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Abstract

A compact ion storage and cooler ring S-LSR has been designed with the circumference and radius of
curvature of 22.557 m and 1.05 m, respectively and now under construction at ICR Kyoto University. One of the
research subjects at S-LSR is laser cooling of a **Mg" ion beam with the kinetic energy of 35 keV. Study of the
dynamics of ion beams which is three-dimensionally cooled by a strong cooling force using rf cavities is the
subject of the present thesis. The ultimate aim is the generation of a crystal beam which is extremely low
emittance (low temperature) beam. The lattice structure of S-LSR is designed so as to be suitable for generation
of a crystal beam. The main elements of S-LSR; namely, bending magnets and quadrupole magnets are designed
by using a three-dimensional magnetic field calculation code TOSCA with high precision. In the design of the
bending magnet, its pole shape has been carefully investigated in order to suppress the unwanted higher order
components of the magnetic fieid. The adjustment of the effective length has aiso been tried. The real
characteristics of the fabricated magnets have been investigated through the magnetic field measurements, which
are reflected on the assignment of each magnet to the position in S-L.SR at the magnet alignment.

In order to realize a high intensity three-dimensional crystal beam, it has been known that the effect of the
bending shear due to the linear dispersion has to be avoided. For this purpose, a method which utilizes the
deflection element superposing an electric field with the magnetic field has been proposed. This deflection
element can eliminate the effect of the linear dispersion, and the electrostatic potential included in the deflector
gives the ions necessary acceleration and deceleration for the stabilization of the 3D crystal structure. Thus the
bending shear is expected to be moved away. Such dispersion-free deflection element is to be realized by
inserting a cylindrical electrostatic deflector in the gap of the bending magnet. Due to severe size limitation to be
installed in the magnet gap of 70 mm, the aspect ratio of the electrodes for the electrostatic deflector is not so
good as 30/26 (gap/height), which has been managed with a special structure of the electrode having shims at
both sides and intermediate electrodes. The effective length and the structure of the fringing field were designed,
considering the consistency with the magnetic field obtained from the field measurement. Assuming the above
mentioned dispersion-free deflection elements for the lattice of S-LSR, the beam dynamics becomes equivalent
to the linear ion trap in which the crystallization of ions has already been observed. Although, in the case of
S-LSR, the electric field realized by two coaxial cylindrical electrodes with the dependence of 1/r, does not make
an operation point which satisfies so called "maintenance condition" of a crystal beam. The radially uniform
electric field is found to give such an operation point as satisfies the "maintenance condition”. Realization of the
radially uniform electric field in the central region of the deflector is considered to be possible by the adjustment
of the potentials of the intermediate electrodes of the present electrostatic deflector.
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Chapter 1. Introduction

Chapter 1. Introduction

In recent years, considerable experimental effort has been devoted in various fields to realize a low
temperature state of a multi-particle system. Laser cooling is one of the most powerful means for this
purpose. It is often applied to charged particles confined in an ion trap where Coulomb crystallization, an
ultimate low temperature state has already been achieved [1-1, 1-2, 1-3]. In the field of beam physics, other
cooling techniques, such as electron cooling and stochastic cooling, have also been employed to control the
rest-frame temperature of ion beams. By using the electron cooling technique, one-dimensional ordering of
an ultra-low-density ion beam has been established at ESR and CRYRING [1-4, 1-5] (although it is
physically different from a crystalline state [1-6]). The laser cooling experiment at PALLAS, a circular RFQ
trap [1-7], has shown the observation of 2D and 3D crystalline beams at the very low beam energy around 1
eV. Furthermore, the realization of a bunched crystal beam has been reported [1-8]. However, the 3D
crystallization of “fast ion beams” has not been accomplished in storage rings yet.

Noting the similarity between ion traps and storage rings, we naturally expect that Coulomb crystallization
may be achievable even for a fast stored beam. Molecular dynamics (MD) studies have actually
demonstrated the possibility of a phase transition to a crystalline beam [1-9, 1-10]. According to advanced
MD simulations where the realistic lattice structure of a storage ring is incorporated, it has been shown that
the crystal beam is not necessarily formed in any storage ring. It has been found that so-called maintenance
conditions exist for realization of a crystal beam in a storage ring. First condition is that the beam energy
must be below the transition energy; y < y,. The second condition is N > 2+/2v,, where N is the number
of the super period of the ring, and v, is the transverse tune [1-11]. In addition to the maintenance
condition, a strong three-dimensional cooling force is also essential. Under the situation satisfying these
maintenance conditions, MD simulation shows that a variety of crystalline configurations can be formed in a
properly designed ring when a sufficiently strong three-dimensional (3D) cooling force is available [1-10,
I-11, 1-12, 1-13].

As the storage ring equipping strong laser cooling device, TSR (MPI in Germany) and ASTRID (Aarhus,
in Denmark) exist. However, the storage ring that can operate under satisfying the second maintenance
condition do not exist. The storage ring satisfying the maintenance condition, Crystal Storage Ring (CSR), is
planned at LNL in Italy. Furthermore, a small laser-equipped storage ring (S-LSR) is now under construction
at the ICR Kyoto University in collaboration with the National Institute of Radiological Sciences [1-14].
S-LSR has the super period 6 and, can operate under satisfying the maintenance conditions. Laser and
electron cooling techniques are to be applied, at S-LSR, to ion beams that have relatively low kinetic
energies. (Chapter. 2)

In actual storage ring, each element constructing the storage ring has a bit of structural error. Therefore,
the number of the super period of actual storage rings is one, strictly. In order to realize the ideal number of
super period, the construction error of each element has to be suppressed as far as possible. As explained
later, the stop bands induced by structural error of the ring element may influence on the realization of the
ultimate low temperature beam, thus they also should be suppressed. The bending magnets and quadrupole
magnets for S-LSR were designed precisely by using a 3D magnetic field simulation code TOSCA. Then,
the precise performance assessments by a field measurement were performed. And, optimum alignment to
suppress the effect of each error has been considered. (Chapter. 3)

On the other hand, it has also been pointed out that the stability of a three-dimensional large particle

-1-



Chapter 1. Introduction

Fig. 1-1. The conceptual illustration of the shearing force. If all stored
particles in a crystalline ground state have the same longitudinal velocity,
the revolution frequency of a radially outer particle becomes longer than
that of an inner particle. Consequently, the two particles are more and
more distanced longitudinally every turn, which eventually leads to the
melting of the crystalline state. The strength of the shearing force is
closely related to the momentum dispersion, as shown in Section. 4.

number crystalline beam can be seriously affected by a dynamic effect peculiar to storage rings even if the
maintenance conditions are satisfied. The most essential difference between ion traps and storage rings is
whether the effect of momentum dispersion exists. In circular machines such as a synchrotron, or a storage
ring, the closed orbit of a stored charged particle depends on its energy deviation from the design value. The
existence of this dispersion inevitably yields dynamic coupling between the horizontal coordinate and
longitudinal momentum of the particle, thus making the beam behavior more complicated compared with the
ion trap. If the dispersive effect is negligible, then ion traps and storage rings become almost equivalent
[1-15], which means that we encounter no substantial obstacle toward Coulomb crystallization. In general,
however, strong momentum dispersion is inevitable as far as regular storage rings are concerned. This is one
primary reason why the crystallization of fast stored beams is so difficult and has not been accomplished yet.

The cooling force provided by a usual cooling device is designed so as to equalize the longitudinal
velocities of all stored ions, but such a force is not suitable for a 3D crystalline state with finite horizontal
extent. When the 3D crystal beam enters into the bending section, the particles constructing outer and inner
parts of the crystal structure are sheared due to the momentum dispersion, as illustrated in Fig. 1-1. Such
effect is called as shearing force. In order to maintain the crystalline structure, stored particles must have an
identical “angular” velocity rather than an identical “linear” velocity; in other words, we must compensate
the difference in the revolution frequencies. As a solution of such a problem, tapered cooling has been
proposed [1-12]. In tapered cooling, particles at different radial positions are cooled towards different
velocities in order to realize the same “angular” momentum. However, no practical method to generate a
tapered light has been known.

In this thesis, I propose an alternative scheme to stabilize 3D crystals; namely, a storage ring that has
deflection elements using magnetic field and electric field simultaneously. The deflection elements using
magnetic field and electric field simultaneously can suppress the dispersion. In this thesis such a deflection
element is called as dispersion-suppresser or dispersion-free deflector.

As I prove later, the scalar potential of the dispersion-suppressor causes the longitudinal acceleration (or
deceleration) of particles, automatically equalizing their angular velocities in the bending region. This means
that, in a storage ring constructed by such deflectors, it is likely that 3D crystalline beams can be produced.
The beam dynamics in such dispersion-free ring has interesting properties as proved in Chapter 4. The
dispersion-suppressor described above is applied to S-LSR in order to demonstrate the practicability and
potential of a dispersionless system. As a possible application of the dispersion-free operating mode of
S-LSR, the laser cooling of a **Mg" beam is planned. The storage ring, which is free-from shearing force, in
addition to satisfying maintenance condition, is only the S-LSR in the world.



Chapter 1. Introduction

1.1 Single particle dynamics
The motion of a charged particle in accelerators is governed by Lorentz force [1-16]
dp .
Z=g(E+VxB 1-1
kL ) (1-1)
where p is the mechanical momentum, ¢ is the charge state of the particle. The electric field and magnetic
field in accelerators is given by
- 04 -
E=-V¢-—-—, B=VxA, (1-2)
ot
In accelerator physics, it is useful to use a curvilinear coordinate system which has the design orbit of the
synchrotron or beam line, as the reference orbit (Frenet-Serret coordinate system) (Fig 1-2). In the following,
Hamiltonian formalism in the Frenet-Serret coordinate system is derived. We suppose that the coordinate of

the reference orbit of the beam line is defined by 7,. The tangent unit vector to the reference orbit is given
by

1 di(t)  dF(s)
v () dt  ds

W)

, (1-3)

where v,(f) is the velocity of the reference particle, s is the length of reference orbit. And, the main normal
vector (unit vector perpendicular to the tangential vector on the tangential plane) is given by

% 1 ds@) ds(s)
n=—p({l)——=—-p(§)—, 14
‘K)%U)cﬁ P — (1-4)
where p is the radius of the curvature. The unit vector orthogonal to the tangential plane is given by
b=hxS$. (1-5)

Then, as shown in Fig 1-2, we can express the coordinate of a discretionary particle passing the beam line by

F=F(,+xr71+yl; (1-6)

particle position

Fig.1-2.  Curvilinear  coordinate
system for particle motion in beam
line

Reference orbit



Chapter 1. Introduction

From least action principle [1-17]
5 ([ me* 1= (d¥ I cdry +qA-(aF 1dry- gl =0 -7

Here, we select the orbit length s, as the independent variable, instead of the time z. Then, Eq. (1-7) is

rewritten to

5 I(—mc\/(cdt/ds)z —(dF | ds)® +q[21-(df/ds)—¢(dt/ds)]}f =0. (1-8)

Therefore, the Lagrangian in this coordinate system becomes to

L = —me-[(cdt | dsy — (dF | ds)* +q|A-(dF | ds)— g(dt | ds)| (1-9)

In this case, t becomes one of the coordinates describing the particle motion. .

Next, we rewrite this Lagrangian by the coordinates x, y, f. The differentiation of the basis #,b,5 by s
becomes as follows

db(s) _

di(s) 1 z 7 L F d(s) 1
2 p(s)s(s)+r(s)b(s), P r(s)n(s), s )

Aa(s), (1-10)

where 7(s) is the torsion of the curve. When the relations (1-10) are used, the differentiation of the position

F_[1.x §+(@—zy}§+ @iﬂle; (1-11)
ds yo, ds ds
Substituting this relation to Eq. (1-9), the Lagrangian in Frenet-Serret coordinate system is obtained.

L= —mc\/(cdz‘/als)2 ~(L+x/ p)* —(dx/ds~yt)* —(dy/ds +x7)>

Eq. (1-6) is expressed as

(1-12)
+ q[(l +x/ p)A, +(dx/ds—yr) A, +(dy/ds+x7)4, - ¢(dt/ds)]
From Lagrangian (1-12), the canonical momenta are defined
oL oL OL
- i = = 1-13
px ax, py ayr pl atl ( )

where x' means differentiation with respect to s. The Hamiltonian can be derived, from this Lagrangian, as

H=xp +yp,+tp ~L
(1-14)

=—(1+x/ p)(p, +q9)’ I ~m’c" ~(p, - q4,)’ —(p, —q4,)* +q(+x/ p)A, ~(xp, — yp,)7
The charged particle motion is governed by canonical equations derived from the Hamiltonian (1-14).
ox ©OH % oH

o op, o5 ox

0
»_OH o, _oH (1-15)

os op,” & oy

o _oH o, __on
Os 0Op,~ Os ot
Usual beam line of accelerators is designed in the horizontal plane. Therefore, 7(s) is usually zero.
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1.2 Major elements of a storage ring
1.2.1 Bending magnet

In this section, a charged particle motion in a flat pole bending magnet is shown. Such a bending magnet is
used for separated-function lattice storage ring as S-LLSR. As shown in section 3, the magnetic field in such
bending magnet is uniform. The reference particle is bent with the constant bending radius p, in the

bending magnet. Therefore, the reference orbit is a circle with the radius of p,, and the vector potential of
the bending magnet is given by

B
(09 09 As):(oa 09 __E‘L(po-‘—x))’ (1'16)

where B, denotes the strength of the magnetic field in the banding magnet. The relation between the
bending radius and the magnetic field is given by

Py =94B,p, (1-17)

When the vector potential is substituted to the Hamiltonian, it becomes to

H=—(+x/p)|p’lc* —m*c* - p> - p> +q(1+x/ p)A (1-18)
t X y 5

Substituting this Hamiltonian to the canonical equation, the equation of motion of the charged particle is
obtained. However, it is difficult to solve this equation directly. So, we usually use an approximated form of
Hamiltonian [1-18].

2 + 2
Hz—[l+—x—j[qu +p-p"—5’ij (1-19)
p

where p is the total kinetic momentum written as

p=mpyc=+p’lc’-m’c’, (1-20)

(B and y are Lorentz factor). We have supposed that the transverse momentum p,,p, is much small
compared with the total kinetic momentum and the position deviation from the reference orbit x is far
small compared with the bending radius p, . Therefore, higher order term of p, ., / p and x/ P, are
neglected. This approximation is usually good approximation for actual accelerators. The momentum

deviation from the design value p, = mB,y,c =+ E; /c* —m’c’> can be approximately given by

2

AE 1 AE

Ap=p—py=-——- ( ] (1-21)
Bic 2p,\ Bycy,

where S and ¥, are Lorentz factor of the reference particle, and AE is the energy difference from the
reference particle defined by AE =(—p,)—my,c’ (from Eq. 1-13, we can find that the — p, stands for
the energy of the particle.) Substitution of Eq. (1-21) together with Eq. (1-17) into Eq. (1-19) yields the
approximate normalized Hamiltonian

. H AE 1 (AEY pP2+p2 X AE «x
H= 5 "\ gr ) 2 t20 BB py
§ 2 BE, Yo \ B Ey Po Py BoEy po

From this Hamiltonian, we obtain the horizontal equation of motion in the bending region

(1-22)

-5-



Chapter 1. Introduction

d’x x| 1 AE (1-23)

YT

“ X 4 .
ds’ P P :6:)2E0

When the energy deviation AE from the reference particle is small, in Eq. (1-21), the second order term of

AE can be neglected and the following relation is obtained.

Ap~AE (1-24)

Then Eq. (1-23) becomes to

2
dx x5 (1-25)
s’ Py Py P
The second term of the right hand side induces the orbit deviation due to the difference of the momentum.
This effect called as momentum dispersion or dispersion. The effect of the dispersion to the beam dynamics

is one of the most important themes in this thesis.
1.2.2  Quadrupole magnet

A charged particle motion in a quadrupole magnet is described from the Hamiltonian by the similar way.
The quadrupole magnet has a function focusing a beam, but does not have bending effect. Thus, the
reference orbit in the quadrupole magnet becomes the straight line passing through the center of the
quadrupole. The vector potential of the quadrupole magnet is given by

(O: 09 As) = (Oa O: %(xZ _yZ)J (1'26)

where B, is the field gradient of the quadrupole magnet. By the same way with the previous section, the
approximated normalized Hamiltonian is obtained.

2 2 2
~ +
H:ﬂ-%— AZE 4 12( %E ) +px 2l’y__qu (xz_-yZ) (1_27)
Dy BE, 2y, \ BE, 2p, 2p,
The equations of motion are
2 2
d’x _4gB dx . 48 (1-28)

ds® P ds® P

1.3 Storage ring

A separated function type storage ring is constructed with bending magnets and quadrupole magnets. In
addition to these elements, in usual case, an rf cavity is introduced for the purpose of beam bunching. Then,
the vector potential of the whole ring can be described as

B
A4 = ——zi(po +x)+%Bl(x2 —y2)+§p(s)—V—R£cos(a)t+¢o) (1-29)
@

where B, and By is the function of position s, B, is constant in the bending section and B,=0 in the straight
section, B, is constant in the quadrupole magnet and B,=0 in the other region, P, is the bending radius of

-6-



Chapter 1. Introduction

the bending section. The vector potential is periodic function with the period of the storage ring. The last
term of the right hand side means the vector potential of the rf cavity. By the same way with the previous
section, the Hamiltonian of the storage ring is obtained

2 =2 =2
~ +
L ]2( AL ] f 200 g etk y0)-6 (92 cos@r +4y)  (130)
BEy p BE, 2\ BE, 2 2 D@
where
B
sziz_ﬁ, Ky:fll_{i_
P Po Po

p becomes to the function of s; p = p,, in the bending region, and p =0 in the other region.
The periodic delta function in the last term of the right hand side can be written as [1-19]

27h
ZS+%) (1-31)

o, (s)cos(art +¢,) ~ —é— cos(wt —

where C is the length of reference orbit in the ring. Here, we introduce a relative time Af =t —s/ f,c . This
quantity means the deviation of the circulation time of the particle from the reference particle. Since the
bunching rf cavity is synchronized to the beam circulation, the relation f,c = ®,C /27 stands up. When
this relation is used, the phase of Eq. (1-31) can be expressed as

ot =TT 4 — oAt +4, (1-32)

When the initial phase of the rf cavity is chosen to zero in order to maximize the bunching effect, the last
term of Eq. (1-30) becomes to

14
1 cos(wt +¢,) ~ T cos wAt (1-33)

V'f
0,(s)
y 232 Cp,»

For a particle near the bottom of the rf bucket (wAf << 1) the cosine of the Eq. (1-33) can be expanded.
When the relative time is infroduced and the cosine of the Eq. (1-33) is expanded, Hamiltonian (1-30)

becomes to
LB p? Pogv
=Pl Dy dg o LI AE N Do AE X (1-34)
2 2 2 2 275 \ B E, Cpyw BE, p
where Y is the phase of the synchrotron motion, and constant terms are neglected. If we put
2qV,
5= A g (1-35)
Yo Boky Cpy@
Hamiltonian (1-34) becomes to
~ P21 71 7.1 7,
H="*4—Kx*+2+-Ky +L+—Ky*-22p, -x (1-36)
2 27 2 27 4 2 2 ud P Py

Therefore, the Hamiltonian of a charged particle motion in a storage ring is almost equivalent to the
Hamiltonian of three harmonic oscillators, except for the last term. The last term is called shear [1-10] or
shear term. For a hot beam, this term causes the effect of the linear dispersion (see section 1.2.1). The
influence of this term to crystal beams is discussed in detail, later.
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1.4 3D Laser cooling of a fast ion beam

1.4.1 Laser cooling of a fast ion beam

Laser cooling is a method to cool a mass of atoms and ions confined in a finite system. In the laser cooling,
the momentum change of the particles induced by the absorption or emission of photons are utilized. A beam
circulating in a storage ring is a group of ions confined in a finite system. Now, we pay attention to the state
of an ion in the laser cooled beam. When the ion encounters a laser photon which has energy corresponding
to the excitation level of the ion, resonance absorption of the photon occurs. Then, the ion gains a momentum
which has been brought by the laser photon (Fig. 1-3-«(b)). Later, the spontaneous emission of a photon
occurs for the ion, and then the momentum of the ion changed by the emitted photon (Fig. 1-3-(c)). The
direction of the momentum of the spontaneously emitted photon is random and canceled out statistically, by
contrast with the absorbed momentum being same direction. During the cooling, the ion repeats this cycle.

