

Title	Studies on the Turnover of Phosphorus in Some Tissues with the Use of Radioactive Phosphorus P ³²
Author(s)	Inouye, Katashi; Uchino, Senji; Miyake, Tadashi; Fukuda, Minoru; Kariyone, Shigeo; Uchino, Haruto; Shimatani, Masao; Nishio, Sunao
Citation	京都大学化学研究所報告 (1952), 29: 81-82
Issue Date	1952-06-30
URL	http://hdl.handle.net/2433/74425
Right	
Туре	Departmental Bulletin Paper
Textversion	publisher

19. An Investigation of the Fused Electrolytic Baths of Cerium Chloride

Kiyokado Nishihara, Seizo Tsuda and Yoshthiro Shimizu

(Sawamura Laboratory)

Thermal analysis was carried out for binary and ternary mixtures of salts cerium chloride (RCl₃), CaCl₂, BaCl₂, and NaCl. The cerium group chloride (RCl₃) used here contains 89% of cerous chloride and 11% of the chlorides of other cerium group metals. The melting point of RCl₃ is 796°C. The binary eutectic points are 78 mo1.% of CaCl₂ at 613°C in the system of RCl₃-CaCl₂, 31% mo1. of BaCl₂ at 683°C in the system RCl₃-BaCl₂ and 54 mo1.% of NaCl at 499°C in the system of RCl₃-NaCl.

The ternary eutectic points are 30 mo1.% of RCl₃, 49 mo1.% of CaCl₂, 21 mol.% of BaCl₂ at 490°C in the system of RCl₃-CaCl₂-BaCl₂ 21 mol.% of RCl₃, 48 mol.% of CaCl₂, 31 mol.% of NaCl at 459°C in the system of RCl₃-CaCl₂-NaCl and 36 mol.% of RCl₃, 42 mol.% of NaCl, 22 mol.% of BaCl₂ at 373°C in the system of RCl₃-Nacl-BaCl₂.

20. Studies on the Turnover of Phosphorus in Some Tissues with the Use of Radioactive Phosphorus P³².*

Katashi Inouye, Senji Uchino, Tadashi Miyake, Minoru Fukuda, Shigeo Kariyone, Haruto Uchino, Masao Shimatani and Sunao Nishio.

(K. Inoue and Uchino Laboratories)

Radiophosphorus P³² in the form of phosphate (Na₂HPO₄+NaH₂PO₄) solution (pH 7.3-7.4) was injected into male mice subcutaneously, and the content and specific activity of P³² in the live tissue was examined. The radiophosphorus with the activity of 0.5-5.0 µc was injected to each mouse weighing about 20 grams. The animals were divided into four groups; (a) control, (b) with the experimental liver damage, (c) with methionine treated, and (d) with liver damage and methionine treatment (Table 1). The liver damage was done by the subcutaneous injection of carbon tetrachloride 24 hours before the P³² injection. The methionine treatment was performed by the subcutaneous injection of 40 mg 1-methionine to each mouse simultaneous with P³² administration. The animals were sacrificed three and five hours respectively after the P³² administration, and P³² content of the acid soluble, the lipid, and the residual fraction of the liver homogenate was measured by the G-M counter. The radiosphorus content of various fractions was as follows (Table 1).

Table 1.

Animals	(a)		(b)		(c)		(d)	
Time after admin.	3	5	3	5	3	5	3	5
Acid soluble fr.	3.70%	2.81	4.23	4.57	4.32	2.41	2.91	3.02
Lipid fraction	0.77**	0.92	1:22	1.45	0.72	0.88	0.36	1.13
Residual fraction	0.91	1.21	0.91	0.45	1.67	0.43	1.06	0.73

^{**} percent of the administration

The radiophosphate content of the lipid and the acid soluble fraction of the damaged liver amounted to higher value than that of the control liver.

The radiophosphorus with the activity of 25 μ c per kilo body weight was injected into rabbit. The animal was sacrificed five hours thereafter, and the distribution of P^{32} in adenosine-triphosphoric acid of muscle tissues of this animal was examined. It was found that the bulk of the radiophosphorus was contained in the endstanding acid soluble phosphate groups, and that the acid stable adenylic acid-P fraction comprised only a very small quantity of the isotopes.

* The radioisotopes used were those distributed from the A. E. C. of U. S. A.

21. Rate of Exerction of Radioactive Calcium Ca^{15*} into the Bile and in Urine

Katashi Inouye, Tadashi Miyaka, Shigeo Kariyone and Haruto Uchino

(K. Inouye Laboratory)

The radioactive calium in the form of CaCl₂ solution (pH 5.5) was injected intravenously to the rabbits with the experimental bile fistula, and thereafter the excretion of Ca⁴⁵ for four hours into the bile and in urine was examined. The dose for each animal had the activity of 30 μ c, and contained 4 mg calcium as the carrier. Calcium determination was done by a modified Kramer-Tisdall method, and the activity of Ca⁴⁵ was measured by G-M counter.

The bile was collected and examined every one hour. The biliary excretion as well as the specific activity of the biliary Ca⁴⁵ was the highest at the first one hour and then decreased gradually. The intravenous injection of 200 mg inactive CaCl₂ at one hour after the Ca⁴⁵ administration caused some variation of the course of the biliary calcium excretion, but the successive decrease of the specific activity of the biliary Ca⁴⁵ proceeded thereby in the same manner as that in control animal (Table 1).