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Chapter 1

THE PRESENT 

 SCHEDULING

STATUS OF 

FOR BATCH

DESIGN AND 

PROCESSES



1. Introduction 

     In many chemical processes, considerable effort has 

been devoted to upgrading batch-wise operated systems to 

continuous systems in order to increase the production 

capacity, save the capital investment and labour and keep 

stability of process operations. 

     As the major drawbacks of batch processes, it is usually 

pointed out that an item of batch equipment needs much more 

labor and peripheral equipment for charging, emptying and 

other operations than continuous equipment, and this is one 

of the reasons why the capital and labor costs of a batch 

process are high. 

     However, the development of control technique for batch 

processes based on highly capable computers, is just going 

to overcome the above drawbacks. That is, the size of the 

individual equipment is able to be increased and as a 

result, the cost of peripheral equipment is drastically cut. 

Moreover, the development of control technique has made it 

possible to operate the process automatically, and as a 

result manpower can be reduced. 

     Recently, the growing importance of process developments 

for producing various products of high added value and low 

volume has been stressed by people in the industrial sector . 

The production of such products usually requires complicated 

synthesis procedures, long reaction time or high conversion 

rate. Therefore, for the production of such a product , a
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batch process or a mixed continuous and batch process may be 

most appropriate. Furthermore, batch processes still have 

an important place, specifically in fields such as dyes, 

drugs, fermentation products and other fine chemicals. 

     As batch processes are inherently operated in the 

unsteady state manner, the problems relevant to the design, 

operation and control of these processes become different 

from those of continuous processes. In order to solve these 

problems, we therefore need new solution methods which are 

different from the methods developed for the continuous 

process. By taking into account this point, the design and 

scheduling problems of batch processes are studied in this 

thesis. 

      In this chapter, the characteristics of batch processes 

are made clear and the present status of the research related 

to this topic is surveyed. And the contents of the thesis 

is briefly stated.
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2. Characteristics of Batch Processes

     We can classify the elements in a general batch process 

as shown in Figure 1-1 into three kinds. The first kind is 

true batch equipment which is operated batch-wise and speci-

fied by volume and not by throughput or processing rate. 

The second kind is semi-continuous equipment such as pumps 

or heat exchangers etc. which is operated continuously but 

intermittently, and  specified  by throughput or processing 

rate. The third kind is intermediate storage tanks. One of 

the prominent characteristics of chemical processes is that 

fluid materials are mainly handled in a process. Therefore, 

storage tanks have an important role in the operation of a 

batch process.

storagepump 
 tank

 batch 
reactor

  heat 
exchanger batch 

reactor

storage 
 tank

Figure 1-1. An example of a batch process
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     A batch equipment is generally operated cyclically by 

repeating the charging, processing, discharging and cleaning 

steps. Therefore, a batch process has the following charac-

teristics with respect to its operation. 

  1) Easy to start-up and shut-down 

     The start-up and shut-down of each batch unit can be 

done independently compared with an item in a continuous 

process. Then, a batch process is easy to meet the changing 

demand on the production rate and to arrange the schedule so 

as to stop the operation of the process at weekends or at 

nights. From this point of view, batch processes are used 

to produce to make products in small quantities or products 

 which are intermittently ordered. 

• 2) Easy to prevent the propagation of the contamination 

      In a batch process, materials are handled in batch-

wise. Then, the material of a batch is not mixed with the 

material of the different batch. This means that it is easy 

in a batch process to prevent the propagation of any bad 

influence due to contamination or miss processing. The 

amount of the off-specification product is limitted to that 

of a batch. From this point of view, the batch process is 

used in the fields such as drugs and fermentation products. 

     Moreover, as the material is not mixed with that of the 

different batch, many kinds of products are often produced 

in the same batch equipment by coordinating their production 

periods. Such a process is called the "multi-product or 

multi-purpose process." 
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   3) Easy to treat materials uniformly 

      The material in a batch unit is more uniformly treated 

 compared with that in a continuous unit. For example, 

usually the residence time distribution need not be considered 

in a batch process. The duration of the processing can also 

be arbitrary chosen and it is easy to practice the complicated 

processing procedures. Therefore, batch equipment is fit 

for the operation which needs a long reaction time, a 

sophisticated processing or a high conversion rate . 

      These three characteristics mentioned above are major 

advantages of the batch process. However in order to 

optimally design and effectively operate the batch process , 

there are many problems to be solved. 

     For example, if two batch units are directly connected , 

the outlet flow from a batch unit directly becomes the flow 

into the successive batch unit . In this case, we cannot 

arbitrarily choose the amount of material produced in a 

batch, the cycle time and the starting time of the operation 

of each batch item. Therefore, to optimally design and 

operate such a process, it is necessary to design each batch 

item by taking account of the design problem of the whole 

process, and it is also necessary to consider the design and 

the scheduling problems simultaneously . Otherwise, it is 

often the cases where some batch items have to be operated 

with fairly long idle time. 

     At following three sections , the present status of the 

design and scheduling problems and the problem r elated with 
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3. Design Problem of Batch Processes 

3-1. Single product process 

     In a single product batch process, only one kind of 

product is produced by repeating the series of operations 

periodically. For the simplicity of the explanation, it is 

assumed that the batch process consists of only two batch 

stages as shown in Figure 1-2. 

     We first consider a batch process which is operated in 

"non -overlapping manner" , that is, there can be only one 

batch of material in the process at any one time. 

     Figure 1-3 shows the Gantt chart of the operation for 

the case that the process is operated in non-overlapping 

manner. In this case, the outlet flow from the batch item 

in batch stage 1 (batch item 1) derectly becomes the inlet 

flow to the batch item in batch stage 2 (batch item 2).

batch
 stage 1

batch
stage 2 ff-'

 pumpl pump 2 pump 3

Figure 1-2. Process consisting of two batch stages

- 8 -



   feed4 , 4, 
batch item 1 p----~1a----ioi=i----- 

   batch item21=1--------71a--------t~t~– 
      1product 

           -cycle time--->11=1:                             filling 

processing 
—: discharging 

                      Gantt chart of the operation 

         Figure 1-3. for non-overlapping case

Therefore, the amount of material produced in a batch, that 

is, the batch size of each batch item has to be identical 

each other. The cycle time of the process, W, is given as 

the sum of the processing times and the filling and dis-

charging times of both batch items, i.e. 

 W =  S/U1 + T1 + S/U2 + T2 + S/U3(1-1) 

where 

     S = the batch size of each batch item, 

Ui = the capacity of pump i, 

Ti = the processing time of batch item i. 

     Then, the design problem of this process is stated as 

follows: 

- 9 -



     "When the production requirement per unit time, P, and 

processing time of each batch item,  Ti, are given, find the 

optimal batch size, S, and processing rates of each semi- 

continuous equipment, Uj, so as to minimize the following 

performance index". 

   23 
P.I. = E pi(S) + E rj(Uj)(1-2) 

      i=1j=1 

subject to 

 S/W = P(1-3) 

   23 
  W = E Ti+E (S/Uj)(1-1) 

      i=1j=1 

where 

pi = the cost function of a batch equipment in batch 

           stage i, 

      r.J= the cost function of a semi-continuous equipment 

           succeeded by batch stage j. 

     This is a typical nonlinear programming problem with 

equality constraints. Ketner[1] dealt with this type of 

problem for the case that the performance index is given as 

a linear function of the batch size, S, and processing rates 

of feeding and discharging pumps, Uj_ Loonkar & Robinson[2] 

solved the same problem for the case that the performance 

index is given as a linear function of Sa and Uiii; where a 

and Sj are positive numbers. 

      Figure 1-4 shows the case where overlapping of the 

operation is allowed. That is, a new batch can begin on a 

                               - 10 -



stage as soon as the discharging for the previous batch is 

completed. 

     In a real batch process, some item of equipment must be 

cleaned after the discharging step. However, in order to 

simplify the explanation, it is assumed in this section that 

the law material can be charged as soon as the discharging 

step is finished. Under the above assumption, minimal cycle 

time of batch item i is given by 

 S/Ui + Ti + S/Ui+l 

     Then, the design problem of this process can be stated 

as follows: 

"Find the optimal batch size , S, and processing rate of 

each semi-continuous equipment, Uj, so as to minimize the 

performance index given by Eq.(1-2) subject to the following 

constraints:

item 1 -----------00P4-----------imIA----------01C1-------- 

batch---------h^I 
item 2 y1CC

ycle ----~i1                    1yTime'1 l
: filling 1i 

H : processing 

H : discharging 

                   Gantt chart of the operation 
     Figure 1-4. for overlapping case
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 P = S/W(1-3) 

 w  ? s/Ui + Ti + S/Ui+1(i = 1, 2)(1-4) 

     This problem is also a typical nonlinear programming 

problem with inequality constraints. 

     When the processing times of two batch items are differ-

ent each other in the large scale as shown in Figure 1-5a, 

the batch item which has shorter processing time (i.e. batch 

item in stage 2) has to be operated with a large idle time 

for waiting. In order to avoid this kind of inefficiency in 

the operation of the process, batch items are installed in 

parallel for batch stage 1. If two batch items are installed 

in parallel, the cycle time of batch stage 1 becomes one 

half of the previous cycle time as shown in Figure 1-5b. 

This means that the given production requirement can be 

achieved by using batch items of smmaller size. 

     The minimum cycle time of batch stage i with Ni batch 

items in parallel is 1/Ni as long as that of batch stage i 

with only one batch item. Then, the problem is stated as 

the one of how to determine the optimal number of batch 

items, Ni, the optimal batch size of batch items, S, and the 

optimal processing rate of each semi-continuous equipment , 

  , so as to minimize the performance index given by the Uj 

following equation. 

  23 
P.I. = E Ni•pi(S) +E rj( .U.)(1-5) 

                       3 i=11 

subject to 

                               - 12 -



        stage 1 stage 2 

stage 1 I~----------------------1E01=1---------------Hb----- 
       stage 2I~-----H------*I 

                       41                   iit 

 ~time 1 
cycle tire of (---
the process 1

Figure 1-5a  . Operation schedule with a large idle time

 ao

g-> 1;1 >

2

stage

 stage  1 

stae1b----------Hb----------Fyb----- g4 I 4 -------------------------- 
(2 items) l=Ifmm= 111I 

1 

         stage 2—yI~---WC4—lyll4 
                cycle~ 

I, time 
                 of the I 

                     process

Figure 1-5b

 Operation schedule for the 

. batch items are installed
 case where 

in parallel
two 
at stage 1
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    W>_ {(S/Ui) + Ti + (S/Ui+1)}/Ni (i = 1, 2) (1-6) 

 P = S/W(1-3) 

     The number of parallel batch items must be a natural 

number. Therefore, the problem stated above is a mixed 

integer nonlinear programming problem. 

     An another countermeasure to reduce the idle time of 

the operation is to install an intermediate storage tank 

between two batch stages as shown in Figure 1-6. By installing 

the storage tank, the outlet flow from batch stage 1 is 

stored in the tank and does not immediately become the inlet 

flow of batch stage 2. Therefore, the cycle times and batch 

sizes can be chosen arbitrarily in both batch stages so as 

to satisfy the given production requirement. The design 

problem of this kind of process is discussed in Chapter 2 

and Chapter 3.

 stage  1
if

 

b---------------------M.^i
 4

 stage

4
storage  tank

i=1------170=1------71,1--.00 
                4,

Figure 1-6.
Operation schedule of a 
process with a storage tank
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3-2. Multi-product process 

     In a batch process there are many cases where the 

process is used to produce many kinds of products. If all 

products are produced by the same path through the process 

and only one product is produced at a time, such a process 

is called "a multi-product batch  process". 

     In order to show how the design problem of the multi-

product process is formulated, a simple process shown in 

Figure 1-2 is taken up again. And it is also assumed that 

two kinds of products, product A and product B, are produced 

in the process. 

      In a multi-product process, the size of equipment 

required at each stage to produce unit mass of product 

differs with products. Therefore, the "size factor" is 

introduced to explain the above characteristic. That is, 

the size factor Cik is defined as the characteristic size of 

equipment required at stage i to produce unit mass of 

product k in a batch leaving the process. 

     By introducing the size factor, the relationship between 

the equipment size and the batch size is given as follows: 

   Ei?Cik.Sk(i = 1, 2 ; k = A, B)(1-7) 

where 

Ei = the size of batch equipment in stage i, 

     Sk = the batch size of product k. 

The cycle time of the process for product k, Wk, must satisfy 

the following inequality: 

                                - 15 -



     Wk  > {(Sk/Ui) + Tik + (Sk/Ui+l)}/Ni (i = 1, 2) (1-8) 

where 

     Tik = the processing time of the batch item in stage i 

             for product k. 

     Let the total production requirement of product k be 

Pk, then the time which is necessary to produce product k is 

given by Wk•Pk/Sk_ Therefore, if the changeover time between 

two products can be neglected, Wk and Sk must satisfy the 

following inequality: 

 H = E Wk.Pk/Sk(1-9) 
k=A,B 

where 

     H = the total production period.

 raw 
material

 raw 
material b

stage 1 stage 2

product A

product B

Figure 1-7. Multi-product batch proces
s
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     After all the design problem of a multi-product batch 

process shown in Figure 1-7 is formulated as follows: 

     "Find the optimal number of batch items ,  Ni, the optimal 

equipment size of each batch stage, Ei, and the optimal 

processing rate of each semi-continuous equipment,U,, 

which satisfy Egs.(1-7), (1-8) and (1-9), so as to minimize 

the performance index given by the following equation". 

  23 
P.I. = E N..p(E.) + E r.(U.)(1-10) 

i=1 1                                ]=l 

     In a design problem of a multi-product batch process, 

the problem of how to allocate the total production period 

for the production of each kind of product arises. Therefore, 

the design of a multi-product process becomes more difficult 

problem compaired with that of a single product process. 

     In a single product batch process, by assuming the 

number of parallel batch items in each batch stage and the 

processing rate of each semi-continuous equipment, the 

minimum batch size which satisfies the production requirement 

is uniquely determined. However, in a multi-product batch 

process, many kinds of combinations in batch sizes of prod-

ucts satisfy the same set of production requirements by 

adjusting the production period of each product. 

     For example, the cycle time of the process for each 

product is assumed to take a constant value such that 

WA = WB = 1.0 [day], and it is also assumed that the size 

factors and other data take the following values:

- 17 -



 CiA = C2B = 1.0, C1B = C2A = 2.0 lm3/ton] ; 

PA = PB = 30 [ton] ; H = 30 [day]. 

      In this example, a combination in batch sizes of product 

A and B, such that SA = 3, SB = 1.5, satisfies the production 

requirement. In this case, the minimum equipment sizes of 

both batch stages are 3 m3 and 6 m3, respectively. But 

other combinations in batch sizes of both products as shown 

in Table 1-1 also satisfy the production requirement. This 

means that even if the processing rate of each semi-continuous 

equipment is already determined, the equipment sizes in both 

stages are not uniquely determined .

Table 1-1.

Equipment sizes 
the production

which satisfy 
requirement

 Equipment size batch size production period

stage

1
stage

2
product

A
product

B
product

A
product

B

case

case

case

1

2

3

3[m3]

4

6

6[m3]

4

3

3[m3]

2

1.5

1.5[m3]

2

3

10[day]

15

20

20[day]

15

10
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     Robinson and  LoonkarL31 considered the design problem 

of a multi-product batch process, and proposed the algorithm 

which can derived the minimum capital cost by using a direct 

search procedure. However, they did not consider the problem 

of a process which has equipment in parallel. 

     Sparrow et al.[4]'[5]'[6]developed the computer package 

"MULTI-BATCH" for the design and evaluation of multi-product 

batch processes. The proposed package can carry out not 

only sizing equipment to achieve the production requirement 

but also calculating a heat and material balance for each 

product and estimating project economics. In this design 

package, two methods of sizing batch equipment are presented. 

The first method is based upon defining a new hypothetical 

product and the equipment is sizes to achieve the required 

production of the hypothetical product. The second method 

uses the technique of branch and bound to obtain the optimal 

batch size for the case that only the discrete values are 

available as the size of each batch item. 

     Grossmann and Sargent[7] also solved the design problem 

of a multi-product batch process. They formulated the 

problem as a mixed integer nonlinear programming problem and 

solved by using a branch and bound technique coupled with 

the nonlinear programming algorithm. 

Flatz[8] proposed the procedure for determining equipment 

sizes of a multi-product batch process by manual calculations. 

In his algorithm, most expensive item of equipment is first 

designed so as to be fully utilized in the production of all
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of the products. Then, the number of batch items in parallel 

and the equipment sizes of other batch stages are calculated. 

     Knopf et  al.[9] solved the design problem of an actual 

batch/semicontinuous process, and insisted on the significance 

of the inclusion of operation costs such as energy costs in 

design optimization. 

     As stated above, many kind of procedures which derive 

the optimal or sub-optimal solutions have been proposed for 

designing of a multi-product batch process. However, the 

design problem of a multi-product batch process with interme-

diate storage tanks has not been studied yet. 

3-3. Multi-purpose process 

     The process which produces multiple products and does 

not come under the heading of the "multi-product process" is 

called the "multi-purpose process". In such a process, two 

or more products may be produced simultaneously by sharing 

process equipment or products may be produced one by one by 

taking different routes. Furthermore, batches of the same 

product may take different routes through the process. 

     Suhami and Mah[10],[11] proposed the solution procedure 

for the design problem of a multi-purpose batch process 

under the condition that the production route of each product 

has already been known. They proposed a heuristic procedure 

in which randomly generated configurations of products 

produced simultaneously are scanned as a result of which the 

best configuration is identified. After the configuration

- 20 -



is determined 

mixed integer

 , then the 

nonlinear

design problem is formulated as a 

programming problem.
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4. Scheduling Problem of Batch Processes 

4-1. Introduction 

     In the previous section, the problem of designing the 

batch process so as to satisfy the long term production 

demand was considered. Batch items in a batch process is 

operated by repeating some processing steps. Moreover, in 

a batch process many kinds of products are often produced by 

sharing the available production time between products. 

Therefore, it becomes a very important problem to determine 

the production order of products and the starting moment of 

the production for each product so as to optimize some 

performance index, even though the size of each batch equip-

ment is already determined. 

     The scheduling problem is mainly studied in the field 

of the operations research. However, almost all of these 

works are for non-chemical processes such as mechanical 

processes. So, in this section the differences between the 

scheduling for batch processes and that for non-chemical 

processes are clarified and the present status of the sched-

uling for batch processes is briefly surveyed. More extensive 

review of the scheduling problems of batch chemical processes 

has been provided by Reklaitis[l?]. 

4-2. Flowshop scheduling problem 

     The flowshop problem is one of the most general produc -

tion scheduling problems in the field of the operations
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research. There are some survey papers for the flowshop 

 problem[13],[14]. So we avoid explaining the flowshop 

problem in detail. But it is noted that in order to derive 

the exact optimal solution for the flowshop problem, the 

solution time grows exponentially with the characteristic 

size of the problem[15]. This fact holds not only in the 

flowshop problem but also in most of scheduling problems, 

that is, most of scheduling problems are considered to be 

NP-complete[12]. So, the size of the problem for which the 

,optimal solution can be derived is limited even if the 

implicit enumeration technique such as the branch and bound 

procedure is used to solve the problem. 

      Therefore, in addition to the solution procedures to 

obtain the optimal solution, a lot of procedures based on 

the rule of thumb are proposed to derive the sub-optimal 

solutions[16],[17]. 

      In the flowshop problem, all kinds of products are 

assumed to be processed on the same set of facilities with 

an identical precedence ordering of the processing steps. 

The scheduling problems of a multi-product batch process can 

be regarded as a kind of flowshop problem. However, in 

order to formulate the scheduling problem of a multi-product 

batch process, modifications of the normal flowshop problem 

are required in some points. 

      The materials processed in a batch process are liquids, 

gases or fine powders. To store these materials, the special 

facility for storage, that is, the storage tank must be

- 23 -



 installed between two processing stages. Therefore, the 

 operation of a batch process must be scheduled by taking 

 into account the places where intermediate storage tanks are 

 installed and the capacities of these tanks, though most of 

 the operations research work has been done with the assumption 

 that unlimited intermediate storage is available between two 

 stages. Moreover, intermediate products of a batch process 

 are not always stable enough to be stored. 

      By taking account of the status of intermediate products , 

 the flowshop problems of batch processes can be classified 

 into four  types of problems[12]: 

      (a) unlimited intermediate storage between stages (UIS), 

      (b) finite intermediate storage between stages (FIS), 

      (c) zero wait processing (ZW), 

(d) no intermediate storage between stages (NIS) . 

      As mentioned before, in most of the operations research 

work, unlimited storage is assumed to be available bet
ween 

processing stages, but almost all of the flowshop problems 

of batch processes cannot be considered as UIS probl ems. 

The flowshop problem of a batch process with 
storage tanks 

can be regarded as an FIS problem
, but there are few studies 

on this type of problemi181 . 

     In a batch process , there are some cases where raw 

materials must be processed nonstop on all of th
e batch 

units once its processing is started 
on the first unit. In 

this case, the flowshop problem can b
e regarded as a ZW 

problem. The ZW problem which minimizes the total ti me 
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required to produce all products, that is, "the make span", 

can be formulated as a traveling salesman problem and has 

been solved by many kinds of procedures[19],[20],[21]. 

     If intermediate storage is not allowed between two 

successive stages, the flowshop problem of a non-chemical 

process can be regarded as the ZW problem. However in a 

batch chemical process, there are some cases where materials 

can be held in a batch unit after the processing is completed. 

In this NIS case, the batch unit can not commence processing 

for the next product until the material in the batch unit is 

completely discharged to the batch item in the next stage. 

The NIS problem has received very little attention compared 

with other problems, but solution procedures for minimizing 

the make span of the NIS problem have been developed 

 recently[11]  ,  [22]  ,  [23] 

     In order to show the difference among these flowshop 

problems, an example of schedules of a three-unit three-

product flowshop is shown by using Gantt charts. In this 

example, it is assumed that processing times are given in 

Table 1-2. Schedules under UIS, ZW and NIS mode are depicted 

in Figures 1-8a, 1-8b and 1-8c, respectively. In NIS mode, 

raw material c has completed processing in unit 1 at time 

32, but must be held for 4 time increments until the material 

in unit 2 is discharged. 

     If the production demand of a product exceeds the produc-

tion capacity of a batch, the process has to be operated in 

a certain number of batches to meet the given production 
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Table 1-2. Processing time at each stage

stage 1 2 3

product A 

product B 

product C

 12  [hr] 

4 

 8

12 [hr] 

4 

 8

12 [hr] 

4 

 8

demand. In a non-chemical process, materials processed at a 

stage are not directly transfered to the next stage, but 

stored to formulate a definite amount, i.e. a "lot". Materi-

als are transfered lot by lot from one stage to another. On 

the other hand, in a batch chemical process, a batch of 

material processed at a stage is transfered to the next 

stage as one batch. So the operation schedule for this type 

of batch processes differs from that of non-chemical processes 

even if the production order and time required for each 

processing are equal in both types of processes. 

     Figure 1-9 shows an example of schedules for both 

cases, where four pieces/batches of product A and three 

pieces/batches of product B are produced at a three-unit 

process. As shown in Figure 1-9a, the scheduling problem of 

a non-chemical process can be reduced to the UIS problem if 

the lot size of each product is determined . However, in a 
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batch process we need the new formulation for the scheduling 

problem as shown in Figure 1-9b, and this type of problem 

has not been studied yet. 

4-3. Jobshop scheduling problem 

     The jobshop scheduling problem is also one of the most 

general production scheduling problems. In a jobshop 

problem, each product has a fixed processing order but this 

order varies with products . The scheduling problem of a 

multi-purpose process can be regarded as a kind 
of jobshop 
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problem. However as mentioned in the previous section, the 

treatment of intermediate products affects the formulation 

of the problem. Moreover, in order to effectively operate 

the process, production order and batch units which are used 

for the production of each product must be determined by 

taking account not only of the processing time at each 

batch stage but also of the amount of product produced in a 

batch. On the other hand, in a non-chemical process, parts 

are processed one by one at each machine. Therefore, the 

schedule can be determined by taking account only of the 

processing time at each machine. 

     Mauderli et al.[24] proposed the procedure to solve a 

general production scheduling problem of a multi-purpose 

batch process. In their procedure, alternative production 

strategies are first generated, and are screened by identi-

fying and rejecting non-dominant strategies. Then, the 

optimal production schedule is obtained by solving an opti-

mization problem in which the production time is allocated 

to the various dominant production strategies. They incor-

porated the procedure outlined above into a computer program 

"BATCHMAN" [25]  ,  [26] 

      Swanson[27] modeled the scheduling problem of a 

multi-purpose batch process using linear production and 

inventory costs and linear constraints a subset of which 

gives a feasible schedule. Then, the problem was transformed 

into the dual problem and solved by using the revised 

simplex method coupled with the branch and bound technique .
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 4-4. Scheduling with utility constraints 

       In a batch process, many processing steps are simultane-

 ously executed. And each processing step needs a particular 

 kind of equipment and different amounts of utilities such as 

 manpower, electricity and steam etc., for its execution. 

 There are some cases where the maximum level of utilization 

 is limited for some utilities and/or available units are 

 restricted. In these cases , the operation of the batch 

 process must be scheduled under the restrictions on utility 

 usage. 

      Scheduling problems with utility/resource constraints 

 have been studied in the field of the project scheduling . A 

 lot of techniques have been proposed to solve the 
project 

 scheduling problems, and there have been some papers whi ch 

made comparisons of the effectiveness of vario
us heuristic 

rules relative to an optimal  solution[28],[29] D
avis[30],[31] 

provided excellent reviews of the history and resear ch on 

the project scheduling under resourc e constraints. However , 
it needs some modification to appl

y the technique developed 
in the field of the project sch eduling to the scheduling 

problem of batch processes . 

     For example, in a batch process e ach material must be 

processed to reach a stable state without any i
nteruption. 

That is, most of processing st
ep can not be devided into 

sub-steps. Furthermore
, there are some cases where two 

successive processing steps 
must be executed without any 

idle time . Therefore, if the operation of th
e process must 
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be stoped at night or over week-ends, we must schedule the 

operation of the process so that no material which partially 

completed the processing step remains in the process during 

the night or week-end. 

     On the other hand, if each processing step can be 

stoped at any time and can be resumed after some time period, 

the operation of the process can be scheduled without consid-

ering the times when it is stoped such as those during the 

night or week-end. 

     By taking account of the effect of stability of the 

material, Egri and  Rippin[32] proposed the scheduling program 

for multi-product batch processes. 

     As mentioned in the previous section, in most of batch 

processes products are produced by cyclically operating the 

process. So, the methods developed for solving the project 

scheduling problem are not applicable to solve the scheduling 

problem of a batch process which is operated cyclically. 

Because most of the solution procedures in the project 

scheduling problem use the arrow diagram to indicate the 

precedence order of processing steps. If the precedence 

order of processing steps for a cyclically operated batch 

process is expressed by using an arrow diagram, we must 

distinguish between the first batch of a processing step and 

the second batch of the same processing step. In this case 

the arrow diagram becomes a very complicated one. 

     For example, it is assumed that the precedence order of 

three processing steps, A, B and C are expressed by using an

- 31 -



arrow diagram as shown in Figure  1-10a. If these three 

steps are performed more than once, the arrow diagram which 

shows the precedence order becomes as shown in Figure 1-10b. 

     Very little attention has been payed to the scheduling 

problem for cyclically operated batch processes[33],[34],[35] 

This problem is discussed more precisely in Chapter 5 .

A B C

Figure 1-10a. Precedence order of three steps

 Ai processing step A 
for the i-th  batch

Figure 1-10b .
Precedence 
which are

 order of 

performed

three 

more
 steps 
than once
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5. Flexibility of Batch Processes 

     In previous sections, we briefly surveyed the present 

status of the design and scheduling problems of batch proc-

esses, where the production requirement of each product and 

parameters related to the design and operation are regarded 

as constant values. However, in a real process, the amount 

of material to be produced and its due date may be changed 

owing to the variations of the production demand, and more-

over the processing time and/or cleaning time of some batch 

unit may become shorter or longer than the preassigned 

nominal values. Therefore, it is very important to design a 

process so as to ensure the operation of the process for a 

range of process parameter variations and/or production 

demand variations. 

     In a batch process, materials are handled in batch-

wise. So, it is easy to start up and shut down each unit 

compared with that in a continuous process. This character-

istic shows that in a batch process it is easy to operate 

the process so as to follow the variation of production 

demand as well as to ensure the operation of the process for 

a range of parameter variations. From this point of view, 

we can say that batch processes have large flexibility. 

     Recently the importance of designing the proces flexible 

is stresed, and the problems such as how to define the 

flexibility of chemical processes, how to measure the magni-

tude of flexibility and how to design a process with a fixed 
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degree of flexibility, etc. are vigorously studied[36],[37], 

However, almost all of these works are for continuous proc-

 esses. 

      In order to design a flexible batch process, two 

different approaches have been proposed so far. One is the 

"stochastic approach" and the other is the "deterministic 

 approach'. 

     By taking a stochastic approach, Smith and Rudd[39] 

showed that the variation in processing times affects the 

performance of a batch process. They solved simple problems 

by using queuing theory. Simulation was then presented to 

solve the more complicated problems. Ross[40] also studied 

the problem of how to determine the optimal tank volume so 

as to assure the smooth operation of the whole process by 

using the Monte Carlo simulation technique. Overturf et 

al.[41] have also taken a stochastic approach . By using the 

simulation package, they solved the complex combined sched-

uling and design problem that typically occurs in batch 

processes. 