After N cycle, the momentum of the ion becomes to

N
P =Py +Nb,+ ., B (1-37)

n=1

Since the direction of the emitted photon is random, the last term of the right hand side becomes to zero.

(a) (b)

P.

/\/M\.

Py p=py+ P,
e =———S>
(d) (c)
P
- N
l)=l)|)+‘/\ll7rl+zpltlr ﬁ=l3ll+l—}u+,—)£|
n=1
— = >

Fig. 1-3. Cycle of the resonant absorption of photon and spontaneous
emission of a photon.

As the result, the ion gains a momentum to the direction in which the cooling laser irradiated. Therefore, the
wavelength of the laser sensed and absorbed by the ion gradually shifts from the resonance wavelength. Thus,
frequency of the absorption and emission decreases gradually. The excitation probability (photon absorption
probability) P can be described by the well known Lorenzian line shape.
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S/2
= — (1-38)
RRA/T) +1+ S
where A is the frequency detuning
A=2nv(l- By —2nv, (1-39)

7, B are the relativistic factor of the target ion v, is the resonance frequency in the ion rest frame and S is
the saturation parameter defined by the ratio of the laser intensity and saturation density (S=I/ls). Therefore,
the cooling laser gives the force depending on the velocity of the target ion v (Fig 1-4).

S/2
QA/T) +1+S

F(v) = hkT'P = hkT (1-40)

where k is the wave number of the laser photon 1" is the inverse life time of the upper excitation state of the

ion (I"'=1/T").

F(v)

: o
R v [m/s]

Fig 1-4. Shape of the laser force in velocity space.

When the cooling laser is superposed to the ion beam, the laser force acts so as to gather the ions in tail of
the velocity distribution of the beam (Fig 1-5). If counter-propagating lasers are introduced, the shape of the
laser force in the velocity space becomes as shown in Fig 1-6. In this case, a stable point is created in the

>
>

particle number
particle number

resonance velocity

T v|m/s| T v|m/s|
Vi Vi

Fig 1-5. Change of the particle distribution in the velocity space by the laser force.
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T
d beam distribution

stable point

1 I 1 1 |
v

Fig 1-6. Mechanism of the laser cooling of a fast ion beam.

velocity space, and the ions captured to the laser force are gathered to this velocity. This is the mechanism of
the laser-cooling of a fast ion beam. In the laser cooling, the cooling force acts on the longitudinal motion
only.

1.4.2 3D cooling induced by liner dispersion at an rf cavity

From the Hamiltonian of the storage ring (Eq. (1-36)), it is found that the transverse motion of the
reference particle is a harmonic oscillation (betatron oscillation), and the trace of the motion in the phase
space becomes to an elliptical orbit. The area of this elliptical indicates the degree of the vertical motion and
the vertical beam temperature and beam emittance.

The cooling force acts on the longitudinal motion only. By the effect of the intra-beam scattering, the
transverse motion is also cooled slightly. However, the transverse cooling by the intra-beam scattering is
insufficient for the achievement of the ultimate low temperature, low emittance beam. If the longitudinal
motion and the transverse motion are strongly coupled, the betatron oscillation may damp accompanying the
damping of the synchrotron oscillation due to the laser cooling. If such a term as T'yx exists in the
Hamiltonian (1-36), a strong directly dynamic coupling between the horizontal motion and the longitudinal
motion is realized.

As a method of the strong transverse cooling, a coupling induced through dispersion at an rf cavity has been
proposed [1-22][1-23]. As briefly described in section 1.2.1, effect of the dispersion inevitably exists in the
storage ring, and the dispersion can be described as a function of position s. The closed orbit of an
off-momentum particle shifts from the reference orbit. The closed orbit of the off-momentum particle is
described together with the dispersion function as

56 =D)L o & (9)=D,5) S (1-41)

Do :302 E, '

These formulae are equivalent, but the second notation is used in this thesis. The momentum spread is
constant of the motion, in a conventional magnetic storage ring. However, when the element of the storage
ring includes electrostatic potential, the momentum-spread does not become the constant of motion. On the
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other hand, the energy spread AE is the constant of the motion, even if the storage ring includes
electrostatic potential (see chapter 4). Later, we establish the Hamiltonian formalism of a storage ring
including not only magnetic field, but also electrostatic field. Thus, it is useful to use the second form of Eq.
(1-41).

Next, we describe the motion of a particle, on the rest frame of the off-momentum particle. Then, the
coordinate system is transformed. For example, the horizontal coordinate is rewritten by

_ n AE
X=x-X(8)=x-D,(8)——, (1-42)
By Ey
and the other coordinates are also rewritten. This coordinate transformation from (x,p_, y,ﬁy,t —AE) to
(x,P,,¥, ﬁy,t— ,—AE) is summarized by the following generation function [1-24] [1-18]

_ — —_— 2
. AE — 'D
F(%, By 3 By ti—AE) =| x— 2D, |5, + yp, ~AE + py e ADe Mol AE )y dD. ) )
,BO E, ﬂo E, ds 2 ﬂo E, ds

Then the Hamiltonian (1-34) is transformed to

N —2 —2 — 2 V 2
A=leilpgg B g I U Do AB ) @0y ) 0y, @ dD"x—Dxﬁx) +...(1-44)
2 2 2 2 2 7ve P NBE, Cp,@ B\ ds

From the 6th term of the right hand side of Eq. (1-44), it is found that linear coupling terms such as I'px

arises (i = @At ), if the dispersion function and its differentiation have finite value. Namely, the linear
coupling of the longitudinal and horizontal coordinates is generated by the rf cavity existing in the place
where finite dispersion exists. By the coordinate transformation, the existence of the linear coupling term is
found out.

The vertical motion is still independent to the other motions. It is known that the vertical and horizontal
motion is coupled by skew quadrupole magnet. By this way the motion of three directions is coupled. In
order to maximize these coupling effect, the frequencies of the betatron oscillation (betatron tune v,,v,)
and synchrotron oscillation (synchrotron tune v, ) have to satisfy the resonance condition.

v, —Vv, = integer, v, —V, =integer / (1-45)

1.5 Crystal beam

The ground state of a cooled beam was first studied by a storage ring model in which charged particle are
confined in a time independent harmonic potential [1-9]. Subsequently, beam crystallization was studied by
Molecular Dynamics (MD) simulation in a time-dependent potential replicating the effect of the quadrupole
magnets and bending magnets of the storage ring [1-27]. The MD simulation study showed that when the
linear density of the beam increases, the structure of the crystal changes to higher dimensional structure;
string, zigzag, shell [1-28]. These states of the beams are in the lowest temperature state (ground state). Such
beams are called as “crystal beam”. However, from some advanced MD simulations, it has been fond that the
crystal beam cannot be obtained by only cooling the stored beam strongly. There are some conditions to
achieve the crystal beam in a storage ring. The structure of various types of crystal beam are shown in Fig
1-7.
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Fig 1-7. Cross-sectional view of the crystal beams. The A means the line density of the beam. The crystal
structure changes to higher dimensional structure, as the line density of the beam is enhanced. The 2D crystal
structure extends in the weaker focusing direction of the ring. In this simulation, an ideal tapered cooling
force is supposed. These structures were obtained by the MD simulation performed by Mr. Y. Yuri.

1.5.1 Hamiltonian of a space-charge dominated beam

When a beam temperature becomes low by the cooling, the space-charge effect becomes remarkably. In
this section, the Hamiltonian of such space-charge dominated state is considered. When the space charge
effect exists, the vector potential of the storage ring Eq. 1-29 becomes [1-25]

B)’ 1 2 2
Asz_?'(p+x)+58l(x = 4 )+Axc’ (]'46)

where the rf cavity is switched off for simplicity, 4_ is the vector potential due to the space-charge force. A
coasting beam is considered for simplicity, and it is assumed that the particles of beam have equilibrium
distribution. Then, we can put 4_= BV, /c [1-18]. y_ is the scalar potential of the space-charge force.
The mean field Coulomb potential ¥, can be written as [1-25]

V.‘C = V

sc,0

| | 5
+ 5 Vo oX + Ve Xy + 7 Ve ¥ +..... (1-47)

where V_, is a constant term, and

azysc V == anJc V — aZVJc

V:c.n: o > Vsegy — ayz > Vscxy % (1-48)

are partial derivatives of space-charge potential evaluated at the reference orbit. The scalar potential ¢ is
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expressed as @ =V, . The potential set to be zero at the reference orbit, that is V.o =0. Since the scalar
potential exists, the Hamiltonian form of Eq. (1-14) is used. Substituting Eq. (1-46) for Eq. (1-14) and
neglecting the higher-order terms, the following Hamiltonian is obtained.

qV,  AE x

H=- 5 5 ;
poBcye BBy P

2 ~2 ~7
+
AE 1 [AE)+px P, 1 (1-49)

+ +=\K X"+ Ky ]+
5 ) T A )
When the explicit formula of the space-charge is substituted to Eq. (1-49), it becomes to

2
~ v, V. V
H:l ﬁf +(Kx+ q SCXX ]x2j|+1|:ﬁ; +(Ky+ q sc,yy ]y2:|+ q sc,xy2 xy_‘_,li(éi) _éiﬁﬂ (]_5())
2 Poﬂocyg 2 Poﬂoc}’g PoBicys 2y, \ K B Ak p

where the relative time A?¢ has been introduced.

1.5.2 Maintenance condition

As shown in refs [1-18][1-25], the linear coupling term due to the space charge force is negligible; i.e.
V_  ~0, when the particle distribution is assumed to be symmetric with respect to the reference orbit.

sc,xy

Then, the equation of the betatron motion is given by

2 14
g—fz—(]( +—q—;&ﬁ—2]x+—1- AZE (1-51-a)
ds PoBycVs Po B E,
d’ qV,. -
- Y —(Ky +%]y (1-51-b)
A} DPoBscyy

For a cooled beam, we can put AE~0. K, are functions of s and, they denote the beam focusing or
defocusing effect of the lattice element of the storage ring. These equations are a kind of Hill’s equation

[1-29]. For a particle being confined in the storage ring, K have focusing effect i.e. K have

x(y) x(y)

positive sign on average. On the other hand V, denote the space charge repulsion, thus, they always

have negative sign. Equations (1-51) have the’ fg:r)n of the equation of motion of oscillators, in broad
meaning. Therefore, the coefficients of x, y indicate the frequency of the betatron oscillation (betatron
tune). If the beam is strongly cooled three-dimensionally, the amplitudes of the betatron oscillations damp
accompanying the damping of the synchrotron oscillation. This means the beam size is reduced by the
cooling. Then, the space-charge repulsion increases. Therefore, the focusing effect in Eq. (1-51) becomes
weak, as the cooling progresses. And the tune value decreases. Therefore, the beam experiences various tune
value in the cooling process. According to ref. [1-25][1-26], for a synchrotron made of N super periods,
systematic half-integer stop-bands occur at the betatron tune N /242 , 3N/ 24/2 .... When the beam
encounters this stop band in the cooling process, the beam temperature no longer decreases. If the betatron
tune values of the initial beam are below N /2+/2 , the beam is cooled without experiencing such instability.
And an ultimately low temperature beam is achieved. Therefore, in order to achieve the crystal beam, the

betatron tune of the initial beam has to satisfy the condition
v<N/2:/2. (1-52)

This condition is called as maintenance condition together with the condition
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Y <7, (1-53)

where y, is the transition energy of the ring, » is the Lorentz factor of the beam. The condition (1-53) is
usually satisfied in the case of low energy beams.

1.5.3 Shearing force
Even if all conditions for generation of crystal beam are satisfied, there is an obstacle to reach a high

intensity 3D crystal beam. The existence of the dispersion of the storage ring greatly affects to the stability of
the 3D crystal structure. For a coasting beam the longitudinal equation of motion is obtained from

Hamiltonian (1-50).
d@n _ 1 ﬁ_L(_A_E_) (1540
ds Belp 7\ BE,

dl=AE) 1-54-b
ds 7 (1-540)

Py

The first term of the right hand side of Eq. (1-54-a) arises from the shear term; AE/ ﬂoz E, - x/ p. (Note that
the shear term gives the dispersion (section 1.3)).
For a crystalline state, AE is almost zero. Therefore the longitudinal equation of motion becomes to

awn_ 1 x
ds B p’

Here At describe the difference of the time that a particle reaches to the same longitudinal position s as the
- reference particle. In a crystalline state, particles of the crystal beam stop the betatron oscillation, and behave
as if breathing around the reference orbit [1-10] [1-25]. Therefore, in Eq. (1-55), the horizontal position of
the particle x has always same sign. The coefficient of x has finite value in the bending section.

(1-55)

Therefore, time difference Af is increased whenever the particle passes through the bending section.
Eventually this effect leads to the melting of the crystalline state (Fig 1-1). Since this effect behaves as if
shearing the crystalline structure, we call this effect as shear or shearing force. For a bunched crystal beam,
the time difference At is recovered at the rf cavity. However, the synchrotron oscillation is never damped,
even if a strong cooling force is provided, and this limits the reachable temperature of the 3D crystal (see
section 4.3).

For crystal beams, the shear term of the Hamiltonian of the storage ring gives the effect of “shear” and this
effect obstructs the stable formation of a 3D crystal. We have found that if a bending electric field is
introduced to a storage ring, in addition to the bending magnetic field, the shear term of the Hamiltonian of
the storage ring is eliminated. Then, for a hot beam, the linear dispersion in the storage ring is canceled. For
a crystal beam, the shearing force is canceled. In that case, the instability of the 3D crystal beam structure
due to the shearing force is removed (see section 4.5).

1.6 Strategy of the present theses

The above mentioned 3D laser cooling method is to be performed in an actual storage ring S-LSR. S-LSR
can operate satisfying the maintenance condition of a crystal beam. The parameters of laser cooling

-14 -



Chapter 1. Introduction

experiment at S-LSR are shown in chapter 2.

As mentioned in previous sections, in order to generate a crystal beam in a storage ring, the maintenance
condition has to be satisfied ideally. This means the number of super period of the ring should be the ideal
number. Thus, the individual difference of the fabricated deflection element has to be suppressed as small as
possible. Since the strongly cooled beam experience various betatron tune in the cooling process, the beam
may encounter various resonance lines; for example, higher order resonances due to the multi-pole
components, non-structural resonances due to the breakdown of the lattice symmetry. Therefore, the
unwanted higher-order component field of the magnet has to be suppressed. From this point of view, the
design of the bending magnet has one of the most important roles for the realization of a crystal beam at
S-LSR. The detailed design process of the bending magnet aiming at realization of the ideal condition,
described above, for crystal beam at S-LSR is shown in chapter 3, and the details of the evaluation of the
fabricated magnets are also shown in chapter 3. The ideal state for the crystal beam is also preferable for the
conventional storage and cooling of beams.

Even if the above described ideal condition for crystal beam is satisfied, the generation of a beam which
has a stable 3D crystal structure is difficult due to the problem of the bending shear, as described in section
1.5.3. The problem of bending shear is solved by the introduction of a dispersion-free deflector which
includes a bending electric field, in addition to the bending magnetic field. For the case of S-LSR, the-
dispersion-free deflector is realized by inserting a cylindrical electrostatic deflector in the gap of the banding
magnet. The electrostatic deflector for S-LSR has intermediate electrodes in order to maintain the field
strength and distribution in a limited gap area of the bending magnet. A storage ring constructed with the
dispersion-free deflectors has interesting properties, not only the solution of the problem of the bending shear.
These are descried in chapter 4.

In order to realize the ideal dispersion-free state in the deflector, the bending magnetic field and the
electric field have to be superposed completely in the same region. However, it is difficult to superpose the
both field completely in the fringing region due to the difference of the gap size and the end structure of each
bending element. If at least the effective lengths of the both fields become identical, the beam can be
circulated stably, although it is different from the ideal state. Thus the effective length and the structure of the
fringing field were designed, considering the consistency with the magnetic field distribution obtained from
the field measurement. In chapter 4, the structure of the electric field of the dispersion-free deflector of
S-LSR has cylindrical electric field, which is the simplest solution of Maxwell equation. However, in this
case of S-LSR, it cannot be operated satisfying the maintenance condition of crystal beams. Therefore, in
chapter 5, different type of electric field for dispersion compensation is investigated. Finally, it is found that
radially uniform electric field, which is attained by semi-hyperbolic electrodes, is suitable. It is also found
that this type of electric field can be realized, only changing the applied voltage of the intermediate
electrodes of the fabricated cylindrical electrostatic deflector of S-LSR.

The three-dimensional cooling method by a normal rf cavity becomes not to be applicable in exchange for
the dispersion-free condition. Therefore, in the case of dispersion-free storage ring, so-called coupling rf
cavity has to be used for the 3D cooling. The coupling rf cavity can generate a direct coupling between the
longitudinal motion and the horizontal notion without dispersion (section 5.7).
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Chapter 2. Ion storage ring S-LSR

2.1 Outline of S-LSR project

A heavy ion storage ring S-LSR is now under construction by collaboration between National Institute of
Radiological Science and ICR, Kyoto University. The circumference of S-LSR is 22.557 m. This is compact
compared with the other storage rings [2-3]. An electron cooler and a laser cooling system are equipped to
S-LSR. The major purposes of the S-LSR project are the feasibility study of application of laser produced
carbon ions as the injection for cancer-dedicated pulse-synchrotron, and approach to the ultra-cold beam with
use of laser cooling for low energy **Mg' beam. The electron cooling is applied to the hot carbon ion beam
after phase rotation of the laser produced carbon ions [2-1]. In S-LSR, the fast extraction of electron cooled
short-bunch beams is also studied. In Fig. 2-1, the layout of S-LSR is illustrated and its main parameters are
listed in Table 2-1.

Mg’ ion injection line

~ Laser production of C** A

\‘{f;:-:l()m{}:{} l’A, o ;;TJ\/

e A p— aE i ar
et BeoalY S0
KR —

proton linear accelerator

Fig. 2-1. Layout of S-LSR ring

Table 2-1 Main parameters of S-LSR

Parameters Value
Kinetic energy of C** 24 MeV (2 Mev/u)
Kinetic energy of Mg' 35 keV
Kinetic energy of p 7 MeV
Circumference 22.557m
Average radius 3.590 m
Radius of the bending section 1.05 m
Number of the super period 6
Deflection angle of each bending magnets 60°
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2.2 Lattice design of S-LSR

2.2.1 Design principle

The conditions for maintaining crystal beam gives the strongest restriction to the lattice design among the
research subjects of S-LLSR. Therefore, the lattice design principle was almost dominated by the conditions
for the crystal beam [2-4]. The following conditions were considered.

(1) Small betatron phase advance.
In order to create a crystalline state beam, the horizontal and the vertical betatron tune have to be below
N/ 2\/_2_ (N is the number of the super period). Namely, a small phase advance per one super period is
required.

