 and (4.7-12)2 as

N k 5
Kxffhzéo _,,:_;_1 (n—H for Ui:fgf:
, , (4.7-15)1
=0 for ¢ > L,
and
¥ kyyn n—+1 '
= <{<{,
o=, ¢ ter 0=t= (447-15),
=0 for (> '

By using Eq. (4.6-10), the m-th step approximate solutions, K.

and K,{)a , can be described as
(m=1) _(m=1) N
(m=1) ¥ kun (m=1) n-ha
= +X —— {{=¢ )
Ig(()m K ((o )m..]_ n—g n+ 1 1] (4.7_16)1
for ﬁmng¢£ﬁw)
=0
for > {0( ? /
and N(m-—l) (1) ~
me=1 = ko (N——!) H
Ko =K @Y 432 B2 -5

"=1 =0 n—+1

(4.7-16)2
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(u-l)

(1)
where k and k" a’ express the coefficients satisfying a set of

1y

the recurrence relations as follows:

(m-1)
kn = (ke 2m ey = L

1y m=1 kurm-l) 3"

dz— m—
= (a+'" kn.u-—l) El-lj)

' n-1

d? — - (e
-+ (ZM1“-r—-k1,m-1)i-kn( 2

2 e, e
("‘1)_, = dz _,
Kon O -2aku,ni 58 )6,
-2 (a+ n, "—l) kﬂ(’:‘;?} d a-u “) (""1).
{Ll'lr?“l?)a
where
_ (m i)
lrm-l—K ((0 ) o (h‘.?*‘lg)
- _ (m-x)
ku: m—]__-.Icn ({o )m—)‘. ’ (4.7—18)2
(m-l)
[d" J for n=Eg,1 )
(4.7-19)
2 D, (20D ’ 1
uL—o (ut+1)(n-u-1) T e &
and
(e 1V = for n=0,1 )
n;?‘ (m..l) (Jn—lj (4.?-19)2

kn 24 fygym—u-2
=3 for n>2
u=0 (u+1)(n-u-1) -

As an illustrative example for the numericzl procedure, we consider
the case where the parameters in Egs., (4,7-8), and (4,7-8), are given

by
(4.7-20)

a—=d=—r—] and m;=( ,

By choosing N=6 and calculating coefficients 4,6, and ky,» (n=1, 2,

vses0y 8) by using Egs. (4.7-8), and (k.7-8),, the first truncated
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series becomes
K,¢) =0

(h,7=21)
Ky@= ¢~(*+0,3833333¢° + 0.333333 ¢* *

5
~ 04466666 ¢ + 0.155555¢ + 0.190476¢" . (4.?—21)2

The numerical plot of the truncated Series expression of K9 and
K_(O for the first step approximation, is shown by the curve (a) in
Fige 4.4s  In Figs 4.4, although the precise determination of location
of the stationary point on the curve (a) is almost impossible from the

mathematical viewpoint because of the complexity of computation, we
can easily find the location only by an graphical consideration. In
this case, the stationary point is seemed to be laid between ¢ =0, 6
and ¢ =0,7, It is quite reasonable to choose the value of a constant

(¢ less than that of the stationary point. The value of ¢ is,

5 a
D6 a=d=r=; O )
¥ my=0 """kll
_-:: = “‘j
‘:{'_,04 \l\\\kt’ \ \
£~ — (b
$ »02r (@),(b)
S c
@ K, (C)
S}'g 0 I ! 1 | I L g| | | ﬂ“m
Q% 0 02 04 06 08 10 1.2 14 18 18 20
()] g _
E o Auxiliary Time ¢

Fige 4.4 Numerical plot of Egs, (4.7-21) and (4.7-23)
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therefore, taken as (i=105 » Hence, we can write the first step

approximate solutions for ky(ry and ko (r)

as
kyrh = 0 (0=r7< 05) (L,7-22)
L, y
ko(rh =¢ —t% 404333333 ' 4+0,333333,*
~ 0,4666667 t0, 40, 7
466666 155555 0,1904767 (47-22)

(V<7< 05)

Calculation of Egs. (4.?—17)1 and (4.?-1?)2 for the case of m=2

and ¢s =0,5 gives us the truncated series expression of K,(¢) and KO

for the second step approximation as

K. (¢)=0 (¢>05) (1+.7-23)1

Ky(¢) =04301439+0.306275 ({— 0,5) — 0,398598(¢— 0,5)"
+0,314565( ¢— 0.5) — 0,143653( ¢ —0,5)
+0,004469(¢ — 0.5)" + 0,054521(¢—u,.5)° (h.7-23),
— 000511590 ¢ — 0.5)" +0.024213(¢— 0,5)°
— 0,001296(¢— 0,5)° — 0,008525(¢ — 0,5)* |

((>0,5),

Considering the plot of Eg. (4.7*23}2 as shown by the curve (b) in

Pig. 4.4, choice of the value (of a comnstant) ¢§ can intuitively be

carried out as ¢, =1.3, Then the second approximate solutions for
ki(r} and ky(r) are expressed by

k=0 (0,5<r< 1,3) (ha7-28) 4

hg(f)a= 0.30149 + 0. 306275( t— 0,5) — 0.398598( t—0 ,5)
+ 0.314565( r—0,5)° — 0,143653(r — 0,5)
+ 0.004469 7 — 0,5)" +0,054521( 7—0,5)° (4_7_24)2
— 0.051159( 7 — 0.5) + 0.024213(7—0.,5)"

s L}
— 0.001296(7 — 0,8)" —0.,008525( r—0.5)" ,

(chsrg 1'3)
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kulT)

Exact Solution

=04l Numerical Result
-9_} .
o
< 0.3}
Q
(@]
&)
. 02 The 3rd
- The 2nd Step Step
© s , ——e
§O.I A Ster.; t :pproxumafe Approximate
pproximate olution ian *

K Solution Sotution
C:) (0] | ] 1 i 1 L | i
E O 02 04 06 08 10 12 14 18

Reversed Time

*®

(to be continued)

Comparison of the numerical result with

Fig. 4.5

the exact solution in example 1

By repeating a similar procedure, successive calculations can numer-
ically be carried out.

On the other hand, since the analytical solution of the second
differential equation shown by Eq. (4.7-7) can precisely be obtained,
then it is very interesting to compare the exact solution with the
approximate one. In Fig. 4.5, the solid curve gives the exact solu-
tion, Comparison of the numerical result with the exact solution is
given in Table 4.1 with the good agreement, Fig. 4.6 shows the block

diagram of the optimum control system.
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Table 4.1 Numerical Comnarison

method
Exaect Solution Present Method
time T
0.0 0.00000 0.00000
0.1 0.09006 0.09029
0.2 0.16306 0.16341
0.3 0,22069 0.22109
Oed 0.26289 0.26333
0.5 0, 30096 0.30144
0.6 0.32801 0.32838
QuT 0,34875 0. 34904
0.8 0.36460 0.36481
0.9 0.37666 0,37684
1.0 0.38612 0.38624
| 0.39277 0.39283
142 0. 39729 0.39698
o3 0., 40190 0.40157
Vi) elr) aLr) | X(7)
? k(T—1) o

i T
Fig, 4.6 Configuration of the optimum control system
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Goussian Random Signal y( #)

7)) | ¢ Xe( /)]

Fige ko7 Block diagram of the controlled system in example 2

4,7-2  Optimization of a Double~Integrator Plant

The system dynamics as shown in Fig. 4.7 is described by

-

X=X ' %, 0) = &) }

S=nay % (0= =, (k.7-25)
The error signal e, =e,(¢) is related with both the control signal
u;=uy(#) and the desired random signal v av (t) as

€,= €&,

e, = —du,+ &, (L.7-26)

e

where £, is

&= 7 (4.7-27)
and ¢,=¢,(y) can be considered as a Gaussian white noise pr?cess with
time-dependent mean value m,(¢) and time-dependent variance aL (),
As the performance functional to be minimized in this example, the

following form is considered;

o Y -



T
I'(eieat), t 5 u, 0= el ) (edo)* +ru,m2) do }
L

Letting
4= "8 (ﬂ ' D= ‘3
o= fo ol . ow= ]
= [:?;,(:) , I= 8

Eqe (44.3-8) becomes

ky )= 2my () kas ) ~L k) by ()

izg () = Fa(tH-2m ,5(0) k,, (1) -E:jkg(f} ko (2),

ki = ka@-Lhy, 0 koo

. 2
k I(r.l: 1= -gi klz(r)z 1]

o 2
kas(m) = 2k, () — ii,-‘ kyo(ry

(4,7-28)
<o)
ol .
H
U 1
’ » (4,7-29)
0 |
322(1)“ Ji
k() =0
k0 =0
k:lz(O):U (407-50)
ky 0)=0
k) =0

and the corresponding optimum control signal u, (t) is represented by

_ d A
By =_—{ ky(T—t)+2ky (T-8) ex )42k, (T-t) ey(0) } ,

where k, (7 —¢) is

(4,7=31)

equivalent to k&, (I—1¢).

Application of the direct transformation to Eq. (L4.7-30) gives us

a set of recurrence

and

klz-n 1 kﬁﬂl

relation with respect to coefficients, ki,n 4 %,n

k,oony @8

d? 1
by, o= 28200 - C)0F

% s 1 ; +mz,az
a,u——‘;i"nn-l n,u

; d? 2 22
k:z,n:;ku»n—l -7F Eﬂ,u

& a2 12

kﬂ'u:an"TEn,g:

2 dz 22,22
kzz,n:?kaz-n_l_?' n, U

- G2 &

dz

2 I22
nyu

by
.

(4.7-32)




where a*'P and Ei:f denote

nyu
LHyp
M".“ ==y for n=0
(407"33)
-npl mﬂ'“kp.n—unl
=0 n—u for n>1
and
Prg . .
fn.:'_U for n=0,1
,(}+l?-3LI-)

= kP k 2

== s il s, for n 2
=0 (Wi1)@~-u-1)
respectively. Performing the numerical procedure with respect to a

particular set of parameters, i.e., d=r—=1 and m(t)=0 , the approximate

solution of the first and second steps can be derived by

~.

kim), =0
k), =0
kys(1)y = 0,50000%" —0,03611¢° + 0,00291+ >, {k,7-35)
ky(t)y — *—=0.,050007" -+ 0, 000407°
kya(7), = 0,33333¢* — 0,02619¢" + 0. 002127
(0 r<1,0)

and

ki), = 0 N\,

k), = 0

kip(r)y = 0.46254+0,80662 (r—1,0)+0.07638 (r—1.0)¢

— 0,43998 (r—=1,0)*—0.14415 (r—1.0)*

4+ 0,13995 (r—1.0)°+0.12841(r—-1.0)°* |

— 0,01246 (r—2.0)7
ky(t); = 0.95004-0.78609 (r—1.0) —0,37306 (r—1.0)*

L]
— 0.,07375 (r—1.0)" =0.43580 (r—1.0)

— 0.03407 (r—1.0)%+0.12008 (r—1.0)¢

+ 0.10187 (r—1.0)"



Ksa(t): = 043100 4+0482890(r =~ 1,0)+0,54967(r — 1.9)°
—- 0.,07375¢r—1.0)" — 0,43580(¢ — 3,0)"

5
~ 0.08407Ce == 1,0) +0,12008(7 — 1,0)°

U ey =

+0.01087(e —1,0)7
(1,0 5751 ,8),
(4,7-36)
Numerical plots of Egs. (4.7-35) and (4.7-36) are shown in Fig. 4.8,
Table 4.2 shows the comparison of the numerical result with the com-
puted result by the Runge-Kutta's method of fourth order. The table
illustrates us the effectiveness of the proposed numerical procedure,

The block diagram of the optimum control system is also shown in

c -~ _

& o5 — kuw

2 - 22

= 0

o IO —_ |%°

e L

S w

T T.05

o ae

o —~ ki(t), KelT) k:”
k= | .