     However, there are some drawbacks in a stochastic 

approach. The first is that it is difficult to determine 

the probability distribution of each stochastic 
variable 

before the process is operated . The second is that the 

tremendus amount of calculation is required to derive the 

result. Because a large number of simulations 
must be done 

once the design and operation variables 
are fixed at certain 

values, and then the optimal desi
gn and operation variables

[38]

- 34 -



must be searched by changing these fixed values. 

    Oi et al.took took a deterministic approach and 

analyzed the flexibility of a process consisting of parallel 

batch units, a storage tank and a continuous section. In 

their study, the allowable range of the fluctuations of 

processing times of batch units was derived so that the 

operation of the continuous section following the tank was 

not affected by the variation in the operation of any batch 

unit before the tank, in so far as these variations remain 

in the allowable range obtained. 

     It is impossible to design a process which can cope 

with the all kinds of variations with arbitrary magnitude. 

Therefore in a deterministic approach, a process is designed 

to ensure its feasible operation for a limited number of 

variations the ranges of which are bounded. In Chapter 4, 

we deal with the problem of how to design a batch process 

with a fixed degree of flexibility. 

     We next consider the flexibility of the operation 

schedule. In most of scheduling procedures taken up in 

section 4, it is assumed that the demand patterns for many 

products have been known when the schedule is determined, 

and it is also assumed that the demand patterns do not 

change irregularly during the scheduling period. 

     However, it is more common that the market demands are 

uncertain and change with time. Moreover, the parameter 

values related to the operation may vary from the preassigned 

nominal values. Therefore, the derived schedule is seldom
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  implemented in its entirety without revision. So, it is 

  very important to develop the scheduling procedure in due 

  consideration of how to modify the previous schedule. 

       The rolling scheduling technique is one of the scheduling 

 procedures in which the rescheduling is  considered[44],[45]. 

 In a rolling scheduling technique, total scheduling period 

 is devided into many smaller periods . Then the scheduling 

 problem is solved for several time periods from the beginning , 

 but only the schedule of the first period is implemented . 

One period later, the multi-period model is updated and the 

 schedule is reoptimized based on the revised and additio
nal 

 information. 

      The other procedure in which the rescheduling is 

 considered is the interactive scheduling techniq
ue[46],[47]. 

 It is difficult to manually reschedule the com
plicated 

 operations of a process so as to meet the va
riable demand. 

 It is also difficult to develop a scheduling 
procedure fully 

taking into account a rule of thumb th
at skillful process 

schedulers have learned from experien ce. 

      Therefore, the symbiotic relation
ship between human 

being and electronic computer would b
e more powerful at 

certain types of problem-solving acti
vities than either 

would be alone. However as descrived i
n the literature[46] , 

interactive systems have become 
widely used in design areas , 

but little has been done in th e area of scheduling . In 
Chapter 6, an interactive sched

uling system developed for a 

multi-product process is stated
.
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6. Introduction to the thesis 

     Recently, the advantages of batch processes have been 

recognized, and as mentioned in the previous sections, many 

research works have been done for the design and scheduling 

problems. However, little attention has been payed to the 

design and scheduling problems of a batch process with 

storage tanks. 

     One of the characteristics of the batch process is that 

the materials processed are liquids, gases or fine powders. 

Therefore, storage tanks are indispensable to holding the 

products or intermediate products in the process. From this 

point of view, in this thesis the design and scheduling 

problems of batch processes with intermediate storage tanks 

are studied. The aim of this thesis is to give an answer 

for the question of how we should formulate and solve the 

design and/or scheduling problem of a batch process with 

storage tanks. 

     As to the effects on storage tanks to the design and 

scheduling problems, the following points are stressed in 

this thesis: 

1) In order to optimally design a batch process with storage 

tanks, it is necessary to consider the design problem and 

the operation schedule of the process simultaneously. 

2) There are some cases where the total investment cost 

which is required to satisfy the given production requirement 

is reduced by installing intermediate storage tanks. 

                              - 37 -



3) The capacities of intermediate storage tanks as well as 

their installation places affect the  flexibility of the 

operation. 

     From Chapter 2 to Chapter 4, the design problem of 

batch processes are studied. In Chapter 2, a simple process 

consisting of periodically operated parallel batch units and 

intermediate storage tanks installed before and after the 

batch section is taken up. And the problem of determining 

the schedule of the parallel batch operations and the tank 

capacities is discussed. 

     By taking into account the result obtained in Chapter 

2, the general problem of the optimal design and operation 

of a single product batch process consisting of many batch 

stages and intermediate storage tanks is dealt with in 

Chapter 3. 

     In Chapter 4, the results derived at the previous 

chapter are applied to the problem of the design of a flex-

ible batch process. In this chapter, the variations related 

to the operation schedule and to the batch size of each 

batch stage are considered as uncertain variations in the 

process. And we deal with the problem of how to design a 

batch process in which the storage tanks never overflow nor 

run out of stored material even though the variations within 

a fixed range may occur. 

     In Chapter 5 and Chapter 6, the scheduling problems of 

batch processes are studied . In Chapter 5, a cyclically 

operated batch process is taken up . And the problem of 
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determining the starting moments of batch units so as to 

smooth the peak consumption of utilities is discussed. 

     In Chapter 6, the scheduling problem of a multi-product 

process is studied. In such a process, the storage capacity 

of fluid materials strongly affects the operation scheduling 

of the process. Here a process consisting of many production 

stages and storage tanks is taken up, and an algorithm is 

developed to derive feasible production schedules which 

minimize the  sum of the operation and the change-over costs.
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1. Introduction 

     There are many cases where a chemical process system 

consists of continuous and batch sections. In such a case, 

intermediate storage tanks are installed before and after 

the batch section to maintain and assure the continuous 

operation of the whole system. In this chapter, a simple 

process consisting of a batch section and two storage tanks 

shown in Figure 2-1 is taken up. And the problem of deter-

mining the size of parallel batch units and their operation 

schedule as well as the storage tank capacities is discussed. 

     First, a relationship between minimum storage tank 

capacities and optimal process timing of each batch unit is 

analytically derived for the case where the batch section 

consists of N-parallel identical units. Then we deal with 

the case for which each batch unit  has a different operation 

scheme. To obtain the optimal solution , it is necessary to 

carry out tremendous computer calculations . So it is very

    TankBatch\--_—.1                 section Tank 2 

Figure 2-1. Process consisting of a batch section and tanks
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2. A Process with Only One Batch Unit 

     In this section the simplest case of a process 

batch operation unit and two storage tanks installed 

and after the batch unit, is discussed to show what 

tions exist between batch operation schemes and the 

of the tanks.

with one 

 before 

 implica-

capacities

Feed

 Ul(t)
Produc

UZ(t-tud(t-tQ) U2(t-tb)
3

 Fi

 Tank 1Batch unitTank 2 

ure 2-2. Example of a batch wize operated system

     In the process schematically shown in Figure 2-2, the 

following assumptions are introduced. 

(i) The inlet flow rate into tank 1, Ulf                                            , and the outlet 

     flow rate from tank 2,U2,are constant. 
(ii) The maximum storage capacities of tank 1, V1, and tank 

     2, V2, are equal to the maximum hold-up in tank 1 and 

     tank 2, respectively. And there is no initial inventory 

     in each storage tank. 

(iii)The batch unit is operated according to the following 

      steps. 

•The unit is filled to its full capacity
, S, by a constant 

    flow rate, Ua, from tank 1. 
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    .The processing step is started and continues for holding 

     time, T, without any inlet and outlet flow. 

 .When the processing step is completed, the contents are 

     discharged into tank 2 at a constant flow rate, U. 

    .After the unit is emptied, a preparation period is 

     necessary before the unit can be used for the next 

     process cycle. The preparation period must be equal to 

     or longer than T. During this preparation period, no 

     flows to and from the unit are permitted. 

(iv) The process does not cause any volume changes in the 

      flows. 

     With the above assumptions, we derive the following 

mathematical model of the process. 

     The cycle time of the batch unit, W, must be longer 

than or equal to its minimum cycle time, w: 

   W ? w = (S/Ud) + T + (S/U2) + Tp(2-1) 

where 

     S = the batch size of the batch item (= the equipment 

          size of the batch unit), 

Ui = capacities of the feed pump (j=f) and the discharge 

          pump (j=d) of tank i per unit time, 

     T = the processing time of the batch item, 

T = the minimum preparation period of the batch item. 

     In Eq.(2-1), S/Ud and S/U2 are the duration for the 
inlet and outlet flows to and from the batch unit in one 

cycle, respectively. 
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      The  input 

batch unit, u 

             = 

   LOW 

Similarly, 

output function 

u. (t) = 

     Let the 

origin of the 

and in tank 2 

    dvl(t) 

      dt 

dv2(t) 

     dt - 

where 

t
o = the 

          unit 

     tb = the 

          unit

 the output functions to and from the 

Lift) and u2(t), are defined as follows: 

  LA;kW < t < kW + S/U1 
                                           (2-2) 

  0 ; otherwise 

            ((i = 1, j = d) or (i = 2, j = f)) 

              (k = 0, 1, 2, ... ) 

   the input function to tank 1, ui(t), and the 
onfrom tank 2, u2(t), are defined as follows: 

  U.;0 S t 

                                           (2-3) 

 0 ; t < 0 

            (i = 1, j = f) or (i = 2, j = d) 

 arting time of the inflow to tank 1 be the 

time axis. Then the hold-up in tank 1, v
l(t), 
  v2(t), are expressed as follows: 

i(t) - ud(t - ta)(2-4) 

 2 (t - tb) - u2 (t - td)(2-5) 

  :arting moment of the inflow to the batch 

  in the first cycle, 

  :arting moment of the outflow from the batch  rt

tin the first cycle, 
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     td = the starting moment of the outflow from tank 2. 

     The right-hand side of  Eq.(2-4) is a periodic function 

with the cycle time W for t ? ta_ In order to continue the 

periodic operation of the process, v1(t) must also be a 

periodic function with the same cycle time W for t ? ta. 

Otherwise, overflowing or exhaustion of stored material in 

the tank happens in the course of time. 

     Since the duration of the inflow to the batch unit is 

shorter than the cycle time, the capacity of the feed pump 

to the batch unit, Ul, is greater than U. Then, the hold-

up in tank 1, v1(t), is monotonically decreasing in the 

interval (t
ar ta + S/Ud1) and monotonically increasing in the 

interval (t a + S/Udl,ta+ W). Therefore v1(t) takes the 

maximum value at t = to and t = to + W, and takes the minimum 

value at t = ta + S/Ud1in the interval [ta, ta + W]. 

     Letting the minimum value of v1(t) be zero, the maximum 

value of v1(t), that is, the volume of tank 1, V1, can be 

obtained as follows: 

     V1 = v1 (t a + W) 

                            t+W 
       = v(t+ S/Ud) +

Ja[uf (t) - ud (t-t) ] dt     la1ft 1 1a 

 1 

        = (W - S/U1)U1 

     By taking into account the fact that vi(ta) = vi(ta+W), 

the following relationships are derived.
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batch

 v1(ta) = :lt: - u(t -0= U1 
       = v1(t

a + W) 

to = W - (S/Ud) 

vl(ta+W) - vl(ta) _(ta+W[ui(t) - u(t-ta 
t a 

                   = Ui•W - S = 0 

vl= (w - s/U7) Uf = (1 - Uf/Ud) S 

The changes of the hold-up in tank 1 and 

 unit are graphically shown in Figure 2-3
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     By the same procedure of determining the volume of tank 

1, similar conditions are derived for tank 2: 

  V2 = (1 - U2/U2)S(2-9) 

 tb  =  t
o  +  S/Ul  +  T  =  W  +  T(2-10) 

 td = tb(2-11) 

 0 = S - U2.W(2-12) 

From Egs.(2-7) and (2-12), 

   f d  U
1 = U2(2-13) 

holds. 

     By eliminating W from Egs.(2-1) and (2-7), the following 

inequality is obtained. 

     S?U1f•Ua•U2(T + Tp)/(Ul.U2- Ulf.U1 -1.11.U2) (2-14) 

     From Egs.(2-8) and (2-9), it is clear that the volume 

of each storage tank becomes larger in proportion to the 

size of the batch equipment. Therefore, the total equipment 

cost of the batch item and storage tanks is minimized when 

the size of batch equipment, S, takes the minimum value 

which satisfies Fq.(2-14). 

     In actual design problems, the variable U2 is usually 
fixed as the production demand, and T and T

p are also fixed 

by technical reasons. Therefore, the optimal design problem 

is stated as follows:
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     Find the optimal equipment size, $, the optimal sizes 

of storage tanks, V1 and  V2, and the optimal capacities of 

feeding and discharging pumps, Ud and U2, so as to minimize 
the following performance index: 

                   2 

P.I. = p(S) +Egi(Vi) + r1(U1) + r2(U2) 
                      i=1 

                                                subject to 

  =_(2-13) U1           U2 

S = Ui•Ud•U2(T + Tp)/(Ud•U2- Uf-Ud- Ui•U2) (2-15) 

  vl= (1 - U1/U1)s(2-8) 

  V2 = (1 - U2/U2)s(2-9) 

where p, qi and ri are all monotonically increasing functions. 

     From above equations, it is clear that there exist two 

degrees of freedom in this system. If Udand U2are chosen 
as the free variables, the other variables are successively 

determined.
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3. A Process Including N-parallel Same Capacity Batch Units 

     In this section, the case where a batch section is 

composed of N-parallel same batch units, as shown in Figure 

2-4 is treated. 

     In order to consider the design problem for this process, 

the following assumptions are added to the ones listed in 

the previous section. 

(v) All units in the N-parallel batch section are the same 

     and are operated according to assumption (iii). Each 

     unit is operated cyclically with a time delay in 

     relation to the other units. Hereafter, the delay of 

     the starting time of batch unit i in the first cycle 

     compared to the time when the first batch is fed to the 

     batch section is called the  "phase difference of batch 

     unit i" and is expressed by ti. The starting time of 

     each unit, that is, the phase difference of each unit

/11ud(t-ti-ta;
UNIT 1

u2(t-ti-tb)

 ud(t-ti-ta
Feed

u;(t) uj(t-ta) u2(t -tb)
~-~ Product•-----~ 

ud(t-td)
UNIT i

U (t-ti-tb)

J ,
 u~i (t

UNIT N
 ul(t-tN-tb)

 Tank  1 A 

    Figure 2-4.

Batch Section Tank 2 

N-narallel batch system
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      can be arbitrarily chosen. However, since the cycle 

      times of each unit is W, it is assumed that the phase 

      difference of each unit is restricted such that 

         0  _< t. < W(i = 1, 2, .. _ , N)           - 1 

 (vi) All feed pumps to batch units have the same capacity 

Ud, and it is greater than or equal to the inlet flow 
     rate to tank 1, U. Similarly, all discharge pumps 

      from batch units have the same capacity, U2, and it is 
      greater than or equal to the outlet flow rate from tank 

       2, U. 

      In this section, we set out the relationships between 

the variables, N, V1, V2, S, U11Ud,U2, U2, ta, tb, td and 
,the N-dimensional vector t composed of the N-phase differences 

from the first to the N-th batch unit, and then the optimal 

phase differences of batch units, that is, the phase differ-

ences which minimize the sum of both tank capacities are 

analytically derived. 

     When the input and the output functions to and from 

each batch unit are given by Eq.(2-2), the input and the 

output functions to and from the N-parallel batch section , 

ui(t) and u2(t), are expressed as follows: 

              N ui (t) = E ul (t - ti)(2-16) 
i=1 

              N   u2(t) = E u2(t - t.)(2-17) 
i=1 
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     By using  Egs.(2-3), (2-16) and (2-17), the hold-up in 

tank 1 and tank 2 are given by the following differencial 

equations. 

dv1(t) f 

    dt-ul(t) - ui(t - ta)(2-18) 

 dv2(t)d 

    dt--------- - u2(t - tb) - u2(t - td)(2-19) 

     When certain numbers are given to ta and t, the change 

of the hold-up in tank 1 becomes as shown in Figure 2-5. • 

     Since u1(t) is a periodic function with the cycle time 

W for t ? 0, ui(t) also becomes a periodic function with 

the same cycle time for t ? W. In order to continue the 

operation of the process for a long period, vi(t) must be a 

periodic function with the cycle time W for t ? to+W. Then 

the following relationship is satisfied. 

—n 

               /://////i////////\

Fiaure
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II 

2-5. Change of the
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   (ta+2WJt+2WfJ=(t) - ui(t-ta)]dt 
  to+Wto+W 

                     N j2Wd 
             =Uf.w -E1ul(t-ti)dt 

                         i=1W 

                         N 2W-t. 
            =Uf.w - E(1u1(t)dt 

                         i=11W-ti 

                =  Uf.W - N.S 

= 0 

     Since 

    ui(t) S ui(t+W) for vt < W, and 

ui(t) = ui(t+W) for vtW, 

the following inequalities are satisfied. 

      rt+W 

     JI[1.11(s) - ut(s)]ds ? 0 for vt < W, and 

     t 

      t+W f 

  fv         [ul(s) - ui(s)]ds = 0fort?W. 

     t 

     From above inequalities, the following relationship 

derived: 

    J[u(s) J[u(s))] - ui(s-tads< - ui(s-ta)]ds 

                            0 

                               rt+iW 

JI[ul(s) - ui(s-ta)]ds 

0 

                      for vt E [t
a, to+W] ; (i = 2, 3, .. 
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     Then, the maximum and minimum values of v1(t)are given 

by the following equations. 

                              t 
    max{vl(t)}= U1•ta + max ( [U1 - ui(s)]ds 

 {t}W�t<2W 0 

                             t min{vl(t)}= U1•ta + minf[Ui - ui(s)]ds 
{t}0<t<W 0 

   = 0(2-21) 

     From above two equations, the volume of tank 1 is 

derived, i.e. 

    V = max{v (t)1     l 
{t}1 

       = max f t[Uf - ui(s)]ds - minft[Uf - ui(s)]ds 
     Wst<2W 00�t<W 0 

                                                          (2-22) 

From Eq.(2-21), to is given by 

                  t 
    t o = - { min f [Uf - ui(s)]ds}/U1(2-23) O5-t<W 0 

     For tank 2, the following relationships are also obtained 

in the same way. 

U2•W = N.S(2-24) 

    V2 = max f [u2(s) - U2]ds - min ft[u2(s) - U2]ds 
     W_<t<2WJ005-t<W 0(2 -25) 

                        t td - tb = - { min ( [u2(s) - UZ]ds}/U2(2-26) 
0�t<W 0 

     From Egs.(2-20) and (2-24), 

U1 = U2(2-27) 

holds. 
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     By eliminating W from  Egs.(2-1) and (2-20) and rear-

ranging with respect to S, the equipment size, S, must 

satisfy the following inequality: 

S>Ul.U1-U2(T + Tp)/(N•Ua.U2- Ui.U1 - Ui•U2)(2-28) 

     It is clear from Eqs.(2-18) and (2-19) that the tank 

volume becomes the function not only of the design variables 

such as S, Ul and U2 but also of the variables which describe 
the operation schedule such as ta, tb, td and tt. When U2, 
T and T are given a priori, the optimal design problem is 

how to find the optimal values of N, S, UT, II, U2, ta, tb, 
td and tt which satisfy Egs.(2-22) to (2-28). 

     In the following, how the optimal values of ta, tb, td 

and it which minimize V1 and V2 are analytically obtained is 

shown. The main result of this section can be summarized in 

the following theorem. 

     [Theorem 2-1] 

     The optimal phase difference vector tt which minimizes 

the volume of tank 1, V1, is equal to that which minimizes 

the volume of tank 2, V2, and is given by 

tt = (t1, t2, .. _ , tN) 

= (0, W 2•W ...(N-1)W )(2-29) N
, N ,N 

          [Proof of Theorem 2-1] 

         Without losing generality , it may be assumed that the following 

     relationship exists between the phase differences , 

                             - 62 -



 t  =ost  st  <t <...<t <W  1 2  3=  4= = N 

since the numbering of any batch unit can be arbitrarily changed. 

     Let the set of all feasible phase difference vectors be Po, 

then Po can be divided into two subsets as follows: 

Po = P1U P2 

where 

     P1 :_ {t e P0I t.= (i-1)W/N, i = 1, 2, ..., N} 

     P2:_ {itE POI tk+1- tk< W/N for some k,tN+l= W} 

U = the direct sum 

     a) we first calculate the volume of tank 1 when the phase 

defference vector t E P1is chosen. 

     From the definition of P1,ui(t) is expressed as follows: 

                              _ 

     ul(t) = E ud(t -----W) 
              i=1 

     From assumption vi) and Eq.(2-20), S/Udsatisfies the following 

inequality: 

    0 < S/UdW/N 

     Therefore, the following equation is satisfied for any t ? 0. 

    ud(t - N=1-W) = ud(t +N) 

By using the above equation, we can derive that ui(t) is a periodic 

function with the cycle time W/N for t ? 0, i.e. 

    ui(t +N)= ud(t +N)+ ui(t) +...+ ud(t ----W) 
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Therefore,

ui(t) =

 = ud(t -NN1.W)+  ul(t) +...+ ul(t 

= ui(t) 

, ui(t) is expressed as follows: 

Ud;iW/N<t < iW/N +S/Ud 

 0 ; otherwise 

                   (i = 0, 1, 2, ...) 

is a periodic function with the cycle 

le time of v (t) also becomes W/N for 

e interval (t
a' ta + W/N). Then v (t)

N-2 •W)

(2-30)

 As ui(t)time W/N for 

t => 0, the cycle t ? ta_ 

     From Eqs.decreases monotonically 

in the interval monotonically in the 

interval (t
a+the unimodal 

function in the has maximum 

value at t = tat t = t
aa 

S/Udin the interval 

     Integrating Eq.(2-18) over the interval [t
a + S/U11 ta + W/N], 

we have 

   Vi= (1 - U1/U1)S 

where 

VI = the volume of tank 1 for the phase difference vecter it E P
l. 

    b) We next show that the volume of tank 1 is larger than VI 

for any ft E P2. 

     From the definition of P
2, there exists a certain k such that 

tk+l - tk < W/N . We consider ui(t) in the interval [t
k' tk+l+(S/U1)]........
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     The input functions 

 U 

          ua(t-tk) = 

 0 

         ui(t-tk+l) 

          Integrating Eq 

     we obtain 

 vl(t
a + tk+1 + 

           (S/Ua+ tk+1 

< (S/Ua+ W/N) 

          = - (1 - U
1/U1 

     Then, the followinc 

v1 (t
a + tk) > 

                           > 

           Now, we can cc 

     minimizes V1. We c 

     that it e P1minimiz 

     From Theorem 2-

minimized when each

rating  Eq 

+ tk
+l + 

d U
1 + tk+1 

U1+ W/N) 

1 - U1/Ud 

following 

+ tk) > 

        > 

we can conclude 

V1. We canalsc 

1minimizes 

:orem 2-1, 

:n each

of unit k and unit k+l are given by 

1 tk <t < S/U1 + tk 

; S/U1+ tk< t < S/U1+ tk+1 

0 ; tk < t < tk
+l 

U1'•tk+l=tstk+1+S/Ud 

       over the interval [ta+tk, to+tk+l+(S/U1 

      - v
1(ta + tk) 

     li- 2S 

Ui i 

relationship is obtained. 

tk+1 + S/Ua) + (1 - Uf/U1)S 

nclude that the phase difference vector tt E P1 

an also prove in the same manner as shown above 

es the volume of tank 2, V2. 

                  (Q.E.D. of Theorem 2-1) 

1, the volumes of tank 1 and tank 2 are 

batch unit is operated with a delayed 
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starting time of  W/N. Thus, the_minimum volumes of tank 1, 

Vt, and tank 2, V2, the starting moments of the outflow from 

tank 1 and the inflow to tank 2 in the first cycle, to and 

tb, and the starting moment of the outflow from tank 2, td, 

can be obtained as follows: 

  Vi= (1 - Uf/Ud)S(2-31) 

  V2= (1 - Ud/U2)S(2-32) 

  t o = W/N - S/Ud(2-33) 

  tb=to+S/Ud+T=W+T(2-34) 

 td = tb(2-35) 

     As mentioned in the previous section, it is clear from 

Egs.(2-31) and (2-32) that the total equipment cost of batch 

items and storage tanks is minimized when the size of batch 

equipment takes the minimum value which satisfies Eq.(2-28). 

Therefore, the optimal equipment size is given by the follow-

ing equation. 

    S = Ul.Ud•U2(T + Tp)/(N•Ud•U2-1.11.U1- Ui.U2) (2-36) 

     Consequently, the optimal design problem is how to find 

the optimal N, S, Uf,Ud,U2,Viand V2which minimize the 
capital cost subject to the following four constraints: 

f d U
1 = U2(2-27) 

     S = Ui•Ud•U2(T + Tp)/(N•Ud•U2-Ui•Ud- Uf•U2) (2-36) 
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   Vi= (1 - U1/U1)S 

   V2= (1 - U2/U2)S 

And the variables which denote the optimal 

are given by the followsing equations: 

 t
o = W/N - S/U1 

tb = to + S/Ua + T = W + T 

     td = tb 

    t = ( 0W_2-W...(N-1)W  
       ,NN, 

     From the above equations, it is clear 

three degrees of freedom in the system. 'If 

are chosen as the free variables, the other 

successively determined.

             (2-31) 

             (2-32) 

operation schedule 

             (2-33) 

             (2-34) 

             (2-35) 

             (2-29) 

that there exist 

Ua,U2 and N 
 variables are
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4. A Process Including N-Parallel Different Capacity Batch 

   Units 

     In this section, the discussion is expanded to the case 

where the batch section is composed of N-parallel batch 

units but each unit i has a different volume  Si. The holding 

time and the preparation period of batch unit i are expressed 

by Ti and Tpi, respectively. And it is assumed that the 

cycle time of each batch item is equal to the minimum cycle 

time of its batch item. Other conditions for the formulation 

of the problem are the same those given in the previous 

section. 

     Under the above assumptions, relationships which exist 

among the variables V1, V2, {Si}' {Ti}, {Tpi},{Wi},Ui, 
a,U2' 2  U U, t

ar tb, td and t are discussed. 

     The cycle time of batch unit i, Wi, is given by 

Wi = (Si/Ud) +Ti+ (Si /U2) + T.(i=1,2,...,N) (2-37) 

     The input and output functions of batch unit i , ua(t) 
and u2i(t), are defined as follows:

uai(t) =
Ud 1 

0

 mWi5t < Si/Ud+ 

 otherwise 

 (i  =  1, 2, ..., N ; 
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mW. 

m = 0, 1, 2,

   (2-38) 

.. )



    u2i(t) = 

     By using 

functions to a 

and u2(t), are 

    ul(t) = 

 i 

    u2(t) = 

 i 

     Since the 

assumed to sat 

0 <_ t.<              1 

    Then, ui( 

where W* is th 

W* = max{ 
{i} 

      Here, in 

extend the usu 

(G.C.M.) and t 

of rational nu 

     "multiple 

     If the qu 

x, by a ration

ions to  and 

2(t), are 

al(t) = 

i a2(t) = 

i Since the 

ed to satisfy t 

0 < ti< 

Then, ut( 

W* is the 

N* = max{ 
{i} 

Here, in 

3 the usual 

4.) and the 

tional nu 

"multiple 

If the quotient 

a rational

U2;mWit < Si/Uf + mWi 

                                           (2-39) 

0 ; otherwise 

(i = 1, 2, ..., N ; m = 0, 1, 2, ...) 

Egs.(2-38) and (2-39), the input and output 

 nd from the N-parallel batch section, ui(t) 

expressed as follows: 

 uli(t -ti)(2-40) 

(t - ti)(2-41) 

 cycle time of batch unit i is Wi, ti can be 

isfy he following inequality: 

W. (i = 1, 2, ..., N) 

becomes a periodic function for t ? W*, 

mum value of the cycle times, i.e. 

                                           (2-42) 

order to continue the further discussion, we 

al concepts of the greatest common measure 

he least common multiple (L.C.M.) in the field 

       "measure" are defined at first: 

otient of the division of a rational number, 

al number, y, is an integer, y is called an 
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aliquot part of x. Then, x is called a multiple of y and y 

is called a measure of x. 

      The extended G.C.M. and L.C.M. are defined as follows: 

     A rational number which is a common aliquot part of the 

rational numbers x, y,  ..., z, is called a common measure, 

and the greatest among the common measures is defined as the 

extended G.C.M. of the rational numbers, x, y, ..., z. This 

G.C.M. is hereafter expressed by the symbol G.C.M.(x,y,...,z). 

     If a certain rational number is a multiple of all of 

the rational numbers, x, y, ..., z, this rational number is 

called a common multiple, and the least among the common 

multiples is defined as the extended L.C.M. of the rational 

numbers, x, y, ..., z. This L.C.M. is hereafter expressed 

by the symbol L.C.M.(x,y,...,z). 

      For example, 

      G.C.M.(48,36) = 12 ; G.C.M.(4.8,3.6) = 1.2 ; 

      L.C.M.(48,36) = 144 ; L.C.M.(4.8,3.6) = 14.4 . 

     By using the cycle time of each batch item , the cycle 

time of ui(t), W, is given by 

   W° = L.C.M.(W1, W2, ..., W
N)(2-43) 

     The hold-up in tank 1, v
l(t), is given by the following 

equation. 

    dv1(t) 

   dt=ul(t) - ui(t-ta)(2-44) 
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     Since  u*(t) is a periodic function with the cycle time 

W° for t ? W*, the hold-up in tank 1, vl(t), must also be a 

periodic function with the cycle time W° for t ? to+W* in 

order to continue the operation of the process without 

causing overflowing nor exhaustion of stored material. 