(2) Smooth beam envelope
In a storage ring, the beam is confined by the alternating focusing force (Eq. (1-51)). One can easily
understand that the smooth change of the alternating focusing force in the ring is better for maintaining the
crystalline beam structure. The smoother beam envelope is realized by introducing a combined function
type lattice [2-5]. However, the tune flexibility becomes the sacrifice.

(3) Small magnetic field error and the small alignment error of the magnets
If the magnetic field of each magnet has the error in its strength, the closed orbit distortion arises. The
error of the effective length also induces the closed orbit distortion. If the magnet includes quadrupole
component error, stop bands are generated near the integer or half integer tune operating point. If the field
error of each magnet is so large that cannot be neglected, the number of the super period becomes one.
This violates the maintenance condition. In order to realize the ideal number of super period, the field error
of each magnet has to be suppressed as far as possible. Furthermore, non-structural resonance [2-6] is also
induced in addition to the structural resonance. Since the beam experiences various tune values in the
cooling process, the width of such resonance lines should be suppressed.

(4) Small magnetic non-linear components of the magnetic field
The beam experiences various tune values until the beam becomes to ground state. If the elements of the
storage ring including the non-linear field components, higher-order stop band is generated. The cooled
beam has a possibility to encounter this stop band during the cooling process. If the width of the stop band
is very wide, the beam may not be able to overcome the stop band.

(5) Long straight section for the electron cooling and the laser cooling
The laser cooling efficiency is proportional to the length in which the beam and laser light are superposed.
Similarly the efficiency of the electron cooling is proportional to the length in which the ion beam and
electron beam are superposed. Since the attachments of the electron cooler occupy considerable area, it is
needed to ensure enough long straight section.
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2.2.2 Lattice structure of S-LSR

In order to realize the situation that the condition (1) consists with (5) by the small circumference, the

number of the super period was selected to 6. Then, the length of the straight section and the bending radius

were decided to 1.86 m and 1.05 m, respectively. The arrangement of the magnets was decided as shown in

Fig 2-2.

RF cavit
vx\y/

Fig. 2-2. The lattice structure of S-LSR. The number of
the super-period is 6. An rf cavity is introduced for beam

bunching. The rf cavity is also used for 3D cooling. In the

horizontal beam dynamics, the radial focusing effect of

the deflection element becomes remarkable due to the

small bending radius, and thus it is utilized for beam

focusing.

Ky

Fig 2-3. Stable region of the betatron

oscillation. In this figure, k; and k, mean
the field gradient of QM1 and QM2. When
the field gradient has positive sign, it means

that the quadrupole magnet has defocusing

effect in the horizontal direction. k is the

normalized field gradient by the magnetic
rigidity of the beam k = B,/ Bp,

The one super period is composed of lattice elements as drift/2-QM 1-BM-QM2-drift/2. The stable region of
the betatron oscillation is shown in Fig 2-3. The stable operation is possible in the state that the both

quadrupole magnets have defocusing horizontally (1) or, one quadrupole magnet has horizontal focus, the

other quadrupole magnet has horizontal defocus (2), (3) (Fig 2-4).
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As the operating point of Mg’, the point in which the field gradient of the quadrupole magnet k;=k,=1.27 m™

and betatron tune (1.446, 1.436) has been supposed. At this operating point, the needed synchrotron tune for

the 3D cooling becomes 0.44. The parameters at the operating point (1.446, 1.436) are shown in Table 2-2. It

is found that in this operating point, the needed values of the harmonic number become very large. Therefore

the 3D cooling will be performed at the operating point (2.067, 1.073), rather than this operating point. The
beta-functions and dispersion function of the operating points (1.446, 1.436) and (2.067, 1.073) are shown in
Fig. 2-5, respectively. The both operating points satisfy the maintenance condition v, < N/ 242 .

Table 2-2-a. Main parameters of the rf cavity for 3D cooling
Operation point (1.446, 1.436).

Table 2-2-b.  Main parameters of the rf cavity for 3D cooling,
Operation point (2.067, 1.073).

Quantity Value Quantity Value
Tons to be laser cooled Mgt Ions to be laser cooled “mgt
Total kinetic energy 35 keV Total kinetic energy 35 keV
Betatron tune (1.446, 1.436) Betatron tune (2.067, 1.073)
Synchrotron tune 0.44 Synchrotron tune 0.07
1f voltage 125V rf voltage 127V
rf frequency 46.4 MHz rf frequency 2.32 MHz
rf harmonics 2000 rf harmonics 100
Momentum compaction factor 0.664 Momentum compaction factor 0.325

QM1 BM oM2 QM BM QM2
55 . T . T + : . 245 55 . . . , . , , 1.35
* _ D x D: B )
s0{ P By P 240 s0{ P ,""ﬁ{ - 1.30
451 L ; 45 a N
[ 535 . . P i

40 ] o s a0 1.25
ok e Fasl 120
g 3.0 A - 2.25 Q 30 -..‘ L 115 ’S‘?

251 L 2.20 254, L0

2.0 1 204

- 2. .
151 o 15 105
1.0 + [ 210 1.0 1 r1.00
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Fig 2-5-a. The lattice functions at the operating
point (1.446, 1.436). Beta-functions and dispersion
function are drawn as a function of the position s.
In this operating point, 3D cooling may be difficult
because a high efficiency rf cavity is required to
induce the synchro-betatron coupling. This
operating point will be used for cooling
experiments of costing beams. The transition
energy of this operating point is y, =1.231.

s(m)

Fig 2-5-b. The lattice functions at the operating point
(2.067, 1.073). In this case the field gradient of QM1
and QM2 selected to k;=2.05 m™ and, k;=-1.12 m™
respectively. the minus sign means the magnet has
focusing effect in the horizontal direction. The
transition energy of this operating point is

v, =1.754.
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2.3 Laser cooling

The ion species possible to be cooled by laser are Li‘, Be’, Mg" and Ca’, etc. Most of the ion species
requires two kinds of lasers because of the level splitting. Only Mg" is possible to be cooled by a single
wavelength of 280 nm. Therefore, we decided to use Mg’ beam as the beam to be laser cooled. The
circulation life time of the Mg" beam in the ring becomes longer in the lower energy region [2-5]. In the
present plan, the kinetic energy of Mg' ion is planned to be 35 keV. The expected life time is longer than 20
seconds, when the vacuum pressure better than a few times of 10" Torr is attained. And, in this energy
region, the Lorentz factor 7 is almost 1. Thus the maintenance condition y, >y is enough satisfied. The
ion is injected to the ring directly from the ion source, therefore the kinetic energy is decided by the
extraction high voltage of the ion source. For the cooling of 35 keV Mg", counter propagating lasers of the
wavelength 280 nm are to be used. First, the laser photons are generated by a green laser of the wavelength
532 mm. Next, a dye is excited by the green laser and then wavelength of 560 mm laser is emitted. Finally,
the dye laser is modulated to the wavelength of 280 nm by a sub harmonic generator [2-1].

2.4 Required performance of the bending magnet

As shown in Fig 2-5, the horizontal beta function in the bending section becomes larger compared to the
one in the straight section. Therefore, useful horizontal aperture of the bending magnet has to be extended
compared to the straight section. From the consideration of the injection and extraction of the beams, the
horizontal usable aperture of the bending magnet was decided to 200 mm. Since the major use purposes of
S-LSR are not synchrotron acceleration of the beams, but the storage and the cooling of ion beams, the main
magnets (the bending magnets and the quadrupole magnets) are made by not lamination iron plates, but solid
iron. In this case, the fabrication error of the magnet can be suppressed well. This is desirable to satisfy the
condition (3) listed in section 2.2.1. Furthermore, the magnets of S-LSR were designed with the use of high
precision 3D field calculation code. Various structures of magnets were tested in the field simulation, and the
most suitable structure to suppress the multi-pole field was decided.

Even though the condition to attain a crystal beam is satisfied by the present method, the realization of a
stable large 3D crystal beam structure is thought to be difficult due to the effect of the bending shear. Thus
the introduction of the dispersion-free system mentioned in chapter 1 was decided.
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Chapter 3. Design and field measurement of bending magnets for S-LSR

Chapter 3. Design and field measurement of dipole magnets for S-LSR

3.1 Introduction

As mentioned in the previous sections, in order to realize the ideal condition for a crystal beam, the
unwanted higher-order component of the bending magnet has to be suppressed, in the stage of the design.
The fabricated magnets have to be evaluated precisely, because the arrangement of the magnets is decided
based on the actual field distribution so that the closed orbit distortion is suppressed. Furthermore, the
precise evaluation of the effective length is needed to consider the consistency with the effective length of
the electrostatic deflector for dispersion compensation.

3.1.1 Outline of electromagnet

A ferromagnetic metal and a coil shown in Fig. 3-1 are considered. We suppose that the magnetic flux
density is B and B, in the air gap and the metal, respectively. When Ampére’s law

cj H-ds = NI G-1)
is applied to the pass shown in Fig. 3-1, the following relation is obtained
Bg + Bl _ NI (3-2)
Hy Mok,

where 4, is permeability of air, and kﬂ is relative permeability of the metal. In ferromagnetic metals, the
value of k, is about 10% to 10, Therefore, the second term of the left hand side is negligible. Then, the
magnetic flux density in the gap is approximately obtained as

B= Uy NI
g

(3-3)

where 41, =47 x10™ H/m. From this relation, we can estimate the needed current / and the turn
number of the coil N to generate the magnetic flux density B, with the gap height g .

B, \
o - = |
I : |
—— ! i / I
¢$; 5 ‘
dq 1
N9 BY ‘e ( |
- ‘*; ' : \ f
10 gpmmdens oof : /
Fig 3-1. An example of electromagnet. Fig 3-2. Flux in the electromagnet
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3.1.2 Saturation of the magnetization

The magnetic flux density is given by the relation
B=uH , (3-4)

although, the permeability is not constant in ferromagnetic metals. The relation between B and H is
given by B-H curve in ferromagnetic metals (for example, see Fig. 3-4). The value of x =k, 4, decreases
as H becomes large. The magnetic field H in the electromagnet is decided by the excitation current / from
Ampére’s law. Therefore, for a high excitation current the second term of the left hand side of Eq. (3-2)
cannot be neglected and, the efficiency of the excitation of the field becomes worse. This situation is called
as saturation of magnetization. The effect of the saturation restricts the upper limit of the efficient magnetic

flux density.
In general, at the both ends of the pole, the magnetic field H in the iron becomes higher than that of the

center of the pole. As the excitation level becomes high, the iron of the pole end saturates earlier than the
center of the pole. Then, we consider that Ampére’s law is applied for the pass A and B in Fig (3-2). For the
pass B, the second term in the right hand side of Eq. (3-2) can not neglect at the pole end because the
permeability reduces in this area. And the magnetic flux density in the air gap reduces in exchange for the
increase of the second term in the right hand side of Eq. (3-2). Thus, for a high excitation current, the
magnetic flux density around the end of the gap becomes lower than that of the center of the gap. Namely,
the field distribution in the gap changes by the excitation current (Fig. 3-3). This is one of the matters, which
has to be conquered in the design of the magnet for synchrotron. The measures to solve this matter are to cut
beforehand the both ends of the pole, which are the parts easy to be saturated. By this method, a field
distribution without depending on the excitation current is realized. The ideal shape of the pole end cut is

given by Rogowski’s curve. [3-1]

= = = High excitation aurent
=== Low exctation current

Fig 3-3. conceptual illustration of the change of the field distribution by the excitation current. The change
of the field distribution can be suppressed by cutting the pole end of the electromagnet.

3.2 Design by a 2D field simulation
3.2.1 Design principle
The basic parameters required for bending magnet are listed in Table 3-1. Although the required field

strength for the present experiment is about 0.4 T, the maximum magnetic field has been set to 0.95 T in
consideration of the possible future ramp up of energy.
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Table 3-1. Required parameters

Parameters Value
Bending angle 60°
Edge angle 0°
Bending radius 1050 mm
Horizontal useful aperture 200 mm
Field strength for 7 MeV p 0363T
24 Mev C* 0.387 T
35keV Mg" 0.125T
Mass upper limit 5.0 tons
Gap height 70 mm

The gap height is determined to be 70 mm, compromising the usable vertical aperture and the needed
excitation current. Then, the needed excitation current to generate 0.95T is about 54000 AT. All parts of the
pole and yoke are constructed with pure soft iron which has a good magnetic property. The B-H curve of the
pure soft iron is shown in Fig. 3-4.

2.5

2.0+

1.5 1

B(T)

1.0

0.5 |

0.0 trrrey i e e e R N
10° 10° 10}
magnetic field (A/m)

Fig. 3-4. B-H curve of iron used for S-LSR magnet

There are several types of dipole magnets. For example, C-type, H-type and window-frame type are
considered (Fig 3-5). The C-type dipole magnet has advantage for the insertion of the vacuum chamber. And
the accuracy of the magnetic field is not affected so much by the error of the coil. However, field of the
C-type magnet has larger quadrupole and octapole component, because of the asymmetry of its structure.
The H-type dipole magnet has symmetric field with a small quadrupole and octapole component. And the
accuracy of the magnetic field is not affected so much by the error of the coil. But, in the insertion of the
vacuum chamber, the magnet has to be divided. The window-frame type magnet realizes the most uniform
magnetic field with a simple structure. However, the coil of the window-frame type magnet has a structure
so-called a saddle type (Fig 3-6). The coil of the saddle type is raised at the beam entrance and the exit of the
magnet, in order to ensure a passage of the beamn. Therefore, in the fabrication process of the coil, a little
complicated process is required. In the case of S-LSR, it is impossible to adopt the window-frame type
magnet, because it is required that a hole to guide the laser light for beam cooling is made in the outer side of
the magnet. The coil of the window-frame type magnet obstructs this hole. For this reason, window-frame
type cannot be adopted. Therefore, the choice is restricted to the C-type or the H-type. Since the H-type has
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larger advantage in compactness and the quality of the field compared with C-type, the H-type magnet is
adopted for S-LSR.

X
X

X
- ==

Fig 3-5 (a) C-type magnet (b) H-type magnet (c) window frame type magnet

Fig 3-6. Structure of the saddle type coil
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Fig 3-7. The overview of the magnet series for S-LSR

The layout around the bending magnet is shown in Fig. 3-7. The shape of the magnet is determined to be
fan-shape to reduce the sagitta. At the entrance and the exit of the bending magnet, field clamp plates are set

06



Chapter 3. Design and field measurement of bending magnelts for S-LSR

to cut the tail of the fringing field. The field clamp plate also has an advantage suppressing the sextupole
component in the fringing field region [3-2](see Section 3.3.3.4).

3.2.2 Design of the radial cross section structure

The required horizontal usable aperture is 200 mm, this value was determined from the beam parameters
of the injection of 7 MeV proton. In the first stage of the design of the bending magnet, the details of the
radial cross section shape of the magnet were determined by a 2D field calculation under axial symmetry
condition. The goal of this process was to determine the structure generating uniform field, with a compact
iron yoke. The cross section structure is shown in Fig. 3-8. At both ends of the pole, so-called shims are
attached to realize uniform field by a narrow pole (Fig. 3-9). And the both ends of the pole are cut in a circle
to avoid the change of the field distribution due to the effect of saturation. As the cutting management of the
pole end, a straight cut was also considered. However, from the result of the 2D field calculation, we have
found that when the straight cut is adopted, the wider pole width is required to realize the same effective
field area compared with the case of circle cut.

260

s 303 T | 148 Lol
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130 355
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Fig. 3-8. Upper half of the cross section of the bending magnet
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2

Fig. 3-9. The structure of the pole end cut and shim and the overview of the magnet
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Since the magnet has fan shape, the inner return yoke designed so as to have thicker radial width compared
to the outer yoke, as shown in Fig. 3-9. By this way, the flux density in the outer and inner return yoke was
kept in the same level. The calculated field distribution is shown in Fig. 3-10. The deviation of the field

strength is less than 5 X 10° at all excitation level.
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Fig. 3-10. Radial field distribution obtained from the 2D field calculation. The horizontal coordinate means
the distance from the reference orbit.

3.2.3 Design of the coil and the longitudinal cross section structure at the pole end

In a conventional case, a headband type coil is utilized for H-type magnet. In order to ensure a large turn

number of the coil, keeping the iron core to be light weight, the cross section shape of the coil should be
wide (Fig 3-8). Then, the overhang of the coil at the beam passage aperture side becomes large. On the other
hand, from the requirement of the lattice design, the space between the quadrupole magnet and the bending
magnet is limited to only 0.2 m. From such reason, the coil of the S-LSR dipole magnet is bent up at the
beam passage aperture side, in order to secure enough space between the quadrupole magnet. Namely, saddle
type coils are employed for S-LSR, despite the H-type iron yoke.
The headband type coil has a function to suppress the leak of magnetic flux to the fringing region. In the case
of S-LSR, the field clamp plate bears the role suppressing the leakage of the fringing field, instead of the coil.
The 2D field calculation of the longitudinal cross section structure at the pole end is performed under the
transverse symmetry. This 2D calculation is important process to decide the effective length of the bending
magnet. The effective length is defined by

Ly(s)= [; B,(s)/ B, ds.

where s is the coordinate along the reference orbit of the beam. This integration is applied thorough the
region far enough from the pole end where the fringing field becomes negligible. The effective length
corresponds to the normalized value of total bending magnetic field on the reference orbit by the central
bending field strength B,. The total bending magnetic field for various excitation levels can be obtained by
multiplying the central field strength and the effective length, as long as the saturation is negligible. For a
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high excitation current, the influence of saturation arises. From the reason explained in section 3.1.2, the
field strength reduces near the longitudinal pole end i.e. around the beam entrance and the exit. Since the
area where the bending field exists is also changes, it may induce closed orbit distortion. In order to avoid
this problem, the longitudinal pole end also has to be cut, as well as Fig 3-9. In the case of S-LSR, the
longitudinal pole end cut is Rogowski’s curve approximated by steps (Fig. 3-11). The effective length was
adjusted by shifting the starting point of the Rogowski cut, so as to agree the actual pole length. The layout
of the pole, coil and field clamp in the 2D field calculation is shown in Fig. 3-12.

Median plane
350 [36.8 (B! ‘
35.0 .8 [39.5 4.4
0.7
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Fig. 3-11. Rogowski’s curve approximated by steps
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Fig. 3-12. The layout of the pole, coil and field clamp Fig. 3-13. The magnetic flux when the combined
in the 2D calculation. type coil is introduced.
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In this calculation, materials which have infinite permeability are attached on the field clamp and the pole to
ensure the magnetic flux circuit. Such 2D field calculation method is good approximation, near the reference
orbit, it is proved by comparing with the measured field in section 3.9.5.

Although the reason that the head bend type coil has not been adopted is due to the problem of space
between the quadrupole magnet, the coil shown in Fig. (3-15) can be applied. This coil is the combination of
the head band type and the saddle type. This coil can suppress the spread of the fringing field, rather than the
saddle type. Finally, this type of coil is adopted for S-LSR, although the fabrication process becomes
complex. The magnetic flux in the fringing region when the combined type coil is applied is shown in Fig
(3-13) . And then the distribution of the fringing field becomes as shown in Fig (3-14).

s(cm)

Fig. 3-14 Distribution of the fringing field. The distribution slightly changes at the tail of the fringing field
by the excitation level.