3: - 0 kw

E < 0 0.5 1.0 1.5 1.8 Kz

Reversed Time T

Fig. 4.8s lNumerical result of example 2
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4,8 Further Discussionson the Method of Approximate Calculation

In general, the procedure described in 4.6 provides us two dif-

ficult problems. The first is on the determination of a certain num-

ber N(M+L), which determinesthe truncation of infinite series. The
second is on the estimation of a constant (o(') with respect to a
certain number N('+4). Generally speaking, since it is almost im-
possible to deal with these problems by a purely mathematical way,
then a graphical checking procedure has been proposed.

The author shows, in this section, that the mathematical present-
ation of the present method introduced to connect the m-th step ap-

proximate solution to the m+1-th step one.

Let us express an arbitrary component of Eg. (4.6-11) as

Table 4.2 Numerical Comparison

kis( T) ke (T) ko T)
cin), | Present| p®er | present | 2RO | Prosent | S
T Method | o p s | Method | yivoa | Fe¥Bod | ethoa
0.1 | 0.0099 | 0.0099 | 0.0999 | 0.0999 | 0.0003 | ©.0C03
0.2 | 0.0399 | 0.0399 | 0.1999 | 0.1999 | 0.0026 | 0,0026
0.3 | 0.0899 | 0.0899 | 0,2998 | 0,2998 | 0.0089 | 0.0089
0.4 0.1597 0.1597 0,3994 0.3994 0.0212 0.0212
0.5 | 0.2488 | 0.2438 | 0.4984 | 0.4984 | 0.0414 0,0414
0.6 | 0.3566 | 0.3566 | 0.,5961 | 0.5961 | 0.0712 | 0.0T12
0.7 | 0.4816 | 0.4816 | 0.6917 | 0.6917 | O.ll22 | O,1l122
0.8 | 0.6216 | 0.6216 | 0.7841 | 0.7841 | 0.1653 0.1653
0.9 | 0.7736 | 0.7735 | 0.,8720 | 0.8719 § 0.2311 0.2311
1.0 | 0.9336 | 0.9331 | 0.9540 | 0,9537 | 0.3092 0.3090
1.1 | 1.0869 | 1.095%5 | 1.0246 | 1.0279 0,3980 | 0.3980
1.2 | 1.2464 | 1.25%2 | 1,0905 | 1.0933 | 0.4%47 0.4956
1.3 | 1.3980 | 1.4066 | 1.1467 1.1489 | 0.5970 | 0.5988
1.4 | 1.5368 | 1.5448 | 1.1927 | 1.1943 0,7010 | 0.7039
1.5 | 1.6592 | 1.€658 1.2284 | 1.2297 | 0.8025 | 0.8074
1,6 | 1.7640 | 1.7671 ¥ 1.2557 1.2559 | 0.,8971 | 0.9057
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Ky (o )=F K (o) 1 Enni) s KO=F,, =K "™y (4+,8-1)

where f is a continuously differentiable function defined for

('KF, ¢,y ina domain -e<K<wand 05 ¢, ., <7 , 2nd satisfies a

Lipschitz condition in the defined domain.(]j) The solution of Eq.

(4,8-1) can be expressed by a Taylor series as

""1 (m l&‘ (m—l.
Kl pi)= Ej" 4 €)™+ (‘;-1;2 _ 2( 2
= (€ )

e A S [N

(4.8=2)

The first term in the right hand side of Eg. (4.8-2) is written as
s o
N( +1 Ié}o)

n

Cod=Ko+ = 5 O »

r: n=—o0 n|
N(m-l) (H’ } b
=k, "'"l+20 (n+1) n} ({"’“1) ' (L,8-3)

Since the relation between the direct transform, KP("-L) , of the solu=-
L ]

tion K. ( Cw—y) and the coefficient in a Taylor expansion is
»

[ ——— i e et 1

&el(t) + ~2l /)
kﬁz(T_'” S2
+1

W, | T

|
|

&,
S 3“2 km(T—ﬂ ) i
j

I
!
|
[
|
I

L—~QOptimum Confrolier ==~

Fig. 449 Configuration of the optimum control systen



~1
k(m—l): KP( z ]

Py g (4,8-4)
then, BEq. (4.8-3) becomes

" g
# Kp tﬂ)

€)=K (€ m

n—0

(4.8~5)
By using Eqs. (4,8-2) and (4.8~5), the difference between the m-th
step approximate solution, KP( AN }., and the exact solution of m

times translated equation, K, (¢ ..1), therefore, is cxpressed as

(p),
(=
Wud T N -22
K (€nm1)a—K (Cn- R L
1K Camida=Ke (Cnd | o oy @ |
(m—1 o
(Cm-ljx 2 ( )
< ———Y——— max i I} )
Ay
=& <Cpa1) (L,8=6)
On the other hand, if we introduce the wmt1-th step approximate solu-
tion at (., =(o{‘), the translated equation and its initial condition

respectively are expressed as
| ACREE A A AWN (4.8-7)

and
KO0k (6 =K, (e Th -0 (4 .8-8)

where (m:C—(D(mJ,
By a similar procedure, we obtain the relation concerning the m+1

-th step approximate solution K, (¢ a )mga as

(ﬁi-'[-z)
K () =Ky (Ca) s T )
m#z)i
1<)y, (4.8-9)

where

AR (") )

+
K=, 2, iy €7 HG G )

(4,8-10)
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Substituting Eq,(4.8-5) into Eq.(4.8~2), differentiation of Eq.

(448=2) with respect to ¢._; gives us

. N(mﬁ 1 el
£ (o duml (G i Sl K}} “z(i’?) . (4.8-11)

By differentiating the both side of Eq., (4,8=9) with respect to ¢,

we obtain
(m)
3 N 41 ()
- (%) ™32
D) i =Rl —— e
P w1 —0p S (7 . _
dm)ﬂ)l P (4,8-12)

From Eq. (4,8«11) and (4.8-12), the following relation is derived

LKy (Cne ) =Ko @) mpt | 1Ky Cud =Ky (€ |
(m-1

¥ 1 (me1
e (x
=d %_11)— [ K> (523 l
(¥ 1)!
.m} ™
ug#'p 2
i | K, @) | (4,8-13)
(N1 1

In Eq. (4.8-13), taking the limit of tending ¢ —-+0 and ¢, _,— Ca(-)—U

simultaneously, we derive the relation as follows:

lim t KP ((m._l)m -—kp (C"') m--1 l

Gn—t0
<»m_Il—’c‘:l.‘rm}_0 & 2
< lim | Ko (Cne1) K2 (Cn) |
Pl
{m_l_'(EM)—U N(}l—l)-‘- 3
{m) 1 (=1
& ) @  +2)
+-"3H—H— | Kp © 1. (4,8-14)

(N( +1)!

With the help of Egs. (4.8-1) and (4.8-7), the first term in the right

hand side of Eqe (%4.8-14) becomes

lim | Kp () Ko (G |
Cn—t+0 -
Cacily 10 & Y £ &0, 0) | (4,8-15)

By considering the definition of a translated eguation, we get

0, 0) =1 & @ ™

m . (4,8-16)
AL I AL
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Then, substituting Eq. (4,8-16) into Eq. (4.8-15) and using the

Lipschitz condition, we have a relation

o im K d=Ky (6n) | <K |81,

(4,8-17)

C m.._l_‘ D"mJ— 0
where K is a Lipschitz constant. The substitution of fq. (4.,8-17)
into Eqs (4.8-14) gives us a relation as follows :

ii . .
":m—‘"l;?)] I Kp ((:n-—]) m_KP (CM) m-1 i

('m_l--(o(ml..o (m “IG m_“il‘)]. (m—l)
<klop4g o) mx{m(‘” P
a
— 01 (m-.ll_l_.l) | (‘-:) ’ } :

(=L i) & (4,8-18)

Since the right hand side of Eq. (4.8-18) is non-negative and further-

more there is a relation as

(m-l)
(N g (1
|8 | <K&+ iy 2 max{IKp(' 63)1}.
where
o)
(m), 2 m—1
(fo ’) C’g —22
<< — K ,
= ey Uk Bl CadimR

then, it turns out that the connecting criterion proposed in 4,6 is
equivalent to improve the accuracy of the m-th step zpproximate solu-

tion K, (< ) This is the mathematical interpretation of a graphi-

1/ m"
cal checking procedure presented in 4,6. Fig, 4,10 illustrates the
details of procedure determining the value of ¢/ in the earlier example,
be7-1,

It must also be added to notice that the present method of ap-
proximate calculation is conceptually equivalent to the concept of
sub-interval optimization technique described in l.%-1. In this case,
however, the pseudo-optimization in the m-th sub-interval E&Cmﬂ).fu(@]

is carried out by using the m-th step approximate solutiom.

4.9 Concluding Remarks

In this chapter, an analytical method for synthesizing an optimal
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control system with Gaussian random inputs is presented. By extend=-
ing the method of Taylor-Cauchy transform, a near-optimal approach is
described to solve a set of non-linear differential equations which
yields the optimal control characteristics of the designed system.

Several illustrative examples are also presented in detail to emphasize

the effectiveness and validity of the proposed method,

040
Plot of

Eq.(4.7-15),

Plot of
Eq.(4.?- 16 )2

u(C)

K
o
w
(8]
T

{Exact Solution)

Time-Dependent Coefficient

030
[_']nd =f =1
m,;=0
0.25 ‘ : -
0.4 0.6 0.8 1.0

Auxiliary Time g

Fig. 4,10 Numerical pesult of Kg €€ ) affected

. I
by the determination of & constant &
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CONTROL CHARACTERISTICS OF AN OPTIMUM FINAL-VALUE
CHAPTER 5

CONTROL SYSTEM UNDER RANDOM ENVIRONMENTS

5eél Introductory Remarks

Recently there has been a growing interest in a class of control
systems which are characterized by the requirement that given variables
need to be controlled accurately only at a pre-assigned instant of
time. Such control systems have been called the final-value or the
terminal control systems. In fact, many problems in automatic con-
trols may be reduced to this class of problems. Both the landing
control problem of an aircraft and the start-up problem of a chemical
reaction plant are typical examples.

Basic studies on these final-value control systems have been car-~

(6)(7)(8)
(37)(38)

ried out by R.C. Booton, Jr., C.W. Steeg & M,V, Mathews,(33)

45)

A, Rosenbloom{ and others.