Therefore, by integrating Eq.(2-44) over the interval [t
a+W*, 

to+W*+W°], the following relationship is obtained. 

N 
  U1= E (S./W.)(2-45) 

           i=1 

     For tank 2, a similar relation is obtained from its 

hold-up equation, i.e. 

N 
  U2=E (S./W.)(2-46) 

           i=1 

     From Egs.(2-45) and (2-46), it follows that 

 Uf = U2(2-47)1  

     V1and V2 are subsequently obtained in the same manner as 

explained in the previous section. 

Summarizing the results obtained in the above discussion, 

the following relationships have been derived among the 

variables,V11V2,{S.},{Ti},{Tpi},{Wi},Ui,Ua,U2, U2 
and t. 

W. = Si/U1+ Ti+ Si/U2+ T.(i=1,2,...,N) (2-37) 

W° = L.C.M.(W1,W2, ...,WN)(2-43) 

N 
Uf = E (Si/W.)(2-45) 

            i=11 
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 f d(2-47)  U
1 = U2 

                                            t    ftr 

V =maxJ[Uf- u*(s)]ds - minJ[U1- ui(s)]ds 
    1W*<t<W*+W°01 10�t<W°0 (

2-48) 

    rtrtd      V2= max1[u*(s) - Ud]ds - minJ[u*(s) - U2]ds 
      W*<t<W*+Wo02 20<t<W°022 

                                                        (2-49) 

W* = max {W.}(2-42) 
{i} 1 

     u*(t) and u2(t) are defined by Egs.(2-38) to (2-41). 

     In actual design problems, suitable values are usually 

assigned to the variables U2, {Ti}and {Tpi}. Therefore, by 
assuming the values of Ui,U2,itand {Si} so as to satisfy 
Egs.(2-45) and (2-47), all of the other variables and the 

capital cost of the process are determined.
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5. Reduction of the Searching Domain 

     If Ui,Ua,U2, U2, {Ti},{Tpi} and  {Siare determined 
so as to satisfy Egs.(2-45) and (2-47), the volumes of tank 

1 and tank 2, V1 and V2, are functions of the phase difference 

vector of the batch units. It is, therefore, necessary to 

search all possible phase differences to obtain the minimum 

values of V1 and V2. 

      In other words, it is necessary to search in the set P, 

P = { tt 1 0 ti < Wi , i = 1, 2, ..., N } (2-50) 

Unfortunately this domain is too large. So here it is shown 

how small the domain can be reduced under the assumption 

that the hold-up in each tank which is needed for the start 

up and the shut down of the process can be disregarded. 

      Under the above assumption, the tank volumes which are 

needed for the cyclic operation can be expressed as follows: 

     V1 = max Jt[U1- u*(s+W*)]ds - minI[U1- u*(s+W*)]ds 
 0.°J      t<W° 00<t<W0(2 -51) 

V2 = max ft[u2(s+W*) - U2]ds - min(t[u2(s+W*) - U2]ds 
     0�t<W° 005t<W°J0 

                                                          (2-52) 

                                         f      In this section, it is presumed that U1, U1, U2, U2, 
{Ti}, {Tpi} and {Si} are given so as to satisfy Egs.(2-45) 

and (2-47) and tank volumes are given by Egs.(2-51) and (2-52) 

     To simplify the discussion, it is first assumed that 

the batch section is composed of only two units. Since 
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u*(t) is a function of time t as well as of the phase 

differences t1 and t2, the expression  ui(t,tl,t2) is used 

instead of ui(t). ui(t,tl,t2) is hence defined as follows, 

ut(t,tl;t2) := ull(t-tl)+u12(t-t2)(2-53) 

     Then, in order to derive the minimum value of the tank 

volumes which are given by Egs.(2-51) and (2-52), it is 

sufficient to search in the domain given by the following 

theorem. 

      [Theorem 2-2] 

     When the input function to the batch section, ui(t,tl,t2), 

is given by Eq.(2-53), the minimum value of V1 given by 

Eq.(2-51) can be obtained only by searching the following 

domain. 

tl = 0 

     0 g t2 < G.C.M.(W1, W2) 

where 

G.C.M.(X,Y) = the extended greatest common measure of X 

                       and Y. 

     [Proof of Theorem 2-2] 

          In order to explicitly clear the values of the phase differences , 

     the following expression is used instead ofV
l: 

V1(tl,t2) := maxJ[ul- ual(s+W*-tl) - ua2(s+W*-t2)]ds                        0<t<w°0 

                       ft                     - min1[uf- u11(s+W*-t1) - ua2(s+w*-t2)]ds 
                      OSt<W°0 
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               = max {v*(t,t
l,t2)} - min {v*(t,tl,t2)} (2-54)  05t<W°0<<t

<W° 

where v*(t,tl,t2) is defined as follows, 

v1(t,tl,t2) := J[Uf - ua1(s+W*-t1) - ua2(s+W*-t2)]ds (2-55) 

                  0 

     When x1and x2 are taken as the phase differences of batch 

unit 1 and batch unit 2, respectively, the tank volume V
1(xl,x2) 

satisfies the following relationship: 

V1(x1,x2) = max {v*(t,xl,x2)1 - min {v*(t,xl,x2)} 
0<t<W°0St<W° 

               = max {v*(t,0,x
2-x1)} - min {v*(t,0,x2-x1)}     -x

1=l1             t<W°-x-x<<t<W°-x1                                                             (2-56) 

     As v*(t,0,x2-x1) is a periodic function with respect to time 

t for t ? -x1,Eq.(2-56) can be rewritten as follows: 

V1(x1x2) = max {v*(t,0,x2-x1)} - min {v*(t,0,x2-x1)} 
Ot<W°0<t<W° 

                = V
1(0, x2-x1) 

     By taking into account this result, only the phase difference 

of batch unit 2 is hereafter considered, i.e. the phase difference 

of batch unit 1 is set equal to zero. Since xl E [0, W1] and 

x2 E [0, W2], x2-x1 satisfies the following inequality: 

   -W<
21              x-xsW  l2 

     Then, the theorem which has to be proved can be mathematically 

stated as follows: 

     "For vx E [ -W
1,W2],there exists some x* e [0, G.C.M.(W1,W2)) 
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such that V1(O,x) = V1(0,x*)." 

     In the following, it is shown  that x* = mod[x, G.C.M.(W1,W2)] 

satisfies the above equation. 

     We first prove the following lemma. 

( [Lemma 2+1] 

     Let X and Y be positive rational numbers. If A and A' be sets 

of rational numbers which are defined by the following relations, 

respectively, 

    A :_ {iX + 'Y I i, j : integers} 

A':= {k•G.C.M.(X,Y) I k : integers} , 

then, A = A'. 

     [Proof of Lemma 2-1] 

     We first prove that the minimum positive element of the set A 

is the extended greatest common measure of X and Y, i.e., 

     Z := min{ z I z > 0, z e A } = G.C.M.(X,Y) 

     For any zeA, the remainder of z divided by Z also belongs to 

the set A. Since the remainder is smaller than Z, it should be 

zero. Therefore Z is a divisor of all the element of the set A , 

especially,X = l.X+0•Y and Y = 0•X+1•Y. 

     It is also evident that Z is divided by any common divisor of 

X and Y. Consequently, we obtain that Z = G .C.M.(X,Y). 

     There exist some I and J which satisfy 

I•X + J•Y = G.C.M.(X,Y) . 

So, we have 
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 k.G.C.M.(X,Y) = kI•X + kJ•Y E A 

for any k.G.C.M.(X,Y) E A'. 

     Conversely, for any iX + jY e A, we have 

    iX + jY =[G.C.MX(X,Y)+G.C.MY(X,Y)]•G.C.M.(X,Y) e A' 
                                             (Q.E.D. of Lemma 2-1) 

     Now we return to the proof of Theorem 2-2. 

     From Lemma 2-1, there exist some positive integers I' and J' 

which satisfy 

      W11' - W2J' = G.C.M.(W1,W2). 

From the above equation, the following equations are hold for some 

positive integers, I and J. 

x* = mod[x, G.C.M.(W1,W2)] 

x* + W11 - W2J = x(2-57) 

By using Eq.(2-57), V1(0,x) can be rewritten as follows: 

t 
    V1(O,x) = max([Uf - u11(s+W*) - ua2(s+W*-x*-W1I+W2J)]ds 
                  0_<t<W° 0 

t              - min [U1- ull(s+W*) - u12(s+W*-x*-W1I+W2J)]ds 
OSt<W°0 

= max {vi(t,-W
1I,x*-W2J)}                   -W

lIst<W°-WlI 

           - min {vi(t,-W
11,x*-W2J)} 

                   -W
lISt<W°-WlI 

     Since vi(t,-W1I,x*-W2J) is a periodic function for t ? -W1I, 

                          - 77 -



     the following relationship  is obtained. 

          V(0,x) = max {v*(t,-WI,x*-W2J)}- min{vi(t,-W1I,x*-W2J)} 
    11Ost<Wo10<t<W° 

     For vt > 0,udl(t+W*+W1I) = u11(t+W*), and 

                 ud2(t+W*-x*+W2J) = u12(t+W*-x*). 

     Therefore, the following equation is satisfied for vt ? 0. 

           v1(t, -W1I, x*-W2J) = v1(t, 0, x*) 

          Now we can conclude that 

          V1(0,x) = V1(0,x*). 

                                                (Q.E.D. of Theorem 2-2) 

     The result obtained in this case can be extended to the 

general case of N-parallel batch units. The cycle times Zi 

obtained by adding all the input functions from the first to 

the i-th unit, can be expressed by 

    Zi = L.C.M.(Zi -1 , W.) i = 2,3,...,N (2-58) 

Z1 = W1 

     By using these Zi, the domain of the phase difference 

of batch unit 1+1, ti+1' can be reduced to 

     0 <ti+l < G.C.M.(Zi'W
i+1) i = 1,2,...,N-1 (2-59) 

because the situation is identical to the case where there 

exist only two batch units with cycle times Z
iand W. 

respectively. 
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     Since the output function u2i(t) from each batch unit 
has the same cycle time as that of the input function  4i(t) 
it is easily verified that the searching domain of the phase 

difference ti for minimizing V2 is exactly the same domain 

for V1. Consequently, the following theorem can be obtained 

      [Theorem 2-3] 

     It is assumed that the volumes of tank 1 and tank 2 are 

given by Egs.(2-51) and (2-52), respectively. Then, the 

minimum values of both tank volumes can be obtained only by 

searching the following domain P.

P* = tt

     For exam 

time of each 

Wl = 2, 

Then, the reduced 

shown in Figure 

     As regards 

be derived.

   tt = (t1,t2,...,tN) 

   0 t. < G.C.M.(Zi -1' W 

    Z. = L.C.M.(Zi -1'W.) 

Z1 = Wl, tl = 0 , i 

     it is assumed that N 

batch unit is given by the 

     3, W3 = 4, W4 = 5. 

uced searching domain, P*, 

re -6. 

ds he measure of P*, the 
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 = 2,3,...,N 

= 4 and 

following 

 can be 

following

  (2-60)



t4

 1—

/3 
t2 

  original searching domain  

 Figure 2-6. Reduction

       t4 I 

3b 

1 

t3 r---`] Ed 2t3 1 

    t2 

         reduced searching domain  

 of the searching domain

     [Theorem 2-4] 

     The  (N-1)-dimensional measure of P* is constant and 

affected by the order of W1, W2,..., WN for constracting 

set P. 

     [Proof of Theorem 2-4] 

          In order to make the explanation simple, G.C.M.(x,y) and 

L.C.M.(x,y) are expressed as follows: 

           (x; y) := G.C.M.(x, y) 

[x; y]..= L.C.M.(x, y) 

          We also define 
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 N-1 
D(W1, W2~ ...,WN) :_ (W1; W2)x 11([Wi; W2; ...; Wil; Wi+1) 

                                        i=2 

                                                                Then it will be shown that 

     D(W1,W2, ...,WN) = D(Wa(1)' WQ(2), ..., Wo(N)) 

where o is an arbitrary element of the purmutation group of degree 

N. We first prove the following lemma. 

     [Lemma 2-2] 

     For any rational numbers, W1, W2 and W3, the following equation 

is satisfied: 

         (W1;W2)([W1• W21; W3) = (W1;W3)((W1;W3]; W2) 

      [Proof of Lemma 2-2] 

We have, 

              1W     ([W1; W2] ; W3) = (-------------(WW )3                               W3)                           ) 
1 2 

W1 W2 W3 
(W l; W3)((W

1;---------------W3)(W1;--------------W2) (W1;---------------W3)) 

             W2W3  
                    = (W

1; W3)((w1w2) ; (W1.W3)) 

Similarly, we have 

                                W3 

     ([W1;W3]; W2) = (W1;W2)((W
lW3) ; (wlW2                                        w2)) 

Consequently, 

     (W1; W2)([W1; W2]; W3) = (W1; W3) (LW1; W3]; W2) 

                                            (Q.E.D. of Lemma 2-2) 
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       We now prove Theorem  2-4. 

 We have 

D(W1, W2, W3, ..., WN) = (W2; Wi)([W2; W1]; W3) 

N-1 
                              x II ([W2; Wi; ...; Wi]; Wi+l) 
i=3 

                                = D(W2, W1, W3, ..., WN) • 

 From Lemma 2-2, we have 

     D(W1,W2,W3, ...,WN) = (W1;W3)([W1;W3]; W2) 

N-1 
                             x II ([W1; W3; W2; ...; Wi]; Wi+1) 
i=3 

                                = D(W
1,W3,W2, ...,WN) 

For i > 3, from Lemma 2-2, we have 

D(W1, W2, ..., WN) 

i-2 
= (W

1; W2).1II ([W1;Wkl:Wk+1)}(LW1;Wi-ll' Wi) 

N-1 
X ([W1;...;W

i]; W1+1).{fl ([W1'Wk]; Wk+i)} k=i+1 

N-1 
       (W1'W2)•{
kII2(LW1;...;Wk]s Wk+1)}([W1;•Wi-1]'Wi+1) 

     x ([W1; ...; Wi-1' Wi+1]; Wi) 

N-1 
     x { R ([W1;  .W

l-1;Wi+1;W.;...;Wk]; Wk+1)}         k=i+l 

      = D(W
1, .... Wi-1, Wi+1, Wi, Wi+2' ..., WN) 

Then, we obtain 

     D (W1,W2, ... ,W
n) = D (W1,Wi-1'W1+1 , W., Wi+2'WN). 
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for any 

     An 

with the 

be also 

which is 

     So

 i. 

arbitrary element of the purmutation group can be replaced 

 product of some transpositions, and any transposition can 

replaced by the product of some transpositions each of 

 the purmutation of the elements adjacent each other. 

we obtain 

  D(W1,W2, ...,WN) = D(W
a(1)'Wa(2)'...,  Wo(N)) 

                                       (Q.E.D. of Theorem 2-4)
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6. Results and Discussion 

     In this chapter, we have dealt with the problem of 

determining optimal process timings for batch units to 

minimize the storage capacity of tanks installed before and 

after the batch section so as to maintain continuous operation 

of the whole system. 

     For the case where a batch section is composed of N-

parallel identical units, optimal scheduling is obtained 

analytically and it is shown that the operation of each 

batch unit has to be started with a constant delayed timing, 

WIN, so as to minimize the total capacity of the two storage 

tanks. 

     When the batch section consists of N-parallel batch 

units of different types, it is required to carry out a 

tremendous search calculations to obtain the optimal schedule 

of the batch section. It is, therefore, very important to 

be able to reduce the searching domain as small as possible. 

For this search, a very useful result (Theorem 2-3) is 

derived whereby the domain with respect to the phase differ-

ence of the starting time of each unit can be reduced to a 

domain such that 0  g ti < G.C.M.(Z.1,W.) ' 

where Zi = L.C.M.(Zi -1'Wi),Z1= W1,(i=2,3,...,N). 

     This result is valid for all batch operation schemes as 

long as they are operated periodically . Even when some 

batch units have side feed streams , this result can be 

applicable as far as the input and output functions to and 
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from the batch section are periodic functions. So this 

theorem has a very wide applicability in determining the 

optimal scheduling of many different type batch operations, 

at the same time, the theorem drastically reduces the 

necessary computation time for searching.
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Nomenclature

N = number of parallel batch units 

 p = cost function of a batch unit 

q. = cost function of tank i 

 ri = cost function of the feeding (i=1) and discharging (i=2) 

     pumps to and from the batch section 

S,(Si) = batch size of a batch unit (unit i) (= equipment size 

         of a batch unit (unit i)) 

T,(Ti) = holding time of the batch unit (unit i) 

T
p,(Tp1) = preparation period of the batch unit (unit i) 

to = starting moment of the inflow to the batch unit in 

     the first cycle 

tb = starting moment of the outflow from the batch unit 

     in the first cycle 

td = starting moment of the outflow from tank 2 

ti = phase difference of unit i 

it = phase difference vector 

Ui = capacities of the feed pump (j=f) and the discharge pump 
     (j=d) of tank i per unit time 

u1= input function to tank 1 
ul,(uli) = input function from tank 1 to the batch unit (unit i) 

ui= input function from tank 1 to the batch section 

u2,(u2i) = output function from the batch unit (unit i) to 
           tank 2 

u2 = output function from tank 2 
u2= output function from the batch section to tank 2
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 Vi = maximum storage capacity of tank i 

vi = hold-up function of tank i 

w,(Wi) = cycle time of the batch unit (unit i) 

w = minimum cycle time of the batch unit 

W* = maximum value among the cycle times (see Eq.(2-42)) 

W° = L.C.M.(W1,W2, ...,WN) 

Other symbols 

G.C.M.(X,Y) = extended greatest common measure of X and Y 

L.C.M.(X,Y) = extended least common multiple of X and Y
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Chapter 3

OPTIMAL DESIGN OF A 

WITH INTERMEDIATE

BATCH 

STORAGE

PROCESS 

TANKS



1. Introduction   

• I
n the previous chapter, we pointed out that the minimum 

capacity of an intermediate storage tank is a function not 

only of the batch sizes of parallel batch items but also of 

the process timing of parallel batch items. In other words, 

it is necessary to consider the operation schedule of the 

process in order to optimally design the batch process. In 

this chapter, by taking into account this fact, a more 

general design problem of a batch process is studied. 

      In a batch process consisting of many batch stages, the 

equipment size of each batch item has to be determined by 

taking into account the operation schedule of the whole 

process as well as the production capacity. Each piece of 

equipment in a continuous process can be designed depending 

only on the production rate. 

     For example, when two batch items are connected in a 

series, the outlet flow from the first item directly becomes 

the inlet flow to the second. Therefore , both items must be 

designed and operated in such a way that the amounts of 

production per batch in both items and their cycle times are 

identical. 

     Generally speaking, the minimal cycle time
, that is, 

the time necessary for a batch item to treat material of a 

batch, varies according to the kinds of batch items
. On the 

other hand, the whole process consisting of batch items 

connected in a series cannot be operated with a shorter 
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cycle time than the largest minimal cycle time of batch 

items. Therefore, the batch item with a shorter cycle time 

than that of the whole process has to be operated with a 

certain idle time. The process in which such a batch item 

exists is not preferable and can be improved from the point 

of view of the effective usage of batch items. 

     In order to reduce the idle time in a process, the 

batch item which is operated without any idle time has to be 

replaced by a set of parallel batch items, and/or intermediate 

storage tanks have to be installed at suitable places among 

the batch items. Therefore, a batch process is generally 

composed of many batch stages consisting of parallel batch 

items and some intermediate storage tanks. 

     The problem of the design of a single product batch 

process is stated as follows: "When the production rate is 

given, find the optimal number of batch items in each batch 

stage, the optimal size of each batch item and optimal 

volumes of intermediate storage tanks so as to minimize a 

given performance index." 

     In this chapter, the optimal design problem of a single 

product batch process with intermediate storage tanks is 

dealt with. First, the mathematical description of this 

problem is given by introducing several assumptions related 

to the batch operation. Needless to say, there are many 

uncertainties in actual batch operations. For example, the 

processing times in batch units are often not a constant but 

are variable with some frequency distribution. From this 
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viewpoint, a stochastic model might be necessary in order to 

completely express an actual batch operation. However, a 

deterministic model is used here to mathematically formulate 

the design problem of a batch process with intermediate 

storage tanks. Based on the deterministic model which is an 

idealized model in the sense that any uncertainties are not 

taken into account, the mathematical characteristics of this 

problem are fully analyzed, and some effective algorithms 

for determining the optimal solution are developed.
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2. Formulation of the Problem 

     The optimal design problem of a single product batch 

process consisting of many batch stages and intermediate 

storage tanks as shown in Figure  3-1 can be stated as follows; 

     When the production requirement of the process is 

given, find the optimal number of parallel batch items in 

each batch stage, the optimal equipment size of each batch 

item, and the optimal volumes of intermediate storage tanks 

so as to minimize the performance index given by the follow-

ing equation, i.e. 

BK-1 
P.I. = EN.p.(•S.)+ E q. (V..)(3-1) 

i=1ii1 j=1 7 7 

where 

     B = the number of batch stages 

Ni = the number of parallel batch items in batch stage i 

Si = the batch size of batch stage i (= the equipment 

          size of the batch item in batch stage i)

 stage1

Figure

stage 2
stage 3

stage 4
stage 5

3-1. Schematic diagram of a general batch process
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     V.= the volume of intermediate storage tank j      7 

 K-1 = the number of possible places where an interme-

           diate storage tank can be installed 

pi,qj = monotonically increasing functions. 

     In order to discuss how to solve the above problem, the 

following assumptions are first introduced: 

(i) The capacities of the feed and discharge pumps of the 

     storage tanks are known. 

(ii) The process does not cause any volume changes in the 

      flows. 

(iii)Each batch stage consists of one or more identical 

     items of batch equipment in parallel. 

(iv) In each batch stage i, every batch item is periodically 

     operated according to steps such as the filling, proc-

     essing discharging, cleaning and perhaps waiting until 

     the next filling step. Here, the time it takes to pass 

     through all of the steps is called "the cycle time of 

     the batch item, Wi,". The time required for a batch of 

     material to pass completely through the steps excluding 

     the waiting step is called "the minimal cycle time of 

     the batch item, wi ,", and it is assumed to be a function 

     of the equipment size of the batch item . 

(v) Every batch item is periodically operated with the same 

    cycle time by delaying its starting moment at equal 

     intervals. Each batch stage i with N
ibatch items in 

    parallel is charged in turn by a batch from the preceding 
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stage with the constant time interval  Wi/Ni. This time 

interval is called "the stage cycle time". The amount 

of product produced in this time interval is also 

called "the batch size of the batch stage, Si,". 

Figure 3-2 shows an illustrative example of the operation 

schedule of a batch stage consisting of two batch items 

in parallel. 

     As derived in the previous chapter, for the process 

where an intermediate storage tank is installed between 

the batch section consisting of parallel identical 

units and the continuous section, the capacity of the 

storage tank is minimized when parallel batch items are 

operated by delaying their starting moments at equal

batch size (Si)

stage  i

 batch item 1  i
iimi- --  -1=4----------------

Figure

 batch item 2  

   stage cycle-1itime 
       time (W1/Ni) I1 1=1:  filling 

1 minimal cycle time of;H : processing 1-1 cleaning      
I the batch item (wi) 

    1*I : discharging 1---1 waiting I cycle time of the 
e—b atch item (Wt) 

3-2. Operation schedule of batch stage i (Ni  = 2) 
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     intervals. Strictly speaking, this result can not be  

. used for the case where storage tank is installed 

     between two batch stages. That is, by changing the 

     operation schedule of the starting moment of each batch 

     unit, the minimum volume of the intermediate storage 

     tank may be reduced compared with the case where the 

     starting moment is delayed at equal intervals. However, 

     in order to reduce the degrees of freedom in the system, 

     it is here assumed that the parallel units are operated 

     by delaying their starting moments at equal intervals. 

(vi) The equipment size of the batch item and the batch size 

     of the batch stage are measured by the same unit, and 

     moreover both are identical in each batch stage. 

(vii) The "processing capacity of the batch item, ci," in 

     batch stage i is given by  Eq.(3-2), and it is assumed 

     to be a monotonically increasing function of the batch 

      size, Si. 

ci (Si) = Si/wi (Si)(3-2) 

     Under the assumptions introduced above , we develop an 

effective solution method for the problem stated above .
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3. Relationships among the Variables in a Subprocess 

     We first clarify the relationship between the number of 

parallel batch items,  Ni, and the size of batch equipment, 

Si, in batch stage i in order to satisfy the given production 

requirement. 

     By using Eq.(3-2), "the processing capacity of batch 

stage i, Ci," is defined as follows; 

Ci = ci(Si) x Ni(3-3) 

Figure 3-3 shows the relationship between Ci and Si by 

making Ni a parameter. 

     Curve Al in Figure 3-3 shows the processing capacity of 

a batch item as a function of the batch size. This curve is 

usually obtained by actually measuring the minimal cycle 

time of the batch item with different batch sizes or 

A    
C,V,1' L 

I (Ainar,2) 
o u' 

pmducflonA.i(11>) 
requirement,i

  Figure

  Sb So 

     Relationship 
3-3. capacity and

    ( Si So/ batch  size(Sj) 

between the processing 
the batch size
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calculating the minimal cycle time using some suitable model 

equations. The black circles at  both ends of a curve express 

the upper and lower bounds of the possible batch size imposed 

for technical or other reasons. 

      Curves A2, A3, and A4 are obtained from Curve Al and 

Eq.(3-3) for Ni=2, 3 and 4, respectively. 

     By utilizing Figure 3-3, we show how the optimal solution 

can be derived. In order to satisfy the given production 

requirement, P, the necessary batch size has to be larger 

than S',Sa,Sband Sb in cases where the batch stage consists 

of only one, two, three and four batch items, respectively. 

     By comparing the values of the performance index for 

these cases, the optimal solution can be easily obtained. 

     When Ni and Si are fixed, the cycle time of each batch 

item, Wi, is given by 

  W.= Si x Ni / P(3-4) 

and the operation schedule can also be determined . 

     Next, the process consisting of two batch stages (batch 

stage 1 and 2) connected in a series as shown in Figure 3-4 

is considered.

batch
stage 1

batch
stage 2 0

Figure 3-4. Process consisting of two batch st
ages
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     In the process taken up here, the outlet flow from 

batch stage 1 directly becomes the inlet flow to batch stage 

2. Therefore, the cycle times and batch sizes of both batch 

stages have to be identical. For example, assume that the 

relationship between the processing capacities of both 

stages and the batch sizes is expressed as shown in Figure 

3-5. If both stages consist of a single batch item and are 

not connected to each other, batch stage 1 and 2 can satisfy 

the given production requirement, P, by choosing  Si and S2 

as its batch size, respectively. But both stages are 

actually connected in a series and, therefore, the batch 

sizes of both stages have to be equal to or larger than Si.

rnU'2 

a•U ^d/ O
0/ 

  d CL U
/       r// 

production/ 
requirement

number of 
batch items 

 in  stage

       SbSaS2S~' batchscze(Si) 

Figure 3-5. Processing capacities of both batch stages
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     Figure 3-6 shows the operation schedule when both batch 

stages consist of single batch item and are operated with 

the batch size of  Si. It is clear from this figure that the 

batch item in batch stage 1 is periodically operated with 

the minimal cycle time, Si/P, but the batch item in batch 

stage 2 is operated with a fairly large cycle time compared 

with its minimal cycle time defined by St/(P+P'). 

     We develop an algorithm for determining the optimal 

solution by taking into account a constraint such that the 

batch sizes of both batch stages must be identical. 

     We first assume that each batch stage consists of only 

one batch item. It is clearly not optimal to make the batch 

size larger than Si and, therefore, the optimal batch sizes 

of the batch stages must be Si. 

     When we try to choose a batch size smaller than Si, 

batch stage 1 is the bottleneck, as is clear from Figure 3-5. 

By installing batch items in parallel in batch stage 1, it 

becomes possible to choose a batch size smaller than Si. 

  batch stage 1 
I -------------------------F-----------------------^1"-^^-I=1---------------------------- 

                                                                              I                                 I 

     batch stage 2 ' --------------                    f~---------------- 
time <-Si/(P+P') 

' t=1: filling 
---------S1 P ,; r-i : processing w- :cleaning 

0.1: discharging '---i : waiting 

      Figure 3-6. Operation schedule of a batch process
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     When we set batch stage 1 and 2 with two batch items in 

parallel and as a single batch item, respectively, the 

minimum batch size necessary to satisfy the given production 

requirement is given by  S2 as shown in Figure 3-5. 

     By increasing the number of parallel batch items in the 

bottlenecked batch stage, it is possible to operate the 

process at a smaller batch size. By repeating this procedure 

so as to make the batch size as small as possible in the 

technically feasible range, we can find the necessary number 

of parallel batch items in both batch stages and the minimal 

batch size, one after another. The results for the example 

in Figure 3-5 can be summarized as shown in Table 3-1. 

     Any combination of the numbers of parallel batch items 

in both batch stages other than those given in Table 3-1 (for 

example, N1=1 and N2=2) cannot be optimal. Therefore, the 

optimal solution can be found by calculating the value of 

the performance index for each case shown in Table 3-1 and 

comparing these four cases. 