It is difficult to estimate the situation of the fringing field exactly in the far region from the reference orbit by
such 2D calculations because of its symmetry condition. In order to search the structure of the fringing field

exactly, 3D field calculation is needed.
Saddle type

/

Headband type

Fig. 3-15. Combined type coil
The coil is constructed with bundling a hollow conductor. The material of the hollow conductor is copper
without oxygen, and the structure is a long hollow wire. By taking into account the balance between the
presser drop of the cooling water and current density, the diameter of the hollow conductor is decided to be a
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square of the size [J14 X 14 mm, with the hole for cooling water of the diameter of ¢ 10 mm. Then the
required turn number and the maximum excitation current become 650A and 44 turn per one coil,
respectively. The detailed parameters of the coil are shown in Table 3-2. The difference of the field strength
results from the gap size error is corrected by bypass circuit of the main power supply. Thus, the bending
magnet of S-LSR has no correction coil.
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Fig. 3-16. detailed structure of the coil
Table. 3-2
Parameter Value
material of the coil copper
Cross sectional size of the hollow conductor (014 mm-¢ 10 mm
turn number 4-layer, 11-line, 44 turn per one coil
length of the hollow conductor per one coil 3.89m
cross sectional size of the coil (including insulator) 169%64 mm
correction coil Nothing
number of waterway per one coil 2
pass length of the cooing water per one waterway 85.6 m
amount of flowing water 5.0 /s (AT=25C)
pressure depression per one water way 2.0 kg* weight/cm’
resistance of the coil per one magnet 5.9x102Q (60°C)
maximum excitation voltage per one magnet 384V (60°C)
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3.3 3D field calculation by TOSCA
3.3.1 Field distribution

The purpose of the 3D field calculation is to check the result of the 2D calculation, under the more
realistic situation. Especially, the structure of the fringe field is investigated precisely. The upper half of the

iron yoke used in the 3D calculation is shown in Fig. 3-17.

field clamp plate T — coil

hole to pass the cooling laser
Fig. 3-17-a. The outside appearance of the bending magnet for S-LSR
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Fig 3-17-b. The pole surface structure.

Two through holes are made in the outer return yoke to pass the cooling laser. Therefore, the area of the
outer return yoke becomes slightly narrower compared to the 2D calculation. The radial field distribution
obtained from the 3D calculation is shown in Fig. 3-18. The field distribution coincides with that of the 2D
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calculation within the accuracy of 0.5x10™.
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Fig 3-18. Comparison of the radial field distribution, obtained from the 3D and the 2D calculation. Both
are in agreement within the accuracy of *0.5x 10*

3.3.2 Field clamp and coil effect and fringing field

As described in section 3.2.1, the field clamp plate suppresses the fringing field. In this section, the
function of the field clamp is shown in detail, comparing the result of the 3D calculation. In the beam
entrance or the exit of the bending magnet, the magnetic flux leaks out to the fringing region (Fig. 3-19).
When the field clamp plate is set to the fringing region, the magnetic flux passes through in the field clamp
in preference to the fringing air region because of its high permeability. This is the mechanism that the field
clamp suppresses the fringing field. However, if the excitation level is enhanced and the leak of the magnetic
flux to the fringing region increases, the amount of the flux flowing to the field clamp also increases. Then,
the field clamp is saturated, and the ratio of the flux passing through the fringing air region increases. By
such reason, the distribution of the fringing field changes, even if the pole end of the magnet is cut in
Rogowski’s curve.

1ron core field clamp plate

.

S e
\

\ magnetic flux /J

Fig 3-19. conceptual illustration of the function of the field clamp plate

To ensure the enough volume of the field clamp and to avoid the saturation is needed, in order to avoid
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this matter. In addition to this device, effect of the coil is also important. In the 3D field calculation, two
types of coil were tested. In Fig. (3-20), the distribution of the flux in the field clamp at the excitation current
650 A is shown. In Fig. (3-20-a), the saddle type coil is used. In Fig. (3-20-b), the combined type coil shown
in Fig. (3-15) is used. Comparing these figures, we can find that the amount of the flux in the field clamp is
larger in the case of the saddle type coil, despite the same excitation current. In the case of the saddle type
coil, the field clamp plate slightly saturates, and the distribution of the fringing field changes. If the thickness
of the plate is increased, the flux density in the field clamp can be suppressed even the case of the saddle
type coil. But, since the space between the quadrupole magnet is limited, it is difficult to adopt larger
thickness of the field clamp. Thus, the combined type coil is adopted to the bending magnet for S-LSR,
although the construction process of the coil becomes complex.

X180.0

-~ Y600

Component: BMOD
43 8014540536249 20836.9742351002 41630.1470161ﬁ

Fig 3-20-a. The distribution of the magnetic flux in the field clamp and the iron yoke. In this case saddle
type coil is used with the excitation current 650A.

-~ Y-80.0
Component: BMOD
0882672071953 20787.1965195711 41544 304771934/

Fig 3-20-b. The distribution of the magnetic flux in the field clamp and the iron yoke. In this case
combined type coil is used with the excitation current 650A. The amount of the magnetic flux in the field
clamp is suppressed compared to Fig 3-20-a.
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3.3.3 Multi-pole component of the calculated field

As shown in Fig. (3-18), multi-pole component of the field is enough suppressed at enough inner side of
the gap. However, it is expected that the multi-pole component increases at the longitudinal pole end,
because the shims are cut down due to the Rogowski’s steps and the gap height becomes higher due to this
steps. Thus, we have to estimate the value of the multi-pole component.

3.3.3.1. Coordinate system

In order to evaluate the value of the multi-pole component, coordinate system has to be defined exactly. In
the analysis of the calculated field, the Frenet-Serret coordinate system shown in Fig (3-21) is used.

reference orbit

pass of the integration

Fig. 3-21. Coordinate system. Fig 3-22. Pass of the integration of the field

The effective length is defined by [3-2]
()= [’; B,(x,0,5)/B, ds. (3-5)

This formula is extended also for the orbits which have the other radius than the reference orbit.
We introduce a concept of effective boundary to indicate the deviation of the effective edge of the magnetic
field from the actual edge of the pole. The effective boundary is defined by

Al (x)= [ B,(x,0,5)/ B, ds -1(1 + i) (3-6)
J Po
where the pass of the integration is shown in Fig (3-22), S, is the coordinate of a point on the center line of
the bending magnet, B, equals to the central field strength, / is the half length of the reference orbit in the
magnet and p, is radius of the reference orbit. Thus, I(1+x/p,) means the actual pole length at the
orbit radius p, + x . Therefore, the effective boundary means the deviation of the effective length from the
actual pole length in each orbit radius.
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We can obtain the information about the multi-pole component from the effective boundary. The method to
obtain the multi-pole component is shown in next section.

3.3.3.2. Evaluation of the multi-pole component

We suppose a simple model in order to assess the effective boundary. The expansion of the field
distribution of a bending magnet on the median plane up to third-order can be expressed as [3-3]

1 > B
B, (x,0,5)= B, +Bx+—B,x’ +lB3x3 o= ", 3-7)
g 2! 3! — n!
where B, (n=>1) denotes the coefficient of the multi pole component. The field of an actual bending
magnet has s dependence everywhere; B, = B, (s). Then we can define the following field integration

I(x)= f B,(x,0, 5)dS

(3-3)
pole end

=L B, (x,0, s)dS + J:)Ie o B, (x,0, s)dS.

The pass of the integration is same as Fig (3-22), but the region of the integration is divided at the edge of the
pole. Here the line element in the integration (dS) can be rewritten by using the line element on the
reference orbit ds; dS =(+x/p)ds, where p is the radius of the reference orbit.( p=p, in the
bending magnet, p=o0 in the outer fringing region. The radius of the actual orbit gradually changes
p=p, to p=ooin the fringing region, but the deviation of the actual orbit from the reference orbit is
small. Thus this approximation is reasonable.) Then we obtain the following formula.

I(x) = [1 +piJ [ i e’""{BO (s)+B,(s)x +%!B2 (s)x° +%B3 (s)x° +...]ds

0

1 , 1 s
+ J,::e end[B" ($)+B,(s)x +EBZ (s)x +§B3 (s)x” +.. .]ds

. woleend | oleend | 1
= _[_:Bo (s)ds+x-[£ '—0~0—B0 (s)ds + .[:Bl(s)ds}+x2 [f; p—oBl(s)ds+ g—z—!Bz(s)ds]+...(3_9)
By this process, the integration pass has been summarized only to the reference orbit. We can find that each
coefficient of x is not merely the component of magnetic field of its order. The lower order component in
the bending magnet is mixed in each coefficient. We can also find that the field integration [/(x)
correspond to the apparent magnetic field which is felt by the beam. In a flat pole bending magnet, the dipole
component behaves as if it is the quadrupole component. In the flat pole bending magnet a beam is focused
horizontally by the radial focusing effect, even if there is no quadrupole component. The apparent radial
focusing field generated by the dipole component corresponds to the first term in the coefficient of x in Eq.
(3-9). Similarly, the quadrupole component in a bending magnet behaves as a sextupole component in a
formula of the horizontal chromaticity of the bending magnet. The apparent sextupole component
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corresponds to the first term in the coefficient of x° in Eq. (3-9). These apparent effects arise due to the
finite curvature of the beam orbit. When the bending radius p, is large, these effects are negligible.
(Actually, in Eq. (3-9), if p, issetto o the mixing of the magnetic field components vanishes.)

Next, we consider the relation between the effective boundary Al (x) and the field integration /(x).
The equation of motion of the reference particle in the flat pole bending magnet is given by

dx__ 1
s> pg
The equation of motion for the same reference particle in a quadrupole magnet is given by
d’x B,
__2 = — X
ds B,p,

Therefore, the radial focusing is equivalent to the quadrupole field which has strength B,/ p,. Thus, the
coefficient x of Eq. (3-9) means total apparent quadrupole component in the half of the bending magnet.
By eliminating the total radial focusing effect in the half of the bending magnet (x-By// p,), the actual
quadrupole component in the bending magnet can be extracted. And the total radial focusing effect in the
half of the bending magnet approximately coincides with the first term in the coefficient of x in Eq. (3-9).

X B NX- fale end—l—B(s)ds (3-10)
Po ° Po
Al (x) and I(x) areconnected by the relation
AL, (x) ~ 1(x) —l[1+iJ G-11)
B, Po

on the formula. Therefore, Al (x) is the amount that the radial focusing effect is eliminated from the
normalized field integration I(x)/B, and the actual quadrupole component and the deviation of the
effective length are remained. For the case of S-LSR or a flat pole dipole magnet without edge angle, the
quadrupole component is strongly suppressed in the inner gap. Therefore, the coefficient of x° in Eq. (3-9)
is almost the total sextupole component of the bending magnet. When the multi-pole components are enough
suppressed in the inner gap, the effective boundary can be expressed approximately by
Al (x)~ B%,([EBO(SMS - Bol] +x- EBl(s)ds +x2. Lingezi!Bz(s)ds +x°. J;"_”ge?,l!&(s)ds + ] . (3-12)

This means that the first term of the expansion (A/,,(0)) represents the difference between the half effective
length and the half actual pole length on the reference orbit, and the coefficients of the higher order terms
represents the B,L product in the half region of the magnet. Therefore, by expanding the effective
boundary around the reference orbit (x=0) the information of the multi-pole component is obtained
approximately.

The effective boundary obtained from the 3D field calculation using the iron core of Fig. (3-17) and the coil
(Fig. 3-16) is shown, at the high excitation current 650A and the low excitation current 275A. (Fig. 3-23)
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Fig. 3-23. Effective boundary obtained from the 3D field calculation based on the iron core shown in fig.
(3-17). The effective lengths of each excitation level are slightly longer than the actual pole length.

From Fig. 3-23, we can find that the effective boundary slightly changes by the excitation current despite the
Rogowski’s cut is applied to the longitudinal pole end. It is thought to be induced by the saturation of the
field clamp, rather than the saturation of the pole end. The effective length near the reference orbit is longer
than that of the end of the usable aperture (0.1 m). This means that the sextupole component is included in

the effective boundary. When the effective boundary is expanded as

Allﬂ(x)=b0+b,x+b2x2+..., (3-13)

these coefficients becomes as shown in table 3-3.

3.3.3.3. Suppression of the multi-pole component

The cause of the sextupole component is the longer effective length near the reference orbit. Therefore, if
the actual pole length is slightly shortened near the reference orbit, the difference of the effective length
depending on the radial position may be reduced. At the same time, the sextupole component is suppressed.
In order to realize this situation, we cut down the last two steps of the Rogowski’s cut, as shown in Fig. 3-24.

Fig. 3-24-a. Pole end structure to suppress the sextupole component. The last two steps of the Rogowski’s
cut are cut down.
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Fig. 3-24-b. detailed dimensions of the pole end cut.

By this way, the actual pole length near the reference orbit is shortened. The result of the 3D field calculation

using the iron core (Fig. 3-24) and the combined type
result of the previous field calculation.

coil (Fig 3-16) is shown in Fig 3-25, comparing the

1.5E-03 - = 275A without sextupole correction
: = 650A without sectupole correction
: + 275A sextupole correction
: A 650A sextupole correction
1.0E-03 s e T vares
< : :
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Fig. 3-25. Comparison of the effective boundary. When

the iron core which is shown in Fig. 3-24-a is used,

the radial difference of the effective boundary is reduced.
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3.3.3.4. Evaluation of the multi-pole component
The coefficients of the expansion of each effective boundary of Fig. 3-25 are shown in Table 3-3.

Table. 3-3. comparison of the multipole component

275A sextupole 650A sextupole 275A without sextupole 650A without
correction correction correction sextupole correction
by(m) -2.946E-04 4.934E-04 5.270E-04 1.155E-03
bi(m™) 7.626E-05 1.331E-04 - 5.255E-05 8.933E-05
by(m?) 5.958E-03 3.114E-03 -1.588E-02 -1.924E-02

From this table, we can find that the sextupole component is suppressed when the corrected iron core is used.
We have fixed the design of bending magnet with the following conditions: the radial cross-section

structure Fig 3-8 is applied, and the combined type shown in Fig 3-16 is used. The longitudinal pole end cut

is approximated by Rogowski’s cut as shown in Fig. 3-24-b. Final fixed parameters are shown in Table 3-4.

Table 3-4. Final parameters of the bending magnet

Parameter Value
Type of the iron core H-type
Bending radius 1050 mm
Gap height 70 mm
Pole width 371 mm
Bending angle 60°
Edge angle 0°
Maximum excitation current 57200 A-T
Coil number per one magnet 2
turn number of the coil 44 turn per one coil
Pole end structure at beam entrance Rogowski cut with field clamp
main coil Combination with a saddle and a headband type
correction coil no correction coil
precision of the pole surface +0.05 mm
precision of other parts +0.1 mm
mass 4550 kg
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3.4 Outline of performance assessment of the bending magnets by field
measurement

The primary purpose of the field measurement is to check whether the completed magnet having the
performance as the design. The second purpose is to evaluate the difference of each magnet and to decide the
suitable arrangement of them, in the ring. If each magnet has difference in the field strength and the effective
length, the difference of the bending angle at each bending section arises. This becomes the cause of the
closed orbit distortion. It is impossible to suppress the construction error and the individual difference of the
magnets completely. Even if the difference of each magnet exists, the closed orbit distortion can be
minimized by optimizing the arrangement of them, in the ring. Thus, we have to evaluate the individual
difference of each magnet by the field measurement, and we have to decide the suitable arrangement of 6
magnets based on the result of the field measurement.

3.4.1 Items of the ficld measurement

(1) Stability of the power supply, excitation current and central field.

In the real usage, the six bending magnets are connected in series to the power supply. The maximum
voltage of the main power supply for 6 bending magnets is 250 V, and the maximum current is 650A. If the
excitation current is unstable, the bending magnetic field changes with time. This instability induces the
time-depending variation of the closed orbit, in addition to the closed orbit distortion generated by the
individual structural difference of the magnets. The stability of the power supply is measured by DCCT in
the state that the power supply is connected to a single bending magnet for the field measurement. The
detailed result of the measurement is shown in section 3.5.

(2) Excitation property of each bending magnet

The excitation level of the bending magnets is set up to the target value after initialization excitation
process, in order to avoid the influence of the hysterisys. Even if each magnet is excited with the same
excitation pattern, the response of its magnetic field may have individual difference because of difference of
the magnetic property of the iron core. Therefore, we have to get hold of the information of all excitation
property of 6 magnets. The detailed result of the measurement is shown in section 3.6.

(3) Individual difference of the central field at the same excitation current.

In general, the central magnetic field By (main dipole component) differs with each magnet because of the
error of the gap height and the difference of the magnetic property. If the error of the main dipole component
is tolerable range, the closed orbit distortion is minimized by optimizing the arrangement of 6 magnets.
When the error exceeds the permissible range, the main dipole component will be corrected by correction
current induced by the bypass circuit. The detailed result of the measurement is shown in section 3.7.

(4) Effective length

The effective length implies the effective region where the bending magnetic field exists. The individual
difference of the effective length induces closed orbit distortion along the reference orbit.
The detailed instruments and methods of the measurement are shown in section 3.4.2, and the results are
shown in Section 3.9.
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(5) Field distribution

Ideally, the flat pole bending magnet has no higher order field component. However, the actual fabricated
magnet usually has a sextupole component due to the finite width of the pole and a small quadrupole
component due to the construction error. The sextupole component of the bending magnet induces
resonances around at a certain operating point and beam instability may happen. The error of the quadrupole
component generates the “stop band” near integer or half integer tune values. In general, the effect to the
integer or half integer stop band is smaller than that of the error of the quadrupole magnets. We confirm the
degree of the quadrupole component error of the bending magnet by the ficld measurement. The higher-order
component included in the bending magnetic field induces resonances, and a kind of stop band is created
around the resonance line in the tune diagram [3-4] [3-5]. Therefore, we also have to investigate the degree
of existence of the higher-order component.

The detailed instruments and methods of the measurement are shown in section 3.4.2, and the results are
shown in Section 3.9, together with the measurement of the effective length.

3.4.2 Main instruments for the field measurement

(1) Power supply

The power supply converts a three phase alternating current (210 V. £10% 50/60 Hz) to a direct current.
The maximum specification of the power supply is 200 kW. The assumed resistance of the power supply is
0.354 Q, which corresponds to the total resistance of the six bending magnets plus the wiring resistance.
The maximum current and voltage is 650 A and 250V, respectively. The current stability is =50 ppm per 4
hour, at the maximum current. The ratio of the ripple to the maximum current is less than 50 ‘ppm.

(2) Current meter
The excitation current was measured by DCCT which is inserted in the internal circuit of the power supply.

(3) NMR

When a nuclear magnetic moment associated with a nuclear spin is placed in an external magnetic field,
the different spin states are given different magnetic potential energies. In the presence of the static magnetic
field which produces a small amount of spin polarization, a radio frequency signal of the proper frequency
can induce a transition between spin states. This spin flip places some of the spins in their higher energy state.
If the radio frequency signal is then switched off, the relaxation of the spins back to the lower state produces
a measurable amount of RF signal at the resonant frequency associated with the spin flip. This process is
called Nuclear Magnetic Resonance (NMR). The precession of the proton spin in the magnetic field is the
interaction which is used in proton NMR. The proton spin will tend to precess around the magnetic field with
a frequency traditionally called the Larmor frequency. The Larmor frequency is proportional to strength of
the magnetic field. For a 1 T magnetic field this Larmor frequency is 42.5781 MHz. As a probe, a sample
containing protons (hydrogen nuclei) is placed in a strong magnetic field to produce partial polarization of
the protons. A strong RF field is also imposed on the sample to excite some of the nuclear spins into their
higher energy state. When this strong RF signal is switched off, the spins tend to return to their lower state,
producing a small amount of radiation at the Larmor frequency associated with that field. The emission of
radiation is associated with the spin relaxation of the protons from their excited state. It induces a radio
frequency signal in a detector coil which is amplified to display the NMR signal.
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The NMR magnetic field meter used in our field measurement was ECHO DENSHI, EFM-2000AX. The
range of this NMR meter is 0.1~2 T, and the resolution is 0.1 u T. The sample of the NMR probe is proton.
The NMR probe was placed near the center of the pole. The NMR probe can measure the absolute value of
the magnetic flux density. Since there is only dipole component at the center of the pole, we can regard the
value measured by NMR as the central field (main dipole component) of the magnet; B.