Extensive studies on the design of

(29)

final-value control systems are presented by L.S. Kirillova or Se

(28)

Katze Although many papers concerning final-value control systems

have been reported, since the most of them are based upon the sophisti-

(6)

cated configuration by R.C. Booton, Jr., then there remain many
fundamental problems on the optimum structure, or optimum control char-
acteristics of final=value control systems, especially on the optimum
structure under random environments.

The author's principal object in this chapter is to exploret in
detail, the characteristics of control action which a final-value con-
trol system subjected to random environments must have. The design
technique presented here is the application of an optimization theory
based on the concept of Dynamic Programming. Present considerations

are, therefore, limited to the following two very concrete and parti-

cular stochastic control situationsj (1) the time=~invariant linear
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second order controlled syetm with an additive random disturbance,
and (2) the randomly time-variant second order linear controlled system
are considered under the performance index defined in the sense of

final=value control with control energy constraint.

5l Mathematical Statement of Btochastic Final-Vzlue Control Problems

In this section, we describe the mathematical background of the
stochastic optimum control theory by somewhat the similar way of S.
Katz.(28) Stochastic optimization problems have recently been develop-
ed based on the theory of Markov pIOCeSS,(15) and rore rigordus dis-
cussions are found in W,M, Wonham's(5l) or other papers.(EO)

We assume that the dynamical behavior of a contrclled system is

‘adequately represented by a set of known ordinary differential equa-

tions which may be put into the form;

i‘,: :C"+1 (£:1 1 2: 3"“'“". nu""l) .
. } (5.2-1)
xﬂ:f(xl’ %y .1,‘;:5)-1-3(3,, Log o toree lxn;u)f

(gt gT),

where a =(x, , 2,4 ssssasga ) i6 a state vector of the controlled system,
2(0)=e=(c, , CyyeeveensyC,) is an arbitrary given initial state vector.
In Eqe (5,2-1), 7 is an arbitrary pre-assigned instant of time named
the final instant of control operation or simply the final time.

For the final~value criterion functional which is to be minimized,
we choose

R=e ('S 4 (sua=2:(T))24u [ 0@ do } (5.2=2)*
Lo |

* Strictly speaking, the functional R, 1s referred to as a finale-value

criterion with control energy constraint.
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where 2;; 1s the desired value of a state variable 4, at the final
time 7 and both 2, and u are respectively assumed to be constants
which are called performance weights. In Eq. (5.2~2), the symbol &
expresses the ensemble average of what appears to its right under the
condition of observing the state variables of the system at present
instant. Our problem is to obtain the optimum control variable @
which minimizes the functional (5,2=2) under the controlled system dy=-
namic equations (5,2-1).

We consider the arbitrary time ¢ =¢ (0<t<T), The performance
criterion functional to be minimized at the time interval left before
the final time T, namely, at the time interval (¢, T) is

n—t T
B, =X Ax(Ty+uf v () de)

T n=1 n=1 (5-2-3)
=& {f; [21 24,%; (D) 2,4y (P) +uu(e)?) do }+§115x; ®*,

where we assume, for convenience, without any loss of generality that
the desired value of the state variable % at T', namely, %4 , 1s 2zero.
Instead of minimizing Eq. (5.2-3), it is sufficient for us to
consider the minimization of the following functional I,
r =1
I:&{ft (Ejz"axaxi-g-i*‘“”:) dp } (542-4)
because both the functionals Ry, and [ attain thelr minima simul-

taneously.

To make the optimization problem more concrete, we resort to the

. ) .
well-known imbedding procedure of Dynamic Programmilng. Letting
T n=-1 ,
¢(x3t) =min&(f (ZZA;xixi_h**ﬂM)dp}, (5,2=5)
u L)

and then applying the procedure presented 1n Appendix C, the reguired

relation becomes
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a¢ =1,
ar u" {én A Kl il

5 Wl + SHgmy 2+ 28 ) (5.2-6)
iz o i Oy
From Eq. (5.2=5), the boundary condition for ¢ is apparently;
¢ (x37)=0 (r=0) . (5.2-7)
In Eg. (5.2~6), the expression min means the least value of what

appears to its right which can be attained by variation of u .

Sud Particular Final-Value Control Problems

In order to explore the characteristics of final-value control
systems, two particular control problems are considered here, the one
is concerned with the controlled system subjected to a random distur-
bance and the other is concerned with the controllsd system contailning
randonly time-varying parameters.

5.5-1 Controlled System Subjected to a Random Disturbance

For the controlled system, we consider a second order linear

system with a random disturbance ¢ (t) as shown in Fig. 5.1.

The dynamical characteristics of a controlled system may be des~

cribed by
Random Disturbance
u ¥ ; X
T ey L
g S(s+0)
Control Variable Controlled Variable

Fig, 5,1 Controlled system with & random disturbance
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3:;‘.—_-':\:2 i % 0)=¢, 1

. (5.3-1)
k= ax, Ut |, x,O)=c, |
where
Xy —x and x, = X (543=2)
and ¢ is & given constant. In Egs. (5,3=1) the symbol "." is used to

represent the first derivative with respect to time variable t.

As the performance criterion functional to be minimized in the

sense of the final-value control, we consider

Ry=e( A% (13 +uf u@) do ), (5.33)

where 1 and g are respectively positive constants, with the relation;

A+p=1 .
(5-5”"’)

We assume that the disturbance ¢ (t) is a stationary white Gaussian
process with the mean ; and the variance o%,
Then, according to the discussion in the previous section, we can

obtain the functional eqguation;

B9 _min | 24%8,4 pits g, 22
or u 0x,

dg o 0%¢ !
+(u—l—m~—ax2)5;2+2— é:zz) J
¢p—0 (T:U)

We can thus obtain the optimum control variable & by differenti-
ating the right hand side of Eg. (5.3-5) and putting it equal to zero,

ioe-|

E:—Z_ﬂ é:z “ (5‘3_6)
Substituting Eg. (5.3=6) for the value of ¢ as the minimum in Eq.

(543-5), we have

0 ae¢ a¢

a—f:zlxl% +xaa+(m—axz)a

L 8e & o 0% ' (543=7)
“5 (s, 7T

=0 (r=0)

The problem is, therefore, reduced to solve the partial differ-
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entlal equation given by Eq. (5.3-7) and to obtain the optimal control
variable & by Eq, (5.,3-6).
For the purpose of solving Eq., (5.3-7), it is an usual way to

assume its solution in a polynomial of x and x, as*
1 2

8 (%1, % 3 )=k +h () 24k, () 2
Ay () %y %+ ko (2) 23y () 24, (5.3-8)
where k,{fr), k(*), ....., and k; (*) are the functions of r only. In
order to determine each coefficient k, (t), k, (*), svee. and & (*),
substituting Eq. (5.3-8) into Eq. (5.3-7) and equating the same power
of %, 4 x, and so on, we have a set of non-linear simultaneous ordinary

differential eguations;

ki =mly —kl/4n+0%ky , kO=0 3

b/ = mky—kq k3 /28 » by ()= 0
kf = k+2mk, —ak,— k,ky /1, ks()=0
ky = 2242k — aky ~ksky /8, k(=10 E KB
k= ~kK/4n, k() =0
k' = ky—2aky — k2 /u, k=0

where the symbol "»!" represents the first derivative with respect to
the reversed time variable ¢ .

Although it seems very difficult to obtain the solution of the non=-
Jinear simultaneous Eq. (5.3-9), one way of solving them has been pro-
posed in the previous chapter, using Taylor-Cauchy Transformation. The
Runge-Kutta's method of fourth order(5) is, however, applied here, with
the help of an electronic digital computer.

From Egs. (5.3=6) and (5.3-8), as the optimal control variable we

h
e =18 )tk @) mth (D%} (5.3-10)

* The existence theoremof the solution of a type of Bg. (5.3-7) is

developed by W.H. Fleming.(19)
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where for simplicity, we put

__k) k
km("’)"—_ﬂ ) kp(r)E—;—(;—} and ky(r)= key(z)

(5,3=11)

It must thus be noted that the three coefficients, k, (r) , k,(s)

and k, (r) are related with the control variable, The optimum control
variable which minimizes the performance functional (5,3-3) is pre-
viously given in Eg. (5.3-10). It can thus be found that the final-

value control system is realized as a feedback control system with time-

variant bias k, (f), and time-variant feedback gains k, () and Ka.(es). «

€ Random Disturbance

u + | X

e (et >
* s(s+0a) T

Controlled System

""""""""""""" d_ R A

a - 4 |

X al I

1 }

i

Km(j?ﬁ(f) Function |

s senerating 'I

&{f) Ccocmputer |

|

i

: |

dy :

Controller B

e — —— ———— ——
———— —— — — T — —

Fige De2 Configuration of the final-value control system
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The configuration of the final-value control system considered here is

schematically shown in Fig, 5.2.

Consequently, the characteristics of the final-value control system
can be investigated by examining the control coefficients kS(r), &, (r)
and k, ().

Control coefficients k, (r) and % (r) are respectively plotted in
Fige 5e34 where o°=l0, m=( ya=0 , 4 =0.5 and p=05, k,(r) is always
equal to zero in the case where m=0, of which property will be dis-
cussed in the later section, then ka(r) is omitted in Fig. 5.3,

In Fig. 5.3, as well in the following Figs., it must be noticed
that the horizontal axis represents the reversed time r and that the
real time ¢ moves along r-axis from right to left, so ¢=I and rm=0 mean
the initial time ¢=0 and the final time ¢=7 respectively.

Comparing the curve of k, (r) with that of ki {8) in Pig. 5.5; it

can be found that the proportional feedback gain k, (f) is larger in

=

T T
& oF ‘ Aa(T)
-

@®

| =

o

205 o=1.0 fplT)
% m=0

3 a=0

E Aﬂﬁ =O,5

- 0 | | i

& "0 1.0 2.0 3.0
(@]

Reversed Time r

Fig., 5+3 Time dependent coefficients &, (r) and

k, (*) vs. reversed time ~
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small v and takes its maximum value at smaller r than that of the
derivative feedback gain k,(#), and that k, (vr) decreases to zero more
rapidly in large r than k,(v), Considering this fact, we may con-
clude that, when r is large, the final=-value control system shows the
operation as a derivative control system and as the value of r decreases,
the characteristics of the control action become those of a proportional
control system. Further discussions will be carried out in 5S.lt,
Sedml Controlled System with Randomly Timre-Varying Parameters

We consider here a system having randomy time-varying parameters
for the controlled system as shown in Fig., 5.4, of which dynamic

characteristics are described by

;‘1 :xj ] xl[U): y }

¢ (5.3=12
X, —=—all)%, +bibr , 0= (5.3 )

4

where x—z and x,—i respectively. The random parametersa (t) and
b(t) are independent with each other and are respectively assumed as

(5-5"]—3)

a (D==d+a (1)
b()=F+8 ) } .

s
u | X
—pib ()

Control } Controlied

Variable | Variable

|
i
b o e e e . o — — ———

Controiled System

al(t), b(t): Random Parameter

Fige 5.4 Randomly time-variant controlled system
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In Eqe (5.3-13), @ and § are the known mean values of o(s) and b(¢e)
respectively. Both «(t) and #(t) express random portions of e(¢) and
b(#), which are respectively considered as stationary white Gaussian
processes with zero mean and respective variances 4" ang B* . Thus