         Table 3-1. Candidates for optimal solution

number of  minimal

batch items batch size

/

N1 N2

f 1 1 S*1

2 1 S*2

2 2 S
a

3 2 Sb
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       In this section, we took up the process consisting of 

 two batch stages in order to make the explanation simpler, 

 but the algorithm developed here can be applicable to more 

 general cases where the process consists of an arbitrary 

 number of batch stages connected in a series. When the 

 process consists of many batch stages, a large number of 

combinations of the numbers of parallel batch items in the 

batch stages must be considered. But depending on the 

algorithm developed here, the combinations which are impossi-

ble candidates for the optimal solution are eliminated and
, 

the optimal solution can, thus , be more easily obtained.
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4. A Batch Process with an Intermediate Storage Tank 

     In the previous section, the process where the batch 

stage is directly connected in a series was considered. In 

such a process, there are often cases where the batch size 

is too large for some stages, while the amount of material 

enough to satisfy the given production requirement can be 

treated even in a smaller batch size. 

     Such inefficiency can be eliminated by installing an 

intermediate storage tank between batch stages. By in-

stalling a storage tank, the outlet flow from the batch 

stage before the tank is stored in the tank and does not 

immediately become the inlet flow of the batch stage after 

the tank. Therefore, the cycle times and batch sizes can be 

chosen arbitrarily in both batch stages so as to satisfy the 

given production requirement. The intermediate storage 

tanks provide large flexibility in the design and operation 

of a batch process. 

     In this section, we take up a process consisting of two 

batch stages each of which includes only one batch item and 

a tank, as shown in Figure 3-7. By utilizing the example, 

we first derive several theorems for determining the volume 

of the tank. Then we develop a procedure for solving the 

optimal design problem. 

     In order to satisfy the given production requirement, 

 P,  the  batch  size  of  each  batch  stage,  Si,  must satisfy the 

following relationship: 
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Figure
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storage 
tank 1 

consisting of two

batch 
 stage 2 

stages and a tank

   Si / wi(Si) ? P(i = 1, 2)(3-5) 

where 

wi = the function representing the minimal cycle time 

          of the batch item in batch stage i. 

Then, the cycle time of each batch item, Wi, is given by 

Wi = Si / P(i = 1, 2)(3-6) 

     When the batch sizes, S1 and S2 and the cycle times, W1 

and W2, at both batch stages are determined to satisfy 

Egs.(3-5) and (3-6), both the accumulation of the inlet flow 

to and the depletion of outlet flow from the tank can be 

expressed by functions which have piecewise constant deriva-

tives with respect to time, as shown in Figure 3-8. The 

gradients of the slanting parts of the two broken lines are 

determined by the capacities of the feed and discharge pumps 

of the tank, respectively. t1 and t2 in the figure express 

the starting moments of the inflow from batch stage 1 to the 
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tank and the starting moment of the discharge from the tank 

to batch stage 2 in the first cycle, respectively. Hereafter 

the time lag between  t1 and t2 is called the discharge lag" 

of the tank. The vertical distance between the two broken 

lines represents the hold-up in the tank at every moment, 

and the maximum distance gives the minimum value of the 

necessary tank volume. By shifting the discharge lag, t2-t1, 

in Figure 3-8, the hold-up in the tank and its maximum value 

change. In other words, the volume of the tank is a function 

not only of the batch sizes and the cycle times of both 

batch stages, but also of the process timing of both stages, 

that is, the discharge lag, t2-t1.

 v6

Figure -8

Si

W~

  S2' -(4-11r771 

Accumulation 
depletion of

inlet flow 
to the tank-

               outlet flow 
               from the tank —111i/ ------ 
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                                  a 
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time                   i 
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the outlet flow from the tank
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     In order to simplify the further discussion of how to 

obtain the minimum value of the tank volume, V, it is, 

hereafter, assumed that the capacity of the feed pump of the 

tank is greater than that of the discharge pump of the tank. 

This assumption is, however not essential in the following 

discussion.  

' I n Figure 3-8, we represent the time when the accumula- 

tion of the inlet flow to the tank exceeds V0+iS1 and the 

time when the depletion of the outlet flow from the tank 

exceeds V°+iS1 by the symbols ^iand Vi, respectively. 

Then, it can be verified that the depletion of the outlet 

flow from the tank never exceeds the accumulation of the 

inlet flow to the tank, that is, the exhaustion of stored 

material never occurs if t2-t1 is chosen in such a way that 

the time ^i is always earlior than the timeVifor every i. 

     The relationship discussed above can be mathematically 

expressed as follows: 

     The input function to and the output function from the 

tank,  uf(t) and ud(t), are defined by the following equations.

of (t) =

ud(t) =

 Uf ;iW1< t~iW1+ S1/Uf1 

0 ; otherwise 

 (i = 0,1,2,...) 

Ud ; iW2< t iW2+ S2/Ud 

0 ; otherwise 
                               (i = 0,1,2,...) 
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where 

 Uj = the capacities of the feed  (j=f) and the 

          discharge (j=d) pumps of the tank per unit time . 

     By using above functions, the differential equation 

that the hold-up in the tank v(t) must satisfy can be 

derived as follows: 

   ddtt) = uf(t - t1) - ud(t - t2)(3-9) 

Then, the hold-up in the tank, v(t), is given by 

                 t 
v(t) = V04. [uf(s-t1) - ud (s-t2) ] ds 

0 

where 

V0 = the initial inventory in the storage tank. 

     From Eq.(3-9) and the assumption that Uf > Ud, the 

hold-up in the tank, v(t), takes on local minimum values at 

t = t1+iW1, where i = any non-negative integer. 'Therefore, 

v(t) > 0 holds for any t if and only if the following inequal-

ity is satisfied for any non-negative integer i. 

         0t1+iW1d     v(t1+iW1) = V+ iS1 - fu(s-t2)ds ? 0 (3-10) 

                           0 

                                                    (i = 0,1,2,...) 

     From Eq.(3-10), we can derive the condition in which the 

exhaustion of stored material never occurs.

- 107 -



      [Theorem  3-la] 

     It is presumed that the capasity of the feed pump, Uf, 

is greater than that of the discharge pump, Ud, and that the 

batch sizes, S1 and S2, and the cycle times, W1 and W2, of 

both batch units are determined to satisfy the given produc-

tion requirement P. Then both batch items can be operated 

in a steady cyclic condition without causing the exhaustion 

of stored material in the tank if and only if the discharge 

lag t2-t1 and the initial hold-up V0 are chosen so as to 

satisfy the following relationship: ! ! ) 

(1-P/Ud){ S2-(1-h). G.C.M. (S1,S)} - V0 s (t2-t1)P(3-11) 

where 

     h = mod[VO/G.C.M.(S1,S2),1] 

G.C.M.(X,Y) = the extended greatest common measure of X 

                    and Y; (see Chapter 2), 

     mod(X,Y) := X - trunc(X/Y)•Y 

     trunc(X) := the largest integer X. 

     [Proof of Theorem 3-la] 

          From Eq.(3-10), the time when the depletion of the outlet flow 

    from the tank, i.e. J~ ud(s-t2)ds exceeds VO+iS1, is given by 

         t2 + trunc[(V0+iS
l)/S2]•142 + mod(VO+iS1,S2)/Ud. 

         Therefore, Eq.(3-10) is satisfied if and only if the following 

    inequality holds: 

         t1 + iW1 t
2 + trunc[(VO+iS1)/S2].W2 + mod(VO+iS1,s2)/Ud 

                                (i = 1,2,...)(3-12) 
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     Here, following values are defined; 

    L  := S1/G.C.M.(S1,S2) = W1/G.C.M.(W1,W2)(3-13) 

    M := S2/G.C.M.(S1,S2) = W2/G.C.M.(W1,W2)(3-14) 

   H := trunc[V /G.C.M.(S1,S2)](3-15) 

   h := mod[V0/G.C.M.(S1,S2), 1](3-16) 

     By using Egs.(3-13) to (3-16), Eq.(3-12) is rewritten as 

follows: 

t2 - t1 ? {iL - trunc[(H+h+iL)/M]•M}.W1/L 

              - mod(H+h+iL ,M)•G.C.M.(S1,S2)/Ud(3-17) 

Since both H+iL and M are integers, we obtain 

trunc[(H+h+iL)/M] = trunc[(H+iL)/M](3-18) 

   mod(H+h+iL,M) = mod(H+iL,M) + h(3-19) 

From Egs.(3-13) to (3-19), the following equation is derived: 

(t2-t1)P i {mod(H+iL,M)+h}(1-P/Ud)•G.C.M.(S1,S2) - V0 (3-20) 

     Equation (3-20) is satisfied for any integer i if and only if 

Eq.(3-20) is satisfied for some i which maximizes the value of 

mod(H+iL,M). So the problem is to derive the integer which 

maximizes the value of mod(H+iL,M). 

     From Lemma 2-1 which is shown in Chapter 2, there exist some 

positive integers I and J which satisfy the following equation; 

I•L - J.M = (M - H - 1)•G.C.M.(L,M)
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     From the definition of L and M,  G.C.M.(L,M) = 1. Therefore, we 

     have the following result. 

I.L - J.M = M - H - 1, and 

           mod(H+I.L,M) = M - 1. 

          For any integer i, mod(H+iL,M) is less than or equal to M-1. 

     Then, we have 

     max{mod(H+iL,M)} = M - 1.(3-21) 
{i} 

     Consequently we can derive Eq.(3-11). 

(Q.E,D. of Theorem 3-la) 

     Next, the condition in which the storage tank does not 

overflow is explained by using the figure. 

     In Figure 3-9, the dotted line is obtained by making 

parallel displacement of the broken line representing the 

depletion of the outlet flow from the tank by the tank size 

V along the ordinate. The time when the value of the dotted 

line becomes V0+iS1 and that when the accumulation of the 

inlet flow to the tank becomes V°+iS1 are represented by the 

black and white circles, Ii and Oi, respectively. In that 

case, overflowing never occurs if the tank volume V and the 

discharge lag t2-t1 are chosen in such a way that the time 

Oi is always earlier than the timepifor every integer i. 

     The relationship stated above is mathematically descrived 

as follows; 

     From Eq.(3-9), the hold-up in the tank, v(t), takes on 
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local maximum values at t =  t1+(S1/Uf)+iWl, where i = 

non-negative integer. Therefore, V ? v(t) holds for 

if and only if the following inequality is satisfied 

non-negative integer i: 

    V ? v(t1 + S1/Uf + iWl) 

                      t1+(S1/Uf)+iW1 
    =VO+ (i+l)S

1 -ud(s-t2)ds 
                      0 

                                             (i = 0,1,2,...) 

     From this result, we can derive the condition in 

the overflowing from the tank does not occurs.

3 
0 

"- 0 

a~~ 
,C N 

_c 0 

O .c 
C 
OO 

C c 
•O .-47; 

 Q. 
u 0 
O -a

 any 

any 

for

t, 

any

(3-22)

which

 t~ 

Figure

 t2 

3-9. Geometric

to the t

    33 

explanation of

V

outlet flow 

from the tank

   time 

Theorem 3-lb

- 111 -



      [Theorem  3-1b] 

     It is presumed that the capasity of the feed pump, Uf, 

is greater than that of the discharge pump, Ud, and that the 

batch sizes, S1 and S2, and the cycle times, W1 and W2, at 

both batch units are determined to satisfy the given produc-

tion requirement P. Then both batch items can be operated 

in a steady cyclic condition without causing the overflowing 

from the tank if and only if the discharge lag, t2-t1, the 

initial hold-up, V0, and the tank volume, V, are chosen so 

as to satisfy the following relationship: 

     (t2-t1)P s V-V0-(1-P/Uf)S1+(l-r)(1-P/Ud)G.C.M.(S1,S2) 

                                                        (3-23) 

where 

     r = mod[(V - V0)/G.C.M.(S
1,S2),1] 

     [Proof of Theorem 3-lb] 

         Equation (3-22) is satisfied if and only if the time when the 

     depletion of the outlet flow from the tank becomes V0+(i+l)S
1-V is 

     earlier than or equal to t
i+(S1/Uf)+i141. That is, the tank does 

    not overflow if and only if the following inequality is s atisfied 

     for any non-negative integer is 

tl + S1/Uf + iW
l t2 + trunc{[V0+(i+1)S1-V]/S2}•W2 

                         + mod[V0+(i+1)S
1-V,S2]/Ud - di(3-24) 

                                               (i = 0,1,2,...) 

    where 
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 Here 

     R :_ 

     r :_ 

By using 

(3-25) an 

     t2- 

     If r which is dete 

6. becomes zero for eve 

as follow 

     (t2- 

From the fact that G.C. 

min{ 

{i} 

Then, it can be conclud 

integer i if and only i 

      (t2-

W2 - 52/Ud ; mod[V0+(i+l)S1-V,S2] = 0 

  0 ; otherwise 

defined by the following equations. 

/G.C.M.(S1,S2)](3-25) 

v.C.M.(S1,S2),l](3-26) 

which are defined by Egs.(3-13), (3-14), 

3-24) is rewritten as follows: 

/Uf - trunc{[(i+1)L-R-r]/M}•W2 

)L-R-r,M]•G.C.M.(S1,S2)/Ud + di(3-27) 

 which is determined by Eq.(3-26) is not equal to zero, 

s zero for every i. In this case, Eq.(3-27) is rewritten 

+1)L-R-1,M]+1-r}(1-P/Ud)•G.C.M.(S1,S2) 

f)S
1 + V - V0(3-28) 

fact that M. (L,M) = 1, 

,M]}=0 

can be ed that Eq.(3-28) is satisfied for any 

 if and only if the following equation is satisfied: 

-r)(1 - (1-P/Uf)S1 

 + V - V0(3-29) 
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          If r = 0,  Eq.(3-27) can be rewritten as follows: 

          (t2-t1)P <d.P + mod[(i+l)L-R,14](1-P/Ud)•G.C.M.(S1,S2) 

                  - (1-P/Uf)S1 + V -V(3-30) 

          For any integer i, following inequality is satisfied. 

óP + mod[(i+l)L-R,M1(1-P/Ud)•G.C.M.(S1,S2) 

(1-P/Ud)•G.C.M.(S1,S2) 

    This inequality shows that Eq.(3-30) holds for any integer i if 

Eq.(3-29) holds. From Eq.(3-29), Eq.(3-23) is derived. 

                                                (Q.E.D. of Theorem 3-1b) 

     For the case where the capacity of the feed pump is 

smaller than that of the discharge pump, the condition in 

which the exhaustion of stored material never occurs can be 

stated as follows: 

"The exhaustion of stored material never happens if and 

only if the time when the accumulation of the inlet flow 

becomes iS2 is earlier than the time when the depletion of 

the outlet flow becomes iS2 for every integer i." 

     Moreover, the condition in which the overflowing from 

the tank never occurs can be stated as follows: 

     "The overflowing from the tank never occurs if and only 

if the time when the depletion of the outlet flow exceeds 

iS2 is earlier than the time when the accumulation of the 

inlet flow exceeds V+iS2 for every non-negative integer i." 

     Even for these cases, we can also derive the results 
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similar to that shown in Theorem  la and Theorem lb. The 

results for both cases that Uf > Ud and Uf < Ud can be 

summerized as the following theorem. 

     [Theorem 3-2] 

     It is presumed that the batch sizes and cycle times of 

both batch stages are determined so as to satisfy the given 

production requirement, and that the initial inventory in a 

storage tank is given a priori. Then both stages can be 

operated in a steady cyclic condition without causing 

either the overflow or the exhaustion of stored material in 

the tank if and only if the capacity of the storage tank, V, 

and the discharge lag, t2-t1, satisfy the following inequal-

ities: 

(1-P/Ud)S2 - V0 - (1-b)(1-h)•G.C. .(S1,S2) 1- 

< (t2 P~ ~. ~~-A23-)~ (3-31) 
< V - V - (1-P/Uf)S

1 + (1-b)(1-r)•G.C.M.(S1,S2)(3-32) 

where 

  b = P/min(Uf, Ud)(3-33) 

   h = mod[V0/G.C.M.(S1,S2), 1](3-16) 

    r = mod[(V - V0)/G.C.M.(S1, S2), 1](3-26)

by using the result of Theorem 3-2. 

     By eliminating  (t2-tl)P from Eqs.(3-31) and (3-32), 

Egs.(3-31) and (3-32) can be rewritten as follows: 
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 [(1-P/Uf)S1 + (1-P/Ud)S2 - V0]/G.C.M.(S1,S2) - (1-b)(2-h) 

 R + br(3-34) 

where 

R = trunc[(V - V0)/G.C.M.(S1,S2)](3-25) 

     If batch sizes of both batch units, capasities of the 

feed and discharge pumps and the initial hold-up in the tank 

are given, the value of the left-hand side of Eq.(3-34) can 

be calculated. From Egs.(3-25) and (3-26), the capacity of 

the tank is given by 

     V = V0 + (R+r)G.C.M.(S1,S2). 

     Then the minimum value of the necessary tank volume can 

be obtained by minimizing R+r under the constraint of 

Eq.(3-34). Let the left-hand side of Eq.(3-34) be Q. Then 

R must be equal to or greater than trunc(Q), since b.r < 1. 

If mod(Q,l) < b, trunc(Q) + mod(Q,1)/b is the minimum value 

of R+r which satisfies Eq.(3-34). If mod(Q,1) > b, R must 

be greater than trunc(Q). Therefore, trunc(Q)+1 is the 

minimum value of R+r which satisfies Eq.(3-34) for this 

case. On the other hand, R+r must be greater than or equal 

to zero from the definitions of R and r. Consequently, we 

obtain the following theorem. 

      [Theorem 3-3] 

     When the batch sizes and the cycle times of both batch 

stages are determined so as to satisfy the given production 
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requirement, the minimum tank volume is given by the follow-

ing equation: 

 V  1 {trunc(Q') + min[mod(Q',1)/b,l]}G.C.M.(S1,S2) + VO 

whe e(3-35) 

Q = [(1 - P/Uf)S1 + (1 - P/Ud)S2 - VO]/G.C.M.(S1,S2) 

        - (1-b) (2-h) 

Q' = max(Q, 0) 

     h = mod[VO/G.C.M.(S1,S2), 1] 

b= (P/min(Uf,Ud) 

     From Eq.(3-35), it is clear that the tank volume V is a 

function not only of the batch sizes of both batch stages 

but also of the initial hold-up in the tank. When the batch 

sizes of both stages are given, the relationship between the 

tank volume given by Eq.(3-35) and the initial hold-up is 

shown in Figure 3-10. There are many cases where the initial 

hold-up is not given a priori and the appropriate value can 

be chosen as the initial hold-up. In this case, the follow-

ing result can be obtained. 

     [Corollary 3-1] 

     It is assumed that the initial hold-up can be arbitrar-

ily chosen. Then, the initial hold-up V0 which minimizes 

the tank volume V given by Eq.(3-35) is zero.
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[proof of Corollary 3-1] 

     Let D and d be real numbers which satisfy 

equations. 

    D = trunc{[(1-P/Uf)S1+(1-P/Ud)S2]/G.C.M.(S 

    d = [(1-P/Uf)S1+(1-P/Ud)S2]/G.C.M.(S1,S2) 

By using above equations, Q can be rewritten as 

    Q = D + d - H - bh

the

1

following

,S2) - 2(1-b)) 

2(1-b) - D 

follows:
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i) The case where Q > 0 is first considered. 

     In this case, the tank volume V is given by 

     V =  {trunc(D+d-bh)+min[mod(d-bh,l)/b,l]+h}.G 

According to values of b and d, the tank volume V 

more simplly as follows: 

Case i-1) d ? 2b 

     V = (D+l+h)•G.C.M.(S1,S2) 

Case i-2) 2b > d z b 

          (D+l+h)G.C.M.(S1,S2);0=<h < d/b - 1 
V = 

          (D+d/b)G.C.M.(S1,S2);d/b - 1 5 h < 1 

Case i-3) b > d ? 0

V =

     For these 

minimum value 

ii) Next the ca 

     In this ca 

the initial 

V0 must satisfy 

    V0 ?

.C.M.(S1 

can be

,S2) 

expressed

(D+d/b)G.C.M.(S1,S2) ; 0 < h < d/b 

(D+h)G.C.M.(S11S2);d/b 5 h < 1 and (l+d)/b ? 1 

                or d/b 5 h < (l+d)/b-1 and (l+d)/b < 

[D-1+(l+d)/b]G.C.M.(S1,S2) ; (l+d)/b-1 h < 1 

                            and (l+d)/b < 1. 

aese three cases, it is clear that H = h = 0 gives the 

lue of V. 

ae se where Q 0 is considered. 

Ls se, the minimum value of the tank volume is equal 

hold-up in the tank. From the constraint that Q 5 0 

     the following inequality: 

min(d/b,l)]G.C.M.(S1,S2) 
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             The value of the right-hand side of above inequality is 

        equal to the tank volume which is given for the case where H = h = 

                                              [Q.E.D. of Corollary 3-1] 

        From Theorem 3-3, the following corollary is also 

  derived. 

        [Corollary 3-2] 

       It is assumed that the initial hold-up in the tank V0 

  is zero, and that the feed and discharge pumps have the same 

  capasity U which satisfies the following inequality: 

       U/P  ? [S1 + S2 - G.C.M.(S
1,S2)]/G.C.M.(S1,S2). 

 Then the minimum tank volume is given by 

   V = S1+ S2- 2•G.C.M.(S1,S2)f)( (3-3E 

       Corollary 3-2 shows that the minimum tank volu me is 

 given by Eq.(3-36) if the cycle time of each batch stage is 

 sufficiently long compared with the time nec
essary for 

 feeding to and discharging from the ta nk. 

      For the case in which Uf=Ud and V0=0
, the value of 

S1+S2-2•G.C.M.(S
1,S2) is greater than or equal to the minimum 

 tank volume V which is given by E
q.(3-35) regardless of the 

 capacities of pumps . Therefore, the tank volume V given by 

Eq.(3-36) is large enough to contin
ue the steady operation 

 of the process for the case where Uf=Ud and 0=0 . 
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 Consequently, the optimal design problem of a process 

shown in Figure 3-7 can be mathematically formulated as 

follows: 

Minimize 

P.I. = p1(S1) + P2(S2) + q(V)(3-37) 

subject to 

   Si / wi(Si)?P(i.= 1, 2)(3-5) 

V = f(S, S2)(3-38) 

where 

     f = a function representing the tank volume obtained by 

          Theorem 3-3 or its corollary. 

     Since the tank volume is determined as a discontinuous 

function of the batch sizes, it is almost impossible to 

analytically solve the above problem. So, dependence on 

some direct search method is unavoidable. 

     Let's explain how the optimal batch sizes and the 

optimal tank volume are determined, by using a simple example. 

In this example, it is assumed that the processing capacities 

of both batch stages are given as shown in Figure 3-11, and 

at the same, the necessary tank volume is given by Eq.(3-36). 

As is clear from Figure 3-11, the batch sizes, of both batch 

stages 1 and 2 have to be equal to or greater than 100 and 

30, respectively, so as to satisfy the given production 

requirement P. By increasing the batch sizes, S1 and S2, 
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   more than the minimum values, the necessary volume of the 

   tank may decrease drastically when G.C.M. of  Si and S2 

   becomes very large, as is easily understood from Eq.(3-36). 

        For example, when Si is fixed at 100, the necessary 

   tank volume V changes as shown in Figure 3-12. The necessary 

   tank volume increases monotonically at almost every point in 

   accordance with the increase of S2. But at several points, 

   in this case when S2 is 33.3, 50 and 100, the necessary tank 

   volume V decreases drastically as shown by the black points 

   in the figure. Therefore, the high possibility exists of 

   being able to decrease the total investment cost resulting 

   from the drastic decrease of the necessary tank volume at 

   these three points. In other words, we can find the optimal 

   batch sizes of both batch stages and the optimal volume of 

   the tank by checking very few candidates for the optimal 

   solution, as shown here. 

        In regard to this point, the following theorem can be 

   derived. 

         [Theorem 3-4] 

        When the tank volume, V, is determined by Eq.(3-36), 

   the optimal batch sizes of both batch stages which minimize 

Eq.(3-37), satisfy either of the following relationships: 

        Si = Si 
                                                            (3-39)          S2= S2 

or 
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 Si =  S1(3-40) 

       S2= S*.trunc[(M*N'/N*)+1]/N' 
                                      (N' = 1, 2, ..., N*-1) 

or 

       S1 = S2•trunc[(N*M'/M*)+1]/M' 
                                                       (3-41) 

      S2= S2 

                                      (M' = 1, 2, ..., M*-1) 

where 

S* = the minimal batch size of batch stage i 1 

N* = Si / G.C.M.(Si,S2)(3-42) 

   M* = S2 / G.C.M.(St,S2)(3-43) 

     [Proof of Theorem 3-4] 

          We give the proof according to the following four cases. 

    Case 1) S1= Si,S2=S2 

          We first consider the case where the batch size of each batch 

     stage is equal to its minimal batch size, respectively. From 

Egs.(3-42) and (3-43), we have 

   S2/S* = M*/N*(3-44) 

     And the tank volume V* is given by 

V* = S* + S* - 2•G.C.M.(S*,S*) = [(M*+N*-2)/N*]S*(3-45) 
21 

    Case 2) S1= Si,S2>S2 

          We next enumerate the candidates for the optimal batch sizes 

     for the case where S2 is greater than S. 
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     Let 

          S2 =  (M"/N')S* 

where M" and N' are both natural numbers and they are relatively 

prime. Then the tank volume V is given by the following equation. 

     V = S* + S2- 2•G.C.M.(S*,S2) = [(N'+M"-2)/N']S* (3-46) 

     As S2 is greater than S2,performance index is smaller than 

Case 1 only if V is smaller than V*_ And, by Egs.(3-44) to (3-46), 

V < V* satisfies only if N* > N'_ When N' is fixed to a certain 

number, both V and S2 can be minimized by making M" as small as 

possible so far as M" satisfies the following inequality. 

(M"/N')Si > (M*/N*)S1(3-47) 

     The minimal value of M" which satisfies Eq.(3-47) is given by 

M" = trunc(M*N'/N* + 1) 

     As the result, for this case the candidates for the optimal 

batch sizes are given by Eq.(3-40). 

Case 3) Sl> Si,S2= S2 

      For this case, we can prove in the same manner as shown in 

Case 2, that the candidates for the optimal batch sizes of both 

batch stages are given by Eq.(3-41). 

Case 4) S1> Si,S2> S2 

     We finaly show that for this case there are no candidates for 

the optimal batch sizes. 

     Let S1 ( >S*) and S2( >S2) be arbitrary batch sizes of batch 
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 stage 1 and 2, respectively. Then, there exist some natural numbers 

 m and n which satisfy 

  S2/S1 =  m/n,(3-48) 

 where m and n are assumed to be relatively prime. 

      In this case, the tank volume V is given by 

      V = S1 + S2 - 2•G.C.M.(S1,S2) = [(m+n-2)/n]S
1(3-49) 

      The batch sizes of both batch stages, S
1 and S2, satisfy one of 

 the following two equations. 

  S2/S1?S2/Si(3-50) 

or 

  S2/S1< SZ/Si(3-51) 

So, we first show that the batch sizes , S1 and S2, which satisfy 

Eq.(3-50) are not optimal . 

     Let 

 S'2 (S2/S1)S
1(3-52) 

then S2 satisfies the following inequality . 

 S2<S2< S2(3 -53) 

From Egs.(3-48) and (3-52)
, we have 

     S2/S1= m/n. 
                                                          (3-54) 

Eq.(3-54) shows that when the bat
ch sizes of both batch 

stages are Siand S2,respectively, the tank volume V' is given by 

the following equation
. 
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 V' = S* + Sz- 2•G.C.M.(Si,SI) 

           = [(m+n-2)/n]St 

  V(3-55) 

Eqs. (3-53) and (3-55) show that the batch sizes, S1 and S2, 

     which satisfy Eq. (3-50) are not optimal. And we can prove in the 

     same manner as shown above that the batch sizes which satisfy 

Eq. (3-51) are not optimal. 

          Consequently we can conclude that every candidate for the 

     optimal batch sizes of both batch stages is given by Eqs. (3-39) to 

     (3-41). 

                                                   (Q.E.D. of Theorem 3-4) 

     Theorem 3-4 ensures that the optimal solution can be 

obtained by comparing no more than (M*+N*-1) number of 

cases. 

     Irrespective of the pump capacities, the tank volume 

determined by Eq. (3-36) is large enough to guarantee the 

smooth operation of the whole process. Therefore, the 

algorithm developed here could be widely used for the design 

of more general processes with an intermediate storage tank.
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 5. A General Batch Process Consisting of Multi-Batch Stages 

      In this section, the way that the relationships and the 

 algorithms developed in the previous sections can be applied 

to solve the problem of the optimal design of a general 

batch process, as shown in Figure 3-1, is demonstrated. 

      First, consider the relationship between the batch size 

and the number of batch items in each stage. A series of 

batch stages between two consecutive tanks is hereafter 

called "a subprocess". The batch size of each stage,  S
i, in 

a•subprocess should be identical. This batch size, that is , 

the amount of production of the subprocess per batch, is 

called "the batch size of its subprocess". i .e. 

    Si = S~ (i 6 G. • j = 1, 2, ..., K)(3-56) 

where 

Sj = the batch size of subprocess j , 

Gj = a set of suffixes representing the order of 

           batch stages in subprocess j. 

      In order to satisfy the given production requirement
, 

P, the batch size, Si, and the number of parallel batch 

items, Ni, in batch stage i have to satisfy the follo wing 

relationship: 

  S.N./ wi(Si)?P(3-57) 

     When the batch size of each stage i s once fixed, the 

minimum number of parallel batch ite
ms in each stage can be 
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uniquely determined from  Eq.(3-57). It is also clear that 

in each batch stage the installation of redundant parallel 

items more than the minimum number obtained from the above 

relationship, is not optimal. Therefore, the optimal number 

of parallel batch items in each stage is expressed by the 

following function of the batch size of each stage: 

Ni = IIP•wi(S')/S.II(i. = 1, 2, ..., B) (3-58) 

where 

°xi] := the minimum integer ? x. 