(4) Hall probe

As a method of the measurement of effective length, a long flip coil measurement can be considered.
However, this method is not feasible for a sector magnet with the small bending radius, and we want to
investigate the detailed structure of the fringing field. Thus, we chose the field mapping method by a
Hall-probe. The field was measured on the points of rectangular grids. By this way, field distribution in the
bending magnet was measured.

The function of a Hall sensor is based on the physical principle of the Hall-effect. The Hall-effect is that a
voltage is generated transversely to the current flow direction in an electric conductor (the Hall voltage), if a
magnetic field is applied perpendicularly to the conductor. By reading out this voltage the magnetic file
component perpendicular to the Hall-element is measured. The Hall-effect is most pronounced in
semiconductors, and the most suitable Hall element is a small platelet made of semiconductive material.

There is various type of Hall probe [3-5]. Hall effect has temperature dependence. Thus the value
measured by a Hall-probe has to be corrected with the temperature. Group3 Hall-probe performs this
correction automatically and exactly. Therefore, we chose Group3 Hall-probe. The Group3 Hall-probe
type-MPT-141 is connected to the tesla meter type-DTM-151. The measurable range of this Hall-tesla meter
system is =3 T. The range is divided to 4 region; 0.3T, 0.6T, 1.2T, 3.0T, and the resolution in each range is
0.1pT, 1uT, 1pT, and 1uT, respectively. The accuracy is within £ (0.01% of reading + 0.006% of full scale)
at 25°C. The sensor area of MPT-141 is shown in Fig. 3-26-a, it is enough small for mapping. Hall probe can
measure only the field component perpendicular to the sensor surface. The main component of the field
measurement is B,. Therefore the angle of the installation becomes important. Calibration of the absolute
value and the center of the sensor region were made as shown in section 3.8.

Reference
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l 50 22 | 0202 —=
| Flexble Wires |
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I A—I 0.920.1

15202 0462 £0.02

Angluar error |n sens]flve plane t1° max Seaﬁng error on CEramic surface +0.4° max
All dimensions in mm
Fig 3-26-a. Structure of Group3 Hall-probe MPT-141
(5) 3 axis drive stage

The field mapping was performed, mounting the Hall-probe on a 3-axis drive stage. The drivable range of
this stage is (1450X440X260 mm; longitudinal, transverse, and vertical, respectively.) The stage is driven -
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with the resolution of 5z m by three stepping motors. The stepping mother drivers are connected to TUJI
DENSHI PMA4C four-cannel pulse motor controller.

Three linear scales are equipped to each axis, in order to confirm that the motor system works well. The
position linearity of the pulse motor system was checked by these scales. We found that the longitudinal axis

has worst linearity, but the deviation is only 20 2 m which is accurate enough for our mapping purpose.

Fig 3-26-b. 3-axis drive stage used in the mapping measurement.

All instruments were controlled and read out by PC through a NI PCMCIA-GPIB card.
3.4.3 The precision of measurement

The manufacturing error of the gap height is estimated to 70%0.05 mm. In order to investigate the effect
of this error to the magnetic field, the precision of the NMR and the Group3 Hall probe is desirable to be
within =% 1x10™. This precision is achieved in the nominal performance. However, in the actual use, various
other factors to make the precision worse exist. For example, the oscillation of the Hall probe which is
attached to the tip of the 3 axis drive stage is considered as the factor. As proven later, even with the other
factors, the precision of the probes is enough. The manufacturing error of the pole length is estimated to be
£0.1 mm. Therefore, the precision of the measured effective length is desirable to be within 0.1 mm.

3.5 Stability of the excitation current, the magnetic field and instruments
3.5.1 Surroundings of the measurement
The measurement had been performed at National Institute of Radiological Science. The bending magnet

and the instruments had been surrounded by vinyl sheets to suppress the changes of the temperature and air
flow.
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352

Initialization of the excitation is needed to avoid the difference of the central magnetic field due to the
hysterisys. The excitation pattern of the initialization is shown in Fig 3-27. Initially, the excitation current is
raised linearly to the maximum value 650A during about 30 seconds. After maintaining the maximum
excitation level for 10 seconds or 30 seconds (TOP time in Fig. 3-27), the excitation current is set up to the
target value. After the central magnetic field settles down at the target value, the storage of the beam is to be
started. We investigated the suitable TOP time and FALL time in Fig. 3-27. As the TOP time, we tested 10
seconds and 30 seconds. The time dependence of the central field is shown in Fig. 3-28. Each measurement
was performed 3 times independently. In the both cases, the central fields are settled to the certain values
after 800 seconds. The central field coincides with precision of 2 107 in the both cases. Finally, we chose

Initialization pattern

the TOP time as 30 second, although the both cases were satisfactory.
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Fig 3-27. The excitation pattern of the initialization.
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3.5.3 Long time stability of the central field, the excitation current and the instruments

As shown later, the mapping time per one measurement is about 4 hour. Therefore we have to investigate
the long time stability of the instruments, the magnet and excitation current, prior to mapping measurement.
The stability of the instruments during about 5 hour is shown in Figures 3-29-a-d together with the stability
of the excitation current and the central field. These values are measured at the same time. Thus, they must
correlate each other. For example, the NMR probe measures the absolute value of the magnetic flux density
IB' B2+ B2 +B? and the Group3 Hall probe measures the vertical component of the field B, . In the
median plane of the magnet the B has only B, component. Thus the value of the Hall-probe can be
calibrated with the NMR. Furthermore, the excitation current and the central field ( B, IBI ; at the
center of the gap) are correlated by the relation Eq. (3-3). They have to be in proportion. Therefore, 1f the one
of these values has large deviation from their correlations, its instrument or actual value is abnormal.
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Fig. 3-29-a. Stability of the excitation current. Fig. 3-29-b. Time variation of air temperature in the gap
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Fig. 3-29-c. Stability of the central field measured Fig. 3-29-d. Stability of the central field measured
by the NMR. by the Group3 Hall probe.

From Fig. 3-29-a, it is found that the fluctuation of the excitation current is less than £5X 10 at the
excitation level 275A. From Fig. 3-29-c, it is found that the central field reduces slowly (about 2 107
reduces), although the excitation current is almost constant. From Fig. 3-29-b, it is thought that the
temperature of the iron core rises and then the gap height slightly increased. This is the cause that the central
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field reduces slowly. The reduction of the central field is small enough compared with the target accuracy
and the resolution of the Group3. As shown in Fig. 3-29-d, the measured value of Group3 Hall probe jumps
suddenly. The value of this jump is less than #1X10™. This error is within the target accuracy of the
measurement and within the specifications.

3.6 Excitation property of each bending magnet

The relation between the central field B, and the excitation current was investigated. The central field was
measured by NMR after the initialization described in section 3.5.2. The excitation current was changed by
50 A steps, except for 75 A and 100 A. The initialization was performed for every excitation level. The
fabricated bending magnets have been numbered from 15012 to 15017. The B-I curve of the magnet number
15012 is shown in Fig. 3-30.
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Fig. 3-30. B-I curve of the bending magnet No. 15012.

The central field deviates from the linear proportion to the excitation current at high excitation current. This
deviation originates in the saturation of the iron core. In order to express the relation between the excitation
current and the central field of each bending magnet, quantitatively, we expand the B-I curve by the
following polynomial.

B(1)=ao+a,]+a212+ajl3+a414+a515+... (3-14)
Then, each coefficient is shown in Table. 3-5.
Table. 3-5. CoefTicients of the expansion of B-I curve
M;?e‘ 15012 15013 15014 15015 15016 15017
ag 5.515E+01 4.948E+01 4.974E+01 5.289E+01 4.979E+01 4.613E+01
a; 1.421E+01 1.437E+01 1.437E+01 1.427E+01 1.435E+01 1.446E+01
a, 1.475E-02 1.310E-02 1.303E-02 1.418E-02 1.321E-02 1.201E-02
a3 -6.140E-05 -5.333E-05 -5.256E-05 -5.890E-05 -5.371E-05 -4.706E-05
ay 1.162E-07 9.584E-08 9.279E-08 1.104E-07 9.645E-08 8.056E-08
as -7.979E-11 -5.452E-11 -4.953E-11 -7.308E-11 -5.518E-11 -3.495E-11
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In Table 3-5, the deviation of the coefficient of the linear component a, is too large despite usage of the same
power supply and the material of the iron core. In low excitation level, where the effect of the saturation is
negligible, the coefficient of the linear component is given by Eq. 3-3. The cause of the deviation of the
constant term ao and the linear component a; might be the error of the fitting due to including up to high
excitation level in the expansion of B-I curve. If the expansion is limited in the low excitation region, the
exact a; and ay may be obtained. When the relation of B and I is fitted by a linear function B(I) =a,+a,/
in the low excitation region up to 250A, 4000 Gauss, the coefficients becomes as shown in Table 3-6.

Table 3-6. Coefficients of the expansion of B-I line. (Low excitation region)

Magnet No. 15012 15013 15014 15015 15016 15017
a -4.1277E+00 -3.9880E+00 -3.9059E+00 -3.8285E+00 -4.2387E+00 -4.0818E+00
a 1.5787E+00 1.5786E+01 1.5786E+01 1.5786E+01 1.5786E+01 1.5784E+01

It is found that each coefficient a, is in agreement within the precision of = 13X 10™. This excitation region
is most frequently used in the actual operation of S-LSR.

3.7 Individual difference of the central field

In actual use of the six bending magnets, they are connected in series to the power supply. Therefore, all
magnets are excited by the same excitation current. The gap height error and the difference of the magnetic
property induce the difference of the central fields, and they induce the closed orbit distortion together with
the deviation of the effective length, as briefly explained in section 3.4.1. If the degree of the closed orbit
distortion is tolerable range, the storage ring is operated without correction current, although the bypass
circuit is equipped to the power supply The bypass circuit can adjust the excitation current of each magnet
individually. Delicate adjustment of the main excitation current is required in the actual circulation of a beam.
If the correction of each excitation current is performed, each time, the operation becomes very complicated.
Therefore, we want to operate the storage ring without using the correction current basically. However, in the
case of dispersion-free operating mode (where the horizontal aperture is rather limited as 30 mm (see chapter
4)), careful adjustment of each excitation current may be required.

In order to decide the necessity of the correction current, we investigated the individual difference of the
central field. The central field was measured by the NMR at the end of the mapping measurement, since the
temperature of the iron core was considered relatively stable. The central field is slightly affected by the
temperature of the iron core because of the thermal expansion of the gap height. The central fields obtained
from each measurement are shown in table 3-7.

Table 3-7-a. Central field of each bending magnet

Magnet NO. Central field (Gauss) Excitation current (A) Air temperature in the gap (°C)
15012 4337.876 274.1160 26.4
15013 4337.541 274.1198 259
15014 4337.159 274.1180 26.3
15015 4337.588 274.1200 27.2
15016 4337.106 274.1170 26.1
15017 4336.779 274.1182 26.7

-48 -



Chapter 3.  Design and field measurement of bending magnets for S-LSR

Table 3-7-b. Converted central field excited with the completely same excitation current 274.12 (A)

Magnet NO. Central field at the same excitation current(Gauss);

Average value: 4337.370 Gauss e
15012 4337.939 1.3E-04
15013 4337.544 4.0E-05
15014 4337.191 -4.1E-05
15015 4337.588 5.0E-05
15016 4337.153 -5.0E-05
15017 4336.807 - -1.3E-04

The excitation current in each measurement is slightly different because of the difference of the
circumstances of the power supply. Thus, each central field is corrected for the same excitation current using
the B-I curves obtained in section 3.6. These data will be used in the estimation of the closed orbit distortion,
as described in section 3.10.

3.8 Measurement of effective length and field distribution

The field distribution of the bending magnet is mapped by two Hall-probes mounted on the 3 axis drive
stage. From the mapping data the effective length and the effective boundary, introduced in section 3.3, are
calculated.

3.8.1 Setup of the mapping measurement

Two Hall probes are used to measure the B, and By component. Ideally, the By component is zero on the
median plane because of the symmetry of the magnet. Two Hall-probes are installed on a two axis holder
(Fig 3-31-a). The holder is made so that the base plates (reference surfaces) of the Hall-probes intersect at
right angles between each other. However, the Hall-sensor may have finite angle against to the base plate
(Fig 3-26-a). Therefore, finally, the installation angle of the By Hall-probe was adjusted so that it observes
the largest value of magnetic field. B, Hall-probe was used for the purpose of the confirmation of the B, field,
although we did not use the B, component for the beam dynamics calculation. Nevertheless, it is difficult to
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Fig 3-31-b. The calibration line of the measured
value of B, Hall-probe. B, corresponds to y and x is
the bare value of the By Hall probe.

-49 -



Chapter 3. Design and field measurement of bending magnets for S-LSR

set the sensor surface perpendicularly to By. The measured value of the Hall probe is proportional to the
value of NMR. Therefore, we can calibrate the value of the Hall-probe by the value of NMR (Fig 3-31-b).
The relation of these values was investigated each time when the setup of the mapping measurement is
changed. The setup of the mapping measurement is shown in Fig. 3-32. The longitudinal axis of the drive
stage has a crossing angle of 10 degree against to the normal line of the pole edge. The probe accessible area
is limited due to the small aperture of the field clamp. The probe accessible area is shown in Fig 3-33. Thus,

we divide the mapping region into two regions; beam exit side and entrance side.

Field clamp

" reference orbit

Fig 3-32. Setup of the mapping measurement

Mappi‘n area

Probe accessible area

Fig .3-33. Probe accessible area and the mapping area.
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3.8.2 Decision of the mapping grid interval

The measurement was performed on the points of square grids. When the drive stage reaches to the target
point and stops, the probe arm starts oscillation. This oscillation may influence the measurement at the
fringing region. The oscillation damps according to time. And, the amplitude of the oscillation can be
reduced with the slow driving speed. However, if the enough waiting time for the oscillation damping and
the low driving speed are selected, long mapping time is needed. Therefore, the suitable waiting time and the
driving speed have to be investigated. It was also found that the degree of the oscillation was also depending
on the drive interval; i.e. the suitable drive method has to be considered together with the size of the mapping
grid. The size of the mapping grid also decides the total mapping time. As the grid interval becomes large,
the needed mapping time reduces, but the accuracy of the field integration becomes worse.

First, two mapping were performed on the line of the reference orbit in the fringing region (the waiting
time to avoid the influence of the oscillation is ensured enough). One is 5 mm interval, the other is 10 mm
interval. Then the difference of these effective length was 4.6 X 10™" m. Therefore, we decided the grid
interval to 10 mm, taking into account the total mapping time.

Next, the waiting time at each mapping point and the treatment of the data measured at the mapping point
were considered. As shown in Fig. 3-7, when the bending magnets used in the ring the, quadrupole magnets
are put near the bending magnet. Therefore, the mapping was also performed with the quadrupole magnet.
The influence of the oscillation of the Hall-probe must be remarkable in the quadrupole field. Therefore, if
the suitable driving method is established in the quadrupole field, it is enough for the measurement of the
bending magnetic field. The data of the Hall-probe is read out every 0.15 seconds, after reaching to the target
point. In Fig. 3-34, the data of 5 measurement points which are measured by the Hall-probe is shown. The
Hall-probe moves in the quadrupole field, and measures the field during 15 sec at each measurement point.

" When the measurement modes of the tesla meter DTM-151 is selected “filter on”, the response in a changing
field becomes worse. Therefore, we used the tesla meter in the mode “filter off” and finally the measurement

value was averaged at each measurement point.
1171 T T T T T T

1170.8 |

11706 |

11704

measured field (Gauss)

1170.2 |-

1170 L 1 1 1 1 I3 (] 3
0 10 20 30 40 50 80 70 80 90
time (sec)
Fig. 3-34. The value which was read out from the Hall-probe. The data of the Hall probe during the
measurement of 5 points in the quadrupole magnet is plotted. In this case, the driving seed is selected
suitably. Thus, it is found that the effect of the oscillation is negligible compared with the fluctuation due to

the efficiency of the Hall probe.
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As seen in Fig 3-34, it was found that the measured value at each point was fluctuating in the state “Filter
off”. This fluctuation originates from the property of the Group3 Hall-probe, but not the influence of the
oscillation. In Fig. 3-34, since the driving seed is selected suitably, the influence of the oscillation does not
arise. The oscillation of the probe arm dumps almost completely, in 1 sec, even if the drive speed and the
interval of the measurement points are not selected suitably. Finally, it was decided so that the probe waits
during 1 sec after reaching the target point and then the probe measures the field 10 times during 1.5 sec. The
averaged value of the 10 times measurement at each point and the original 10 data were recorded,

respectively.
3.8.3 Alignment method

In order to obtain the exact effective length and field distribution, the measured field value is needed to be
corresponded to the exact coordinate of its measuring point. Therefore, exact alignment of the banding
magnet and the 3-axis drive stage is essential. Especially to decide the relative longitudinal position of the
probe center to the bending magnet is important. In the case of S-LSR bending magnet, the possible mapping

[ SRS T TR LRGE Rr

A\

Probe accessible area

/

)

; Transverse axis

1=

; Line of the field integration
= \

Longitudinal axis
10° aluminum. Then, the aluminum block was placed

Fig. 3-35. Coordinate system of the mapping on the Rogowski’s cut. The data shown in Fig.
measurement

[w

Fig. 3-36-a. The knife-edge was mounted on the

3-37 was obtained by the mapping measurement
across the edge.

area at the same time is half region of the bending magnet, as show in Fig. 3-33. (If all regions can be
measured at the same time, this complicated process is unnecessary, because the effective length can be
obtained merely integrating the measured field in the longitudinal direction.) Therefore, the longitudinal
deviation of the alignment is reflected to the error of the effective length almost directly.

First, the longitudinal derive axis of the 3-axis drive stage was aligned with the line which has inclination
of 10 degree from the normal line of the pole edge (Figs 3-32 and 3-33). The position of the stage was
recorded as the pulse number sent from the pulse motor. The 1 pulse corresponds to 5 1 m. The pitch of the
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ball screw of the drive stage is 5 mm. The pulse motor turns one turn by 1000 pulse. In order to avoid the
back rash of the screw shaft, the measurement was always performed, driving to the same direction. The
coordinate system and the origin of the mapping measurement were decided as shown in Fig. 3-35. It is
difficult to align the center of the Hall-probe sensor by using the mark on the probe, because this mark may
include the error. The most exact method is to use the magnetic field sensed by the Hall-sensor. The precise
position of the center of the Hall probe to the magnetic field center was calibrated with use of the sharp edge
of a knife set to a certain position on the Rogowski’s cut (Fig. 3-36) When the field was mapped on the line
crossing this edge, the field distribution shown in Fig. 3-37 was obtained. This field distribution can be fitted
by Gaussian. From the coordinate of the center of this Gaussian the absolute position of the origin was
obtained.