Eqse (543=12) are expressed in the form;

§say ,
I.l- —=—ax, +pu+ | A x + B @) } ’ (5.3=14)

where 7(¢) is a stationary white Gaussian process with zero mean and
unit variance.
We consider again Egq. (5.3-3) as the criterion functional, and

according to the discussions in 5.2, we have the functional eqguation;

6¢ 8¢
g% — i J%xz+#u+x=a

- = 3¢ A x+Bu’ s (5.3-15)
- (a%'ﬂu)ax + 2 am: ¥

The optimum control variable u can therefore be determined by

— 8¢ 026 _
ﬂ'a—-l—z# u +B° Py u=1q0 , (5.3-16)
that is to say
2
i= -2 (20T (5.3-17)
%, 612

Then Egs (5.3-15) becomes

2

g 2 , 00
+{ #/(2n+32 — J-l v ) / (2u+B aﬁ)

9¢ - 9¢ AL _, 9%
5 Gy ) Y o ;
—g d 2 (503'18)
+ B3 25 M/(z +B’—E)
2 0, az

¢= 0 (r=19)
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By assuming the solution of Eq. (5.3-18) as the same polynomial in

Eqge (543=8), we have

ki = —p*k; /4 (u+B*ky) , kLo=0 O

b = =Fkk, /2 (u+Bky) , k=0

ki = by —ak, — Bhokg s (4B k) | ks (0= 0

kf = 22+2k =k~ B bk, / (u+Bk,) , ky (=0 h

k= —F K, /4 (utB'k,) , k0= 10 - (5319
b= ky+ (£-2a) b, —F* K / (u+B k) , kO)=0

From Eqs. (5.3-18), and (5,3-17), we have the optimal control action

as
=~ { k(@ +lh (D x+ka(r) x } , (5¢3=20)

where
kn(n=F &) /2 (1+ B )
kp ()= f ks () /2 (u+ Bk, ) (5,%-21)
ks V= F ks (0)./ (4 +B%%, ) '

Then it is found that the optimal final-value control system to
be designed here is also realized as a feedback control system with
time-variant control coefficients ka() , k,(7) and k, (7). Its con-
figuration is the same as that shown in Fig. 5.2. First, the case
where a(¢) is a random process with the value of the variance 4?=1,0
and (1) is a deterministic process i,e., B =6, is numerically com~
puted with other numerical data as a@=0, A=1.0 and I=x= 0,5,

The numerical plots of the proportional feedback gain k, (r) and
derivative feedback gain kg (r) versus reversed time r are shown in
Figs. 5.5(a).

- - 2
Second, the case where a (z) is deterministic (i.e., 4 =0) and

2 3 »
6(t) is a random process (i.e., B =1,0) is computed. The results

are shown in Fige. 5.5(b) with other numerical data as =0, F=1.0 and
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and kd (v) vs. reversed time rt

A=#—04e5, In both Figs., the broken lines show the corresponding

S AR ; )
deterministic cases,y i.ec., 4°=B8"=0.

FProm Eqs. (5.3-19), it is found &, (r) is always equal to zero.

It is obvious that
katt) = 0 (r=0) (5¢3%3=-22)

that is to say, the time variant bias ka (r) is not necessary in any

cases,
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5.4 Further Considerations

In this section, we discuss about the effects of changing the
controlled system parameters and the performance weights on the control
characteristics.,

First, we consider the case where the controlled system is sub-
Jected to a random disturbance given in the previous 5s35-1.

The effects of the selection of values of 2 and g on both the con-
trol coefficients k, () and k (r) are respectively shown in Figs.

5.6 (a) and 5.6 (b) It is evident from Figs. 5.6 (a) and (b) that, as
the value of 2 trends to 1, since the feedback gains & (f) and ki (¥)
become to take too much large value. Then it is physically impossible

to instrument the controller for a final-value control in the strict
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gense, i.e., #=0 in Eq. (5.3-3). Therefore, if we are confronted to
design a final-value control system in the strict sense, it is neces-
sary to add a magnitude constraint on the elements of controller and

to treat the design problem as a bounded control problem. The effects
of the values of ¢ are shown in Figs. 5.7 (a) and 5.7 (b). These
results reveal us, from the physical point of view, that the system
may be less sensitive as the value of @ increases.

Since it is pressumed from Fig. 5.6 (a) that the point of chang-
ing control characteristics is not affected by a system parameter but
by a performance weight # , then it is very interesting to plot the
point which is the intersection of k,(r) and k (r). TFig. 5.8 shows
the plot of such points where a and p are shown as parameters.

e consider about the effects of the presence of the mean value
m of the disturbance ¢ (#) on the control coefficients ka(t), k,(7),
and k,(f). It is clear, from Egs. (5.3-9), that only b (), k (%)
and ki (t) are related to m . Both & (¥) and k (7) are, therefore,
independent of the value of m ,  Ounly k, (r) is related to m , and

this is shownin Fig., 5.9. If m is equal to zero, k, (*) must always be

O
[5
.
T
g
O
3
[F-.
(0]
(o]
O 0} 1.0 2.0 3.0
S Reversed Time T
T
IS
o
O

Fig. 5.9 Time dependent coefficient k,(f) Vs reversed time r
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equal to zero from Egs. (5.3-9). Then k, (¢) must be zero from Egs.

(5.3=11)s If ¢ is sufficiently large, it is expected from Eq. (5.3=9)

that

limkn(f)=m, Jim k, ) =0 and lim kg (1)=0 .
T a0 T —ca T—a00

(5.,4-1)

Thereforey, k,.(f), roughly speaking, plays a role to cancel the mean

value portion of the random disturbance ¢ (¢). Moreover Eg. (5.4-1)

may express that the final-value control system behaves as a free

system,(a?) since feedback loops are broken, if r is sufficiently large.
Finally, we must pay our attention to the variance 42 of the

random disturbance & (t), Since, from Eg. (5.3=9), we can easily

find that &k, (*) can only be affected by the values of the variance ¢?

and that all the coefficients k (v), &k, (r) and &, (¥) are indepen-

dent of o2, then the value of the variance o* does not make any

effects on the control coefficients k,(v), &, (r) and K L) :
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o /
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and ky; (7)
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Segond, we consider the case where the controlled system has
randomly timg~varying parameters discussed in 5.3-2. The effects of
changes of @ are shcwn in Fig. 5,10. From Fig. 5;10, we can fiand that
the effects of the values of @ are almost similer to those discussed in
the previous case where a(?) is not random. The effects of the value
of 2 have also been examined, but the results are the same, so we will
never mention them. In particular, the fact should be emphasized
that if the parameters of a controlled system have randomly time-
varying characteristics, then both the value of the variances J'and 3’
are simultaneously related to control coefficients &, (¥) and ks (f).
When both 4" and p*® are not zero, control coefficients are shown in

2

Figs 5¢11 with the values of a set of parameters 4 =10, B 5140
ﬁ‘ln@,-f'i’i} and = Ll:U-Sl
Lastly let us consider the effect of random pargmeters ¢ (t) and

p(#) on the control characteristics referring the results as shown in

kp(f’,kdlf)

ients

icien

Coeff

Reversed Time T

Control

Fig, 5.11 Influences of 4  and 5" on the coefficients k, (v) and ka (€)

- 119 =



Figs. 5.8 and 5.10. Fig. 5.10 shows the comparison of control co-

efficients subjected to random parameters, It is evident from Tigs.

5.8 and 5.12 that the effect of «(#) is equivalent to that of decreas-

ing the value of a system parameter o, that is to say, it makes the

control system more sensitive. This effect is easily understood by
comparing the location of the point of changing control characteristics,

with that of the point where @ (4)=0in Fig, 5,12. The effect of g(#)

seems, on the other hand, to be equivalent to that of decreasing 2 .

This is easily recognized by comparing the curves numbered 1 with these

marked 3 in Fig. 5.12, The effect by both random parameters a(t)

and A(¢) is that the controller becomes of less final-value control

——— ~
ka(7) 7 A=i0,Bx0

Coefficients

Control

Reversed Time T

Fig. 5.12 Comparison of the effects of random parameters e (8)

and g (#) on the control characteristics
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but of more derivative control, which is to counteract the increased

sensitiveness caused by the random parameter « ().

5.5 Concluding Remarks

In this chapter, the author has discussed about the optimum
design technigque of the final-value control systems and about what pro-
perties they must have. Both the final-value control problem with a
linear time-invariant second order controlled system which undertakes
a random disturbance, and the one with a linear randomly time~variant
second order controlled system are studied in detail,

It should emphasized that the characteristics of the optimum
final=value controller must become time-variant to a high degree.
Roughly speaking, the final-value control system operates as a free
system, that is to say, as a system with no feedback loops, at the pri-
nmitive stage of the pre-assigned control duration. The derivative
action becomes to play a stronger role with the lapse of time. And at
the final stage, the proportional action becomes stronger.

It is also emphasized that if we are confronted to design a final=
value control system in the strict sense, it 1s necessary to add a
magnitude constraint on the elements of controller and to treat the
design problem as a bounded control problen.

Tt is also made clear that the situations are considerably cif=-
ferent between the controlled system subjected to a random disturbance

and the one with randomly time-varying parameters.
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FUNDAMENTAL CONCEPT OF AN ON-LINE COMPUTER
CHAPTER 6 OPT IMIZATION APPRUACH TO NON-LINEAR

CONTROL SYSTEMS AND ITS APPLICATIONS

6,1 Introductory Remarks

In recent years there has been a growing interest in the idea of
controlling a complex process by using high-speed modern computing faci=-
lities. Several attempts have been carrying out both in and out of
this country to control such complex processes as chemical reaction
plants or power supplying plants. Most of the attempts are focused
on the investigations to the dynamic optimization of a complex process
subjected to the change of its environments, which effect the perform~
ance of the process to be controlled. And the method of attack is
application of modern control or optimization theories, As the author
has already stated, the modern theories are developed upon the basis
of complete mathematical description of the design problem, However,
from the view point of controlling a real plant, there remain many pre-
liminary problems in applying the theory of optimum control because all
the design specifications are not given in a precise mathematical forms,.
That is to say, some of them may be given graphically or numerically as
the data of experimental studies. Then it is necessary to determine a
mathematical presentation which is almost equivalent to the experimental
data. This procedure is in general considered as an inverse problem(uﬁ}
which yields another type of difficult mathematical problems to be
studied such as problems on the existence or unigueness of a solution.
Furthermore, since this procedure possesses the feature of "cut and try
method" in some sense, then the process to be controlled becomes the
es and it should

more complicated, the more tedious the procedure becom

. om~
be carried out through a digital computer. Therefore, the more ¢

plicated the construction of a controlled plant becomes,the more dif-
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ficult the mathematical description of the optimization problem under
many associated physical constraints results, Furthermore, the rigor-
ous mathematical solution of the problem is hopeless at the present
even though we utilize gigantic high-speed digital computers.

In this chapter, from a quite different point of view, the funda-
mental idea of on-line cowmputer optimization approach to non-linear
control systems is presented by extending the concept of sub-interval
optimization stated in Chapter 1. From the view point of computer
utilization, an attempt will be done to explore a practical design pro=-
cedure for designing non-linear control systems subjected to the physi=
cal limitations which are not completely described in mathematical for-

mulations. Two examples will be presented to show the idea in detail.