     For example, it is assumed that a subprocess consists 

of two batch stages and that the processing capacities of 

both stages are given as shown in Figure 3-5. Then, the 

optimal number of parallel batch items in each stage can be 

derived as a function of the batch size as shown in Table 3-2.

Table 3-2. Number of parallel batch items and batch size

 number of 

batch items 

 N1 N2

 range of 
batch size 

(S1 ; i=1,2)

1 

2 

2 

3

1 

1 

2 

2

S1< SisS0 

S2sSi< S1 

Sa s Si < S2 

Sb5Si< Sa
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     Next, how to determine the  volume  of an intermediate 

storage tank between two subprocesses is considered. The 

volume of each storage tank j, Vj, can be obtained as a 

function of the batch sizes of the subprocesses before and 

after the tank as shown in Theorem 3-3, i.e. 

    Vj = fj(Sj, Sj+1) (j = 1, 2, ..., K-1)(3-59) 

     From the above discussion, the optimal design problem 

can be mathematically formulated as a problem aimed at 

finding the number of parallel batch items, Ni, the equipment 

size of the batch item (= batch size), Si, in each batch 

stage and the volumes of storage tanks, Vj, so as to minimize 

Eq.(3-1), subject to Eqs.(3-56) to (3-59). 

     By assuming the batch sizes of all of the subprocesses, 

all of the variables in the process and the performance 

index can be calculated from Eqs.(3-1), (3-56) to (3-59). 

Therefore, the optimal solution to the problem formulated 

above can be obtained by letting the batch sizes of all of 

the subprocesses be free variables and performing the search 

in the feasible domain of these free variables. 

     Since the number of parallel batch items and the storage 

tank volume determined from Egs.(3-58) and (3-59) are not 

continuous functions of batch sizes, the searching procedure 

has to be performed by applying a direct search method . 

     Here, two practical cases will be considered , and algo-

rithms which can be used to find the exactly optimal solution 

in a very small number of searching steps will be developed .
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     First, a case is considered where the process consists 

of two subprocesses and an intermediate storage tank, and 

the tank volume can be determined by Eq.(3-36). By utilizing 

an example, the way that the optimal solution can be obtained 

is shown. It is assumed that the process consists of three 

batch stages and an intermediate storage tank, as shown in 

Figure 3-13, and that the performance index is given by the 

following equation: 

 3 
 P.I. = E Ni.ai.Sa+ b•VS(3-60) 

i=1 

where 

     a1= 3, a2= 2, a3= 3, b = 1, a = (3=  0.7 . 

     Then the optimal solution can be obtained by the 

following procedure: 

i) By applying the algorithm mentioned above to each 

subprocess before and after the tank, find the relationship

 Cl'7 C

Figure

batch  stage  1 batch stage 2 storage tank 

  subprocess 1

3-13. Process consisting of two

batch stage 3 

subprocess 2

subprocesses and a tank
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between the batch size and the minimum number of parallel 

batch items in each batch stage. Next, make the result 

obtained for each subprocess into a table similar to that 

shown in Table 3-2. For the example shown in Figure 3-13, it 

is assumed here that two tables are obtained as shown in 

Table 3-3. The first part of each row in the table shows 

the minimum number of parallel batch items necessary for 

each batch stage, and the second part shows the range of 

batch size for which each batch stage can be composed of 

parallel batch items the number of which is indicated in the 

first part of the same row. 

                          Number of parallel batch items 
              Table 3-3. and range of batch size

3-3a. subprocess 1 3-3b. subprocess 2

 number of 

batch items 

 N1 N2

  range of 
 batch size 

 g1=S1=S2 [m3]

 number of 
batch items 

    N3

 range of 
batch size 

62=S3 [m3]

1 

2 

2 

3

1 

1 

2 

2

10 S gl s 15 

6 s gl < 10 

4 4 gl < 6 

3 g gl < 4

1 

2

5 

2.5

S g
2 10 

S2 < 5
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ii) Choose a row from each table.  Then, each subprocess 

can be composed of batch stages each of which consists of 

parallel batch items the number of which is indicated in the 

first part of that row. 

     For example, we choose the first rows in Table 3-3a and 

3-3b which correspond to the case where N1=N2=N3=1. Then, 

the feasible range of the batch size for each subprocess is 

given as follows: 

    10 < S1 < 15 , 5 5 S2 < 10 [m3] 

iii) By applying the algorithm developed based on Theorem 3-4 

to the subprocesses constructed above, and performing a 

search with respect to the batch sizes of both subprocesses, 

find the optimal batch size of each subprocess, the optimal 

volume of the tank and the value of the performance index. 

     For the case in which N1=N2=N3=1, the minimum batch 

size of subprocess 1, Si, is 10 m3, and that of subprocess 

2, S2,is 5 m3. From Theorem 3-4, the candidates for the 

optimal solution can be obtained as follows: 

     The candidate which is derived from Eq.(3-39) is 

S1 = 10 m3, S2 = 5 m3. 

Then, the volume of the tank which is determined from Eq.(3-36) 

is 5 m3. 

     The value of N* and M* in Egs.(3-42) and (3-43) are 2 

and 1, respectively. Therefore, the value of N' which 

satisfies Eq.(3-40) is 1. When N' = 1,S1, S2 and V are 
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obtained from  Egs.(3-40) and (3-36) as follows: 

       1=10m3,, S2 = 10 m3, V = 0 m3. 

      Since M* = 1, there is no M' which satisfies Eq.(3-41). 

Therefore, in this case there are only two pairs of candidates 

of the optimal batch sizes and the tank volume: 

      (S1 = 10 m3,S2 = 5 m3, V = 5 m3) 

(S1 = 10 m3, S2 = 10 m3, V = 0 m3) 

     By substituting the value obtained above into Eq.(3-60), 

we can find the pair which minimizes the performance index. 

iv) Choose a different row from each table and return to 

step iii). 

      In the case where N1 = 2, N2 = 1, and N3 = 1, the pairs 

of S1 and S2 which satisfy Egs.(3-39), (3-40) and (3-41) can 

be obtained as shown in Table 3-4. The value of the perform-

ance index for the given S1 and S2 is also shown in Table 

3-4. In this case, the performance index is minimized for 

Sl = 6 m3,S2 = 6 m3 and V = 0 m3. 

     Repeat this procedure until the selection of a row from 

each table covers all of the combinations of the rows in the 

two tables. Then, for all the pairs of N
1, N2 and N3, 

pairs of Sl, S2 and V which minimize the given performance 

index can be finally obtained as shown in Table 3-5. Among 

the solutions obtained and shown in Table 3-5 , find the one 

which minimizes the performance index . This is the optimal 

solution. For this example , the optimal solution is given 
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Table 3-4.

Candidates for 
(for the case

 the 

where

optimal 

 N,=2, N
1

solution 

2=N3=1) 

 batch size 

of subprocess 

S1 S2

 tank 

volume 

 V

performance 
   index 

P.I.

6[m3] 

6 

6.25 

6.67 

7.5

6[m3] 

5 

5 

5 

5

O[m3] 

9 

8.75 

8.33 

7.5

38 

41 

42 

43 

46

.56 

.95 

.67 

.85 

.14

Table 3-5.

Relationship 

batch items

between 

and the

 the number 

performance

of 

index

 number of 

batch items 

N1 N2 N3

batch size of 
subprocess 

S1 S2

 tank 

volume 

 V

performance 
  index 

P.I.

1 

2 

2 

3 

1 

2 

2 

3

1 

1 

2 

2 

1 

1 

2 

2

1 

1 

1 

1 

2 

2 

2 

2

10 [3] 

  m 6 

5 

3 

10 

 6 

 4.5 

3

5 [m3] 

6 

5 

6 

2.5 

3 

2.5 

3

5 [m3] 

0 

0 

3 

7.5 

3 

6 

0

37. 

38. 

40. 

40. 

40. 

43. 

43. 

41.

40 

56 

11 

72 

55 

14 

56 

00
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as follows. 

     N1 = N2 = N3 = 1, 

 S1  =  S2  =  10  m3, S3 = 5 m3, V = 5 m3. 

     So far, it has been assumed that the equipment size at 

each batch stage can be chosen arbitrarily. But it often 

happens that only batch items in standard sizes are available. 

Therefore, for a general batch process system as shown in 

Figure 3-1, it is necessary to consider the case where the 

batch size of each subprocess can take only discrete values. 

     From the facts that the performance index is given by a 

sum of the term related to each batch stage and the one 

related to the intermediate storage tank, and that the tank 

volume is determined only by the batch sizes of the subproc-

esses before and after the tank, the optimal solution can be 

obtained by applying "Dynamic Programming". 

     Rewrite the performance index given by Eq.(3-1). Let 

hj denote a part of the performance index related to storage 

tank j and subprocess j+l adjacent to it. Then hj is 

expressed by the following equation: 

hj(S1, Sj+1) E lP.wi(Sj
+1)/sj+iII•pi(sj+1) i6G

j+1 

                + (l-6Oj)gj(fj(Sj, Sj
+1))(3-61) 

(.j = 0, 1, 2, ..., K-1) 

where 
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          = Kronecker's delta 

           = 0 .  SO 

     Let 

Hj(Sj+i) := min { E hi(gi, Si+1)1 (3-62) 

then 

Hj (s"j+1) = min[hj(Sj,Sj+l) + Hj _1(Sj) ] (3-63)            {S

j 

By introducing the functions defined above, the problem 

formulated by Egs.(3-1), (3-56), (3-57), (3-58) and (3-59) 

can be restated as follows: 

     Minimize 

HK-1(SK) 

subject to Egs.(3-56) to (3-63). 

Hj(Sj+1) can be determined by calculating Eq.(3-63) for 

discrete values of the batch size of subprocess j. Therefore, 

the optimal value of the performance index HK_1 can be 

obtained by calculating Hj one after another for all subproc-

esses from 1 to K.
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6. Discussion and Conclusion 

     The problem of the optimal design of general processes 

consisting of multi-batch stages and intermediate storage 

tanks has been dealt with. 

     First, a simple process consisting of two batch stages 

was taken up and an algorithm was developed for determining 

the optimal number of parallel batch items and the optimal 

equipment size of the batch item by utilizing the fact that 

the batch size and the cycle time of each stage must be 

identical. 

     Next, a process consisting of two batch stages and one 

storage tank was considered. By installing a storage tank 

between two batch stages, the cycle times and batch sizes of 

the batch stages before and after the tank can be arbitrarily 

chosen. It was shown that the minimum tank volume can be 

given by a function of the batch sizes of both stages. A 

theorem was derived such that if the time necessary for 

feeding to and discharging from the tank is fairly short 

compared with the cycle time of each batch stage, the tank 

volume can be given by a very simple equation as follows: 

     tank volume = S1 + S2 -  2•G.C.M.(S1,S2)(3-36) 

where S1 and S2 are the batch sizes of the batch stages 

before and after the tank. 

     For a general process, it was shown that the number of 

parallel batch items, the size of its equipment and the 
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 volume of a storage tank can be determined by a function of 

 the batch sizes of the subprocesses, respectively. 

       For two practical cases where the process consists of 

 two subprocesses and a storage tank the volume of which can 

 be determined by  Eq.(3-36), and where only standard batch 

 items are available, algorithms by which the optimal solution 

 can be easily obtained were derived. 

       In this study, it is assumed that the capacities of the 

 feed and discharge pumps are known. The pump capacity 

 affects the cycle time of a batch item. Therefore, when the 

 cost of pumps cannot be neglected compared to the cost of 

 batch items and storage tanks, the optimal design problem 

 taken up here could be solved by utilizing a two level 

 approach. In it the determination of the capacities of the 

 pumps are performed at the upper level, and the determination 

 of the number of batch items, the size of its equipment and 

 the volumes of the storage tanks is done at the lower level. 

       Moreover, an attempt was made to develop an effective 

 method of solution without assuming any concrete functions 

 about the equipment cost, the minimal cycle time nor proc-

 essing capacity of each batch item. Thus, the algorithms 

 developed in this chapter have wide applicability in the 

 solution of more general batch processes. 

       In order to mathematically express a batch process, a 

 deterministic model was used, and some interesting results 

 were derived. However, in an actual batch process there 

 are many uncertainties. The processing times vary ,
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environmental conditions change, and production requirements 

and/or production schedules change with the market environment. 

Therefore, much effort has to be devoted to develop some 

effective design methods which enable us to make rational 

design and operation decisions for any kind of batch process, 

even though there are various uncertainties. The design 

problem of a flexible batch process is taken up in Chapter 4.
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Nomenclature

B = number of batch stages 

 Ci = processing capacity of batch stage i 

 ci = processing capacity of the batch item in batch stage i 

f,(fj) = function representing the volume of the tank (tank j) 

Gj = a set of suffixes representing the order of batch 

      stages in subprocess j 

K = number of subprocesses 

Ni = number of parallel batch items in batch stage i 

P = production requirement per unit time 

pi= cost function of a batch equipment in batch stage i 

q,(qj)=cost function of intermediate storage tank (tank j) 

Si = batch size of batch stage i 

( = equipment size of a batch item in batch stage i) 

Si = batch size of subprocess i 

t1 = starting moment of the inflow from batch stage 1 

      to the tank in the first cycle 

t2 = starting moment of the discharge from the tank to 

      batch stage 2 

Uj = capacities of the feed pump (j=f) and the discharge 

     pump (j=d) of the tank per unit time 

u3 = input (j=f) and output (j=d) functions to and from 

      the tank 

V,(Vj) = volume of the intermediate storage tank (tank j) 

V~ = initial hold-up in the tank 

v = hold-up in the tank

- 141 -



 W. = 

wi

cycle time of 

minimum cycle

the 

time

batch item in 

of the batch

batch 

item

 stage i 

in batch stage i

Other symbols

G.C.M.(X,Y) = extended greatest common measure of X and Y 

mod(X,Y) = X - trunc(X/Y).Y 

trunc(X) = the largest integer which is equal to or less 

            than X 

IIXII = the minimum integer which is equal to or greater 

      than X
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1. Introduction 

 Many batch processes are utilized for producing products 

with high added values. Such processes usually necessitate 

so-called sophisticated operations, such as reactions with 

complex reaction-paths and/or long reaction times, and the 

processing of solid materials which are very difficult to 

handle. 

      In such a sophisticated batch operation, there are many 

uncertainties. Often there are cases in which the processing 

time and/or cleaning time of each batch unit becomes shorter 

or longer than the scheduled ones. It also happens that the 

amount of material processed in a batch, that is, the batch 

size, often changes from the preassigned nominal value. 

     When each batch unit is connected in a series, the 

outlet flow from the precedent batch unit directly becomes 

the inlet flow to the next unit. Therefore, the variations 

in processing time and/or batch size in a certain unit 

affect the operation schedule and the batch size of the 

whole process. That is, these variations cause problems 

such that the operation schedules and/or the batch sizes of 

other batch units have to be readjusted. From the practical 

viewpoint, however, such readjustments are unfavorable 

because usually operators are forced to do some excessive 

work which sometimes leads to dangerous mis-operations . 

     In some batch units, it might be impossible to amend 

the preassigned schedule , i.e. it is absolutely necessary to
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strictly operate those batch units in accordance with the 

fixed schedule. 

     In designing a batch process in which the variations 

mentioned above might easily occur, it is indispensable to 

develop some countermeasures so as to decrease the unfavorable 

effect caused by the variations. As a promising counter-

measure to avoid the propagation of such unfavorable influ-

ences on the other batch stages, it is most effective to 

install an intermediate storage tank between batch stages. 

By installing a storage tank between two batch stages, the 

outlet flow from the precedent stage is stored in the tank 

and does not immediately become the inlet flow to the batch 

stage following the tank. Therefore, the storage tank 

installed between two batch stages can absorb any influence 

due to the variation in the operation which occurred in the 

previous batch stage and prevent the propagation of the 

influence on the batch stage following the tank. 

      In Chapter 3, the optimal design procedure was developed 

for a batch process consisting of many batch stages and 

intermediate storage tanks without taking into account the 

uncertainties in each operation. In this chapter, we deal 

with the problem of how to design a flexible batch process 

in which the storage tanks never overflow nor run out of 

stored material, and moreover the preassigned regular opera-

tions are kept in other batch stages, even though the batch 

size and the processing and cleaning times of a batch stage 

vary due to various uncertain causes and/or mis-operations. 
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2. Description of the Problem 

     A general single product batch process consists of many 

batch stages and intermediate storage tanks as shown in 

Figure 4-1. In this chapter, the problem of how to design a 

flexible batch process which can absorb unfavorable effects 

due to some uncertainties is considered. 

     In order to clarify the problem, the following assump-

tions are first introduced: 

i) The capacities of the feed and discharge pumps of the 

     batch stages are known. 

ii) Each batch stage consists of one or more identical 

     items of batch equipment in parallel. Every batch item 

     in a batch stage is periodically operated with the same 

     cycle time by delaying its starting moment at equal 

      intervals. 

 iii)  The  minimal  cycle  time  of  the  batch  item,  wi,  is a 

function of the batch size of the batch stage, Si. The 

     processing capacity of the batch item, ci, is a

4-1  ~ r
- c Vol gr cxD

tank 1

C D

stage 2 41- tank 2 stage 4 tank 3 stage

3

----)..

5
stage 1

stage

Figure 4-1. Schematic diagram of a general batch
process
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     monotonically increasing function of the batch size of 

     the batch stage, Si. 

iv) The process does not cause any volume changes in the 

     flow, and the equipment size of the batch item and the 

     batch size of the batch stage are measured by the same 

      unit. 

v) Possible places where an intermediate storage tank can 

     be installed are known. A series of batch stages 

     between two consecutive tanks is called "a subprocess". 

     In the process shown in Figure 4-1, many different 

kinds of variations may occur in its real operation due to 

various uncertainties. However, here we consider only the 

two most essential, different kinds of variations, that is, 

the variation in the operation schedule and that in the 

batch size. 

     In order to make the discussion clearer, the following 

assumptions are further introduced: 

vi) Even though variations in the duration times of the 

     operation steps such as the filling, processing, dis-

     charging and cleaning of a certain batch unit in a 

      subprocess occur due to some uncertain causes, the 

     operation of the subprocess can be continued by read-

     justing the operation schedules of the other batch 

     units contained in the same subprocess. Therefore, the 

     variations in the starting moment of the outflow from a 

     tank to the first batch unit in a subprocess (i.e. the 

     starting moment of the outflow from a tank) and in the 
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starting moment of the inflow from the last batch unit 

in a subprocess to a tank (i.e. the starting moment of 

the inflow to a tank) only are considered in this 

study. The ranges of delay and advance in the starting 

moments of the inlet flow to and the outlet flow from 

each storage tank from the original scheduling time are 

moreover assumed to be given a priori. 

     When a variation in the starting moment of the 

inflow to the tank occurs in a certain batch, the 

process is presumed to be operated according to the 

operation schedule as shown in the following: In every 

periodical operation after the variation has occurred, 

the starting moment of the inflow to the tank is shifted 

from the originally scheduled starting moment by the 

size of the variation. On the other hand, the starting 

moment of the outlet flow from the tank is not changed 

but is kept exactly the same as that of the original 

schedule. The variation in the starting moment of the 

inflow to the tank is defined as  "allowable" if and 

only if the tank does not overflow nor run out of 

stored material even though the whole process is period-

ically operated according to the readjusted schedule 

mentioned above. 

     As for the variation in the starting moment of the 

outlet flow from the tank, the "allowable variation" is 

similarly defined as the variation in the starting 

moment of the inlet flow to the tank. 
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vii) In regard to the variations in batch sizes, the upper 

limit of these variations is known a priori. Moreover, 

the upper and lower bounds of the total sum of the 

variations in the batch size of a batch that is flowed 

into and discharged from a subprocess over the whole 

production period are all known. 

     When the variation in the batch size of a batch of 

material that is flowed into the tank occurs, the 

process  is presumed to be operated according to the 

preassigned schedule as shown in the following: In 

every periodical operation after the variation in the 

batch size has occurred, the batch sizes of a batch 

that is flowed into and from the tank are identical 

with the original batch sizes before the variation 

occurred. The starting moments in the inflow to and 

outflow from the tank are not changed and follow the 

preassigned schedule, irrespective of whether a variation 

in the batch size has occurred or not. The variation 

in the batch size of a batch that is flowed into the 

tank is defined as "allowable" if and only if the tank 

does not overflow nor run out of stored material even 

though the whole process is operated according to the 

schedule explained above. 

     As for the variation of the batch size in a batch 

of material discharged from the tank, the "allowable 

variation" is defined in a way similar to the case of 

the variation in the batch size of a batch flowing into
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     the tank. 

viii)The flexibility of a batch process may be evaluated by 

     many different kinds of measures. In this study, it is 

     assumed that the flexibility of a batch process could 

     be measured by the size of the regions of "allowable 

 variations" in the operation schedule and the batch 

       size. 

     The problem of the design of a flexible batch process 

is essentially multi-objective. It is necessary to simulta-

neously solve two optimization problems which are mutually 

contradictory: one is how to minimize the investment cost 

of the process, and the other is how to maximize the flexibil-

ity of the process. These two objectives related to complete-

ly different attributes, flexibility and cost, cannot be 

evaluated by the same parameters. Consequently, this design 

problem has to be handled either as an optimization problem 

of how to increase the flexibility of the process within a 

given available budget for construction, or as that of how 

to decrease the construction cost of the process which has a 

given flexibility. 

     In this study, the problem of how to design a batch 

process which has a certain desired flexibility so as to 

minimize the required construction cost is dealt with. In 

other words, the problem is how to minimize the construction 

cost of a batch process when the ranges of the allowable 

variations with respect to the operation schedule and/or the 

batch sizes are given a priori . 
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3. Minimum Capacity of the Storage Tank 

     In this section, a process consisting of two subprocesses 

and a tank as shown in Figure 4-2 is considered, and the 

minimum capacity of the storage tank is derived such that 

the tank does not overflow nor run out of stored material 

even though the variations of the operation schedule and/or 

the batch size of a subprocess may occur. 

     First, the relationships between variables, such as the 

number of parallel batch items and the batch size in each 

batch stage, the volume of the storage tank, etc., are 

shown. 

     The batch size of every batch stage in a subprocess 

must be equal to the batch size of the subprocess, i.e. 

 Si =Sj(i E G.; j = 1, 2)(4-1) 

where 

         = the batch size of subprocess j,  Sj 

G = a set of suffixes representing the order of batch 

            stages in subprocess j_ _

 C~
Subprocess 1

storage

 tank
Subprocess 2

Figure 4-2. A process consisting of two subprocesses
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     In order to satisfy the given  production requirement 

per unit time, P, the minimum number of parallel batch items 

in each batch stage is given as a function of the batch size 

of the batch stage, i.e. 

Ni = IIP .wi (Si) / si II (i = 1, 2, ... , B)(4-2) 

where 

     B = the number of batch stages 

11x 11 = the minimum integer which is greater than or equal 

             to x.

     Batch sizes and cycle times of both subprocesses must 

be determined so as to satisfy the material balance of the 

whole process: 

P = S1 /1 = S2 / 02(4-3) 

where 

     Wj = the cycle time of subprocess j. 

     The input function to and the output function from the 

tank, of and ud, are defined as follows:

uk(t) =

Uk  ;

 0 ; 

((k = 

(i = 0

iWj< t <iWj + Sj / Uk

otherwise 

f and j = 

  1, 2, ..

1) or (k = d and j = 2)) , 

.)

(4-4)

where

Uk = the capacities 

(j=d) pumps of

of the feed (j=f) and the discharge 

the tank per unit time. 
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Then, the hold-up in the tank, v(t), is given by: 

                  t 
    v(t) = VO + f  [uf(T-t1) - ud(T-t2)]dT(4-5) 

0 where 

VO = the initial inventory in the storage tank 

     t1 = the starting moment of the inflow from subprocess 

          1 to the tank in the first cycle 

     t2 = the starting moment of the discharge from the tank 

          to subprocess 2 in the first cycle. 

     The tank does not overflow nor run out of stored material 

if and only if the hold-up in the tank satisfies the following 

inequalities for any time t: 

 0 _< v(t) S V(4-6) 

where 

     V = the volume of the storage tank. 

     We number the variations which occurred in the process 

according to their occurrence times. Here, occurrence times 

are defined as follows: For the delay in the starting 

moments of the inflow to and the outflow from the tank, it 

is defined as the time when the inflow to or the outflow 

from the tank is scheduled. For the advance in the starting 

moments of the inflow to and the outflow from the tank, it 

is defined as the time when the inflow or the outflow actual-

ly starts, respectively. The occurrence time of the variation 

in the batch size is defined as the time when the inflow or 
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the outflow of a batch of material with varied batch size to 

or from the tank begins. 

     By using four kinds of variables, the i-th variation 

which occurred in the process can be expressed in terms of 

an array such as  (At1, AT', tsi, AS'): 

where 

pti,AT1 = the amounts of variations in the starting 

                moments of the inflow to and the outflow from 

                 the tank for the i-th variation, respectively, 

Asi,AS' = the amounts of variations in the batch sizes 

                of a batch which was flowed into and was 

                discharged from the tank for the i-th varia-

                 tion, respectively. 

• The size of the i-th variation in the starting moment 

is measured by the magnitude of the delay or advance from 

the time schedule operated after the (i-1)-th variation 

occurred; i.e., the starting moments of the inflow to and 

the outflow from the tank after the variation has occurred 

are shifted by 

ii 
      E pti and E ATj 

j=1j=1 

from the original schedule in which no variations are assumed 

to occur. Here, the positive value is taken for the delay, 

and the negative one is taken for the advance in starting 

moment. The variations in the batch sizes are measured as 

deviations from the preassigned batch sizes of both subproc-

esses. The positive value is taken for the increase and the 
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negative one is taken for the decrease in the batch size. 

     Here it is assumed that each variation consists of only 

one kind of variation. For every i, an array for i-th 

variation,  (At', AT', Asi, ASi), has only one non-zero 

element. For example, if the i-th variation which occurred 

in the process is the delay of the starting moment of the 

inflow to the tank, Ot' takes a positive value, and all of 

the other variables, such as AT', As' and AS' are equal to 

zero, i.e., i-th variation can be expressed by the array 

(pti, 0, 0, 0). If two kinds of variations occur at one 

time, for example, variations in batch size and in the 

starting moment of the inlet flow into the tank occur simul-

taneously, these variations are handled as if two variations 

expressed by the arrays (Ati, 0, 0, 0) and ( 0, 0, Asi+1, 0), 

have occurred. 

     From the assumption which was introduced in the previous 

section, the sum of amounts of each kind of variation satis-

fies the following constraints: 

k
At 

AT 

As 

AS

L 

L 

L 

L

S E Atl S At 
i=1 

  k 
E AT' < AT 

  1=1 

  k 
^E As S As 

i=1 

  k 
^I AS'AS 

i=l

U 

U 

U 

U

(k = 1,2,...) 

(k = 1, 2, ... ) 

(k = 1,2,...) 

(k = 1,2,...)

(4-7)
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      These lower and upper bounds have to be determined by 

taking into account many kinds of factors, such as the 

frequency and the magnitude of the variations and/or the 

characteristics of the operation of the process, such as a 

property in which its operation schedule is easy or not to 

rearrange. 

     We now consider the condition that the variables  t1, t2 

and V must satisfy so that the tank does not overflow nor 

run out of stored material even though a delay of the starting 

moment of the inflow to the tank occurs. 

     When the starting moment of the inflow to the tank is 

delayed At1 from the original schedule, the hold-up in the 

tank changes with time as follows: 

                  t 
v(t) = V0 + ( [uf (T-t1) - ud (T-t2) ] dT(4-8a) 

0 

                              for 0 =< t < t
o 

  t    v(t) = VO +(Oa0uf(T-t1)dT - j uTt2)dT (4-8b) 
                            for t

at < ta + At1 

t      v(t) = V° + f[uf(T-t1-At1) - ud(T-t2)]dT(4-8c) 

                O 

                              for t
a + At1 < t 

where 

ta = the time when the first variation takes place . 

     The changes of the accumulation of the inflow to the 

tank can be expressed by the bold broken line in Figure 4-3 .
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       0 
 4- 

        a, 

a, 
t 

0 
c 
       0 

75 
E 

U U d 

  Figure

 t~ ti dt 

4-3. The

--1 
et

accumulation of the inlet flow

 time 

to the tank

The fine dotted line in the figure shows the accumulation 

of the inflow to the tank for the case in which the starting 

moment of the tank in the first cycle is delayed Lt1. It 

is clear from this figure that after the variation has 

occurred, these two lines coincide with each other. 

     Therefore, v(t) defined by Eq.(4-8) satisfies the 

following relationship for any t. 

           t     V0+ J[U(T_tl) -ud(T-t2)]dT 

          0 

                  J[uf(T_tl_tl)v(t) z V0 +  - ud (T-t2) ] dT 

0 
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     By taking into account this fact, we can derive the 

following result. 

     "The variation At1 is allowable if and only if the tank 

does not overflow nor run out of stored material even though 

the starting moment of the inflow to the tank in the first 

cycle is delayed for the same length of time as the variation 

 At1 from the original starting moment"-

     In other words, when v(t) defined by Eq.(4-8a) satisfies 

Eq.(4-6) for any t, the variation Al is allowable if and 

only if v(t) defined by Eq.(4-8c) satisfies Eq.(4-6) for any 

t. This result was derived by Oi et al.[1] for the process 

consisting of parallel batch units, a storage tank and a 

continuous section. 