Hall sensor Probe arm
——

Knife edge—

Field clamp

925 95 25

Fig. 3-36-b. The set up of the measurement to calibrate the precise position of the center of
the Hall probe and the magnetic field center with use of a sharp edge of a knife set on the
Rogowski’s cut. The field distribution along the line across the edge becomes as shown in

Fig 3-37.
(a)Mapping data to decide the longitudinal origin (b) Mapping data to decide the transverse origin
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Fig. 3-37. The field distribution obtained from mapping measurement across the edge. When the edge is
sharp, this field distribution can be fitted by Gaussian.
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3.9 Analysis of the measured field

The mapped data becomes as shown in Fig. 3-38. From this data, effective length and the effective
boundary is calculated. Since the mapped field data exists on the points of rectangular grids, the mapped
points may not locate on the line of the field integration (Fig. 3-35). Therefore, interpolation of the points
was performed. The mapped data were analyzed on the Frenet-Serret coordinate system defined in section

3133311
3.9.1 Radial field distribution

The radial field distribution near the center of the magnet is shown in Fig. 3-39. These radial distribution
were obtained from the mapping data. It is found that the radial field of all magnets has the same tendency.
The radial distribution slightly changes by the excitation current due to the saturation. The deviation of the
field distribution is within =1 10™. The polynomial expansion of the radial field distribution correspond
to Eq. (3-7) is performed. The coefficients of the expansion are listed in table 3-8.
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Fig.3-38. Mapped field distribution enough inner gap of the dipole magnet.
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Fig. 3-39. The radial field distribution of 6 magnets. The deviation from a completely uniform field is within
+1X 10™. The deviation is slightly larger than that of the 2D and 3D field calculation (Fig 3-18). This
deviation is thought to be caused by the fabrication error of the pole surface. The error appears similarly with
all magnets. This tendency is thought to originate from the method of the shaping of the pole surface. The
pole surfaces of 6 magnets were simultaneously shaped on a very large lathe.

$55



Chapter 3.

Design and field measurement of bending magnets for S-LSR

Table 3-8. Coefficients of the polynomial expansion of the radial field distribution.

excitation current  275A
Magnet No. 15012 15013 15014 15015 15016 15017
B, -2.967E-04  -9.153E-05 -7.668E-05 -4.854E-06 2.721E-04 -8.025E-05
B, -1.785E-02  -1.591E-02  -2.024E-02 -8.376E-03 -1.650E-02 -1.860E-02
B; -1.093E-01 -1.782E-01 -1.642E-01 -1.896E-01 -1.880E-01 -1.934E-01
B 3.023E+00  2.991E+00 3.742E+00 3.480E+00 2.721E+00 2.651E+00
excitation current 650A
Magnet No. 15012 15013 15014 15015 15016 15017
B, -1.841E-04 7.969E-05 -3.276E-05 3.880E-04 4.641E-05 3.060E-04
B, -2.278E-02  -1.631E-02  -2.102E-02 -2.242E-02 -2.012E-02 -2.734E-02
B; -4.632E-02  -1.694E-01 -2.007E-01 -2.245E-01 -7.602E-02 -2.438E-01
B, 3.318E+00  2.346E+00 2.660E+00 3.606E+00 2.453E+03 4.834E+00

3.9.2 Longitudinal field distribution

The longitudinal field distribution, enough inner region of the magnet, along the reference orbit is shown

in Fig. 3-40.

-
. ........0’0..0.0’

/

=

330
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Fig. 3-40. The longitudinal field distribution of magnet No. 15016 enough inner

region of the pole. The horizontal axis means the distance from the edge of the magnet.
The deviation from the uniform distribution is about = 1X 10™. The deviation of the
longitudinal field distributions of the other magnets is smaller than that of magnet

No.15016.

The longitudinal field distribution in the fringing region is shown in Fig. 3-41. It is found that the structure of
the fringing field doesn’t depend on the excitation current, and the tail of the fringing field is well suppressed

by the field clamp.
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Fig. 3-41. Fringing field of the magnet No. 15012
3.9.3 Difference of the effective length from the actual pole length

From the mapping data, the deviation of the effective edge (boundary) of the field from the actual pole
edge is obtained. We define this value as dL ;

dL = B,(0,0,s)/ Bds — actual half pole length

alf region
As shown later, actual pole length also has error. Therefore, the effective length is obtained by taking into

account the individual difference of the actual pole length. The dL at the beam entrance side and the beam

exit side are shown in table 3-9, respectively. These data have been calculated from the mapping data, based
on Eq. (3-5).

Table 3-9. Difference of the effective edge from the actual pole end.

Excitation current 275A Unit: mm

Magnet G et i) dL, (beam entrance Total difference of the effective length from
NO. R side) the actual pole length dL, +dL,
15012 —0.59£0.05 —0.04%0.05 —0.6x0.1

15013 —0.86+0.05 —0.27%0.05 = NEE0C]

15014 —0.82£0.05 —0.18£0.05 —1E0=t0:1

15015 —0.81£0.05 —0.18%0.05 =H10=£0.1

15016 —0.88+£0.05 —0.46%0.05 =301

15017 —1.00£0.05 —0.25%0.05 =190
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Excitation current 650A

Unit: mm

Magnet L (bt aide) dL, (beam entrance Total difference of the effective length from
NO. 5 side) the actual pole length dL, +dL,
15012 +0.2940.05 +0.671+0.05 +1.0£0.1
15013 —0.01£0.05 +0.49+0.05 +0.5£0.1
15014 —0.03+0.05 +0.53+£0.05 +0.5£0.1
15015 —0.05%0.05 +0.40£0.05 +0.4£0.1
15016 —0.28%£0.05 +0.25+0.05 —0.0£0.1
15017 —0.25%0.05 +0.36£0.05 +0.1£0.1

In all magnets, the effective edge of beam entrance side is a little bit far from the pole edge compared with
the beam exit side. This difference is due to the structure of the coil (Fig. 3-36). The turn number of the head
band part of the coil at the beam entrance side becomes 2 turns more than that of the beam exit side, because
of the connection with the outer power supply and outer water pass. Therefore, the fringing field at the beam
entrance side becomes slightly larger.

3.9.4 Individual difference of the actual pole length

From the precise three-dimensional measurement by a laser tracker, it was found that the actual pole
length has individual difference. The length shown in Fig. 3-42 was measured.

Target for alignment

roforen{e orbit

Fig. 3-42. Measured length to investigate the individual difference of the actual pole length

Table 3-10. Actual pole length of the 6 bending magnets.  Unit: mm

Magnet No Ip (be.am exit 1, (bean) entrance Total actual pole Iengﬂ) devi.ation from the
side) side) along the reference orbit ideal value

15012 605.68 606.49 1099.281 -0.279
15013 606.17 606.08 1099.371 -0.189
15014 606.16 606.24 1099.523 -0.037
15015 606.05 605.99 1099.160 -0.400
15016 606.48 606.26 1099.857 0.297
15017 606.07 606.31 1099.506 -0.054

ideal value 606.22 606.22 1099.560
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3.9.5 Individual difference of the effective length and BL product

Combining the data of tables 3-9, and 3-10, the effective length of each magnet is obtained. These values

become as shown in table 3-11

Table 3-11. Effective length of each magnet

Excitation current 275A Unit: mm
Magnet effective len-gth (beam exit effective length (beam entrance Total effective length
NO. side) side)
15012 549.78—0.54—0.59+0.05 549.78+0.27—0.04£0.05 1099.56—0.9£0.1
15013 549.78—0.05—0.86+0.05 549.78—0.14—0.27%0.05 1099.56—1.3+0.1
15014 549.78—0.06—0.82£0.05 549.78+0.02—0.18+0.05 1099.56—1.0£0.1
15015 549.78—0.17—0.81£0.05 549.78—0.23—0.18 0.05 1099.56—1.4£0.1
15016 549.78+0.26—0.88+0.05 549.78+0.04—0.46£0.05 1099.56—1.0t0.1
15017 549.78—0.15—1.00£0.05 549.78+0.09—0.25%+0.05 1099.56—1.3£0.1
Excitation current 650A
Magnet effective len_gth (beam exit effective lengt!l (beam entrance Total offective length
NO. side) side)
15012 549.78 —0.54+0.29£0.05 549.784+0.27+0.67£0.05 1099.56+0.7£0.1
15013 549.78—0.05—0.01£0.05 549.78—0.14+0.49+£0.05 1099.56+0.3 0.1
15014 549.78—0.06—0.03£0.05 549.78+0.02+0.53 +0.05 1099.56+0.5+0.1
15015 549.78—0.17—0.05£0.05 549.78—0.23+0.40%0.05 1099.56—0.1£0.1
15016 549.78+0.26—0.28£0.05 549.78+0.04+0.25£0.05 1099.56+0.3£0.1
15017 549.78—0.15—0.25+0.05 549.78—0.15+0.36-0.05 1099.56+0.1£0.1

The deviation of the BL product at the excitation current 275 A (274.12 A) can be obtained from tables. 3-7

and 3-11, the result is shown in Fig 3-43.
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Fig 3-43. Deviation of the BL products at the excitation current 275 A.

In Fig. 3-43, the BL product of the magnet No. 15012 is obviously large. In order to reduce the size of the
deviation of the BL products the position of the field clamp of magnet No. 15012 was shifted 2 mm to the
pole side. By the 2D field calculation, the reduction of the effective length was estimated to be shortened
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0.27 mm. The result of the field measurement showed that the effective length on the reference orbit has
been shortened about 0.30 mm. (Table. 3-12)

By this adjustment, the individual difference of the effective length and the BL products were reduced at
low excitation current. Even for the high excitation current, the individual difference of the effective length
and the BL products were reduced. After the adjustment of the effective length of the magnet No. 15012, the

following effective length and BL products has been obtained.

Table 3-12. Effective length of each magnet, after

the adjustment the effective length of the magnet No

15012.
Excitation current 275A Unit: mm
Magnet effective len.gth (beam exit effective length (beam entrance Total effective length
NO. side) side)
15012 549.78—0.54—0.92+0.05 549.78+0.27—0.33£0.05 1099.56—1.5+0.1
15013 549.78—0.05—0.86+0.05 549.78—0.14—0.27+0.05 1099.56—1.3+0.1
15014 549.78—0.06—0.82+0.05 549.78+0.02—0.18£0.05 1099.56—1.0+0.1
15015 549.78—0.17—0.81£0.05 549.78—0.23—0.18£0.05 1099.56—1.4+0.1
15016 549.7840.26—0.88+0.05 549.78+0.04—0.460.05 1099.56 —1.0+0.1
15017 549.78—0.15—1.00£0.05 549.78+0.09—0.25£0.05 1099.56—1.3+0.1
Excitation current 650A ‘
Magnet effective lquth (beam exit effective lengtp (beam entrance Total offective length
NO. side) side)
15012 549.78—0.54+0.19£0.05 549.78+0.27+0.35£0.05 1099.56+0.3£0.1
15013 549.78—0.05—0.01£0.05 549.78—0.14+0.49£0.05 1099.56+0.3+0.1
15014 549.78—0.06—0.03+=0.05 549.78+0.02+0.53£0.05 1099.56+0.5£0.1
15015 549.78—0.17—0.05£0.05 549.78—0.23+0.40£0.05 1099.56—0.1+0.1
15016 549.78+0.26 —0.28£0.05 549.78+0.04+0.25£0.05 1099.56+0.3+0.1
15017 549.78—0.15—0.25%0.05 549.78—0.15+0.360.05 1099.56+0.1£0.1

650A
E1275A

-2.0 -1.5 -1.0 0.5 a0 a5 Lo
Design pole length - Effective length [mm]

Fig 3-44. Deviation of the effective length from
the design pole length.
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3.9.6 Effective boundary and multi-pole component

The information of the multi-pole component of the measured field can be obtained by comparing the
measured effective boundary and the formula of effective boundary Eq. (3-12)

Therefore, by comparing the expansion of the measured Al ;(x) with the right hand side of Eq. (3-12)
the total value of the multi-pole component B,L/n! (B,L product) in the half region in the bending
magnet can be estimated. However, as described in section 3.3.3.2, this is an approximate method. In this
section, the multi-pole components are calculated from the effective boundary by the more precise method.
As shown in Eq. (3-8), The field integration to obtain the effective boundary can be divided to inner gap
region and the outer fringing region.

1. Effective boundary in the inner side of the magnet.

_ 1 ole end ole end 2 leend 1 ole end | 3 ole end l 1
e g _B—O[E) Bo(s)ds+x-E B, (s)ds + x [f" p—oBl(s)ds+E EBZ(s)ds]+x [_L” —/;O—EBZ(S)dS+...]

AL,

(3-15)
2. Effective boundary in the fringing region.
1 1 1
=—[£IeemBo(sﬂs+x- E)I”MBl(s)ds+x2 . _[:)’ee"daBz(s)ds+x3 . J:) —B3(s)ds} (3-16)

Jringe B() le end 3|

Al

The total effective boundary is the summation of Eq. (3-15) and Eq. (3-16). When the following notations are
defined

ole end 1
C, = — B, (s)ds 3-17)
o n!
the effective boundary in the inner gap can be written as
2 [ 1 3 [ 1 A 1
Aleﬂ_ gP=C0+x-C1 +x° - —C1+C2 +x - —(:'2+C3 +...+x _Cn_1+Cn +...- (3-18)
nner gaj po po po
The relations to the coefficients of the expansion of the effective boundary of the inner gap
Al g |imper gap= B0 + byx + b,x” +b,x° + ... are given by
by=Cy> b =C,» b2=LC1+C2’ bn=LC,H+C,l (n>2), (3-19)
Po (!

where b, (n=0)is the known amount obtained from the measured effective boundary.
First ¢, and ¢ can be obtained by comparing the polynomial expansion of the measured effective
boundary. Next the higher order component ¢, is obtained from the relation

b, = 1 C +C,

o

If the value of ¢, is decided, the higher-order component ¢, is also obtained by the similar way.
Repeating such process, the coefficient ¢, is decided one after another. By this way the actual multi-pole
component in the inner gap region is obtained. The multi-pole components in the outer fringing region are
obtained directly from the polynomial expansion of the measured effective boundary. The summation of the
multi-pole component in each region becomes exact total multi-pole component in the bending magnet. The
total multi-pole components in the half region of the magnet (beam entrance side and beam exit side) are
shown in table 3-13.
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Table 3-13. Total multi-pole component in the half region of the magnet.

By = B%( { Bo(s)ds~Bol) = AL, (0) b, =Bi0 [ iB,, (s)ds (3-20)
beam entrance side
excitation current 275A
Magnet No. 15012 15013 15014 15015 15016 15017
be(m) -3.350E-04  -2.732E-04 -1.851E-04 -1.724E-~04 -4.647E-04 -2.476E-04
bi(m®) -2.844E-04  -5.150E-04 -9.417E-04 8.795E-04 -5.260E-05 2.770E-05
by(m™) -2.529E-02  -2.050E-02 -1.497E-02 -2.189E-02 ~-1.793E-02 -1.772E-02
by(m™) -9.847E-02  -1.292E-01 -5.229E-02 -2.349E-01 -2.313E-01 -1.573E-01
by(m™) 2.389E+00 7.831E-01 4.479E-01 1.532E+00 2.890E-02 -1.048E+00
excitation current  650A
Magnet No. 15012 15013 15014 15015 15016 15017
by(m) 3.481E-04 4.955E-04 5.250E-04 4.084E-04 2.576E-04 3.721E-04
by(m®) 2.597E-04 -5.880E-04 -6.322E-04 1.209E-03 -9.770E-05 2.026E-04
by(m™) -2.383E-02  -2.292E-02 -3.063E-02 -2.504E-02 -3.147E-02 -2.892E-02
bs(m™) -2.163E-01 -4.693E-02 -2.106E-01 -3.474E-01 -2.184E-01 -1.661E-01
by(m™) -4.074E-01  -1.137E+00  2.514E+00 -6.316E-01 -4.371E-01 -8.910E-03
beam exit side
excitation current 275A
Magnet No. 15012 15013 15014 15015 15016 15017
bo(m) -9.243E-04 8.581E-04 -8.241E-04 -8.141E-04 -8.397E-04 -1.006E-03
by(m°) -3.058E-04  -1.202E-04 -7.570E-05 1.570E-04 1.138E-03 -2.070E-05
by(m™) -2.695E-03  -1.519E-03 -1.470E-02 -2.037E-02 -5.072E-03 -1.019E-02
by(m™) -1.532E-01 -1.115E-01 -1.286E-01 -1.812E-01 -2.450E-01 -1.839E-01
by(m™) -3.392E-01  -2.089E+00 3.284E+00 3.351E+00 -2.722E-01 1.111E+00
excitation current  650A
Magnet No. 15012 15013 15014 15015 15016 15017
by(m) 1.890E-04 1.610E-06 -3.470E-05 -4.800E-05 -2.813E-04 -3.618E-04
by(m°) 1.849E-04 3.270E-05 -5.563E-04 -1.997E-04 4.961E-04 -1.972E-04
by(m™) -4.230E-02  -7.567E-03 -2.683E-02 -2.980E-02 -1.096E-03 -1.994E-02
by(m™) -5.421E-02  -3.366E-02 -1.081E-01 -5.653E-02 -3.254E-02 9.001E-03
by(m™) 5.794E+00  -1.918E+00 5.376E+00 3.122E+00 -9.832E-01 3.936E+00

In the followings, measured effective boundaries of all bending magnets are shown.
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Fig. 3-46. Structure of the effective boundary of all magnets.
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3.10 Arrangement of the 6 magnets to minimize the closed orbit distortion

The BL product of a bending magnet decides the bending angle. If the bending magnets of a storage ring
have individual difference in the BL products, as shown in Fig. 3-45, the bending angle of each bending
section deviates from the ideal value. This becomes the cause of the closed orbit distortion. In this section,
the closed orbit distortion of S-LSR is investigated, and the suitable arrangement of the 6 magnets to
minimize the closed orbit distortion is decided under the condition without using the correction current.

3.10.1 Evaluation of the extra kick angle at each bending magnet

When the bending magnet has error in the main dipole component B, the equation of motion of reference

particle in this magnet becomes as [3-4]
d’ 1 1 AB
x (3-21)

ds* P Py B

The extra bending angle induced by the field error AB is given by
dx dx 1 AB

— -— =——1L (3-22)
dS dS entrance of the amgnet P 0 B 0

exit of the amgnet

where L means the length of the bending magnet and dx/ds is the angle with respect to the reference orbit.
When the magnet has the error AL in the effective length, in addition to the field strength, it is equivalent
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that the short bending magnet which has length AL and field strength B, + AB is attached to the ideal
length bending magnet. The bending radius of the beam in this additional part is given by

1_1 1AB (3-23)
P P P B
Therefore, the particle is bent at this additional part. This bending angle is given by
AL_A(HA@J @28
P Po B,

The magnet which has central field B, +AB and effective length L+ AL bends the beam excessively
with the angle

0. =£+Lé£(L+M)=L(AL_+£[I+£D z£[£+_A£J, (5.25)
o Po Do P\ L B L P\ L B,

compared to the magnet which has central field B, and effective length L . From tables 3-7 and 3-10, the
deviation of the bending field AB and effective length AL can be obtained. By substituting these values
the extra kick angle of each magnet is calculated.

3.10.2 Substitution to MAD

The effects of the field errors of each magnet are calculated by MADS. The effect of the error of the BL
products is calculated by using the element Closed orbit corrector of MADS. The closed orbit corrector only
changes the angle of the reference particle. The kick angle of the closed orbit corrector is calculated at both
the beam entrance side and beam exit side. The kick angle of the closed orbit corrector is calculated from Eq.
(3-25). The multi-pole components obtained in section 3.9.5 are also taken in MADS. In MADS the strength
of the thin multi-pole is defined by

K,L=(L/B,p,)0"B,/ox") (3-26)
Therefore, K,L is expressed by using the b, shown in Table. 3-13.