6,2 Fundamental Concept of an On-Line Computer Optimization

cohkgoprated with State Adaptive Performance Criterion

6,2-1 Description of the State Adaptive Performance Criterion

Among the design specifications the most important seems to be a
performance specification and its mathematical presentation, a perform-
ance index or a performance functional. The deterwination of perform-
ance functional, although somewhat a matter of experience and ingenuity,
is suggested by the performance specifications of the design problem.
The allowable latitude in this determination is very much a function of
dynamic difficulty of the design problen. In particular, more difficult
design problems require more accurately determined performance functional
if the performance specifications are to Dbe met. The most widely used
approximation is to choose & guadratic form of functional because it 1s
feasible to treat. Especially in the case of problem controlling linear
dynamical plants, the quadratic form of performance functional gives us
the configuration of optimum linear feedback control systems &S present-

ed in Chapter L or 5. In spite of the many application of optimum
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(35)

¥

linear feedback controls, the non-linearities associated with many

important design problems can not be avoided. Furthermore, many ap-
plications in real plant control problems require the use of non=
quadratic forms of performance functional because of many physical
limitations related with non-linearities.

Generally speaking in the optimization problems, however, the more
complicated forms take the performance functionals, the more hopeless
becomes their rigourous solution. Then it seems to be of importance
to study the form of performance functional which is feasible to solve
economically, and furthermore is flexible to satisfy the various types
of performance specifications.

Let us trace back to the starting point of "control" and consider
what the basic structure of performance functional is. Fundamentally
speaking, the very object of "control" is to reduce the error itself or
the corresponding "loss" or '"cost" caused by the error at the next
instant with irrespective of its quantity. However, for doing this
there should be an infinite control power and this idea is revealed to
be unfeasible. Then the object of "control" is soften to minimize the
amount of "loss" or "cost' associated with control processes as soon @S
possible under physical limitations. There are, on the other hand,
two types of '"loss' or "cost" in control processes. The one is cal=-
culated with respect to the error itself or the effects caused by it,
which is referred to as an error-cost. The other is calculated with
regard to the expenditure of control action, which is referred to as a
control=cost, Since these two cost are essentially exclusive each
other, then if we only minimize the error-cost the cecrresponding control-
cost shall be much increased. Recalling the object of control"
again, the control processes may be classified roughly into the follow-

ing three phases;
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Phase=I minimum-error control : If there is a large quantity of

error or effects caused by it, a control action should be exhausted

to make the error small as quickly as possible without regarding to the
expenditure of control-cost. This phase of control is named as a
"minimumeerror control" phase because it is quite similar to that of

minimum~time control or final-value control.

Phase-II minimum-energy control : In the case of & small quantity of

error within a kind of engineering tolerance, the corresponding control
should be determined by taking a heavy attention on the expenditure of
control-cost, Then this phase of control is referred to as a "minimum-

energy control" phase.

Phase~III minimum-error control with energy constraint : TIn the case

where there is a considerable quantity of error, the control action
should be carried out by minimizing the compound cost which is defined
as the appropriately weighted sum of error-cost and control-cost.”

The title of this phase of control is a natural result.

Let us pay our attention to the phase III and consider the details
of this phase. That is, in this phase of control situation, the
control action is very much affected by the selection of a weighting
factora Since it is natural to consider that the selection of a
weighting factor should be related to the gquantity of error, then the
following concept of '"state adaptive cost function" or "state adaptive
performance functional® is available to unify the three control phases
stated above.

Definition: The cost function or the performance functional whose
form is enable to change itself depending upon the present and
past informations with respect to the related systems (state

variables of the related systems, the rest of control energy, the

* (compound cost)=(error-costH(weighting factor)X(control-cost)
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rest of operation time and so on) is referred to as a "state adap-

tive cost function" or a "state adaptive performance functional",

6,2-2 Fundamental Concept of Sub-Interval Optimization co-operated
with State Adaptive Ferformance Functional

For on=line computer utilization, = suitsble method is desired in
order to perform the optimization simply and rapidly. This means that
it is desirable to choose the performance functional whose structure is
simple. Let us suppose that presentation is restricted to the discrete
case, and consider a sub-interval optimization technique which recom=
putesy utilizing the best information available at present, the optimi-
zation problem at discrete time intervals of time A . In this manner,
feedbaclt control can be obtained by measuring state variable of the
actual controlled system. For this purpose, we introduce the following

type of state adaptive performance functional;
i-1

I, Jo="e (i) Ple)) e koti >+J;§0 ‘w(k +1) @ (e®) u(k+j) &, (6.2-1)
where e(h and u(k) are shorthand of e (k&) and w (kA)  respectively.
They respectively express anerror vector e and acontrol vector ¥ at
the k~th sampling instant, i.e., t=kan « i denotes the integer ex-
pressing the duration of sub-interval ( kA, k+i AN ), and & is sampl-
ing period. In Eg. (6.2=1), p(e®) and @ (e®) are positive
semi-definite nxn and rXxr matrices respectively, which express
weighting factors depending on the present state of the system, and
they are named as "state adaptive weighting factors". The first and
second terms in the right hand side of Eg. (6,2-1) mean the error-cost
and the control-cost respectively. The noteworthy point of Edq. (6.,2-1)

is that it is different from

Jol="e (k+i) P G+i) e(k+i) + 5 b Q (k) uCE D L (6,2-2)
=0
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In other words, from Eq. (6.2-2) we can derive a time idabiilcl GF LR

scheduled control policy,while Eq. (6.2-1) provides us a state adaptive

control policy. That is, since weighting factors Plel] and @ (e(h)
in Eqe (6.2-1) are functions of the present state variables, then the
computed optimum control vector from Eq. (6.2-1) becomes much more
heavily depend upon the present state than the computed optimum con=-
trol vector from Eqe. (6.2-2). In other words, it results from the fact
that the rule in Eq. (6.2-2) for finding the point of compromise between
the error-cost and the control-cost is pre-assigned without regarding

to the actual states of the system. It is also interesting that if

we restrict a controlled plant to be linear the characteristics of
optimu@ controller derived from Eq. (6.2-1) becomes non-linear while

Eqe (642-2) provides us a linear optimum controller. The non-linear
characteristica of controller derived from Eq. (6,2-1) is rely on the
structure of weighting factors P[e(k)) and @ (ek)] . It is also
evident from Eq. (6.2-1) that if an integer i takes a large value,

the corresponding computing time for optimization becomes long. From
the view point of on~line computer utilization, however, it is desir-
able to shorten the computation time. Then let us pre-assign that i=n
or n+1 Where n expresses the highest order of the controlled plant
dynamics.,

Although there is a room for discussions on the determination of
these structures of state adaptive weighting factors P(e®) ] and @ (e®) ,
the state adaptive performance functional, Eq. (6,2=-1), gives us
several interesting points associated with the design of non-linear

control systems. The following sections will throw light upon the de-

tails of the present proposal.

643 Fundamental Considerations on the Application of the Concept to

the Designm of Non-Linear Control Systems
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In this section, two simple examples are presented to show the
details of the idea and the characteristics of the system designed by
using the concept stated in the previous section, and to point out its
applicability to the design of non-linear control systems.
6¢3-1 Example 1l: Design of a ¥First Order Non-Linear Control System

Statement of the Problem and Determination of Control Policies

Let us consider the problem of controlling a first order non-linear

controlled system whose dynamics is given by

x)=ax@)+ ba@)P+ue) , xO=-c¢ , (6,3-1)
where () and u(t) are the controlled signal and the contrel signal
respectively, hence, 4 and §p are constants expressing system para-
meters, and ¢ denotes an initial state of the controlled system.
From Eqe (6.3-1), we can get the discrete presentation with respect to
the error signal e()=w()—- a(y a5 follows:

e (k+1) =e@+ (ae+be k) A-u®mD, eO=c¢ , (6.,3=2)
where e() and u¢) are shorthand of e(kA) and u(kap) , which res-
pectively denote the error signal and the control signal at the k-th
sampling instant, d.e., t=kA. Hence A expresses a sampling period.
Furthermore, in deriving Eq. (6.3-2) we set wv(=o0 for simplicity.

From Eq. (6.2-1), the corresponding state adaptive performance func-

tional in this case is described as follows!:

i=1 .
Joilh= P[g(k}]g(k+i)z+j§09[e{k)] wCk+ P, (i=1,2) (6.3-3)

where P(efy] and Q(e(k) are non-negative function of e .

Then the problem is to derive the control policy which minimizes
Eg. (6.3~3) under the comstraint of Eg. (6.3-2) By performing the
minimization procedure* to Egs. (6.3=-2) and (6.3-3), the corresponding

control policies are easily calculated as

* The detailed procedure of derivation 1s presented in Appendix E
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Gk, = R{ (1t+aelr)e(k)+bA ef)® } (6,3-4)

and
ulb)y=—{z- (1+ad) e(k)+boel?® } /A , (6.3-5)
where & 1s the physically meaningful solution of
{ (1+ar) e(R)+bn e () } —( 1+ (14+aA)? RA } ¢
“4Rb (14aA) A 28 —3Rb2pe 25 =@ , (6,3=6)
hence, R in Eqs. (6.3-4) and (6,3-6) is defined by
R=pP(e®) (P(«(B])D+Q(e®)) - (6.3-7)

Therefore, the corresponding optimum control based upon the concept of
sub=interval optimization described in 6.,2-2 is carried out by realiz-
ing the control policies expressed by Eq. (6.3-4) or BEq. (6.3-5). It
is evident from Eg, (6.3-4) that the control policy @ (), can be
realized by taking the configuration of a non=-linear sampled-data con-
trol system as shown in Fig., 6.1. On the contrary, the control policy
a(k), given by Ege (6.3-3) with Eq. (6,3%-6) should be performed by an
on-line computing device solving the 5th order algebraic eguation, Egq.
(43=6), Fig. 5.2 shows the simplified logic flow chart for realiz-
ation of the control policy given by Eg. (6.3-5).

Relations between the Control Characteristics and the Selection of

State Adaptive Weighting Factors

In Fig. 6.1, there are three non-linear elements except for the
elements of multiplication and division. The one (NL-1) is introduc=-
ed to simulate the non-linear characteristics of controlled plant.

The others (NL-2 and NL-3) areintroduced to play an important role in
changing the phase of control. Since, by assuming the various types
of non-linear functions of e(k) to these weighting factors, we get the
various types of controllers, then the next problem before us is to
determine the appropriate function so as to satisfy the performance
specifications. There is no analytical method of determination if

some of the performance specifications are left to the judgement of
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| : I
{ S . Sampler 4 P(e) |r= Il
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| s .
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T | T S J

Non-l_inear Controller

Fig. 6.1 Configuration of the non-linear sampled~-data

control system

well-trained designers. The only way of doing this is simulation
studies, in which we can determine the appropriate form of weighting
factors by the method of cut and try. Although many discussions are
expected on the determination of weighting factors. Let us postpone
these discussions later, and we shall consider the control character-
istics of the designed system. Let us first consider the difference
between two policies given by Egs. (6.3-4) and (6.3<~5). Since the
control characteristics of the system is, in general, function of

P(e(k)) » @(e(k)) and A , then it 1s necessary to pre-assign them
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Fig. 642
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for comparing these two policies. Fig., 6.3 shows the graphical com=

parison where it 1s pre-assigned that p =e(k)? 4 Q=1 and A=y, 1
with system parameters, i.e., a=b=-1, andc=1067 , In Fig., 6.3, the
line marked by e(); expresses the corresponding system response con~

trolled by u(f); and the line marked by [I(), shows the corresponding
index of performance abided by uit); , Hence, in order to compare the
control performance, the following quadratic form of index is intro-
duced for simplicity; .