     By substituting t1 for tl+At1 in Eq.(4-8c), Eq.(4-8c) 

is equal to Eq.(4-5). Therefore, in order to continue the 

operation of the process without overflow or exhaustion of 

stored material irrespective of the variation At1, variables 

tl, t2 and V must be chosen in such a way that Theorem 3-2 

which has been derived in Chapter 3 is satisfied even 

though tl+Atl is substituted for t1 . 

     From Theorem 3-2 in Chapter 3, this condition is 

mathematically expressed as follows: 

(1-P/Ud)S2 - (1-b)(1-h)•G.C.M.(S1,S2) - V0 

< [t2 - (t1+At1)]P 

       V -V0- (1-P/Uf)S1 + (1-b)(1-r)•G .C.M.(1,S2) 
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  where 

       h =  mod[VO/G.C.M.(S1,S2), 1] 

       r = mod[(V-VO)/G.C.M.(S1,S2), 1] 

       b = P/min(Uf,Ud) 

G.C.M.(X,Y) = extended greatest common measure of X and Y 

                       (see Chapter 2) 

       mod(X,Y) = X - trunc(X/Y)•Y 

       trunc(X) = largest integer < X. 

       Even for the other variations related to an operation 

  schedule, such as the advance of the starting moment of the 

  flow into the tank, and the delay and/or advance in the 

  starting moment of the outlet flow from the tank, we can 

  derive the same kind of result as shown here. 

       Next, we consider the variation of the batch size of a 

  subprocess. If the batch size of some batch that is flowed 

  into the tank increases by Aslat t=t a, the hold-up in the 
  tank changes with time as follows: 

                   t 
      v(t) = VO + f [uf(T-t1) - ud(T-t2)]dT(4-9a) 

0 

                                  for, 0 s t < ta 

  tt       v(t) = VO + f0a u'(T-t1)dT + (t-ta)Uf -~0ud(T-t2)dT 
                       for ta t < tb(4-9b) 

t       v(t) = VO + Asl + fTti) - ud(T-t2)1dT (4-9c) 

                        0 

                               for tb S t 
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where 

     tb =  to + (31+As1)/Uf 

     For any t, v(t) determined by Eq.(4-9) satisfies the 

following relationship: 

t 
V0 + f[u-(T-t1) - ud(T-t2)]dT 

        JO 

s v(t) 

                    •VOAsl+ ft[uT-tl - udT-t2)]dT 

                  O Therefore, if v(t) given by Eq.(4-9a) satisfies Eq.(4-6) for 

any t, the variation in the batch size of a batch that is 

flowed into the tank, Asl, is allowable if and only if v(t) 

determined by Eq.(4-9c) satisfies Eq.(4-6) for any t. By 

substituting V0 for V0+As1 in Eq.(4-9c), Eq.(4-9c) is equal 

to Eq.(4-5). Therefore, Osl is allowable if and only if the 

following inequalities are satisfied. 

      (1-P/Ud)S2 - (1-b)(1-h')•G.C.M.(S1,S2) - (V0+As1) 

< (t2 - tl)P 

< V - (VO+psl) - (1-P/Uf)S1 + (1-b)(1-r')•G.C.M.(Sl,S2) 

where 

h' = mod[(V0+As1)/G.C.M.(S1, S2), lJ 

r' = mod[(V - V0 - As1)/G.C.M.(S1,S2), 1]
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     Even for the other variations, such as the decrease in 

the batch size of a batch of material that is flowed into 

the tank, and the increase and/or decrease of the batch size 

of a batch discharged from the tank, we can derive the same 

kind of result by repeating a similar discussion. 

     The hold-up in the tank after the n-th variation is 

over, vn(t), is given by 

    vn(t) =  V0 +E (~sl-~S1) 
i=1 

+   t               f[uf(T-t1- E at-') - ud (T-t2- E 1T1) l dT (4-10)     0 i=1i=1 

By substituting V0, t1 and t2 for V0+ E (Asi-AS), t1+ E Ati 
 ni=1i=1 

and t2+ E AT in Eq.(4-10), respectively, Eq.(4-10) is equal 
i=1 

to Eq.(4-5). Consequently, we can derive the following 

theorem from the above discussion and Theorem 3-2 in Chapter 

3. 

     [Theorem 4-1] 

     It is assumed that the (n-1)-th variation is allowable. 

Then the n-th variation, (Atn, ATn, Asn, ASn), is allowable 

if and only if the following relationship is satisfied. 

     (1-P/Ud)S2 - (1-b)(1-h')•G.C.M.(SS2) - VO - ESn 

   (t2 - t1 + ETn)P(4-11a) 

       V - V0 - ESn - (1-P/Uf)S1 + (1-b)(1-r').G.C.M.(S1,S2) 

(4-llb) 
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where

h' 

r' 

ES 

 ET 

 b

=  mod[(V0 + 

 = mod [ (V - 

     n 

  = E (As1 
i=1 

n 
  = E (AT1 

    1=1 

= P/min(Uf,

V

U

ESn)/G.C.M.(Sl, S2), 

0   - ESn)/G.C.M.(S1,

AS1) 

At1) 

d)

1] 

2), 1]

     The left-hand side of Eq.(4-11a) is a monotonically 

decreasing function with respect to ES", and the right-hand 

side is a monotonically increasing function with respect to 

ETn. Therefore, Eq.(4-1la) is satisfied for any variations 

restricted by Eq.(4-7) if and only if Eq.(4-11a) is satisfied 

for the variations such that ES" = AsL-ASU and ETn = ATL-AtU 

hold. Similarly, Eq.(4-l1b) is satisfied for any variations 

restricted by Eq.(4-7) if and only if Eq.(4-11b) is satisfied 

for the variations such that ESn = AsU-ASL and ETn = ATU-AtL 

hold. By substituting the above values for ES" and ETn in 

Eq.(4-11) and by eliminating t2-t1 in Eq.(4-11), the constraint 

that the capacity of the tank must satisfy is derived as 

follows: 

(1 - P/Uf)S1+ (1 - P/Ud)S2 - (1-b)(2-h")•G.C.M.(61,52)2  

     - V0 + (ASU-AsL) + (AtU+ATU-AtL-ATL)P 

. (R"+br")•G.C.M.(S1,S2)(4-12) 
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where 

     h" =  mod[(V°+AsL-LSU)/G.C.M.(S1,S2), 1] 

R" = trunc[(V-VO_ sU+pSL)/G.C.M.(S1,S2)] 

     r" = mod[(V-VO_ sU+ASL)/G.C.M.(S1,S2), 1] 

     If the ranges of variations of operation schedules and 

batch sizes, and the batch sizes themselves are given for 

both subprocesses, the value of the left-hand side of 

Eq.(4-12) can be calculated. Therefore, the minimum capacity 

of the tank is given as a minimum value of 

V0 + (R"+r")•G.C.M.(gS1,S2) + (AsU-OSL) 

which satisfies Eq.(4-12). That is, the following theorem 

is derived. 

      [Theorem 4-2] 

     When the batch sizes and the cycle times of both subproc-

esses are determined so as to satisfy the given production 

requirement, and the ranges of variations are also given by 

Eq.(4-7), the minimum tank volume is given by the following 

equation. 

     V = {trunc(Q') + min[mod(Q',1)/b,l]}•G.C.M.(S1,S2) 

     + V0 + (psU-ASL)(4-13) 

where 

     Q = [(1-P/Uf)S1+ (1-P/Ud)S2 - V0 + (ASU-AsL) 

+ (AtU+ATU-AtL-ATL)P]/G.C.M.(S1,S2) - (1-b)(2-h") 
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 Q' 

h" 

b

 max  (Q,  0) 

mod[(V0+As 

P/min(Uf,

L -AS 

Ud)

U
)/G.C.M.(1, S2), 1]

     The 

Theorem

proof 

3-3 in

of Theorem 

Chapter 3.

4-2 is exactly similar to that of
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4. Mathematical Formulation 

     In previous sections, relationships among the variables 

in the process consisting of two subprocesses and a tank are 

clarified. By using the results obtained in previous sec-

tions, the optimal design problem for a general batch process 

as shown in Figure 4-1 can be mathematically formulated as 

follows: 

     Find the optimal number of parallel batch items in each 

batch stage,  Ni, the optimal equipment size of each batch 

item, Ei, and the optimal volumes of intermediate storage 

tanks, Vj,so as to minimize 

BK-1 
P.I. = Nk•pk(Ek) + E gk(Vk)(4-14) 

k=1k=1 

subject to 

  Sk = gm =m (k e Gm)(4-15) 

 E. = Si.+ ASM(4-16)   11 

Ni = IIP•w(S)/S~~(4-2) 

V. ={trunc(Q!) + min[mod(Q~,1)/bj,1]}G.C.M.(Sj,Sj+l) 

     + V. + (As, -~S~)(4-17) 

Q. = [(1 - P/Uf)S+ (1 - P/Ua)Sj+1- V.+ (AS,-Qs~) 
        + (pt~+AT- At,-AT~)P]/G.C.M.(Sj,Sj+1) 

     - (1 - b
j)(2 - h~)(4-18)
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b. 

 h" 7

= max(Q. 

= P/min(U 

= mod[(V. 

  (m = 1,

, 0) 

j , Uj) 
+ psi"' - pS~)/G.C.M. (Sj,Sj+1) 

2,...,K ; i = 1,2,...,B ; j =

, 1] 

1, 2,

 (4-19) 

 (4-20) 

 (4-21) 

K-1)

where

B = number of batch stages 

K = number of subprocesses 

pi = cost function of a batch unit in batch 

q. = cost function of intermediate storage  J 

ASi = the maximum value of the variation in 
      size of batch stage i 

Subscript j of the symbols Vj,VO,U~,Ua, 
AT~,AT~,1s~,As~,AS~and AS',means that 
symbols are related to storage tank j (see

 stage i 

tank j 

 the batch

At~,At. 

               , 

 these 

Nomenclature).
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 5. Solution Method 

     From Eqs.(4-2), (4-15) and (4-16), the number of parallel 

batch items and the equipment size of the batch item in each 

batch stage can be obtained as functions of the batch size 

of the subprocess. From Eq.(4-17), the volume of the tank 

can be given as a function of the batch sizes of subprocesses 

before and after the tank. 

     The batch size of a subprocess is given as a function of 

the cycle time of the subprocess. Therefore, by assuming 

the cycle time of all of the subprocesses, all of the varia-

bles in the process and the performance index can be calcu-

lated. For the process shown in Figure 4-1, Figure 4-4 

shows how all the variables are uniquely determined as 

functions of the cycle times of the subprocesses. In Figure 

4-4, each vertex corresponds to a variable or a set of 

variables. An arc leading from vertex A to vertex B means 

that the variable corresponding to vertex B is a function of 

the variables corresponding to vertex A . Therefore, the 

optimal solution of the problem formulated above can be 

obtained by letting the cycle times of all of the subprocesses 

be free variables and by performing the search in the feasible 

domain of these free variables. 

     Since the number of parallel batch items and the volume 

of the storage tank determined from Egs.(4-2) and (4-17) are 

riot continuous functions of batch sizes, the searching 

procedure has to be performed by applying a certain direct 

search method. 
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     So far, it has been assumed that the cycle time of each 

batch stage can be chosen arbitrarily. But in a real batch 

process there are many cases where the cycle time of each 

batch stage can take only discrete values. For example, 

assume that the process is on a 24-hour job and the minimum 

cycle time of a subprocess is 23 hours. In this case, we 

may take 24 hours as the cycle time of the subprocess even 

though the process can be cyclically operated in the interval 

of 23 hours. 

     We next consider the case where the cycle time of each 

subprocess can take only discrete values. From Figure 4-4, 

it can easily be understood that the part of the performance 

index related to subprocess j is a function of the cycle 

time of subprocess j and that the other part related to 

storage tank j is a function of the cycle times of both 

subprocess j and j+1. Therefore, "Dynamic Programing" can 

be easily applied to obtain the optimal solution. 

 Si (NLE)) 
                 Si,-'2 _ ( N2K72-\

      v vl o-- 

    W20- 

W30 

W4o-' 

Figure 4-4
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6. Numerical Example

     In this example, the whole process is assumed to have 

the same structure as shown in Figure 4-1. It is here 

assumed that the item of equipment in stage 5 is operated 

continuously with a fixed processing rate so as to satisfy 

the production requirement. It is also assumed that there 

is a sufficient supply of raw material for batch stage 1 and 

that the cycle time of each subprocess can only take discrete 

values which are multiples of 2 hours. The performance 

index is given by 

  43 
 P.I. = E N.•a.•E0.7+ E 0.6.V.0.7(4-22) 

i=1  j=1 

where 

     a1 = a4 = 1.5, a2 = 1.0, a3 = 2.0 . 

     Other data are given as follows: 

The minimal cycle time of a batch item in each stage is given 

by 

wi(Si) = yi + 2.0•S. (i = 1, 2, 3, 4) 

where 

yl = 50, y2 = 20, y3 = 30, y4 = 8 [hr] . 

The capacity of each pump and production requirement take 

the following values: 

U1 = U1 = 30, U2 = U2 = U3= 20,Ud= P = 0.1 [m3/hr] 

The initial hold-up in each storage tank is assumed to be 

 • 
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•

zero, i.e., 

    V0= 0  [m3] (j = 1, 2, 3) 

The upper limit of the variations in batch sizes and the 

upper and lower bounds of the total sum of the variations 

are given by the following equations: 

ASi = 0.05Si ; AsU = 0.2Sj ; As. = -0.2S• ; 

ASk = 0.2Sk+1; AS = -O.2Sk+1; 

    At= ATk= 4 [hr] ; At7= ATk= -2 [hr] ; 

( i = 1, 2, 3, 4 ; j = 1, 2, 3 ; k = 1, 2 ) 

     A continuous unit can be regarded as a batch unit the 

cycle time of which is equal to the time required for filling 

the batch unit. Therefore, the capacity of the storage tank 

between batch stage 4 and the continuous section can be 

calculated by using Eq.(4-18). 

     By calculating the performance index given by Eq.(4-22) 

for all of the combinations of the,cycle time values of 

subprocess 1, 2 and 3, and by selecting the minimum value 

among them, the optimal solution can be obtained. However, 

this approach is inefficient and time-consuming, especially 

in high dimensional problems. In such a case , dynamic 

programming can play an essential role in reducing searching 

numbers of the cycle time values for finding the optimal 

solution. 

     In order to formulate the problem
, the following functions 
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are first introduced: 

 3 
 f1(14W2)  : = E Ni •ai .Ei0. 7 +0.610. 7 

i=1 

  53 
     f2(1-42,143)  := ENi•ai•Ei0.7 + E V70.7 

i=4j=2 

     For each of the values of the cycle time of subprocess 

2, the cycle time of subprocess 1 is determined so as to 

minimize f1(WW2). Then, 

    mln{f,(W1,W2)1} 

      1 becomes a function of the cycle time of subprocess 2. Next, 

for each value of the cycle time of subprocess 3, the optimal 

cycle time of subprocess 2 is searched so as to minimize 

f2(02,W3) + min{f1(01,W2)}. 

                1} 
     By calculating the value of 

min {f(W,W3) + min{f(W1,W2)}} 
  642122{W}11 

for all of the candidates of the cycle time values in subproc-

ess 3, and by selecting the minimum value among them, the 

optimal solution can be obtained. That is, the minimum 

value of the performance index given by Eq.(4-22) can be 

obtained by calculating the following formula: 

min {min {f2(W2,W3) + min{f1(W1,W2)}}}(4-23) 

{w3} {1-42}{W1} 

     In this problem, the performance index takes the minimum 

value for W1=28 [hr], W2 = 18 [hr] and W3 = 10 [hr]. 
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Then, the batch sizes of  subprocesses and the value of the 

performance index are calculated as follows: 

S1 = 2.8 [m3], S2 = 1.8 [m3],3 = 1.0 [m3]. 

P.I. = 21.49 . 

     The optimal values of other design variables are shown 

in Figure 4-5. 

     In order to show how the solution changes depending 

upon whether variations are taken into account or not, the 

optimal solution for the case where no variations are assumed 

to occur in the process is also shown in Figure 4-6.
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The optimal solution for this case can be easily obtained by 

applying the exact same optimization procedure as that 

mentioned above, assuming that all of the upper and lower 

bounds on the variations are zero. 

     Needless to say, the value of the construction cost for 

the process shown in Figure 4-6,  (P.I.=18.78), is smaller than 

that of the optimal process shown in Figure 4-5, (P.I.=21.49). 

However, the process shown in Figure 4-6 has not flexibility. 

On the other hand, the optimal process obtained by taking 

into account variations has a favorable flexibility, in 

other words, it can absorb the variations shown in the 

beginning of this section, though it requires slightly 

higher construction cost. 

     Now consider the case where the design variables of the 

process are already given. It is easily understood from 

Eq.(4-11) that whether or not the overflow or exhaustion of 

stored material in tank 1 will occur after the n-th variation 

is over depends upon the values of t2-t1+ ETn and ESn. 

Therefore, by graphically displaying the range of a pair of 

values of t2-t1+ETn and ESn which satisfy Eq.(4-11), whether 

the variations that occurred in the process are allowable or 

not can easily be judged. 

     When the process is designed as shown in Figure 4-5, 

the allowable range of variations is given in Figure 4-7. 

In that figure, the abscissa shows the value of t2-tl+ETn, 

and the ordinate shows the value of ESn. The rectangle 

described in broken lines shows the preassigned range of
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variations. The black circle 

to the i-th variation given by 

    (Lti,ATi,Asi,AS1) = ( 

    (At1, ATi, As1, AS1) = 

    (Ati, ATi, Asi, AS1) =  ( 

     For the above variations, 

does not overflow nor run out 

these variations occur.

 •i in Figure 4-7 corresponds 

 the following: 

0, 0, 0.2m3, 0 ) 

0, 3hr, 0, 0 ) 
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7. Conclusion 

     The problem of the design of a flexible batch process 

which consists of several subprocesses composed of a certain 

number of batch units and intermediate storage tanks has 

been dealt with. In order to consider the design problem of 

a flexible batch process, it is first necessary to clarify 

the following two points. One is the way of defining 

"flexibility" itself and the kind of measure to be used to 

evaluate the magnitude of the flexibility. The other is 

determining what performance index has to be used in order 

to express the two kinds of objectives which are mutually 

contradictory: Minimization of the construction cost and 

maximization of the flexibility of the process. 

     As uncertain variations in the batch process, we consid-

ered the variations related to the operation schedule of a 

subprocess and the variations of its batch size. The 

"allowable  variation" in a subprocess is defined as the one 

which does not cause the overflow nor the running out of the 

stored material in the tank, even though the operation 

schedules and the batch sizes of the other subprocesses are 

not readjusted. 

     The larger the volume of the storage tank installed 

between subprocesses becomes, the larger the range of the 

allowable variation becomes. In this study, we derived the 

quantitative relationship between the size of variations in 

the operation schedule and in the batch sizes, and the
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necessary volume of the intermediate storage tank so as to 

make those variations allowable ones (Theorem 4-2). 

     By using this theorem, the volume of the tank which 

used to be estimated only through empirical knowledge could 

be determined more rationally. Presuming that the range of 

the allowable variations is given a priori, we mathematically 

formulated the problem of the design of a batch process 

which makes not only every variation within the given range 

 "allowable" but also minimizes the construction cost. We 

then proposed an effective solution method. 

     In order to search for the optimal solution of this 

design problem, we cannot help but depend upon direct search-

ing with respect to the free variables the dimension of 

which is equal to the number of subprocesses. When the 

cycle time or the batch size of each subprocess takes only 

discrete values, the optimal solution of the problem can be 

easily obtained by applying a Dynamic Programming Approach. 

     Here, we took up a batch process consisting of a certain 

number of batch stages and storage 'tanks, and derived several 

interesting results. The results obtained can be applicable 

to a more general process which consists of batch stages, 

continuous sections and storage tanks, as demonstrated by 

using an example. 

     An approach to the problem of the design of a flexible 

batch process was proposed. The definition of flexibility 

introduced in this chapter only represents an aspect of the 

manifold attributes with which the so-called "flexible 
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process" has to be essentially endowed. In this study, it 

is assumed that only "hard" countermeasures are available in 

order to increase the flexibility  of the process. In other 

words, the problem of how to rationally estimate the design 

margin of the design variables is considered so as to absorb 

every unfavorable effect due to various uncertain variations. 

     Neadless to say, "soft" countermeasures such as read-

justing the operation schedule or installing sophisticated 

control systems are also very effective in enhancing the 

flexibility of the process. From now on, much effort has to 

be devoted to developing effective design methods which 

enable the design of flexible processes which are fully 

supported by both countermeasures.
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Nomenclature 

B = number of batch stages 

b = P/min(Uf,Ud) 

 ci = processing capacity of the batch item in batch stage i 

 Ei = equipment size of a batch item in batch stage i 

G. = a set of suffixes representing the order of batch stage 

      in subprocess j 

K = number of subprocesses 

Ni = number of parallel batch items in batch stage i 

P = production requirement per unit time 

pi= cost function of a batch equipment in batch stage i 

q7.=cost function of intermediate storage tank j 

Si = batch size of batch stage i 

Si = batch size of subprocess i 

ASL,ASU,(AS~,LS~) = lower and upper bounds of the sums of 
      amounts of variations in the batch size of a batch 

     discharged from the tank (tank j) 

A L,OsU,(AsT_:',Ast) = lower and upper bounds of the sums of 

      amounts of variations in the batch size of a batch 

     which is flowed into the tank (tank j) 

AS = maximum value of the variation of the batch size of 

       batch stage i 

ps1,ASi = amounts of variations in the batch sizes of a 

     batch which is flowed into and discharged from the tank 

      for the i-th variation 

tl,t2 = starting times of the inflow to and the discharge 

      from the tank in the first cycle 
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to= time when the first variation takes place 

ATL,ATU,(AT.,AT?) = lower and upper bounds of the sums of 
     amounts of variations in the starting moment of the 

     discharge from the tank (tank j) 

AtL,AtU,(At~,Ot~) = lower and upper bounds of the sums of 
     amounts of variations in the starting moment of the 

    inflow to the tank (tank j) 

 At1,AT1 = amounts of variations in the starting moment of 

     the inflow to and the discharge from the tank for the 

     i-th variation 

Uf,(U) = capacity of the feed pump of the tank (tank j) per 

     unit time 

Ud,(Ua) = capacity of the discharge pump of the tank (tank j) 

     per unit time 

of=input function to the tank 

ud = output function from the tank 

V,(Vj) = volume of the intermediate storage tank (tank j) 

0,(17.) = initial hold-up in the tank (tank j) 

v = hold-up in the tank 

Wj = cycle time of subprocess j 

wi = minimum cycle time of the batch item in batch stage i 

Other symbols 

G.C.M.(X,Y) = extended greatest common measure of X and Y 

trunc(X) = largest integer S X 

mod(X,Y) = X - trunc (X/Y) •Y 

11 X minimum integer ? x 
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Chapter 5

OPTIMAL 

  BATCH

SCHEDULING OF 

PROCESS WITH

A CYCLICALLY OPERATED 

UTILITY CONSTRAINTS



1. Introduction 

      In the previous chapters, the design problems of batch 

processes are discussed. However, in a batch process, how 

to schedule the operation of each unit becomes a large 

problem even though the size of each batch unit is already 

determined. In this chapter, a cyclically operated batch 

process is taken up. And the problem of determining the 

starting moments of batch units so as to smooth the peak 

consumption of utilities is discussed. 

      In a batch process, many batch processing units are 

simultaneously operated. Each piece of batch equipment 

needs different amounts of utilities, such as manpower, 

electricity, steam and water etc. for its operation. The 

amount of these utilities necessary differ, according not 

only to the kind of batch item  but also to the differnt step 

in the operation such as charging, processing or discharging. 

Thus, the total amount of each utility changes with time in 

a fairly large scale as shown in Figure 5-1. 

      In order to assure the stable operation of the process, 

the capacity of each utility supply system must be large 

enough to be able to meet its peak demand. If it is possible 

to smooth the necessary amount of a utility over time by 

properly scheduling the operations of the process, the 

capacity of a utility supply system can be reduced without 

impairing the over-all productivity of the process. There-

fore, the way of scheduling the starting moment of each 
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A utility consumption

manpower 
electricity 
steam 
water 
 etc.

  minimum capacity 
 ___of the utility 

  supply system

time" 

Figure 5-1. Profile of the utility consumption

batch item so as to smooth the peak consumption of utility 

is of great importance. 

     In most of batch processes, products are produced by 

cyclically operating the process as mentioned in Chapter 1. 

So, the methods developed for solving the project scheduling 

are not applicable to solve the scheduling problem of a 

batch process. Because most of the solution procedures in 

the project scheduling problem use the arrow diagram to 

indicate the precedence order of processing steps. If the 

precedence order of processing steps for a cyclically operated
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batch process is expressed by using an arrow diagram, we 

must distinguish between the first batch of a processing 

step and the second batch of the same processing step. In 

this case the arrow diagram becomes a very complicated one. 

     Furthermore, as fluid materials are mainly handled in 

a batch process, whether a storage tank is installed between 

two batch stages or not strongly affects the operation 

scheduling of the process. 

     In this chapter, by taking into account the characteris-

tics of batch processes mentioned above, an effective algo-

rithm is derived to solve the utility smoothing problem of a 

cyclically operated batch process, that is, the problem of 

scheduling the process so as to smooth the peak consumption 

 of utilities.
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2. Formulation of the Utility Smoothing Problem 

 2-1. Operation module and operation train 

     We here introduce the following assumptions prior to 

discussing how to solve the utility smoothing problem. 

     The process is cyclically operated with a fixed cycle 

time for a long period. It is also assumed that the time 

necessary for each operation, such as charging, processing 

and discharging etc., is known, and the consumption rate of 

a utility required for each operation is piecewize constant. 

     By introducing above assumptions, a series of operations 

necessary for producing a specified final product can be 

redivided into a new series of segments each of which 

corresponds to an operation step or a part of consecutive 

operation steps during which the consumption rate of each 

utility is constant. Each segment during which the consump-

tion rate of each utility is constant is hereafter called an 

"operation module" . 

     Some operation module must be started immediately after 

the precedent operation module is completed. A series of 

operation modules which must be successively operated without 

any waiting time is hereafter called an "operation  train". 

     Figure 5-2 shows an example of a cyclically operated 

batch process. For the process shown in Figure 5-2, the raw 

material is heated and fed into reactor 1. The intermediate 

product processed in reactor 1 is filtrated and once held in 

a tank, and then fed into reactor 2. After the processing
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is finished in reactor 2, the product is discharged to a 

storage tank. In this process, the final product is produced 

by repeating above operation steps cyclically. Figure 5-3 

shows an example of the operation schedule for the process.

 heat 
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storage

tank filterreactor l filterreactor 2

Figure 5-2.  Cyclically operated batch process
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     For this process, an example of the change of steam 

consumption to produce a batch of product is shown in 

Figure 5-4. If only the consumption of the steam must be 

smoothed, a series of operations of the process can be 

divided into seven operation modules as shown in Figure 5-4. 

Where,  O.M.i and O.T.j mean the i-th operation module and 

the j-th operation train, respectively. In this case, a 

sequence of four operation modules from O.M.1 to O.M.4 makes 

up an operation train, O.T.1.

  raw 
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 2-2. Formulation of the utility smoothing problem 

     By introducing the words "operation module" and "opera-

tion train", the data which are required to formulate the 

utility smoothing problem can be summerized as follows: 

     1) names of operation modules which belong to each 

     operation train and their precedence order, 

     2) the duration of each operation module and the 

     consumption rate of each utility for its operation 

      module, 

     3) the cycle time of the process and the performance 

     index given by a function of the maximum value of each 

     utility consumption. 

     The starting moment of the first operation module in 

 O.T.j is hereafter called the starting moment of O.T.j. If 

the starting moment of O.T.i is once decided, the starting 

moments of all of the operation modules in O.T.i are automati-

cally determined, because all of the operation modules in an 

operation train have to be successively operated without any 

waiting time between every two consecutive operation modules. 

Once the starting moments of all of the operation trains are 

decided, the profile of a utility consumption over time and 

its maximum value are uniquely determined. 

     Therefore, the utility smoothing problem is stated as 

follows: 

     "Find the starting moments of all of the operatio
n 

trains which minimize the performance index given by a
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function of the maximum value of each utility consumption". 

2-3. Mathematical formulation 

     The operation of the process is assumed to be devided 

into L operation trains each of which consists of  Ni operation 

modules. LetM1
,jbe the j-th operation module in  O.T.i. 

ForMi
rj, the function which expresses the consumption rate 

of utility k over time is defined as follows: 

         (t) =Ui,j,knW < t < nW + Pi,j(5-1)    fi ,j,k 0                                     otherwise 

                   n : integer ; i = 1, 2, ..., L ; 

j= 1, 2, ..., Ni ; k = 1, 2, ..., K ; 

where 

     U.i.,j,k= the consumption rate of utility k per unit time 

               which is required to executeMi
,j, 

      P..= the processing time of M. 

W = the cycle time of the process, 

K = the number of the different kinds of utilities. 

     The starting moments of all of the operation modules in 

O.T.i is calculated by determining the starting moment of 

O.T.i, i.e. 

     si
,l = ti                                                           (5 -2) 

    s= s+ P(j = 1,2, ..., Ni-1)                                         i
,j+li,3P. 

where
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      si
,j = the starting moment of  M.., 

 ti = the starting moment of O.T.i. 