K,L=nlb,/p, (3-27)

This value corresponds to the total strength of the multi-pole component in the half region of the bending
magnet (beam entrance side or the exit side). The multi-pole components are included to the transfer matrix
calculation by a thin lens approximation. Such thin lenses are installed to the beam entrance and exit of the
bending magnet.

3.10.3 Optimum arrangement of the 6 bending magnets
The closed orbit distortion has been calculated in various arrangements of 6 bending magnets. Finally, we

have decided the arrangement of 6 magnets as shown in Fig. 3-47. The closed orbit distortion in this
arrangement is shown in Fig. 3-47.
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Fig 3-47. Arrangement of 6 bending magnets to minimize the closed orbit distortion. The closed orbit
distortion was calculated at the operating point (1.74, 1.09). This operating point is to be used for the
injection of 7 MeV proton. The closed orbit distortion has to be most suppressed in this operation.

3.11 Field measurement in off-median plane

The mapping measurement was also performed in off median plane (y==15 mm). When the magnet has
vertical symmetry, the field structures in the planes y=-15 mm and y=15 mm have to be identical. However,
we found that the effective length in the plane y=15 mm differs from that in the plane of y=-15 mm. In Fig
3-48, the effective boundaries of the beam entrance side of magnet No. 15017 is shown. The effective length
on the plane y=15 mm differs about 0.3 mm from that of y=-15 mm. It is difficult to explain this difference
by the measurement error because the measurement error of the effective boundary was estimated to be 0.05
mm. Furthermore, the effective boundary of the other magnets showed the same tendency; the effective
length becomes long, as the height of the mapping plane becomes lower.
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Fig. 3-48, The effective boundaries of the beam entrance side of magnet No. 15017. The effective length of
y=15 mm and y=-15 mm are obviously difference. This is contrary to the requirement from the vertical
symmetry of the magnet; the effective length of y=15 mm and y=-15 mm have to be same.
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Then, we found the Hall probe had tilt angle in the longitudinal direction, as shown in Fig 3-49. Since the
Hall-probe measures the field component perpendicular to the Hall-sensor, if the probe is tilt as shown in Fig.
3-49, the field strength which is sensed by the Hall probe differs by the height from the medial plane in the
fringing field.

- Pole

Magnetic flux liné

Fig. 3-49. Magnetic flux line in the fringing region.

In the case of our measurement, the Hall probe had tilt angle opposite to that of Fig. 3-49. Thus, the effective
length measured by longitudinally leaned probe becomes longer as the height of the measurement plane
becomes low. After the longitudinal tilt angle was corrected as small as possible, the difference of the
effective length became very small. In Fig. 3-50, the effective boundaries of the beam exit side of magnet No.
15012 are shown. In this measurement a Hall-probe which is corrected the tilt angle are used. The difference
of the effective length is suppressed less than 0.07 mm. These values almost agree within the measurement
error. In this measurement, the mapping region was limited only in the fringing region, although, it is
sufficient to see the height dependence of the effective boundary.
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Fig. 3-50, The effective boundaries of the beam exit side of magnet No. 15012

Therefore, we can conclude that the cause of the height dependence of the measured effective length is
longitudinal tilt angle of the Hall probe. If one will measure the effective length at off-median plane, one has

to notice the longitudinal tilt angle of the Hall-probe.
" Since the Hall-probe senses only the perpendicular field component to the sensor, the accuracy of the field
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measured by Hall-probe in the region where more than two field components exist such as fringing region in
off median plane, is not guaranteed, and it is important to correct the tilt angle of the probe accurately. In the
case of the mapping measurement in the median plane, the small tilt angle of the probe did not become
problem, since the magnetic field has only vertical component. The value read out from the Hall-probe is
calibrated by the value of the NMR.

3.12 Summary of the novel scheme described in this chapter

Bending magnets for S-LSR were designed using the 2D field calculation code POISSON and 3D field
calculation code TOSCA. In the 3D field calculation, suitable pole end structure to suppress the sextupole
component of the fringing field was investigated. Finally, the pole length near the reference orbit was
shortened with the intention of suppressing the sextupole component. The relation of the coil structure and
the saturation of the field clamp were also investigated by the 3D field calculation. When the saddle type coil
was applied, the amount of the flux flow into the field clamp becomes much, and the field clamp becomes
casily saturated. When the combined type coil (Figs. 3-15, 3-16) was applied, saturation of the field clamp
was suppressed.

The result of the field measurement showed that only one magnet has the large deviation of the BL
product, among the six bending magnets. We corrected the effective length of this magnet by adjusting the
position of the field clamp. The distance of the movement of the field clamp was expected from the 2D field
calculation beforehand. The result of the field measurement of the corrected magnet agreed with the
expectation by the 2D field calculation. Therefore, we can find that the 2D field calculation in the fringing
field reproduces the actual state, near the reference orbit.

We have shown a method to estimate the total multi-pole component in a bending magnet. The
information of the multi-pole components is obtained from the polynomial expansion of the effective
boundary. In the calculation of the multi-pole component from the effective boundary, it was found that the
coefficients of each order term are not merely the field components of its order. The lower order field
component arises in the higher order component as the appearance field (see section 3.3.3.2) in the bending
region. In the fringing region, the coefficients of each order term directly show the field components of its
order. The actual order of the field and the appearance field which arises in the coefficients of the expansion
of the effective boundary can be separated by the method shown in section 3.9.6. And the exact total
multi-pole component of the bending magnet can be obtained by the summation of the value of the inner gap
region and the outer fringing region. ‘
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Chapter 4. Dispersion-free storage ring

4.1 Dispersionless bend

As discussed in chapter 1, if the effect of the dispersion can be eliminated, a 3D crystal beam structure
may be stabilized. The method of a dispersionless bend (double achromatic bend) is often used in a low
emittance radiation ring. The double achromatic bend is realized by a quadrpole magnet and two bending
magnets [4-1]. Such beam optical system can eliminate the dispersion at the entrance and exit of the bending
section. However, this method cannot eliminate the dispersion completely in the bending section. In order to
stabilize the 3D crystal beam, the dispersion has to be eliminated all around of the ring. It is impossible to
eliminate the dispersion at the bending region by using a magnetic field or an electric field only. On the other
hand, if a bending electrostatic field is combined to the bending magnetic field, the dispersion can be
eliminated at the whole of the bending region [4-2][4-3]. In order to realize the dispersion free bending field,
the direction of the bending electric field and the bending magnetic field has to cross at right angle. This
bending field can be realized by a combination of dipole magnet and an electrostatic deflector (Fig 4-1).
When the beam has a central velocity vy, the relation between the bending electric field E and the bending
magnetic field B is written by

1)
[l +’—2'}E(p0) =-v, xB,
e
where ¥, and p, denote the Lorentz factor and the bending radius of the beam, respectively.
sector magnet

electrode

Fig. 4-1. Example of a dispersion-free bending element. A curved electrostatic deflector is installed in the gap
of a dipole magnet. Note that the direction of the electric field is radially outward.

4.2 Dispersion suppresser

4.2.1 Formulation of the bending field

In the dispersion-free deflection element, if the ratio of the superposition of the electric field and the
magnetic field is changed, it can create the situation in which the dispersion is suppressed. Thus in the
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followings, we call generally the deflection element in which the dispersion is not eliminated completely, as
a dispersion-suppresser. In this section, the equation of motion in the dispersion-suppresser is formulated in
the Frenet-Serret coordinate system. The bending field of the dispersion-suppresser has to be the solution of
Maxwell equation. We suppose the magnetic field is created by a flat pole dipole magnet. Then the vector
potential can be written as

By
A = Y (p, +x), (4-1)

The electric field is created by a cylindrical electrostatic deflector which is the simplest equal potential
surface obtained from the solution of Maxwell equation, and such a electrostatic deflector is ordinarily used
in an electrostatic storage ring [4-21]. Then the electric field and the electrostatic potential can be written as

V.
E(x)= p ix (4-2)
0
¢, =V, In[ 1+ =V0.i(_l)n 2. (4-3)
Po n=1 1 Po

The direction of the bending electric field is opposite to the conventional electrostatic deflector, in order to
compensate the dispersion.

4.2.2 Equation of motion

Hamiltonian of a dispersion-suppressor is derived in Frenet-Serret coordinate system [4-4]. Choosing the
path length s as the independent variable, we obtain the relativistic Hamiltonian, that governs the motion of a
charged particle in a bending region where not only a dipole magnetic field but also an electric field for
dispersion compensation is present, of the form [4-5]

2
H= —(1 +_x—)\/(w) —m’c’ - p. - p’ —q(1+—x—JAS, (4-4)
Po ¢ Py

where m and g are the rest mass and the charge state of particles, ¢ is the speed of light, @, is the scalar
potential in the electrostatic deflector, p; is the longitudinal canonical momentum conjugate to time ¢, and we
have assumed that the vector potential A only has the longitudinal component, i.e. A =(0, 0, 4,). By
expanding the square root and leaving only low-order terms, Eq. (4-4) becomes

2 + 2
H=—(1+quAs —[1+—~J~C—]p+——px 2N (4-5)
Po Po 2p

where p=mpyc =+/(p, +q#)*/c* ~m’* with B being the normalized velocity by the light speed c. This
is good approximation when the transverse momenta p, and p, are far small compared to the longitudinal
momentum. In a conventional beam transport line or an accelerator, this approximation is always effective.
The scalar potential in the electrostatic deflector is given by Eq. (4-3) and the vector potential is given by Eq.
(4-1). Note that the equilibrium kinetic momentum p,(=mf,y,c) is not equal to gB p due to the
existence of the bending electric field. Since the electric field strength is ¥, / p, along the design orbit, the
equilibrium kinetic momentum becomes

q7,
B,
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The momentum deviation from the design momentum p, = mpB,y,c =+ E,” /c¢* —m?c* can approximately
be written as

Ap=p-p, =~

AE—qg, 1 (AE—q;éDY
3 @-7)

Be 2p, \ By, )
where AE is the energy deviation from the design value — AE =my,c® — (- p,). This relation is obtained

by taking up to the second order term of AE or g4, . Inserting Eq. (4-1) and p = p, + Ap into Eq. (4-5)
and neglecting nonlinear terms, one finds

2 ~2 ~2

~ +

e _{_+1(1+___‘IZA](3&) -(1+i]-43+—p"——13¥—, (“8)
BoEy p, 2 BoEy \ Po Po ) Po 2

where the transverse momenta have been scaled to be dimensionless; namely, Py = Puiyy! Po- Substitution
of Eq. (4-7) together with Eq. (4-3) into Eq. (4-8) yields the approximate Hamiltonian

2 ~7 ~2 2 )

~ +

pete e ) () e )],
ByEy py YoBo Ey BoEy 275\ By E, 2 Yo\ B K 24

From this Hamiltonian, we obtain the horizontal equation of motion in the bending region

2
dx (9% ) | x, L _ah | AE (4-10)
ds? ~ = 2 7T 2 2 2
s Yo \ B E, P Po Yoo Ey ) BYE, :

Clearly, the last term in the right hand side of Eq. (4-10) gives rise to linear dispersion, and its coefficient
1/ p,(1—qV,/ y: B2E,) decides the strength of the dispersion. It is thus possible to control momentum
dispersion over a wide range by changing the electric and magnetic field strengths with the condition (4-6)

fulfilled. In particular, dispersive effects can be minimized provided that

v,
y{’g;}j =1, @-11)
000

which leads, by using Eq. (4-6), to ¥,/ p=B,-[fc/(2— p°)]. This equation indicates that, when the beam
energy is high, a very large voltage is needed to compensate dispersive effects. Therefore, the present

dispersion suppressor is relevant only to low-energy beams. From Egs. (4-6) and (4-11), we find
A+1/ 72 W,/ p, =B, f,c that is identical to the dispersion-free bending condition described in section 4.1.
When the dispersion-free condition (4-11) is satisfied, the horizontal equation of motion in the bending
region becomes

eSS
~n ——L . x, (4-12)
ds o,

where the horizontal motion has been decoupled from the longitudinal motion in linear approximation.

4.3 Application to a storage ring

For the transport of charged particles, dispersion-free deflection elements were proposed in [4-2] and [4-3].
But this scheme has never been used in the design of synchrotrons and storage rings up to now, because the
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required electric fields become too large for particle beams used in these accelerators. We propose the
possibility of incorporating this scheme in a low energy storage ring. In this section, we show some
characteristics of a storage ring constructed with dispersion-suppressors.

4.3.1 Hamiltonian of a storage ring

A beam circulating in a dispersion-free storage ring receives only the alternating focusing force, thus, one
can expect the beam dynamics of the dispersion free ring coincides with that of a linear beam transport line
or a linear ion trap. In this section, the Hamiltonian of the storage ring constructed with
dispersion-suppressors is investigated. Here, a separated function type lattice is assumed. When quadrupole
magnets and an rf cavity are taken into account in addition to dispersion-suppressors, the vector potential
becomes

s

B
A = ~7y(p+x)+—;—Bl(x2 —y2)+5p(s)~Vﬂcos(a)t+¢0) (4-13)
w

where B, is the gradient of the quadrupole field. V,, and ¢, are a voltage amplitude and an initial
phase of the rf cavity, respectively. Since a storage ring is considered now, the tf frequency @ is constant
and @ = hw,, where @, is the angular revolution frequency of the synchronous particle and 4 is the
harmonic number. The rf cavity is installed at the straight section of the coordinate s=0.

When Eq. (4-13)and p = p, + Ap are inserted into Eq. (4-5) and nonlinear terms are neglected, one finds

H=

- 1= - + +—Kx*+K y*
ﬂoonp 7(?:802Eo ﬂoon 27(? ﬂ()ZEO 2( g )

2 (4-14)
-3,(s) Ve cos(at +¢,)
Do®

0

AEx[ qlc] AE 1[AE)2+T95+17§ 1

where

1 1 'l gk K,
K,=—21+"7(q2_l(] - Ky=‘q‘_1'
Yo \ B E, Do by

p.k, and K, are function of s; p=p,, K=V, in the bending region, and p=o, k=0 in the
other regions. K, is B, in the quadrupole magnet region, and K, =0 in other regions. If Hamiltonian
(4-14) is compared to that of the conventional magnetic storage ring Eq. (1-30), one can find that the
difference arises in the first term (shear term).

4.3.2 Effect of the electrostatic potential

The electrostatic potential of the dispersion-suppressor causes the energy transfer between kinetic energy
and potential energy of charged particles while conserving the total energy. Here, the total energy means
summation of the kinetic energy and potential energy, and it corresponds to £ in the notation used in this
thesis. One can find that AE is also an approximate constant of motion, if the rf voltage is not imposed (see
Eq. (4-14)). On the other hand, the kinetic energy and the momentum may not be constant, in contrast with a
conventional magnetic storage ring.

Suppose an ion beam is strongly cooled by a cooling force in a storage ring. If the design orbit is linear,
the momentum spread eventually vanishes, i.e. Ap = 0, at low temperature limit where the beam is Coulomb
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crystallized. As shown in Ref [4-6], [4-7], when the density of the beam is low, crystalline structure is a 1D
chain. If the density is larger than the 1D state, a 2D crystalline structure is developed in the weaker focusing
direction. If the density is enhanced more, the particles naturally arrange into a 3D crystal structure, and the
beam has a finite horizontal extent. In an ordinary storage ring, however, the condition Ap=0 does not
mect the stability requirement of a crystalline state with a finite horizontal extent because the bending
magnets generate the shearing force; as briefly discussed in chapter 1, a radially outer particle must travel
slightly faster than the inner particles, so as to realize a condition such that the angular velocities of all
particles, rather than the linear velocity, are identical. The stability of a multi-dimensional crystalline beam is,
therefore, not guaranteed unless the cooling force is “tapered” [4-8]. By contrast, the present dispersion-free
system can compensate the difference of the angular velocities even if the cooling force is not tapered,
because of the above energy transfer mechanism. However, in order to realize this condition, it is essential
that the ring has a straight section, in addition to satisfying a dispersion free condition. The reason is as
follows.

First, for pedagogical purpose, we consider a dispersion-free ring with a constant bending field i.e. the
whole circumference of the ring is occupied by the bending element. The cooling force acts so that the
momentum spread approaches to zero, and the momentum is almost constant in this ring, like that of
conventional rings. If the beam has finite horizontal extent, this situation is not suitable for the condition of
3D crystal beam; namely, all particles don’t have the same “angular” momentum. This ring is merely
dispersion-free.

Next, we consider a dispersion-free ring which has straight sections. In such a ring, the momentum is not
constant because of the acceleration (or deceleration) of the charged particle at the entrance (or exit) of the
bending section. The relation between the deviation of the total energy AE and the momentum deviation
Ap is given by Eq. (4-7). If a beam is cooled at a straight section, the momentum deviation Ap becomes
zero and the energy deviation AE also becomes zero because of the zero scalar potential. When a beam
with a finite horizontal extent enters into the bending region, the particles receive some kinetic energy gain
(loss) from the deflection electric field in exchange for loss (gain) of the potential energy. The amount of the
gain depends on the horizontal coordinate x. When Ix / p0| <<1, Eq. (4-3) gives ¢,~~V,-x/p, and,
accordingly, the potential along an inner orbit is higher than that along an outer orbit; in other words, a
particle traveling in the region of negative x (positive x) is decelerated (accelerated) at the entrance of the
electrostatic deflector. At the exit, the opposite effect takes place, and the particle recovers the original
kinetic energy before entering the bending region. Now, AE is zero, because of the cooling at the straight
section, and it is zero all around of the ring, since it is constant of motion. Then, if once an ideal ground state
[4-9] is reached, from Eq. (4-7), one obtain the relation p=~p, +(q¥/Bcp,)-x This relation can be
rewritten, with the condition (4-11),as p/ p, ~1+y'x/ p, or, equivalently,

v X
el o (4-15)
0 0
where v denotes the velocity of a particle at the horizontal position x, and v, = Bc. It is now evident that the
angular velocities of all particles are approximately the same. We can thus suggest that the stability of a
three-dimensional crystalline beam is greatly improved in the dispersion-free storage ring presented in this
thesis.

Even if the storage ring satisfy the dispersion-free condition, making particles to have the same angular

velocity is impossible without the straight section. Thus, it is essential to "cool at the straight section (which
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has no electrostatic potential)” and to cause the acceleration (or deceleration) of the charged particle at the
entrance (or exit) of the bending section.

4.3.3 Analytical treatment of the shearing force

As shown in previous subsection, the effect of acceleration (or deceleration) at the boundary of the
bending section plays an important role. This effect is included in the Hamiltonian formalism automatically
in this thesis. Therefore, we can show these effects analytically. The first term of the Hamiltonian (4-14)
yields dynamic coupling between the horizontal coordinates and longitudinal momenta. From the derivation
process of the horizontal equation of motion (4-10), one finds this shear term [4-10] generates the dispersion
term of the equation of motion. As shown in section 1.5.3, the shear term also generates the shearing force.
Here, in order to show the effect of the shear term explicitly, the rf cavity is switched off. When the relative
time Af=t—s/p,c is introduced, from the Hamiltonian (4-14), the longitudinal equations of motion are

d(ar) _ L[ﬁ(l_____ﬂfwj__l_(ﬂ_ﬂ (4-16)
ds Bl p }’gﬂoon 7(? IBOZEO

i[_AEJ=0, (4-17)
ds\_ po

given by

The first term of the right hand side of the equation (4-16) represents the shearing force, and it is generated
from the shear term. The second term represents the difference of the revolution time caused by the energy
deviation. According to Eq. (4-16), in a crystalline state (where AE=0, it is constant in the ring) with a finite
horizontal extent x, the difference of the revolution time is dominated by the shearing force and its strength
is proportional to the strength of the dispersion 1/ p(1-qV,/y:B2E,).