I (k&) ,-_—,:?:0{ e(j+1)+T (DF Y A, (6.3=7)

The minute sclid lines show the response and the index of performance

(46)

of the system which is designed by a near-optimum method to mini~
mize Eqs (6.3-7) with k=40,

On the other hand, for on-line computer utilization, one of the
most important aspects of the method is the rapidity of computing time
necessary for realization of control policy. Then it is interesting
to compare the computing time for realizing the control policies u o),
(i=0, 1,2). The comparison is carried out by using a digital com-

puter, NEAC-2101. The results are tabulated in Table Guls

Table 6.1 emphasizes us the rapidity of decision-making abided by the

Policies for Decision-making

u(k o ulk ) Uikl
Average
Time _
for One | 05 min.| 1~2 sec| 3~4 min.
Decision-
making

Table 6.1 Comparison of the computing time
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policy, Eq. (6.3=4).

By considering the fact that an appropriate selection of weighting
factors enables us to improve the control chracteristics of policy,
Eqs (6.3=lt), and that its rapidity of decision-making is very much
desirable, it is expected that the further considerations on the control
policy given by Eq. (7.3-4) provides us useful properties of the present
concept. Fig. 6.4 illustrates the behavior of system responses af-
fected by changing the initial condition. Fig. 6.4 points out the
state adaptive characteristics of controller. That is, the figure shows
the controller realizes the various phases of control action corres-
ponding to the present state of the system. From the above mentioned
state adaptive characteristics, it is evident that this type of con=-
troller has a considerable adaptability to a suddenly applied impulsive

load disturbance at the output.

L2y
A=0.
a=b=-10
p=e*
Fig. 6.4 —y
Behavior of the 'l
' o8k i
system response L \
affected by chang~- % \\'\\
; P v A\
ing the initial \ e(0)=1715
2.00
condition . i

250

04} l\\
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b)
a) .

e(t)
o €t)

05

c) a)

O ©4 08 I2 0O 04 08 12
t=k4 t=kaA

Fig. 6.5 Behavior of the system response affected by changing

the form of a state adaptive weighting factor
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Lastly, let us make a few discussions on the relation between system
parameters and the form of state adaptive weighting factors. Fig.
6.5 illustrates the several examples of the relation where we set ¢=1
for simplicity. It turns out from Fig. 6.5 that the effect of chang-
ing the form of P on the stable system where a=-1, and b=-1 is not so
remarkable than that on the unstable systems where am~1.,0 and 62,0
or a=bz1,0 as respectively shown in Fig. 6.5 (c¢) and (d). Essential-
ly speaking, since the characteristics of controller based upon Eq.
(6,3-5) are gualitatively very much the same as these of controller cited
above, then we stop the discussion on this example.
6.3-2 Example 2: Design of Non-Linear Control System with
Bounded Control

In this example, from the view point of computer utilization
several discussions are presented on the design problenm of controller
which controls the second order controlled system with both velocity
and control saturation,

Statement of the Problem

Fig. 6.6 shows the system to be considered, of which the discrete

Uesired
Signat
Controlled vifl=0
Control Signal ’ Error
s AT
| % +
ury gl ok - sl |1 X 7) elr)
: S+ J -L s g! -
s~ —

Controlled Plant with
Velocity Saturation

Fig. 6.6 Block diagram of the non-linear controlled

system to be considered
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presentation with respect to state variables of the error signal is

given by

“ck+1):8'l(k)+f(ez(k)}& ’ €, (0)=¢, L
QD= C@) 6@ -D)u) , 6= | * 038

where f(z) denotes the mathematical form of a saturable element defined

by
fGY=L (z>L) |
=z (-L<ez<L) (6.3-9)
==L (z<-1) ’

In Eq. (6.3-8),6(A) and D) are given by

GCA)=-exp (—anr) !

5\

D(&)= b/a.-{l—exp ('—GA)} |

=

(6,3=10)

and furthermore, the control variable u(k) is subjected to the magni-
tude constraint

fu | < M, (6.3-11)
where M 1s a pre-assigned constant. Since the corresponding state

adaptive performance functional in this case becomes from Eq. (6.2-1) as

L= ‘e (k+i)P [e(k)) € (k+i)

+i_ElQ(elck). e,(k))u(k+) D, (6.3-12)
J=0
(i=2, 3
where
P[u (k)]:ii Prs(q.(k).e,(k)_)]] (r,5=1,2), (6.3=13)

then the problem is to derive the control policy which minimizes Eq.
(6.3-12) under the constraints of Egs. (6.3-8) and (6,3-11).

Determination of the Control Policy

For simplicity, let us confine our considerations to the case
where i=2, py= p(€(k)) , p”:p“:puzo, and Q=p (constant).
Eq. (6,3-12) can thus be rewritten as

T, =P (es(k)) & (h+2)"+QA{ () + L G+D" }. (6,3-14)
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By applying the optimization principle based upon Dynamic Programming,

we get the following which is necessary condition for optimality;

| Quk) ~p(e (YD) f/ () {Af (ey(h+1)+e; (k+1) }=0, (6.3-15)
where
fl(e)=1 (-Lg:<1L)
=0 Celoe of Z>L3}, (6.3-16)
and
1=6 Q) (k) -D@A)uw (k) (6.3-17)

Since it is impossible to get the straightforward solution of u (k)
from Eqs. (6.3-15),(6,3-16) and (6.3-17), then we shall consider the
sophisticated way of solution. If we suppose that f’=1, Eq.

(6.3=15) gives us

p (&8, (8) D ()
p (ak) D Q)2 A+Q

uly =wk) = (et EEIA+6 ) Aely, (6.3=18)

On the other hand, since there is the magnitude constraint on u (k)

then the corresponding solution becomes

u(k) =M (wk)>n)
= w (k) (~M< wk) <M) (6.3~19)
=M (w(k) < -M)

J
However, it is necessary to check the supposition cited above. The
checking can be done as follows: If the solution Eqe (6.3-19) satis-
fies the relation given by

G(A) e, (k) —L< D) u(k) < G &)+ L, (6.3~20)
which is derived from Egs. (6.3-16) and (6.3-17), then Eq. (6.3=19)

becomes the desired solution.

On the other hand, if the solution Eq. (6.3-19) does not satisfy Iq.
(6.3-20), the desired solution Eg. (6.,2-20) is determined from Egs.
(643=15) and (6.3-20) as follows:

By letting f'=0 in Eq. (6.3-15), we get the solution u(B)=0. How=
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ever, this solution yields the contradiction that it satisfies Eq.
(6,3-20)., Then it turns out that the desired solution should be ex-

pressed by the boundary. values of Eq. (6.,3-20),

uWl={G () esth+L } /D), (D) ul)>GC (L) e; (K + L) }

=( G(A) ex(8) ~L)/DEY , (D (D) uhy<C () ¢, (B) — L) o)
Then, we get the desired control policy as follows:
ak) =M (wk) > M)
= w(k) (-M=<=w(k)<¥M)
’ 6.3=-22
= =i (w(k) <-M) (6.5-22)y
(C(A) e/ W) —L < D) B(R) =G & (A)+L)
al=( G() e,(®) +L}/D(D)
(D) u (k) >6CQ) e (R)+L) (6-3-22)2
al)={ G ) e, (k) - L} D),
(6,3-22)
(D) EK) <6 (1) 4, ~1) 3
The logic flow chart for realization of the comtrol policy is shown

in Fige 6.7

Discussion on Control Characteristics

Tn order to illustrate the characteristics of controller, We
simulate the control policy Eq. (6.3-22), by a digital computer.
The results are shown in Figs. 6.8, 6.9, 6.10 and 6.11. That is,
Fige 6.8 shows an example of the relation between the initial condi-
tions and the system responses, im which we set p=ei1 (k) Q=1e0y
L=1.0, and M=w s Tt is noted that the controller changes its phase
relying on state variables of the system. Fig. 6.9 illustrates the
trajectories of the system with bounded control where #=2.,0. The
effects from changing the value of § on the response is also illustrated
in Fig. 6.9, Fige 6410 shows the behaviors of trajectories affected

by changing the value of g , in which M=1.0 or 2,0, The solid curves
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Fige 647 Logic flow chart for realization of the control policy

are corresponding to the responses of the system whose controlled element
is assumed to be linear, The broken lines are the responses of the

system with bounded control; |u (k)| <'2.0. An Example showing the
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Fige 6410 Behavior of the trajectory affected by
changing the value of both # and ¥

effect from changing state adaptive weighting factors P and @ on the
control characteristics is illustrated in Fig. 6.11, where P—¢ (k)* or
e, (k) *+1 and @=p. It is pointed out by simulation studies that by
assuming the proper form of weighting factors, the controller based
upon Eqa (643-22) provides us various types of non-linear control ac-
tions, Although it is interesting to consider the relation between
the form of weighting factors and the total cost during the operation
time interval, it seems to be beyond the scope of this example. The
very point which is emphasized in two examples cited above is that the
_concept of sub-interval optimization technique co-operated with state

adaptive performance criterion provides us the possibility of design-
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ing non~linear control systems through a direct digital simulatation

study.

A=D=10, 4 =0
L=10. M=20, Q=8
——P=1+€ ,-—--p=¢f

0.5

Fig, B4l Behavior of the trajectory affected by changing

the form of state adaptive weighting factors

6ot Turther Discussions

In the previous section, two simple examples are presented to in=
vestigate several typical features of the controller which is designed
by using the present concept. In this section, the author arranges
interesting aspects of the present approach and discusses further
broblems associated with the present concept. The interesting points

of the present approach may be summarized as follows:

(1) The computing time in optimization (decision-making) is short
because the performance functional of simple structure is defined in

Eq_l (6.2"’1).
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(2) Since an integer ; expressing the duration of sub=interval is pre-
assigned as { = nor n+l, then a gigantic scale digital computer is not
necessary to declde the control policy even though a controlled system
becomes high order.
(3) Design specifications concerning nonlinearities in system dynamics
and magnitude constraints on control variables are directly used,without
assigning any penalty in performance functional, to decide the control
policye

On the other hand, all the discussions cited above are developed
under the assumption that the proper forms of state adaptive weighting
factors have been pre-~assigned. For practical application of the
method, however, the most important point is the determination of their
functional forms so as to satisfy the given performance specifications.
As the author has already pointed out in 6.1, this is a difficult problem
of same level to the choice of performance functional which we encounter
in applying the modern control theories to practical design problems.
Then no direct mathematical approach seems to be possible to this
problem,

From the view point of on-line computer utilization, however, the
circumstance is very much altered. That is, we can determine an ap-
propriate functional form through the cut and try method using a digital
computers The fundamental procedure is &s follows:

(i) Assume a physically meaningful functional form of state adaptive
weighting factor, decide the control policy, and calculate the corres-
ponding response.