     Then, the consumption rate of utility k which is 

required to operate O.T.i becomes a function only of the 

starting moment of O.T.i, and expressed as follows: 

                                Ni. 
    Fj

,k(t - t1) = Efi,j,k(t -si.])(5-3) j=1 

     By using above equation, the maximum value of the 

consumption of utility k, Gk, is given by the following 

equation: 

                  L 
   Gk(t)  = max E F.k(t - t.)(5-4) 

     {t} i=11' 

where 

tt = (t1, t2, ..., tL) : the vector consisting of the 

           starting moments of all of the operation trains. 

     Hereafter, tt is called "an operation schedule of the 

process". Then, the utility smoothing problem is mathemati-

cally formulated as follows: 

     "Find the operation schedule t whi ch minimizes the 

following performance index, subject to Egs .(5-1) to (5-4); 

P.I. = g (G1 (tt) , G2(t) , ... , GK (tt))(5-5) 

where 

     g = the monotonically non-decreasing function.
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3. Solution Procedure 

3-1. Procedure to derive the exact optimal solution 

     The L-dimensional function  Gk(t) in Eq.(5-5) takes a 

piecewise constant value on each ti-axis (i = 1, 2, ..., L). 

Thus, any nonlinear programing technique which utilizes the 

derivative of a function cannot be applied to solve the 

problem formulated in the previous section. 

     A direct search method, therefore, has to be utilized 

for obtaining the optimal solution. In such a case, the 

problem is how to clarify the searching points for which 

direct searching has to be performed, and at the same time, 

how to reduce the number of such searching points as much as 

possible. 

     In order to clear the basic idea for the further discus-

sion, we use a simple example where the operation of the 

process consists of only two operation trains and, moreover, 

only one kind of utility is necessitated. Figure 5-5 shows 

an operation schedule of this process and the profile of a 

utility ,consumption corresponding to the schedule. 

     Without losing generalities, the origin of the time 

axis can be taken at the starting time of O.T.l, that is, 

t1 = 0. The problem is one of finding the optimal starting 

moment of O.T.2, t2, so as to minimize the peak consumption 

of the utility, G1(t) = G1(0, t2). 

     As O.T.2 is cyclically operated, it is sufficient to 

perform the searching with respect to t2 in the interval
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 [t*, t*+W), where t* is the ending moment of M1,2 and W is 

the cycle time of the process. 

     For the operation schedule shown in Figure 5-5, the 

peak consumption of the utility, G1(it), does not increase 

even if the starting moment of 0.T.2, t2, is advanced up to 

the ending moment of M1
,2, t*. That is, the relationship 

such that G1(0, t2) ? G1(0, t*) holds for any t2 E [t*, t'). 

By repeating the discussion similarly, it is easily understood 

that the relationship such that G1(0, t2) ? G1(0, t') also 

holds for any t2 E [t', t*+W).
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       Consequently, the searching domain for  t2, [t*, t*+W) , 

  can be divided into two parts such as [t*, t') and [t', 

  t*+W). The minimum values of the peak consumption of the 

  utility for these two subdomains can be given by G1(0, t*) 

  and G1(0, t'), respectively. 

       Therefore, t* and t' can be considered as the represent-

  atives of these two subdomains. In other words, t* and t' 

  represent all of the schedules of O.T.2 which exist in the 

  interval [t*, t') and [t', t*+W), respectively. Then, the 

  optimal solution can be obtained by comparing the value of 

  the performance index for these two points, t* and t'. 

       In a general utility smoothing problem, the searching 

  domain is given by a (L-1)-dimensional cube, each edge of 

  which has a length of W, since all of the operation trains 

  are cyclically operated with the cycle time W. If this 

  original searching domain can be divived into many subdomains 

  each of which has a representative tt* such that the inequali-

  ties Gk(t) ?Gk(t*), k=1, 2, ..., K, hold for any tt in that 

subdomain, it is sufficient to perform the searching with 

  respect to these representatives in order to find the optimal 

  solution. Therefore, the next problem is how to generate a 

  set of such representatives. 

        In the example shown in Figure 5-5, each representative 

  shows an operation schedule such that the ending moment of 

  an operation module in O.T.1 coincides with the starting 

  moment of the operation module in 0.T.2. This relationship 

  is extended to a general case. That is, if the ending 
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moment of a certain operation module in  O.T.i coincides with 

the starting moment of some operation module in O.T.j, we 

can say that there is a "relationship from O.T.i to O.T.j" 

and express this relationship by an arrow such that 

O.T.i O.T.j. 

     We can define T0as a set of the operation schedules 

such that there is an arrow progression from O.T.1 to each 

O.T.j, (j = 2, 3, ..., L). Then, this T0gives a set of the 

representatives discussed above. Consequently, the following 

theorem can be derived. 

      [Theorem 5-1] 

     Let T0be a set of operation schedules such that there 

is an arrow progression from 0.T.1 to every other operation 

trains. Then, the optimal schedule which minimizes the 

performance index given by a function of the maximum value 

of each utility consumption always exists in T0. 

      [Proof of Theorem 5-11 

          Let it* = (0, t2, ..,tL) be an arbitrary operation schedule. 

     We first define the following sets: 

Q(tt*) is a set of suffixes representing the order of operation 

     trains each of which does not have an arrow progression from O.T.i. 

     This set is a function of the operation schedule tt*. 

C(tt*) is a set of operation modules each of which belongs to 

     one of the operation trains whose sufixes are elements of Q(t*), 

     and C(tt*) is the complement of C(tt*); i.e., 
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    C(t*) _ {M..I i E Q(tt*) , j  E Ni} 

C(tt*)       =f14
1,1Ii4Ott*), i E Ni} 

where 

     X := {l, 2, ..., X} : a set of natural numbers < X. 

E(tt*) is a set of ending moments of operation modules which 

belong to C (tt*) ; i.e., 

                                                                  _ 

    E(t*) = {e I e = mod(ti+ E P.,W),M. EC(t*) 
                             j=1 

where 

     mod(X,Y) := X - Y•trunc(X/Y), 

     trunc(X) := the maximum integer X. 

S(it*) is a set of starting moments of operation modules which 

belong to C(t*); i.e., 

m-1 
S(it*) = Is I s = mod(t*i+ E P., W) , M.mE C(t*),Pi0= 0) 
                                j=0.j 

D(it*) is a set of the difference between an ending moment of 

an operation module in C(tt*) and a starting moment of an operation 

module in C(t*); i.e., 

D(t*) = {At I At = mod(e - s, W), e E E(it*), s E S(t*)} 

Lt* and it' are defined as follows: 

     At* = min { At} 
AteD(t*) 

t' = (0, t'2,t'3,...,tL)
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where 

        t*;iQ(tt*) 
               1      t!  = 

     1  t* - At* ; i E Q(tt*) 
1 

     We first prove that the following inequality is satisfied for 

any k E K. 

Gk(t*) Gk(t1) 

     Let e
mand enbe elements which belong to E(t*) such that in 

the interval (em,en),there exist no elements which belong to 

E(t*). E Fik(t - ti) is monotonically non-increasing in the 
       iesQ(tt*) 

interval [en, en+At*). E F.k(t - ti) is monotonically non-                     i4Q($*) 
decreasing in the interval (em,en). Therefore, there exists some 

d >0 which satisfies the following two equations. 

      max { E F.(t - t*.)}= E F.k(e - 6 - t*.) 
emst<eniQ(tt*)1'k 1iN Q(tt*)1,n 1 

     max { E F.(t - t*)} = EF. (e - d - t*) 
en‘t<en+At* iEQ(tt*)1'k1iEQ(tt*)i,k n 1 

If en - em pt*, the following inequality is derived from above 

two equations. 

      max { E F.(t - t) + E F.(t - tt+ Lt*)} 
    em't<eni4Q(tt*)1,k1iEQ(tt*)1,k1 

E Fi
,k(en - 6 - t*)(5-6) iE L 

If e
n- em> At*, we can also derive the following inequalities:
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       max  {  E F. ,ft- ti) + E Fik(t - ti+ At*)} e
n-At*t<en ikQ(t*)iEQ(tt*) 

6 E F. k(en-S- ti)(5-7) 
iEL 

     max { E F.(t - t*) + EF ,(t- t*.+ pt*)} 
    e

m~t<en-At* i Q(t*)1'k 1iEQ(tt*)1,k1 

< max { F .k(t -ti+ pt*) + E F.k(t- ti+ At*)} em<t<e
n-At* ikQ(t*)iEQ(t*)' 

   max { E F. k(t - t
i)}(5-8)     e<t<e iEL 

   m= n — 

Egs.(5-6) to (5-8) show that the following inequality is satisfied 

for any k E K : 

       max { E F.
'k(t- ti)}_>max{E F.k(t - t')}    e<t < eiELe < t < eiEL' 

 m=n—m =n— 

     Here, e
m and en have been able to be chosen arbitrarily in so 

far as there exist no elements which belong to E(t*) in the interval 

(em , en). Therefore, for other pair of elements in E(t*), similar 

results can be obtained. Consequently, the following relationship 

can be derived for any k E K. 

    Gk(tt*) = max{ E Fik(t- ti) } 
{t} iEL' 

> max{ E F.k(t - ti)} = Gk(U) 
             {t} iEL' 

     When tt' is chosen as an operation schedule, the ending moment 

of a certain operation module in C(tt*) coincides with the starting 

moment of some operation module in C(tt*). That is, there exists 
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      an arrow progression between  O.T.1 and some operation train in 

C(tt*). This means that the number of elements which belong to 

Q(t') is less than the number of elements which belong to Q(tt*). 

           If Q(it') 0, by repeating the procedure stated above, the 

      number of operation trains each of which has an arrow progression 

      from 0.T.1 can be increased without increasing the maximum consump-

      tion rate of each utility. Consequently, for any tt* there exists 

     some tt0E TQwhich satisfies the following inequality: 

          Gk(t*) Gk(tO);k E K . 

[Q.E.D. of Theorem 5-1] 

      We next show how to generate all of the elements in T
0. 

In order to make the explanation easier, a simple example is 

used. In this example, the opration of the process can be 

divided into three operation trains. O.T.1 and O.T.3 consist 

of only one operation module, respectively , and 0.T.2 consists 

of two operation modules. The duration of each operation 

module and the cycle time of the process are given as follows: 

P1
,1 = 6.0 , P2,1 = 2.6 , P2,2 = 4.0 , P3,1 = 3.0 , 

      W = 10.0 . 

     All of the elements in T
0can be generated by executing 

the following steps: 

1) Rooted direct trees where a vertex and an arrow represent 

an operation train and the "relationship" defined above
, 

respectively, are considered . First, all of the directed 
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trees rooted at veirtex  O.T.1 are generated. As shown in 

Figure 5-6, there are three kinds of directed trees rooted 

at vertex O.T.1 for this example. For each of the directed 

trees, the following steps are executed. 

2) For each arrow such that O.T.i O.T.j, a Cartesian 

product of a set of operation modules which belong to O.T.i 

and that of operation modules which belong to O.T.j is 

generated: 

O.T.i x O.T.j {(Mj m , M51)I Mi m O.T.i, Mj,ri O.T.j} 

From directed graph A in Figure 5-6, the following two 

Cartesian products are generated. 

O.T.1 x O.T.2 = {(M1 ,1 ' M2,1) , (M1,1 , M2,2)} 

O.T.2 x O.T.3 = {(M2 ,1 ' M3,1) ' (M2,2 ' M3,1)}

(A) 

(B)

Figure

0 © 

0     a 

5-6

  All of the 

. consisting

          2 

  (C) 0 

0:0.T.i 

rooted directed trees 
of three virtices
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3) Choose an ordered pair of operation modules from each 

Cartesian product. For a selected pair of operation modules, 

(M. , M. ) E  O.T.i x O.T.j, the starting moments of O.T.i 

and O.T.j, ti and tj, are determined such that the ending 

moment of M. coincides with the starting moment of M. - 

As there is an arrow progression between O.T.1 and every 

other operation train, the starting moments of all of the 

operation trains are uniquely determined by choosing a pair 

of operation modules from each Cartesian product. 

     For example,(M1
,1M21)and (M2,1 , M3,1) are selected 

from Cartesian products O.T.1 x O.T.2 and O.T.2 x O.T.3, 

respectively. Then, the following operation schedule which 

belongs to TO is derived. 

tt1 = (0, 6.0, 8.6) 

4) Repeat step 3 for every combinations of the pairs of 

operation modules. In this example, the following four 

operation schedules are derived from directed graph A. 

tt1 = (0, 6.0, 8.6) , tt2 = (0, 6.0, 2.6) , 

tt3 = (0, 3.4, 6.0) , tt
4 = (0, 3.4, 0) . 

5) By executing step 2 to step 4 for every directed tree , 

all of the operation schedules which belong to T
O can be 

generated. In this example, the ,following operation schedules 

are derived from directed graphs B and C in Figure 5-6 . 

t5 = (0, 3.0, 6.0) , tt
6 = (0, 0.4, 6.0) , 

tt7 = (0, 6.0, 6.0) . 
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     So, the optimal solution  can.be obtained by searching 

for only 7 cases. 

     When the number of operation trains is relatively 

small, all of the elements in TO can easily be obtained by 

executing above five steps. And the optimal solution can be 

derived by calculating the maximum value of each utility 

consumption and the performance index for every element in 

T0,and by choosing the element which minimizes the perform- 

ance index. 

 3-2. Algorithm to derive a suboptimal solution 

     The number of rooted directed trees with L vertexes is 

LL-2 [l]. Therefore, if the operation of the process 

consists of many operation trains, it would require an 

astronomical computing time to generate all of the elements 

in T0.So, it is very important to develop an effective 

algorithm by which a suboptimal solution can be obtained 

within a reasonable computing time. 

     Burgess and Killebrew[2] proposed a solution procedure 

for a utility smoothing problem of a cyclically operated 

process. In their procedure, one dimensional search on the 

starting moments of operation trains is repeated until the 

performance index does not decreased even if the starting 

moment of any operation train is perturbed. By applying 

this procedure, the solution can be obtained in a short 

computing time, though it is not ensured that the solution 

converges to the true optimum.
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      In solving many different cases of the problem, it has 

often been experienced that for many different elements in 

T0,in other words, for many different operation schedules, 

the performance index takes the same value. This fact 

suggests that the optimal solution can be probably found by 

only checking a part of  T0. 

      By taking into account this fact, we here propose an 

algorithm in which the searching calculation is performed 

for the elements in T0as much as possible within a limited 

computing time. In the proposed algorithm, the searching 

calculation is performed only for the operation schedules 

such that the starting moment of an operation module in 

O.T.i+l, (i=1, 2, ..., L-1), coincides with the ending 

moment of some operation module in one of the operation 

trains from O.T.1 to O.T.i. The flow chart of the proposed 

algorithm is shown in Figure 5-7. 

      In this algorithm, the operation schedule is arranged 

successively from the starting moment of O.T.2 to that of 

O.T.L. So, the Branch and Bound method is effectively 

utilized in order to speed up the searching procedure . 

Figure 5-8 shows all of the rooted directed trees consisting 

of four operation trains. In the algorithm proposed here , 

the searching calculation is performed only for the trees 

which are indicated by bold lines. The ratio of the number 

of points searched by using this algorithm to the total 

number of the elements in T
0is given by (L-1)!/LL-2. 

     In order to show the effectiveness of the proposed 
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step 1) 
Choose the 
such that 
satisfies

starting moment 
the relationship 
for some  j  e  {  1,2

of O.T.i, 
O.T.j-*O 
...,i-11.

step 2) 
Calculate the maximum value of each utility 
consumption and the performance index for the 
schedule consisting of i operation trains. 
Let PI be the derived performance index.

step 3) 
PI*E- PI 
t<-- derived 

    schedule
operation

Has step 2 been executed for \ 
every t.such that the relation- 
ship O.T.j~O.T.i satisfies for 
some je {1,2,...,i-1}?

print 

t and

Figure 5-7.

Flow chart of the algorithm to 
derive a suboptimal solution
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procedure, we solved 30 numerical examples by applying both 

algorithms; one is the algorithm proposed here and the other 

is the algorithm by Burgess and Killebrew. For the compari-

son, the true optimal solutions are also calculated for all 

 examples  by applying the algorithm explained in the previous 

section. In these examples, it is commonly assumed that the 

operation of the process consists of four operation trains 

each of which contains three operation modules. The other 

conditions such as the necessary amount of the utility for 

each operation module and the duration of each operation 

module, etc. are given as shown in Table 5-1.

Table 5-1. Scheduling data for 30 examples

number of utilities 

cycle time of the process 

duration of each 
operation module 

consumption rate of the 
utility to execute each 
operation module 

performance index

    1 

   100 

random variable which is 
rectangularly distributed 
on the range (10, 60) 

random variable which is 
rectangularly distributed 
on the range (1,31) 

maximum value of the 
utility consumption
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      The result is shown in Figure 5-9. In this figure, the 

abscissa shows relative errors of the value of the perform-

ance index of the suboptimal solution from that of the true 

optimal solution. In 24 out of these 30 examples, the 

suboptimal solutions obtained by applying the algorithm 

proposed here coincided with the true optimal solutions. 

And in 7 out of these 30 examples, the suboptimal solutions 

obtained by applying the Burgess's algorithm coincided with 

the optimal solutions. This result shows the effectiveness 

of the algorithm proposes here. 

     The suboptimal solutions for these examples were obtained 

by the algorithm proposed here in 1/6 of the computing time 

spent obtaining the optimal solution, though the computing 

time to derive the suboptimal solutions by the algorithm 

proposed here was 10 times as long as that by the Burgess's 

method.
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 4.  Extention of the Problem to More General Cases 

4-1. Restriction on the starting moment of an operation train 

     In previous sections, it has been assumed that the 

starting moment of each operation train can be chosen 

arbitrarily. However, in an actual scheduling problem, 

there are many cases where the starting moment of an operation 

train is restricted within a specified range. 

     For example, for the process shown in Figure 5-2, it is 

assumed that only a batch of material can be stored in the 

intermediate storage tank. Then, the intermediate storage 

tank must be emptied before the inflow of the filtrated 

material of the next batch to the tank is started. That is, 

the starting moment of the inflow to reactor 2, in other 

words, the starting moment of O.T.2, t2, must satisfy the 

following inequality: 

 43 
    t1 + E P1i.t2�t1+ E P1i + W - P21(5-9) 

i=1i=1' 

where 

     Pi= the processing time ofM.., 
       .j 

     W= the cycle time of the process. 

     In the algorithms proposed in the previous sections, 

the representatives of the operation schedules for which 

direct searching must be performed are first enumarated, and 

the performance index is calculated for each of these 

representatives. So, it is easy to judge whether or not 

each representative satisfies the restriction on the starting 
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 moment of an operation train such as  Eq.(5-9). 

      Therefore, the proposed procedures can easily be applied 

 to solve the scheduling problem which has the restrictions 

 on the starting moments of some operation trains. Further-

 more, by adding the constraints to the scheduling problem, 

 the number of representatives for which searching must be 

 performed may be reduced. 

      There exists a representative tt* E TO for any operation 

 schedule tt which satisfies the restriction such that 

 ti< tit,if the inequality 

{ t I t E TO, ti = t! } 

 is satisfied. 

      Thus, the following theorem can be derived. 

       [Theorem 5-2] 

      It is assumed that the starting moment of each O.T.i, 

ti, has a constraint such that tjstist"And it is also 

assumed that the following condition is satisfied: 

      { it I it E TO,ti = ti , i = 1, 2, ... , L }#O. 

Then, the optimal schedule which. minimizes the performance 

index given by a function of the maximum value of each 

utility consumption always exists in T'
0defined by the 

following equation: 

T(') = {t I it e TO .titi< t,i = 1, 2, ..., L } 

                                                          (5-10)
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4-2. Restriction on the capacity of a utility supply system 

     There are many cases where the capacity of a utility 

supply system has been determined before the scheduling 

problem is solved. If the capacity of a utility supply 

system is relatively small, the utility smoothing problem 

must be solved under the restriction that the maximum 

consumption rate of the utility does not exceed the capacity. 

As the enumaration methods are used in the proposed algorithms, 

it is easy to solve the utility smoothing problem with the 

restriction on the maximum value of each utility consumption. 

And we can easily prove that even though such restrictions 

exist, the optimal solution of the utility smoothing problem 

always exists in  TO which is defined at Theorem 5-1. 

     When a batch unit can be multiplly used at many proc-

essing steps, we must schedule the operation such that the 

batch unit is not used at different two processing steps 

simultaneously. In this case, it is convenient to regard 

the batch unit as a kind of utility. By solving the problem 

on condition that the maximum value of the consumption rate 

of this utility is restricted, we can aboid such overlap in 

the usage of a unit. 

      The manpower can also be considered as a kind of 

utility. There are not a few cases where the upper bound on 

the consumption rate of this utility changes with time. For 

example, for the case in which the cycle time of the process 

is 24 hours, the upper bound on the consumption rate of the 

manpower is assumed to be given as shown in Figure 5-10. In 
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5. Conclusion 

    We dealt with the utility smoothing problem of a cycli-

cally operated batch process. In order to solve this problem 

a direct search method has to be utilized, since the necessary 

amount of a utility is represented by a function which takes 

a piecewise constant value. 

     In applying a direct search method, the most critical 

problem is that of reducing the searching domain. We derived 

a theorem relevant to the set of searching points each of 

which gives the minimum value to the performance index in a 

certain sub-area of the searching domain. Then, it was 

clarified that this set can be generated by using rooted 

directed graphs. It, however, takes an extremely long 

computing time to generate these graphs when the size of the 

problem becomes large. By taking into account this fact, an 

effective algorithm was developed in order to obtain a 

suboptimal solution in a very short computing time. 

     The algorithm developed here is applicable in handling 

more general cases such as; 

i) A process consisting of many production lines, 

ii) A process which has an upper limit on the supply of each 

    kind of utility, and 

iii)A process where some batch units are multiplly used.
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Nomenclature 

Fi
,k = function which shows the consumption rate of utility 

        k which is required to operate  O.T.i 

fi
,j,k = function which shows the consumption rate of utility 

           k for M. 

Gk = maximum value of the consumption of utility k 

g performance index (monotonically non-decreasing function) 

K = number of the different kind of utilities 

L = number of operation trains 

      = operation module which is processed the jth in O.T.i 

Ni = number of operation modules in O.T.i 

O.T.i = operation train i 

Pi
,j = processing time of Mifj 

si
,j = starting moment of M. 

T0= set of operation schedules defined at Theorem 5-1 

tt = (t1, t2, ..., tL) : operation schedule of the process 

ti = starting moment of O.T.i 

U
i,j,k        = consumption rate of utility k per unit time which 

          is required to execute M. 
                                     i,j 

W = cycle time of the process 

Other symbols 

A x B = Cartesian product of A and B 

O.T.i } O.T.j = relationship such that the ending moment of 

         a certain operation module in O.T.i coincides with 

         the starting moment of some operation module in O.T.j 
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Chapter 6

OPERATION 

   PROCESS

SCHEDULING OF A MULTI-PRODUCT BATCH 

WITH INTERMEDIATE STORAGE TANKS



1. Introduction 

     A multi-product process consists of items of batch 

and/or continuous equipment which are operated intermittently, 

and sequentially produces various products. In such a 

multi-product process, there are many alternatives to the 

order of the production of each product and to the time 

needed for its production to satisfy the given overall 

production requirement. That is, there are many different 

production schedules which satisfy the production requirement. 

     In the field of Industrial Engineering, many studies 

have been done to solve such scheduling problems. However, 

it was recently clarified that the great majority of sched-

uling problems are "NP-complete", that is, the solution time 

for obtaining the exact optimal solution cannot be bounded 

by the polynomial in the characteristic size of the  problem[1] 

Therefore, much effort has been devoted to the development 

of effective scheduling algorithms so as to obtain feasible 

schedules in the shortest possible time and/or interactive 

man-computer scheduling systems by introducing many heuris-

tics[2]-[5] 

     One of the prominent characteristics of chemical proc-

esses is that fluid materials are mainly handled in a process. 

Therefore, the storage capacity of fluid materals strongly 

affects the operation scheduling of the process[6]-[8]. 

     In this chapter, the scheduling problem of a multi-

product process consisting of many production stages is
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considered by taking into account the capacities of the 

storage tanks for intermediate products and final products. 

A scheduling algorithm is proposed by which the feasible 

production schedules of each stage can be derived so as to 

satisfy the medium term production requirement of each 

product. 

     In many cases, products produced in a multi-product 

batch process are final products which come into the market 

directly. It is common that the market demands for these 

products are uncertain and change with time, and that the 

derived schedule is seldom implemented in its entirety 

without revision. So, it is very important to develop the 

scheduling procedure in due consideration of how to modify 

the previous schedule. 

     By taking into account the characteristics mentioned 

above, the interactive man-computer system is developed to 

solve the scheduling problem of the multi-product process.
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2. Problem Formulation 

     The process consisting of many production stages and 

intermediate storage tanks as shown in Figure 6-1 is taken 

up. 

     In order to clarify the problem, the following assump-

tions are first introduced: 

(i) Each production stage consists of batch or continuous 

     items of equipment. Many different kinds of products 

     can be produced in each production stage by changing 

     its "operation scheme", that is, by changing its opera-

     tion and/or feed materials. 

(ii) Each operation scheme of a production stage can be 

     mathematically specified by the following variables:

 +LJ CI

stage

1
stage

2
 tanks for 

intermediate 
  products

 tanks for 
intermediate 

 products

stage 

 K

tanks for 
 final 

products

Figure 6-1. A process consisting of  many production stages
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    1) the kinds of materials needed in its stage and their 

        consumption rates, 

    2) the kinds of products produced in its stage and 

        their production rates, 

    3) the operating cost per unit time in its stage. 

          Here, it is assumed that both the consumption rate 

    of raw materials and the production rate of products 

     take continuous values for each operation scheme, 

     although in a batch stage products are produced in 

     batch-wise. However, for the problem such that the 

    total planning period is fairly long compaired with the 

    cycle time of a batch  stage, this assumption will be 

    justified. 

(iii)The change-over cost depends only on the consecutive 

     operation schemes before and after the switching, and 

     the time necessary for switching from one operation 

     scheme to another is negligible. 

(iv) The market demand for each product produced in the 

     final production stage (i.e. final product) is piecewise 

     constant. Each period in which the demand for each 

     product is constant is hereafter called a "production 

     period". 

(v) The sufficient amount of each raw material for the 

     process is available for the whole production period. 

(vi) Only one kind of material is stored in each storage 

     tank. The upper and lower bounds on the capacity of 
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     each tank are known a priori. 

     Under the assumptions introduced above, the scheduling 

problem of the process shown in Figure 6-1 can be stated as 

follows: 

     "Find the sequence of operation schemes and their run 

lengths in each production stage so as to satisfy the given 

production requirements and minimize the sum of the operation 

cost and the change-over cost in the whole process". 

     In this problem, the number of feasible sequences of 

operation schemes in each production stage grows exponen-

tially with the increase in the number of necessary operation 

schemes. Therefore, it becomes almost impossible to obtain 

the exact optimal solution in a reasonable computing time. 

So it is of great importance to develop an effective algo-

rithm by which the feasible solution can be derived in the 

shortest possible time.
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3. Mathematical Formulation 

     In the process shown in Figure 6-1, the hold-up of a 

final product is determined depending only on the execution 

order of operation schemes and their run lengths in the 

final production stage, if the market demand of each final 

product is known a priori. On the other hand, the hold-up 

of an intermediate product in an arbitrary production stage 

i can be determined by the execution order of operation 

schemes and their run lengths in both production stages i 

and  i+l. 

     In order to expedite the solution procedure for obtaining 

feasible solutions, the following rule is first introduced: 

     "The determination of the execution order of operation 

schemes and their run lengths is done stage by stage backward 

from the final production stage (stage K) to the first one 

(stage 1)." 

     By deciding the execution order of operation schemes 

and their run lengths in the final production stage K, the 

demand for the precedent stage K-1 can be determined. Based 

on the above rule, the solution of the whole process can be 

obtained by solving an equal number of subproblems as the 

stage numbers. 

     The subproblem being solved at each production stage 

can be decomposed into two problems; one is the problem of 

finding the execution order of operation schemes, and the 

other is the problem of deciding the run length of each
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operation scheme the execution order of which has already 

been fixed. 

      In this section, assuming that the execution order of 

operation schemes is already determined, the problem of how 

to find the optimal run length of each operation scheme is 

considered. The problem of how to determine the execution 

order of operation schemes will be examined in the next 

section. 

     To simplify the explanation, it is assumed that the 

process consists of only one production stage, and only two 

different kinds of products are produced in the production 

stage. 

     Let's assume that an operation scheme (operation scheme 

1) is executed from the origin of the time axis. Then , the 

run length of operation  scheme  1, tl, must satisfy the 

following relationship: 

VL + D1t15V0+ R1t1_< VU + D1t1(6-1) 

where 

     V0 = (vi,v2)T : vector representing the initial hold- 
          up in the tanks for products 1 and 2, 

VL = (vi,v2)T : vector representing the lower bounds of 
          the possible hold-up in the tanks for products 1 

           and 2, 

     V= (v1, v2)T : vector representing the upper bounds of 
          the possible hold-up in the tanks for products 1 

           and 2, 
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     D.1 (d.,d. )T : vector representing the market 

          demand on products 1 and 2 during production period 

 i, 

 R. = (ri
,l,ri,2)T : vector representing the production 

          rates of products 1 and 2 resulting from the 

           execution of operation scheme i, 

     Superscript "T" means transpose of a vector. 

     In Eq.(6-1), the inequality of the left hand side shows 

the constraint on the lower bounds of the hold-up in the tanks, 

and the inequality of the right hand side shows the constraint 

on the upper bounds of the hold-up. 