(ii) If the performance specifications are given as the necessary
conditions with respect to the system response trajectory, then plot
the computed response and adjust the functional form by the method of

cut and try until the computed response becomes to satisfy the performance
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specifications. On the contrary, if the control performance is measur-

ed by the total cost expended during the operation interval, then cal-
culate the corresponding total cost with respect to the computed system
response, and find the optimum functional form so as to minimize the
computed total cost,

Generally speaking, the procedure for finding the optimum functional
form, through the method of cut and try consumes much of time. How-

ever, if we assume the nominal functional form as a finite sum of such

DESIGN
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b ¢ v '
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?QBBSIIE}I{TON PEHRORMANCE
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S = SIMCIE STRUCTURE

I
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OF CONTR('L POLICY

A 14
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CONTRCL POLICY

Fig, 6,12 Flow diagram of the design procedure proposed by the author
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orthogonal polynomials .as Hermite, Legendre, and Tschebyscheff poly-
. (1) .. .

nominals, it is expected that the determination of a suitable
function expressing a state adaptive weighting factor seems to be not
so tedious task because the computing time for decision-making is very
much short. Flow diagram for determination of functional forms is
illustrated in Fig. 6,12, For comparison, the author shows in Fig.
6,13 the flow diagram based upon modern optimization theories. The

remarkable differences between two flow diagrams are as follows:

The design specifications are separate into these related with the

DESTIGN
SPECIFICATICONS
¥ U
MATHEMATICAL f—————=——"———"———"—77—— 9
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OF DESICGN controlled plant i
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THEES = i plant and control_varlablesl
PHoE et | d. Performance functional |
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the Problem

IU{

REALIZATION OF
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Fig, 6,13 Flow diagram of the design procedure based

upon modern optimization theories
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description of the physical systems, and these related with the measure
of control performance. Therefore, identification procedures are
separately performed in Fig. 6.12, This configuration cof flow diagram
is a straight forward result from the concept stated in 6.2,

The merit of this configuration will be closed up in the case where
the performance specifications should be changed in accordance with the
external information. In other words, such circumstances are frequent-
ly encountered in controls of real plants in industries, to which the
(12) | (36) .

concept of "hierarchy control" r "multi-level control”

introduced.
In hierarchy control, the following form of state adaptive performance
functional should be introduced instead of Eq. (6.2-1);

L@ =F(e(ht+id) p (elr, y& 5k) eChti) k)
(6,4=1)

+‘_§1‘w(k+j)@[c(k).y{k) sk)w (kD4
]-0
where y (k) denotes the present informations from the related systems,
and F is a scalar function of both the error-cost £€(k+4)pa (k+i) , and
time k . The remerkable points in Eq. (6.4=1) are that the state
adaptive weighting factors P and @ become functions of e (k) , y (k) and k .
Furthermore, if we should add to the decision-making computer the
learning algorithm which shortens the computing time for determination
of state adaptive weighting facter by considering the experience of
past trials, then the very useful algorithm of computer optimization for
realization of "hierarchy control" in industries could be obtained.
Although the physical interpretation of Eq. (6,4=1) should be
necessary, since the further description is beyond the scope of the

present investigation, then it is left for the subject of further deve-

lopment .
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6.5 Concluding Remarks

In this chapter, from the view point of practical control engineers

the fundamental concept of an on-line computer optimization approach te

non-linear control systems is described. Twa examples are presented

to illustrate several interesting points of present concept and its
applicability to the design problem of non-linear control systems.

It turns out that according to the present concept the computing time
for decision=making of control policies is very much shortened, and that
by selecting a suitable form of weighting factors, we can obtain the
flexible controller which realizes various types of control phases.

It is also emphasized that the present concept is expected to provide

a practical direct design procedure in the case where all the design

specifications are not described in precisely mathematical forms.
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Derivation of the Switching Function of Restricted-

Appendix A -
Optimal Control for a Double-Integrator Plant

In this appendix, we shall derive the switching function of
restricted-optimal control for a double~integrator plant where both
system parameters a and b in Eqg. (1.,2=-4) are equal to Zero. Deriv-
ations for the other cases can be performed by a similar procedure.

Substituting e=b=0 in Eq. (1.2-4) and applying a similar method
based on Dynamic Programming as stated in 1.2 to the minimizatien
procedure, we get the following set of non-linear simultaneous dif=-
ferential equations corresponding to Eg. (1,2-19) with initial condi-

tions}

ko!('r) =_k2 (T} kL sgn [Z (f)] ’ ko (0): 0
k(1) = —ky) kL sgn (20)] , ky (0= 0
k' (r) == ky(n —2ky(n)kL sgn (2()) » ks 0= 0
> (A-1)
k@)= 2kin), ks (0= 0 '
k/)=1, kaoF=0
k' ()= k), ks =0

We assume that the final instant of control operation 7 satisefies
the assumption realizing the restricted-optimal control and that the
instant of switching in the reversed time by r—r1g s which is eqguivalent
to ¢=tg in the real time. Furthermore, assuming that the sign of
relay output at r= ¢ is negative, we get the following pair of equa-
tions which is necessary for the derivation of the switching functionj

ki+(rJ:kL kyx), k?'(ulz 0
} ¢ (A-Z)l

kit o=ktr) + 2k L ky(r), i+ @=10

and
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k{=@)= —kL ky(r) , k™ (r,) =k (z,) }

kit =k () —2kL kot Ky~ (r)) =k F () (A-a)‘2

where

ka(” =r? and ks(f): /3 . (A"B)

In Eqe. (A-E)a, the initial conditions are derived by assuming the
continuity of the solution surface for the partial differential equa-
tion on the switching boundary. From Eq. (A-2)y and (A-2)2, the co-
efficients &}y and k() are obtained as

kFo = kL/ 4+ (A=t

and

k)= —<kL (2*/4—27} 773 47, /6)
=kt — kL (/2—2v 2t +5,./6) . (a-b),

By considering the assumption on the switching time mentioned
above, we can derive the following relations from Eq, (l.2-21) as;

=k +ks (o) ert2ky(rye, < 0,

(A-5)
(VS r<a,) 711

and

3—(T)Ekz—(f)"*‘ks{"}e‘l"'skn(ﬂ €, >0,

(r,<*<T) (a-5),

By substituting Eq. (A-5), into the function s( ) we get the

relation as

@) =T —kL (r'/2—27] v/ 3+l /6) . (h=6)
By considering facts that the second term in the right hand side
of Eqs (A=6) is a non-positive function with respect ©To T= 7, and that the
continuity of the solution surface on the switching boundary is assumed,

we can derive thefollowingnecessaryconditionwhichmustbesatisfiedat

the time of switching, dl.e4, T="Tg
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| z+ — it 3
;Iz (?___11}:0 2 (2_: Irs:f-a"%(rs)e,-}- 2ky(ro) =0, (4-7)

By substituting Eqs. (A-3) and (A-%4), into Eq. (A-7), we have the

switching function of restricted~optimal control for the positive relay

output at ¢=0 as follows:
Z;ESE ti/4+2c /3. e, /kL+e€, kL . (a~8)
On the other hand, the switching function for the negative relay
output at £=0 can be derived by a similar way as

ZEESE—TZ/4+2-¢'/3-e2/ kL+e, /kL . (A~9)

Eqse (£-8) and (A~9) are the final results of this appendix.

Appendix B . Derivation of Eas, (2.4=7) and (2,4=8) from Eg. (2.h=h)

In this appendix, the author shows that the switching functions of
restricted-optimal control, Egs. (2.4-7) and (2,4=8), can be derived
from the one, Eq. (2.4=4), as the limit of tending & or 6, or both to
Zero.

First we consider the derivation of Eq. (2.4-7) from Eq. (2.4-4).
In Eqs (2.4-4), by taking the limit of tending § to zero, we get the

relation expressing the switching lines as

lim zg:ES{r) = lim k;t(r)+ lim k(7)) %, + 1im 2k (%, =0, (B=1)
ﬁ—oﬂ ﬂ-‘ﬁ ,a—"U ﬁ""’u

On the other hand, the limiting forms of Eqs. (2 4=2), (2.4=3) and (2.4-5)

when g tends to zero, are respectively described as

lim k(= 2{ 1—exp (—7) }, (B=2)

B

lim kym= {1—exp (1) }*+uexp (=27) , (B-3)

ﬁ—oiu

lim kit(f}=‘$2{1—exp -0} {rtexp(=7)~1 beexp (=0] - (B=4)
-0
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By using Egs. (B~2), (B-3) and (B-4), Eq. (B~1) is rewritten as

{1—exp =) } (F({r+exp (~7) ~1 j+uexp (=) )+ %,
+((1=exp (=9 Jtuexp (29 /{1-exp (1) J) % ) =0 (B-5)
In Eq. (B-5), since the term {1— exp(-r) }is independent of the systen

states # and x, , and it never becomes zero except the case where r=0,

then the switching function beconmes

Fl{r+exp (=) =1 }+nexp (-7) J+ %

'+ {1-exp (=7) }+uexp(=2r) {1-exp (-1))]%,, (B-6)
where vy x4 and %, are normalized variables. By changing the normalized
variables into the original variables in Eq. (B-6) and teking the re-
lation #=ga'# into account, we obtain the switching function Eg. (2.4=7),
for the case where a¥0 and b=g, Second, let us derive Eq, (2.4=8)
from Eqe (2.4=7)4

Since Eq., (2,4=7) is rewritten as

a* (F (ar+exp (—ar) -1) fa*-p exp(—ar) ) +x,/kL
+ ({ 1-exp(-ar) }/otanexp (~ar) /{1-exp (~ar) }] %, /kL) | (B-7)
the limiting form of the switching function with respect to @ is ex=-

pressed as

lim (+{ (ar+exp (—ar) =1] /a*+uexp (ar) } +=x ./ kL
a—=0

+({1—exp (—a7) )/ofanexp (ar) /{1-exp (ar) }] % /kL) . .
B=

By performing the calculation of Eq. (B-8), the switching function,
Eg. (2.4~8), of restricted-optimal control for the double-integrator

plant is obtained,
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Derivation of Eq. (4.3-1) from the

Appendix C :
Viewpoint of Dynamic Programming

We consider an arbitrary time f= ¢ (0<¢{<7T). Fron Egq. (4,2-2),
the performance functional to be minimized during the time interval
left before the final time T, namely during the rest of control inter-

val [ ¢, T]) is

ICet), tsu(tN=c¢ {_):T[‘e(p}@(p}e{p)-i-‘u(p)R{p}u(p)] dp },

(Cc-1)
Cis 059 |
The minimum performance functional with respect to Egq. (C~-1) is,
therefore, defined as
. T .1 ¢
¢(c.l)=min£{_{[¢@c+ uRu)do }. (C-2)

Taking up the interative structure and computational scheme of R.