     The relationship of Eq.(6-1) can be graphically expressed 

as shown in Figure 6-2. This figure shows the variations in 

the total production and the market demand for the final 

products with respect to time. The thin line in the figure 

represents the total depletion of each product with respect 

to time. And the bold line in the figure represents the 

total accumulation of the inflow to the tank resulting from 

the execution of operation scheme 1. The gradient of the 

bold line shows the production rate of each product. The 

vertical distance between two solid lines represents the 

hold-up of the tank at every moment. 

     Two dotted lines in Figure 6-2 represent the lower and 

upper bounds of the hold-up in the tank, respectively. That 

is, the hold-up in the tank does not exceed its lower and 

upper bounds if the bold line in the figure does not intersect
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either of these two dotted lines. In this example, the 

hold-up for product 2 exceeds its upper bound at time  ti, 
if operation scheme 1 is executed. 

     Consider the case where operation scheme 2 is performed 

in the wake of operation scheme 1. Then, the run length of 

operation scheme 2, t2, must satisfy the following relation-

ship: 

VI' - V~ S (R1-D1) t1 + (R2-Dl) t2 S VU - V~(6-2) 

           • Here, note that the run lengths of both operation schemes, t1 

and t2, are treated as independent variables.
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     Let's assume that the market demand of the final product 

during production period 1 is satisfied by executing operation 

schemes 1 and 2. Then, operation scheme 2 can be successively 

executed even in production period 2, in so far as the 

following relationship holds: 

 VL - V0 (R1-D1)tl+ (R2-D1)t2+ (R2-D2)t2 

                  U - V~   V(6-3) 

 t1 + t2 = p1(6-4) 

where 

     t'2 the run length of operation scheme 2 during produc- 

           tion period 2, 

p. = the length of production period i. 1 

     If the market demand of the final products during the 

overall production period (production period 1 + production 

period 2) can be fulfilled by successively executing operation 

schemes 1, 2 and 3, the run length of each operation scheme 

must satisfy the following relationships: 

VL - V0 <_(R1-D1)t1_<VU -0(6-1)' 

VL - V0 < (R1-D1)tl+ (R2-D1)t2<- VU-0(6-2) 

VL - V0 S (R1-D1)t1 + (R2-D1)t2 + (R2-D2)t'2< VU -0 
                                                          (6-3) 

VL - V0 < (R1-D1)t1 + (R2-D1)t2 + (R2-D2)t2 + (R3-D2)t3 

< VU- VD                                                              (6-5)
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     t1 + t2=pl(6-4) 

 t2+ t3=p2(6-6) 

     When t1,t2,t2and t3 satisfy the above restrictions, 

the total production and market demand for final products 1 

and 2 change with respect to time as shown in Figure 6-3. 

     The operation cost is given by the following equation: 

   C1t1 + C2(t2 + t2) + C3t3(6-7) 

where 

 C.  = operation cost per unit time of operation scheme i.
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 Eq.(6-1)' to (6-7) are all linear with 

t2,t2and t3. Therefore, the run lengths 

schemes, that is, t1, (t2+t2) and t3 which 

total operation cost given by Eq.(6-7), can 

tained by utilizing the Linear Programming

 respect to tl, 

of the operation 

minimize the 

 easily be ob-

(L.P.) technique.
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4. Scheduling Algorithm 

     The "operation sequence" will be defined as a set of 

operation schemes the execution order of which is already 

decided. By utilizing the terminology defined above, the 

problem of determining the execution order of the operation 

schemes at each production stage can be restated as one of 

selecting an operation sequence from feasible operation 

sequences at that production stage. 

     Here, it is necessary to notice that the number of 

feasible operation sequences is astronomical. For example, 

even if the number of operation schemes is 10, and each 

operation sequence has fewer than five operation schemes, 

the number of feasible operation sequences reaches the 

following number: 

     4 
 E  10•(10 - 1)'_7 x 104. 

      i=0 

     Therefore, in a practical case where the number of 

operation schemes is fairly large, it is almost impossible 

to perform the solution procedure of an L.P. problem for all 

of the feasible operation sequences in a reasonable computing 

time. By taking into account the difficulty mentioned 

above, the following algorithm for determining the execution 

order of operation schemes at a production stage is proposed. 

Here, it is assumed that m is the number of operation schemes 

which are executed in an operation sequence, and n is the 

number of production period for which the execution order of
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operation schemes is being determined. 

     Step 1) Let both m and n be one. We first derive the 

candidates for the operation scheme which is first executed. 

For all of the operation sequences each of which consists of 

only one operation scheme, find the maximum run length in 

such a way that neither overflowing nor exhaustion of stored 

material in the storage tank occurs. This procedure corre-

sponds to finding the maximum value of the run length of 

each operation scheme which satisfies  Eq.(6-1). 

      Step 2) Arrange the operation sequences each of which 

consists of m operation schemes in decreasing order of run 

length. Without loosing generality, it is assumed that the 

run length of operation sequence i, si, satisfies the 

following relationship: 

     sls2>...>sR>...> sQ>...(R Q) 

where 

si = the maximum run length of operation sequence i. 

      Let Tn be the sum of the lengths of production periods 

from production period 1 to production period n. If sl is 

longer than T
n, jump to step 7- 

      Step 3) As a part of candidates for the operation 

schedule, choose R operation sequences in decreasing order 

with respect to their maximum run lengths, i.e. operation 

sequences from operation sequence 1 to operation sequence R 

are selected. 

      Step 4) For each of Q-R operation sequences from operation 
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sequence  R+l to operation sequence Q, find the minimum 

operation cost subject to the constraint that the run length 

of the operation sequence is equal to or longer than the run 

length of operation sequence Q, sQ. This minimum value can 

easily be obtained by solving an L.P. problem. From these 

Q-R operation sequences, choose W-R operation sequences in 

increasing order with respect to the sum of the operation 

cost and the change-over cost of the operation schemes. 

     Step 5) W operation sequences selected at step 3 and 

step 4 are considered as the candidates for the operation 

schedule consisting of m operation schemes. These W operation 

sequences are hereafter called "dominant sequences" consisting 

of m operation schemes. Consider new operation sequences 

which can be generated by adding one more operation scheme 

to the dominant sequence obtained in step 3 and step 4. And 

find the maximum run length of each newly generated operation 

sequence as mentioned above. 

     Step 6) Increase the value of m by one (i.e., m f m+l). 

And return to step 2. 

     Step 7) For each of operation sequences the run length 

of which is longer than T
n, find the minimum operation cost 

subject to the constraint that the run length of the operation 

sequence is equal to T
n. Then, choose W operation sequences 

in increasing order with respect to the sum of the operation 

cost and the change-over cost of the operation schemes. 

These W operation sequences are also called "dominant 

sequences" consisting of m operation schemes. If n is equal 
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to the number of production periods, jump to step 10. 

     Step 8) The market demand of products between production 

period 1 and production period n is satisfied by executing 

m operation schemes. In this case, the last operation 

scheme, in other words, the m-th operation scheme executed 

in each  operation sequence can be successively executed even 

in production period n+l. So, recalculate the maximum run 

length of each operation sequence by adding the constraints 

such as Egs.(6-3) and (6-4). 

     Step 9) Increase the value of n by one (i.e., n t n+1). 

And return to step 2. 

     Step 10) When n is equal to the number of production 

periods, operation sequences derived at step 7 are feasible 

solutions. So, find the optimal operation sequence which 

minimizes the sum of the operation cost and the change-over 

cost among them. 

     By executing 10 steps mentioned above, the execution 

order of operation schemes and their run lengths at a 

production stage are determined. 

      Figure 6-4 shows the set of operation sequences to 

which the optimization calculation is performed, when the 

number of operation schemes is 5, and the number of dominant 

sequences, W, is 2. 

      In this algorithm, the constants, Q, R and W are given 

in advance by taking into account the size of the problem 

and the performance of the available computer etc.. 
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     Once the execution order of the operation schemes and 

their run lengths in a production stage are determined, the 

demand for the products in the previous production stage is 

automatically determined. Therefore, by performing step 1 

through step 10 at each production stage backward from the 

final stage to the first one, the execution order of the 

operation schemes and their run lengths can be determined at 

every production stage.
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5. Computer Package for the Scheduling of a Multi-product 

   Process 

 5-1. Overall structure 

     In order to execute the algorithm proposed at the 

previous section, the interactive man-computer scheduling 

system is developed. The "production scheduling system of 

multi-product  process" developed here is simply called PSMP 

PSMP is written in FORTRAN 77 language, and it has been 

developed for use in the interactive mode. 

     The computer package PSMP consists of the three main 

blocks as shown in Figure 6-5. The first block consists of 

subprograms for the data input and the data output. The
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Figure 6-5. Structure of computer package PSMP
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 second  block is the main scheduling block. And the third 

consists of periferal subroutines which are used at the 

first and second blocks. 

     Each operation which can be selected by the user is 

initiated by inputing a command from the keyboard. The 

commands which are available in this package are listed in 

Table 6-1. The meaning of these commands are explained more 

precisely during the course of this section. 

5-2. Input of data 

     The objective of this subsection is to describe the way 

in which input data are stored in internal memory. 

     Data input operation is initiated by the command DATAIN. 

On reading this command, the program reads the number of 

stages, and data required for the scheduling are inputed 

stage by stage from stage 1 to the final stage. Data 

required for the scheduling of a stage are listed as follows: 

     Number of product types, 

     Number of raw material types, 

     Initial stock level of each storage tank, 

     Lower bound of the storage in each tank, 

     Upper bound of the storage in each tank, 

For each operation scheme, 

     Production rate of each product, 

     Consumption rate of each raw material, 

     Operation cost per unit time, 

     Change-over cost from the operation scheme to each of 

     other operation schemes, 
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Only for the 

Number 

Length

 final stage, 

of production periods, 

of each production period.

Table 6-1. Commands available in the computer package PSMP

Command Description

DATAIN 

LTFDAT 

LTMDAT 

 CGFDAT 

CGMDAT 

LTFILE 

DLFILE 

PRFSOL 

RUN 

STOP

Reads the input data from the terminal keyboard 

and stores them in internal memory 

Prints the input data stored in secondary memory 

as a file 

Prints the input data in main internal memory 

Modifies a part of data stored in secondary 

memory as a file 

Modifies a part of data in main internal memory 

Prints the list of names of files formed in 

secondary memory 

Deletes a file in secondary memory 

Prints the scheduling result stored in secondary 

memory as a file 

Executes the scheduling algorithm and prints the 

derived schedules and stores them in secondary 

memory as a file 

Stops the execution of the program
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     These data are stored in main internal memory and also 

stored in secondary memory (auxiliary memory) as a file. 

The list of file names is also stored in secondary memory as 

a file. 

     Data stored in secondary memory can easily be modified 

by using the command CGFDAT.  Similarly, data in main 

internal memory can be modified by using the command CGMDAT. 

5-3. Scheduling routine 

     The scheduling routine is initiated by the command RUN. 

If data needed for scheduling have not been stored in main 

internal memory, by inputing the name of data file, scheduling 

data stored in secondary memory are read and stored in main 

memory. Then, the scheduling is executed according to the 

algorithm mentioned in the previous section. Feasible 

solutions derived are printed and if necessary, they are 

stored in secondary memory as a file. 

     A part of the operation schedule derived here can be 

modified by using the manual scheduling routine which is 

included in the scheduling program. In a manual scheduling 

routine, by inputing the execution order of operation schemes, 

the maximum run length for the operation sequence can be 

derived. Therefore, the user of the system can interactively 

derive the operation schedule by changing the execution 

order of operation schemes. It is also possible to fix the 

run lengths of a part of operation schemes in the operation 

sequence.
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5-4. Output of data stored in secondary memory 

     The command LTFILE provides the printed output of names 

of files which are stored in secondary memory. 

      The output of the input data stored in secondary memory, 

that is, the data which have been read in under the command 

DATAIN can be obtained by inputing the command LTFDAT and 

the name of the file. A sample output of the input data is 

shown in Tables 6-2 and 6-3 for the numerical example which 

is formulated and solved at the next section. 

      In this scheduling algorithm, several feasible solutions 

can be derived for one scheduling problem, and they are 

stored in secondary memory as a file. So, the output of the 

scheduling results stored in secondary memory can be provided 

by inputing the command PRFSOL, the name of the file and the 

number of a feasible solution. An example of the output of 

the scheduling result is also shown in Tables 6-4 and 6-5. 

Moreover, the variations of the hold-up in each storage tank 

with respect to time can be graphically expressed as shown 

 in Figures 6-8 and 6-9. 

      A file formed in secondary memory can be deleted by the 

command DLFILE.
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6. Numerical Example 

     In this section, the process consisting of two production 

stages as shown in Figure 6-6 is taken up, and the way the 

algorithm proposed here can be applied is shown. 

     In the distillation column at production stage 1, three 

different products can be produced by changing the plates 

for the side cuts. In the batch equipment at production 

stage 2, three different final products are produced by 

changing the feed materials. The market demand for this 

process changes for every one month. 

     Then, the problem is to find the operation schedule for 

the period of 2 months so as to minimize the sum of the 

operation cost and the change-over cost.
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     In order to store the scheduling data in main memory, 

the command DATAIN is first inputed. Then, the system 

interactively indicates the variable for which data must be 

inputed. Figure 6-7 shows how the scheduling data are 

inputed and stored in secondary memory as a file. 

     The printed output of the input data are depicted in 

Tables 6-2 and 6-3. These data can be obtained by the 

command LTFDAT. In this example, it is assumed that three 

operation schemes are available for both stages. 

     The scheduling algorithm is initiated by the commamd 

RUN. For this example, the operation schedule of stage 2 is 

first derived so as to satisfy the production demand. Then 

the scheduling for stage 1 is executed. 

     As candidates of the operation schedule for stage 2, 

three feasible solutions are obtained by using the scheduling 

algorithm. The result of a feasible schedule which minimizes 

the sum of the operation cost and the change-over cost is 

shown in Table 6-4. 

     By deciding the operation schedule of stage 2, the 

production demand for stage  1 can be determined. So, the 

operation schedule of stage 1 is next derived so as to 

satisfy the production demand for intermediate products. 

When the schedule which is shown in Table 6-4 is adopted as 

the operation schedule of stage 2, only one feasible schedule 

is obtained as candidate of the operation schedule of stage 1. 

     The operation schedule of stage 1 is shown in Table 6-5. 

As is clear from Tables 6-5 and 6-4, the operation schedule
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at the production stages 1 and 2 is switched 5 and 6 times 

respectively, in order to satisfy the given market demand 

for final products. 

     Figures 6-8 and 6-9 show the graphic output of the 

result. Figure 6-8 shows the variations in the hold-up of 

final products with respect to time. Figure 6-9 shows the 

variations in the total production and the market demand for 

the intermediate products with respect to time. Dotted 

lines in these figures represent the lower and the upper 

bounds of the hold-up in the tank.
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OTHERWISE INPUT 99 
04070 ? 
DATADD

* SCHEDULING DATA FOR SUBPROCESS 2 * 

*******************************************

NUMBER 

03220 ? 
3

MEMORY,

** : console input

Figure 6-7. List of a part of data input operation

- 241 -



Table 6-2. List of  scheduling data for stage 1

**************************************** 
* SCHEDULING DATA FOR SUBPROCESS 1 * 
* NAME OF DATA FILE = DATADD.D1 * 
**************************************** 

NUMBER OF PRODUCT TVPES = 3 
NUMBER OF RAW MATERIALS 1 
NUMBER OF OPE. SCHEMES 3 
NUMBER OF PROD. PERIODS = 0

    < LOWER AND UPPER BOUNDS OF THE HOLD-UP AND 
        INITIAL STOCK LEUEL IN STORAGE TANKS > (ton) 

PRODUCT NO.1 2 3 

  LOWER BOUND100.00 100.00 100.00 
  UPPER BOUND1200.00 1200.00 1200.00 

INITIAL STOCK LEUEL600.00 700.00 800.00

< PRODUCTION AND CONSUMPTION RATES > (ton/day) 

OPERATION SCHEME N0.1 23 

PRODUCTNO. 
170.00 0.0 60.00 

         270.00 100.00 0.0 
        30.0 40.00 80.00 

RAW MATERIAL NO. 
            1140.00 140.00 140.00

    <CHANGE-OUER COST AND OPERATION COST 

CHANGE-OUER COST(My) TO 1 2 

FROM10.0 100.00 
OP.SCHEME250.00 0.0 

          3100.00 100.00 

OPERATION COST(MV/day)1.90 2.00

   3 

50.00 
100.00 

0.0 

2.70
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Table 6-3. List of scheduling data for stage 2 

 **************************************** 

* SCHEDULING DATA FOR SUBPROCESS 2 * 
* NAME OF DATA FILE = DATADD.D2 * 

**************************************** 

NUMBER OF PRODUCT TYPES 3 
NUMBER OF RAW MATERIALS 3 

NUMBER OF OPE. SCHEMES 3 

NUMBER OF PROD. PERIODS 2

< DEMAND DATA FOR SUBPROCESS 2 > 

PRODUCTION PERIOD NO.1 2 

PRODUCTION PERIOD (day)30.00 30.00 

         PRODUCT NO.PRODUCTION REOUIREMENT(ton/day) 
        150.00 50.00 

        260.0030.00 
        330.0060.00

< LOWER AND UPPER BOUNDS OF THE HOLD-UP AND 
        INITIAL STOCK LEVEL IN STORAGE TANKS > (ton) 

PRODUCT NO.1 2 3 

  LOWER BOUND50.00 50.00 50.00 
  UPPER BOUND1200.00 1200.00 1200.00 

INITIAL STOCK LEVEL700.00 700.00 700.00

    < PRODUCTION AND CONSUMPTION RATES > (ton/day) 

OPERATION SCHEME NO.1 2 3 

PRODUCTNO.          
1 1 20. 00 0.0 0.0 

        20.0 180.00 0.0 
        3 0.0 0.0 140.00 

RAW MATERIAL NO. 
1 120.00 0.0 0.0 

        20.0 180.00 0.0 
        30.0 0.0 140.00 

    (CHANGE-OVER COST AND OPERATION COST > 

CHANGE-OVER COST (MY) TO I2 3 

FROM10.0 50.00 100.00 
OP.SCHEME2100.00 0.0 50.00 

         370.00 120.00 0.0 

OPERATION COST(MY/day)0.70 0.60 0.70 
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Table 6-4. List of scheduling result for stage 2

 ***************************************************** 
* OPERATION SCHEDULE FOR SUBPROCESS 2* 
* SOLUTION NUMBER= I* 
* NAME OF SCHEDULING DATA FILE = DATADD.D2 * 
* NAME OF DEMAND DATA FILE = DATADD.D2 * 
***************************************************** 

 TOTAL COST = 0.3805181E+03(MY) 
      OPERATION COST = 0.4051807E+02 

      CHANGE-OVER COST = 0.3400000E+03 

    *** OPERATION SCHEDULE FOR SUBPROCESS 2 *** 

  PRODUCTION OPE-SCHEME OPERATION STARTING 
   PERIODNO.TIME (day) MOMENT (day) 

 117.14 0.0 
  127.74 7.14 
  138.60 14.88 

116.52 23.48 
  215.16 30.00 
  227.0835.16 

  2311.62 42.24 
  216.14 53.86 

TOTAL SCHEDULING PERIOD - 60.00

    *** STOCK LEVEL *** (ton) 

TIME PRODUCT NO. 12 3 

    0.0 (day)700.00 700.00 700.00 
    7.141200.00 271.43 485 .71 

   14.88813.10 1200.00 253.57 
   23.48382.90 683.77 1200.00 

   30.00838.96 292.86 1004.55 
   35.161200.00 138.13 695 .08 

   42.24846.04 1200.00 270.33 
   53.86265.00 851.37 1200.00 

   60.00694.97 667 .10 831.46 

    *** ACCUMURATIONS OF PRODUCTS *** (ton) 

TIME PRODUCT NO. 12 3 

    0.0 (day)700.00 700 .00 700.00 
7.141557.14 700 .00 700.00 

   14.881557.14 2092 .86 700.00 
   23.481557.14 2092.86 1904.54 

   30.002338.96 2092.86 1904.54 
   35.162957.88 2092.86 1904.54 
   42.242957.88 3367.10 1904.54 
   53.862957.88 3367.10 3531.46 
   60.003694.96 3367.10 3531.46 

                   - 244 -



Table 6-5. List of scheduling result for stage 1

 ***************************************************** 

* OPERATION SCHEDULE FOR SUBPROCESS 1* 

* SOLUTION NUMBER= 1* 
* NAME OF SCHEDULING DATA FILE DATADD.D1 * 

* DEMAND DATA ARE CALCULATED FROM THE SCHEDULING X 
* RESULT OF THE PREVIOUS SUBPROCESS 

* NAME OF SOLUTION FILESOLTDD.S2 * 

* NUMBER OF SOLUTION USED= 1* 
*****************************************************

TOTAL  COST = 0.6205569E+03 

OPERATION COST = 0. 

CHANGE-OUER COST 0.

1205569E+03 

5000000E+03

(MY)

   *** OPERATION SCHEDULE FOR SUBPROCESS 

PRODUCTION OPE-SCHEME OPERATION 
 PERIODNO. TIME (day) 

       17.14 
 217.74 

 310.42 
 323.76 
 334.43 

 4311.67 
 530.0 
 512.92 
 524.15 
 6210.07 
 631.55 
 736.14 

TOTAL SCHEDULING PERIOD =

1 *** 

STARTING 
MOMENT 

0.0 
7. 14 

   14.88 

  15.30 
19.06 

        23.48 

35.16 
35. 1 6 

38.08 

  42.24 
52.31 

53. 86 

   60.00

(day)

*** STOCK LEVEL *** (ton) 

TIMEPRODUCT NO. .1

0.0 (day)600.00
7. 14 

14.88 

1 5. 30 

1 9. 06 

23.48 

35.16 

35. 16 

38.08 

42.24 

52.31 

53.86 

60.00

 242.86 

784.52 

 813.68 

 813.68 

1 079. 26 

378.88 

378. 88 

 583.62 

583.62 

 583.62 

676. 75 

 308.21

    2 

700. 00 

1200.00 

348.81 

377. 97 

 754.08 

 754.08 

754.08 

754.08 

 432.34 

 100.00 

1106.87 

1106.87 

1106.87

   3 

800.00 
800.00 

800.00 
 741.68 
365.58 

100.00 
1 033. 83 
1033.83 

1033.83 

        1 200. 00 
193.13 

1 00. 00 
 591.39
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7. Conclusion and the Extension of the Problem 

     The scheduling problem of a multi-product process which 

consists of many production stages is considered. An effec-

tive algorithm was developed to derive feasible production 

schedules which minimize the sum of the operation cost and 

the change-over cost. In this algorithm, the production 

schedule of the process is successively determined stage by 

stage backward from the final production stage to the first 

one. 

      The word "operation scheme" was introduced to express 

the operation of each production stage. By utilizing the 

terminology "operation  scheme", the problem which must be 

solved at each stage resolves itself into the problem to 

decide the execution order of operation schemes and their 

run lengths. 

     The number of the execution order of the operation 

schemes, that is, the number of operation sequences which 

must be searched becomes astronomical in a practical case. 

Therefore, in the procedure proposed here, the number of 

searching points is restricted to a reasonable number from 

the point of view of the actual computation procedure by 

introducing some heuristics. However, in order to derive 

good feasible solutions, the run length of each operation 

scheme is treated as an independent variable in the calcula-

tion procedure. 

     The way of thinking utilized in developing this algorithm
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is applicable even to cases where the following conditions 

are imposed. 

     i) The change-over time between two operation schemes 

cannot be neglected. 

     Even to this case, inequalities related to the lower 

and the upper bounds of the hold-up in the tank are linear 

with respect to the run lengths of operation schemes executed . 

For example,  Egs.(6-1)' and (6-2) can be rewritten as follows: 

      (R1-D1)t1VU - V0 

VL - V0 _< (R1-D1)tl - D1E12 

                (R1-D1)t1 - D1E12 + (R2-D1)t2<V0- V0 

VL - V0 < (R1-D1)tl - D1E12 + (R2-D1)t2 - D1E23 

where 

Eij = the change-over time from operation scheme i to 

             operation scheme j. 

     Therefore, the algorithm proposed here is applicable 

without any modification for this case. 

     ii) The production level of each operation module can 

be changed. 

     It is assumed that Ri is a vector representing the 

production rates of products resulting from the execution of 

operation scheme i at full capacity. And it is also assumed 

that the production level of operation scheme i, ki, can be 

changed in a following range: 
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 ki < kiSki 

Then, the production rates of products for operation scheme 

i is expressed by kiRi. 

     Even to this case, inequalities related to the lower 

and the upper bounds of the hold-up in the tank are linear 

with respect to the run lengths of operation schemes executed 

For example, Egs.(6-1)'and (6-2) can be rewritten as follows: 

VL - VO (kiRi-D1)tll + (k7111-D1)t12 VU - V0 

VL - V0 s (kiRi-D1)tll+ (k1R1-D1)t12 

             + (k2R2-D1)t21 + (k2R2-D1)t22SVU - VO 

tll + t12 = tl 

     t21 + t22 = t2 

     As is clear from above inequalities, the algorithm 

proposed here is applicable even to this case.
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Nomenclature 

 C. = operation cost per unit time of operation scheme i 

Di = vector representing the market demands on products 

     during production period i 

E.. = change-over time from operation scheme i to operation 

      scheme j 

K = number of production stages 

P. = length of production period i  i 

R. = vector representing the production rates of products 

     resulting from the execution of operation scheme i 

si = muximum run length of operation sequence i 

Ti = sum of the lengths of production periods from production 

     period 1 to production period i 

ti = run length of operation scheme i 

V~ = vector representing the initial hold-up in the tanks 

VL = vector representing the lower bounds of the possible 

     hold-up in the tanks 

VU = vector representing the upper bounds of the possible 

     hold-up in the tanks
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Chapter 7 

CONCLUSION



      The design and scheduling problem of batch processes 

have been studied in  this  thesis. In a batch process, the 

main equipment items are operated batch-wise. So, the 

formulation of the design problem differs from that of a 

continuous process. Moreover, as the batch item is operated 

batch-wise, the scheduling of the process becomes a large 

problem. 

      One of the dominant characteristics of chemical processes 

is that the fluid materials are mainly handled in the process. 

Therefore, storage tanks are indispensable to holding the 

products or intermediate products in the process. And the 

places where storage tanks are installed and the capacities 

of these tanks strongly affect the design and scheduling of 

the process. By taking account of this fact, the design and 

scheduling problems of batch processes with intermediate 

storage tanks have been studied in this thesis. 

     From Chapters 2 to 4, the design problem of a single 

product batch process was studied. In these chapters, it 

was stressed that the minimum size of an intermediate storage 

tank depends not only on the batch sizes of batch stages 

before and after the tank but also on the operation schedule 

of the process. 

     In Chapter 2, a simple process consisting of periodically 

operated parallel batch units and intermediate storage tanks 

installed before and after the batch section was taken up . 

And the problem of determining the schedule of the parallel 

batch operations and the tank capacities was discussed . For 
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the case where a batch section is composed of parallel 

identical units, optimal scheduling was obtained analytically. 

Then the case in which each batch unit has different cycle 

time was dealt with. For this case, it was shown that the 

search domain necessary can be reduced to an extremely small 

size. 

     In Chapter 3, the problem of the optimal design and 

operation of a single product batch process consisting of 

many batch stages and intermediate storage tanks was dealt 

with. The minimum volume of an intermediate storage tank 

was analytically derived as a function of batch sizes of 

batch stages before and after the tank. Then, effective 

algorithms which can be used to find the optimal solution in 

a very small number of searching steps were developed for 

practical cases. 

     One of the functions of intermediate storage tanks is 

to mitigate the effects of many kinds of variations. In 

Chapter 4, the design problem of a batch process with a fixed 

degree of flexibility was solved. As uncertain variations, 

the variations related to the operation schedule and to the 

batch size of each batch stage were considered. And the 

quantitative relationship between the size of allowable 

variations and the necessary volume of the storage tank was 

derived. 

      In  these three chapters mentioned above, it was assumed 

that a batch item was cyclically operated according to four 

steps such as the charging, processing, discharging and 

cleaning. And by using this simplified model, many valuable 
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results have been analytically derived. 

      In Chapters 5 and 6, the scheduling problems of batch 

processes were studied. As explained in Chapter 1, there 

are many differences between the scheduling for chemical 

processes and that for non-chemical processes. Therefore, 

the scheduling techniques developed for non-chemical processes 

can not directly apply the scheduling problems of chemical 

processes. Most of these differences are caused by the 

characteristics of the batch chemical processes such that 

the process is cyclically operated and the fluid materials 

are mainly handled in the process. 

      In Chapter 5, the utility smoothing problem of a 

cyclically operated batch process was studied . By installing 

a storage tank between two batch units, the starting momemt 

of the latter batch unit can be arbitrarily chosen . By 

using this flexibility, the problem of how to smooth the 

peak consumption of utilities was discussed. In order to 

derive the optimal solution, a direct search method was 

used, and an effective algorithm was also developed to 

obtain a suboptimal solution in a very short computing time . 

     In Chapter 6, the scheduling problem of a multi -product 

process consisting of many production stages and storage 

tanks was studied. In such a process , the storage capacity 

of fluid materials strongly affects the operation scheduling 

of the process. Here an algorithm was developed to derive 

feasible production schedules which minimize the sum of the 

operation and the change-over costs . By using this algorithm, 

an interactive scheduling system was developed . 
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