(3)

Bellman's Dynamic Programming, Eq. (C=2) yields

b (eit) :m;n (e {j;:'!'dt[‘e@e-k‘uﬁuj dp}

+e {[_:ﬁ (* eQettuRs) do})

=m!i‘n ([’e@c—}-‘uﬁ'u] 4£+EJ£ [ ¢ (etge; t+4L)}) , (0-5)

where 4t is 2 small time interval and the expression &,, means the
ensemble average of what appears to its right with respect to the
Gaussian variate de .

From Eq. (3.2=4), on the other hand, the Gaussian variate ge for
a small time interval 44 can be described by

gety=4 () e (t) 4¢ - D) w(@) 4t +5@) 4t . (C-4)

In Eqe (C-4), g is a Gaussian white noise process with mean m and
variance-covariance 2 . Then, the statistical properties of the
Gaussian variate ge(¢) is stated as follows: Its mean value and

variance-covariance are = (de—Du+m)4l and ZLdt+ o 4¢) respectively,
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and for non-overlapping time intervals, (t, t+4ua), ( ¢y ¢'+ 48’ ),
etc., the corresponding variates, ,e(t), 4e(t’), etc., are statis-
tically independent,

Therefore, using Taylor expansion formula, we can rewrite the term

6l e4+4 ¢ ;¢ 4+ 4¢) as follows:

) )
d Covde it dths=a Gy O dias g ds s
de at
t4¢ 000 W85 ke r
Py R e R L (c-5)
+ 0(4dt)

Taking the average of the both side of Eg. (C-5) with respect to the
Gaussian variate 4e , the second term, &g¢(9¢ (e+de,t+ 4t) }  din Eg.
(C=3) is calculated as

€ {0 (et det4+4D) }=¢ (¢, t) +4t'(de - Duw+m) -Z—f

¢ 1t .9 i
+ a7+ (124 (500

+.a(4t) . (C -6)

Then, substituting Eq. (C-6) into Eg. (C=3) and allowing the small time
interval 4t to tend to zero. We can derive a partial differential

equation as follows:

= a—-g:min { Ly (Qe.-{-lwﬂu
t u
3 (C=7)
t dg 1t .4
#ilae-oum 2+ 2 GREG) ¢
or
!
gif—_—_-min{te@lu + ‘wR'u
uw
,o 0 1t d re 80
bt ) 2T GIT G D)

where r=r-¢ is an auxiliary time variable, and ¢=¢ (€ * )’ 2 Q' =0y,
R=R @), A=4 (")’ 0 =D @) , m'=m(x) and =3 (r) are respectively
equivalent to ¢(eiT—7 ), Q(T~rx), R(T—f)-A(T—r}.D(T*f)oﬂl(T'f)
and 2 (T-r) .

For the convenience of the present description, however, the
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symbols without prime, where distinction is not necessary, i.e., gl e;r)

Qw, R(vr), 4(r), D(r), m(r) and B(r) are used for o, @, R, #,

D' , m' and 3’ respectively.

Appendix D : Derivation of Egs. (4.4-3) and (4,4-5)

First, we consider two arbitrary complex functions, F,(¢) and

H,(¢), which are defined by

F(¢)=Z f,, ¢" (D-1)
and
Hy (=73 hy ot (D-2)

where E&(;) expresses the derivative of the function H,(¢) with
respect to a complex variable { . (For the convenience of the present

description, the symbol, hq'n is substituted for 4, ,

e If H()
is an analytic function in a region of the ( -plane, and if both zero
and ¢ are the terminal points of any path laying within this analytic

region, then we can write

Hy(O)= [ Hy()dd"+h, (D-3)

where
g — Hy (0) (D=4)
By substituting Eq. (D-2) into Eq. (D=3) and interchanging the order

of summation and integration, we can derive

oah,.,,,

Hq (C):né o n-41

ik (D=5)

Multiplication of Eq. (D-1) by Eq. (D-5) gives

oo 5 oS h b mt-n—41 g
B OH,©O=Fs 2 f,nC"+ 3 s b N (D-6)

m=gnemg mH+1 7"
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By manipulating the second term in the right hand side of Eq, (D=6),

we have

8

hq.n

M3

:om_‘_lfp,n.( R e . (D=7)

n

=

U

Ege (D=6) can thus be rewritten by

E ©OH,@O=Z {h o +E0l } ", (D-8)

where

f«"p'!: 0

n,u

for n=0 -

(D~9)

__G- ; fPruh"""u-l

w =0 n—=u

for n=1

From Eq. (D-8), we can readily derive the direct transform, Eq. (4.4-3),

as
Fa

n b,

Te (B (OH (O ) =h f, n+F (D-10)

Next, let us consider three arbitrary functions, j;{P(g), £ 0

and H’, () , of a complex variable ¢ which are defined by

L@ =3 k. (D-11)
n =0 ’
LRLES S (D-12)
and
B(O= h,aC" (D-13)
n =0

respectively., From Egs. (D-11) and (D-13), we get

[=5] k -+ —
> ) ,.E_—:nﬂ—l-l :
and
o0 kr - n—~+1 -
e : h %
H () —,?:-_o i (D-15)

where %,=H, (0), %= Hr (0), respectively. By using Egs. (D-1%),
(D-12) and (D-15), the triple product of complex functions, Hi(d F()H ),

can be expressed by
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H ) Fy Q) B0

=55 2 fuich 3 B Jus o Hreh
—=0m—0 m+1 T
oo hr" I+ =41
13
+ EG;E_, g1 o
+§ oo § hpm e n f itmtnt-g
i el L) (AF1] IS (D=16)

By applying Egs. (D-7) and (D-9), the second and the third term in the

right hand side of Egq. (D-16) can respectively be expressed as

[=a]

oy fl.P m itntl — x P2

krtzzoéo T'F'-l_j; Ll =hr .céo IT:{," ¢ =7
and

- R hr n ftnti_ p

2L i TR E (0-18)

Then, our present attention is directed to the calculation of the last
term in Eq., (D=-16), This term can, however, be described as

hp'm hr’n f (H—m+n—|—2
(n+1)(n+1) ° 0 :

hp,mf’lr, n

=N +2
{M:Zﬂén—(wl) gy et (D=19)

It

Since
2 hp,nhr,m—n.—z

=) &0 hf;n,mhr,n n+n.+3 05 m— hpnhraa-g
2.2 mgois ¢ = e, GG ¢ (p-20)

then, Eqe. (D=-19), becomes

& hp mhr n J+m.‘.n+2 o0 oo P FA
s v, i) L Cm . y
n—=0 (m+1)(n+1)f? i* ;éﬂég o fo, 0O, (D=21)

where a new symbol, fif; , introduced here is

C:: == for m=0,1

’ (D-22)
2 hp,uhr,n-u—2 for m> 7 .

=0 (ut1) (m-u—-1)
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Manipulation of the right hand side in Eg. (D-21) gives us the follow~-

ing useful relation for the present discussion;

2o Lo.E, '(:ﬁ; 3;-]33 fa4 ‘HMH:EE*: fopuCiluu € (D-23)
By using a new symbol, szﬁ' , defined by
D::}:r:l) for |—0,1
(D-24)
—J;o h ,_':,'u for I > 2 '
Eq. (D-23) yields
AL %r}:%m foa € TS 0 (D-25)

Substitution of Egs. (D-17), (D-18) and (D-25) into Eq. (D-16) gives

us the triple product of complex functions i.e.,

QRO H = Z {Tphefy, i+ R 7]
+-Er$.[¢;p+p:,p,n } ¢t . (D=26)
The direct transform can, therefore, be given by
[P

Tk m o T ] 7
Te HAORQOH D) =Fp g nthaF,y + B0 + 0,507 (D-27)

This is the final result of this appendix.

Appendix E : Derivation of Egs. (6,3=k), (6,3=5) and (6.3=6)

By setting i=] in Eq. (6.3=3), we get
J, (B=p(e®)]e:+1)*+Q (ek)] 4uk)? . (E-1)

Substitution of Eq. (6.3-2) into Fg. (E-1) gives us

Jflo=p (et) {et)+ (aetkr+-belky’) 4 —ufk) 4 }
+Q (el)) 4 ui? . (E-2)

From Eq, (E-=2), the desired control variable u(h, is obtained as
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o Ple@]
= Cet) 440 (e )

This is the first result of this appendix,

{ e+ (aehy+be®)®) 4 } . (E-3)

(3)

By applying the principle of optimality, the minimized form of

Eqs (643-3) with respect to both uw@ and # (k+1) can be expressed as

1
. ; 2 = k N\ 2
s {p(etn)e (k+2) +}in0 (et ) uk+))" 4}

=min (Q (el®) uk)? 4
u (k)

Fole  Ap(e®) o (b2 +Q(el] w (123" 4 }) (E-4)

On the other hand, by applying Eq. (E-3) the second term in the bracket

is calculated as

u‘%ﬁl) {p (eb) ] e(h+2)* +Q (elh]) v (k+D7 4 }

_ p(e®]) Q (e]

o d : 312
= p (e®) 4 +Q [eth) { Qtaep) e (k+D+bd e(k+1)* )7,

(E-5)

Therefore, substituting Eq. (E-5) into Eq. (E-4), differentiation of
Eqe (E-4) with respect to u() gives us the necessary condition which
the desired control variable u(k), should satisfy as follows:

ul),— R{ (1+ad) e (1) +bge (A+1)7 |y

{ (1+ad) +3bde (ht1)* }=0 , (E=6)
where
_ plek]
k= plet) 4+Q(eky) (-7)

Since u (k) is rewritten as

u(k)d = (1tag) e +bgel) —e (k+1) , (E-8)
then Eq. (6.3-5) is the straight forward result from Eq. (E-8).
Setting e« (k+1)=z in Egqs. (E-6) and (E-0), substitution of Eq. (E=8)

into Eq. (E-6) provides us Eq- (6-3_6)0
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Summarized Conclusions

Remarkable points emphasized in this paper are summarized as follows:
(1) A basic concept of sub-interval optimization is presented to es-
tablish the approximate methods of designing optimum control systems.
A sub-interval optimization technique is proposed by introducing the
concept of on-line control scheme hased upon the restricted-optimal
control. By using the sub-interval optimization technique a graphical
method of determining quasi-optimum switching lines is established for
quasi-optimum controls of second-order linear systems with bounded control.
(2) Problems on an optimum final-value control of second order linear
systems with bounded control are studied, The present technigue can
be found to provide a physically meaningful optimum solution to the
original problem.
(3) An analytical method of designing the optimum control system with
random inputs is described. An zpproximate method of solving the set
of non-linear differential equations which are associated with the
design problems of a linear optimum controller is established by using
the concept of sub=interval optimization.
(4) A case study on the stochastic synthesis of optimum final-value
control systems with control energy constraint are carried out to inves-
tigate the control characteristics of the optimum controller under
random environments. The time-variant characteristics of the optimum
final-value controller is clearly shown with many numerical results.
(5) From the view point of computer utilization, a basic idea is pre-=
sented to explore a powerful approach to designing non-linear control
systems with many physical limitations. A remarkable point of the
proposed method of computer approach is that it provides a practical
direct design procedure of non-linear control systems with many physi-

cal limitations which are not completely described in mathematical

formulations.
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