For the dispersion-free condition (4-11), the shearing force canceled out and the revolution time doesn’t
depend on the horizontal extent of the beam, x . Therefore, in a storage ring constructed with
dispersion-suppressors, the cancellation of the shearing force is synonymous with the cancellation of the
dispersion.

The shear term is caused by the geometric factor of bending; namely, this term exists because of the finite

bending radius o . This term causes crucial difference between the Hamiltonians of the storage ring and
linear ion trap. Fortunately, this term is canceled out at the dispersion free condition. Then, although there are
bending sections, the dynamics of the particle becomes the same as straight section.
In the dispersion-free condition, the Hamiltonian (4-14) becomes equivalent to the Hamiltonian of rf linear
ion trap in which the ions are restricted to a finite length. Therefore, the beam behavior in the dispersion-free
ring, except for higher-order nonlinear terms, is similar to that in a linear ion trap in which multi-dimensional
crystal structure has been observed experimentally [4-11]. The discussion about nonlinear terms is performed
in Section 4.8.

4.3.4 Effect of the rf cavity

In this section, the effect of the tf cavity is taken into account. When the periodic delta function &,(s) is
expanded in a Fourier series, we obtain the expression [4-12]
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27hs
C
where C is the length of reference orbit in the ring. If the relation f,c =@,C /27 is utilized, the phase of

+) (4-18)

6, (s)cos(art + @) ~ écos(a)t -

Eq. (4-18) can be expressed as

wt—g%{+¢o=wAt+¢o (4-19)
Then, only the longitudinal equation of motion (4-17) is corrected by the effect of the rf cavity.
AE .
d(—)_ — & sin ¢ (4-20)
ds c

where the synchrotron phase ¢ = Ag + ¢, = wAs + ¢, is introduced. In the followings, the initial phase of the rf
cavity @, is set to zero so that the reference particle may not have energy gain and synchrotron oscillation.
Then, Eq. (4-20) gives an energy change so that the particles which are deviated from the design phase
experience oscillation.

In a low beam current limit in which the space charge effect is negligible, the longitudinal equation of
motion of the dispersion-free storage ring becomes the synchrotron equation which has phase slip factor
n= —1/ 72 . Thus the synchrotron oscillation is stable. This result is reasonable, because the phase slip factor
is defined by n=a - 1/ yZ and the momentum compaction factor of the dispersion-free ring is zero;
a=1/ C(j.Dx(s)/ p(s)ds=0.Here D,(s) is horizontal dispersion function of the ring, and it is zero all around
the dispersion free ring. This result means the dispersion-free ring has infinite high fransition energy
y, =1/ Ja .

As shown in Section 1.5.2, there are so-called maintenance conditions for realization of a crystal beam in
a storage ring. First maintenance condition is that the beam energy must be below the transition energy;
7 < ¥,. The second condition is N > 2+/2v,, where N is the number of the super period of the ring, and
v, is the transverse tune. The dispersion-free ring satisfies the first condition in principle. If the
dispersion-free storage ring has a larger number of super periods or a large bending radius, it is thought to
satisfy the second condition in general. Consideration of the second maintenance condition is described in
Section 4.6.2.

In the followings, we consider the crystalline state, in order to explain analytically the heating mechanism
of the crystalline beam induced by the dispersion. In a 3D crystalline state, betatron oscillation is strongly
suppressed, and the particles no longer oscillate across the reference orbit. This means such particles always
have the same sign of x in Eq. (4-16). If a bunched 3D crystalline beam continues to be cooled by a cooling
force in the straight section, the energy spread AE of Eq. (4-16) approaches zero. But, in the bending region,
the deviations of the synchrotron phases Ag=wAr of radially outer and inner particles are increased
because of the first term of Eq (4-16) (shearing force), if the dispersion-free condition is not satisfied. This
increase of the synchrotron phase deviation Ag affects the energy spread AE through Eq. (4-20).
Eventually, the energy spread is extended by the rf potential through Eq. (4-20). Finally, this heating rate
balances with the cooling rate of the cooling force. Because of such a mechanism, the reachable temperature
of the 3D crystalline beam is limited.

In the dispersion-free condition, this heating mechanism is completely suppressed due to the cancellation
of the first term of Eq. (4-16), and, the stability of the 3D crystalline beam is greatly improved. In this state,
the energy spread AE of the final equibrium state becomes zero. As shown in Ref. [4-13], the synchrotron
oscillation of the crystalline beam is strongly suppressed despite the finite bunch length (finite phase
deviation Ag¢). This is the same reason as the suppression of the betatron oscillation of a 3D crystalline
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beam which has a finite transverse extent. Thus, the synchrotron motion of the 3D crystalline beam is
suppressed completely.

In order to realize a strong three-dimensional laser cooling, the method of utilizing a synchro-betatron
coupling induced by the rf cavity [4-14] has been proposed. However, in the dispersion-free storage ring, it is
difficult to generate synchro-betatron coupling by a normal rf cavity, because there is no dispersion. In the
dispersion-free case, we can use a coupling rf cavity [4-15], [4-13] for the 3D cooling. The coupling rf cavity
scheme realizes the synchro-betatron coupling by using a special mode of the rf electric field which depends
on the transverse position. For a low energy storage ring, even in the dispersion-free case, the coupling rf
cavity can create the enough coupling strength for 3D cooling. The energy transfer between longitudinal
motion and transverse motion becomes comparable, in order, to that of the energy of the laser photon for
cooling, by reasonable applied voltage to the coupling-cavity.

4.4 Design of the dispersion-suppresser for S-LSR

Dispersion-free deflector or dispersion suppresser has never been constructed. The first proposal of the
dispersion-free deflector [4-2], [4-3] is application to mass-analyze. However, it has been difficult to
construct a deflection element as shown in Fig. 4-1, because the electric field of the electrostatic deflector is
reduced by the influence of the wall of the vacuum vessel or the pole of the bending magnet. Furthermore,
the result that the particles are bent with the same angle not depending on the kinetic energy is also realized
by the independent use of the bending electric field and magnetic field [4-16]. The construction of the beam
line for mass-analyze by setting the electrostatic deflector and the bending magnet independent position is
easier than the insertion of the electrostatic deflector to the gap of the bending magnet. From the above

—main electrodes

26

70
30
@2
llelwiella r
unit ;: mm ‘ » support plate

Fig 4-2. Cross-section around the electrostatic deflector. The height of the electrostatic deflector is limited
by the gap size of the dipole magnet and the vacuum vessel. The electrostatic deflector is constructed by a
pair of main electrodes and four pairs of intermediate electrodes. The ideal field distribution is maintained
by the intermediate electrodes. In addition to the electrodes, support plates and ceramic plates are
introduced for the purpose of keeping the position of the electrodes.
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reason, such deflection element as a dispersion-suppresser has never been constructed. But now, the use of
the dispersion-suppresser is essential for the stabilization of the 3D crystal beam structure.

In order to realize the dispersion-suppresser, an electrostatic deflector has to be installed in the gap of the
dipole magnet of S-LSR. Therefore, the height of the electrostatic deflector is limited. In a conventional case,
the height of the electrostatic deflector is secured enough, in order to avoid the reduction of the strength of
the electric field due to the leak of the lines of electric force. In the case of S-LSR, in stead of the
enhancement of the height of the electrodes, intermediate electrodes are introduced to maintain the strength
and the distribution of the electric field (Fig. 4-2).

Fig 4-3-a. Fig 4-3-b.
Equal potential surfaces around the electrostatic deflector

Comparing Figs. 4-3-a and Fig. 4-3-b which are result of the electrostatic field calculation, it is found that
the intermediate electrodes maintaining the field strength and the distribution near the center of the aperture.
The pink lines represent the equal potential surface. If there is no intermediate electrode (Fig 4-3-b) the
interval of the equal potential surface line changes by the height in the electrostatic deflector. This means the
bending field strength and the distribution changes by the height of the beam pass. In Fig 4-3-b, it is also
found that interval of the equal potential surface line becomes wider compared with that of near the main
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Fig. 4-4. The deviation of the redial field distribution from the ideal distribution, in the electrostatic

deflector.
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electrodes. This means that the field strength is weakened due to the upper and lower conductor plats
attached for maintaining the interval of the main electrode. Furthermore, it is difficult to generate the enough
strong bending electric field, with the structure shown in Fig 4-3-b.

As the horizontal aperture of the electrostatic deflector becomes wider, it becomes better for the beam
injection and circulation. However, even if the intermediate electrodes are introduced, when the horizontal
aperture becomes larger, the deviation of the radial distribution of the field from the ideal distribution
becomes larger and many intermediate electrodes are required. Finally, the horizontal aperture has been
determined as 30mm compromising the available aperture for beam injection or circulation and the deviation
of the radial distribution of the electric field. The radial field distribution calculated by 2D field calculation
code POISSON are shown in Fig. 4-4. It is found that the deviation from the ideal field distribution is
suppressed within the accuracy of 1 X 107 in the region 1 cm from the reference orbit.

~_ wall of/vacuum vessg

dipole magnet

R=1050mip
quadrupole magnet

Fig 4-5. Deflection element for S-LSR. The deflection element is constructed by a dipole magnet which has
no field gradient and a curved electrostatic deflector. The electrostatic deflector is installed in the gap of the
dipole magnet. The electrostatic deflector can be moved out, when the deflection element is used as a

normal dipole magnet
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S-LSR has to be used as not only dispersion-free ring but also a conventional magnetic storage ring. When
the power supply of the electrodes is switched off, S-LSR can be used as a magnetic storage ring. However,
this is contradicting to the design principle of the magnetic mode of S-LSR, because the horizontal and the
vertical aperture are limited to only 30 mm and 26 mm, respectively. In order to manage both a wide
horizontal aperture magnetic storage ring and a dispersion-free ring with a precise bending electric ficld, the
mechanism to move the electrostatic deflector from the reference orbit to the shunting station has been
introduced (Fig 4-5).

As a possible application of the dispersion-free operating mode, the laser cooling of a **Mg" beam is
planned. The kinetic energy of the **Mg' beam is supposed to be 35 keV. The electric and magnetic fields
needed for dispersion-free storage of a 35 keV **Mg" beam are 6.7x10* V/m and 0.252 T, respectively. These
values are in a reasonably attainable range. The momentum spread of the injected **Mg" beam with the
kinetic energy of 35 keV is expected to be less than 10”. The emittance of the **Mg' beam which is directly
pulled out from an ion source is estimated to be about 40 7 mm mrad. The *Mg" beam will be injected into
the ring, without further acceleration. Since the aperture of the electrostatic deflector is small, the small part
of emittance of the beam is selected by a double slit. The emittance of the injected beam is to be adjusted to
the size of 1 to 10 7 mm mrad by the double slit. The design of the electrostatic deflectors for S-LSR has
been finished and they are installed to the vacuum vessel Fig (4-5). The performance test of the
dispersion-free deflector has been performed by using a beam pulled out from the ion source directly. A 25
keV “N," beam was utilized for this test. The result of the test showed the linear dispersion is canceled out
with good precision, when the strength of the bending magnetic field and the electric field satisfy the
dispersion-free condition [4-23].

4.5 Synchrotron motion of the dispersion-free mode

The equation of the synchrotron motion of the dispersion-free ring is derived from Eqgs. (4-16) and (4-20).
For a particle near the bottom of the rf bucket (@A? << 1), the synchrotron equation can be written as

d’¢ qV .0

_ _ 2mqVyh
ds*  BicylEC

p (4-21)
570 B, C”

o=

The angular frequency per unit length is

Q- [ 2AVuh (4-22)
BryoEC?
thus the synchrotron tune becomes to

v, =€ _ |_@Vuh (4-23)
2 273 y2E,

Here, we can find this formula is the expanded form of the conventional storage ring. The synchrotron tune

of the conventional storage ring is given by the formula [4-17]

v, = 2wl (4-24)
© \278E,

where 77 is phase slip factor of the ring. As shown in Section 4.3.4, the phase slip factor of the dispersion
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free ring is —1/ }/g . The absolute value of 7 of the magnetic mode of S-LSR is usually less than 1, on the
other hand that of the dispersion-free mode is always 5 = —1. Therefore, at the dispersion-free condition, the
rf voltage or the harmonic number required for the same synchrotron-tune is rather lower than that of the
magnetic mode.

4.6 Transfer matrix formula

4.6.1 Formulation of the transfer matrix

In this section, the lattice parameters of S-LSR are calculated by the transfer matrix analysis [4-18]. The
transfer matrix acts on the phase space coordinates (x, Dy» V> D,»—CAL, W), where W =AE/ B, E,. The transfer
matrix of the dispersion-suppressor is derived by solving the canonical equation from Hamiltonian (4-9).
From the horizontal and the vertical equation of motion the following relations are obtained

o 0H &y _ oH .
il 4-25
. =D s . =p, (4-25)

x y

Therefore, in this notation, the slopes x',)' coincide with the normalized canonical momenta %
x'=p,, y'=p,- By solving the horizontal equation of motion (4-10) the following solution is obtained

| 1 d
X =X, cos\/I;s+~x ——sinks +W —=(1—-cosks 4-26
0 po\ﬁc— 5, k( ) (4-26)
P, = —x,k sinvks + P.ocosvks+W L—Cz—sin Jks (4-27)

By Jk

where x, and p , is the initial value, and the following notations have been introduced to simplify the

k={1+—L (qV J d:[l— 4% ]L (4-28)
BiEy) |ps YoBoEs ) Py

The vertical equation of motion is same as that of the drift space. The longitudinal canonical equations are
given by Eqs. (4-16) and (4-17). If Eq. (4-26) is substituted to Eq. (4-16), the equation about —cA# is
obtained.

d(~cAt) 1[ - d . 1 & 1
———t = xdcos\/l;s+px —sinks +W —=(1—cosks) W —— (4-29)
’ "k B k 7o Bs

formula.

ds Jin

This differential equation can be solved, and the solution is

s +const (4-30)

1 d 1 1
—cAt =—x, sm«/_s+px cos\/—s (s s1nfs)+W
"By Vi "Bk /fo g 7ohy

The initial condition decides the value of the constant in Eq. (4-30), and the solution of the longitudinal
motion becomes to

—cA\t =—x ﬁO\/_SIH\/'S pxoﬂ (1 COS\/_S) Wl:ﬂ1 dk( ——\/l—zsin\/zs)—;_l_ﬂs}_cAtO@_g,])
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From the above relations, the linear transfer matrix is derived
In this transfer matrix, L denotes the path length of the reference particle in the dispersion-suppresser.

1 1 d
cosvkL —=sinvkL 0 00 —-w(l—cos\/%L)
JE Bk
—ksinVkL “cosvkL 0 00 ﬂi%sin kL
0
M= 0 0 1 Lo 0 (4-32)
0 0 010 0
1 d 1d 1 d* 1 L
—— 2 sinVkL ——Z(—cosvkL) 0 0 1 ———(L——sinJEL]+—
B,k Bk &k Jk Bvs
0 0 0 00 1

4.6.2 Lattice parameters of dispersion-free mode

First, the stable region of the betatron oscillation is calculated. For the dispersion-free condition, the stable
region is shown in Fig. 4-6. The field gradient of QM1 and QM2 (k; and k;) in Fig. 2-2 are used as the
parameters. The field gradient k; and k, are normalized by the magnetic rigidity of the 35 keV *Mg" beam;
k =B,/ B,p, . The stable region of betatron oscillation is drawn by selecting a region which satisfies the
condition that the absolute value of the trace of the transverse transfer matrix of one super period is less than
2.

16

2 L i | i . L

2 4 6 8 10 12 14 16
ki (mz)

Fig. 4-6. The stable region of the betatron oscillation. The stable region is plotted on the focusing or
defocusing quadrupole plane. The beta-functions of the operating point A1 are given in Fig. 4-8.
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Fig. 4-7. The tune values corresponding the operating points of Fig 4-6

At the operating point Al of Fig. 4-6, the betatron tunes become (1.49, 3.49), and the value of the beta
functions becomes minimum in the stable region. The beta-functions of this operating point are shown in Fig.
4-8 as the functions of the position s along the reference orbit. The lattice parameters of the operating point
Al are compared to that of using only magnetic field. In the case of only magnetic field, the horizontal and
vertical tunes are selected to (1.44, 1.44). In this case, beta functions become as shown in Fig. 4-9.
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Fig. 4-8. Beta-functions of the operating point Al of Fig. 4-6. The tune values are (1.49, 3.49). The
beta-functions are drawn as a function of the position s. The position of the deflectors and quadrupole
magnets are shown in the above diagram. D, is the horizontal dispersion function.
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Fig. 4-9. Beta-functions as a function of the position s. In this case deflection elements are used as
conventional dipole magnets. The betatron-tune are (1.44, 1.44).

We have found that at almost all the usable operation point, the dispersion-free case has a larger B, than
in the magnetic case and the vertical tune is enhanced. The reason for this can be found from Eqs. (4-6) and
(4-10). One finds that the radial focusing of the dispersion-suppressor can be controllable without changing
the bending radius by changing the ratio of the two bending field, and at the dispersion-free condition, the
radial focusing has twice the strength of that of the dipole magnet. In S-LSR, the radial focusing of the
deflection element is utilized for the horizontal focusing. Thus, the betatron motion of the beam is greatly
affected by the radial focusing strength of the deflection element. In the horizontal direction, the strength of
the defocusing of the quadrupole magnet has to be increased, in order to compensate the increase of the
radial focusing. Naturally, in connection with it, the focusing strength of the quadrupole magnet in the
vertical direction becomes large. Because of such reasons, the betatron tune, especially the vertical tune of
the dispersion-free mode is increased. Thus, as shown in Fig 4-7, the tune value satisfying the second
maintenance condition doesn’t exist in the stable operating point of S-LSR

The lattice design of S-LSR had been designed to satisfy the two maintenance conditions for the
crystalline structure, in the magnetic mode [4-19]. The dispersion-free mode of S-LSR has advantage in the
cancellation of the shear heating mechanism, although the second maintenance condition for crystal beams is
not satisfied. Therefore, in order to achieve a crystal beam, a different form of electric field is required (in
order to suppress the vertical tune in S-LSR). In fact such a form can be found, as will be described in the
next chapter.

4.7 The field error

A dispersion-free storage ring has never been constructed. Thus, we have to investigate the influence of
the field error of the dispersion-suppressor. In the case of S-LSR, the construction errors of the electrostatic
deflectors will cause the larger field errors than that of the bending magnet because of its structure, i.e. the |
gap of the eiectrostatic deflector is smaller than that of the bending magnet, thus the error of the gap size
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causes the larger error of the field strength, and the existence of the intermediate electrodes complicates the
situation. Closed orbit distortion (COD) is considered as an influence of the field error. The COD of the
dispersion-free mode of S-LSR should be estimated exactly, because the horizontal aperture of the deflectors
is only 30 mm. The coefficient V, in Hamiltonian (4-9) represents the strength of the bending electric field.
Thus, the error of V|, will generate the closed orbit distortion. Similarly, the error of the strength of the
dipole magnetic field will generate the COD. We suppose that the field error exists uniformly in the
dispersion-suppresser. Then the field errors can be included to the Hamiltonian by the formula

¢+ A =—(V, +AV,)- ln[l +i) (4-33)

0

- - B +AB
A+AA=(0, 0, ~J—2 y(p0+x)] (4-34)

Since now the closed orbit distortion of the reference particle is needed, a condition (AE =0) is supposed.
For the dispersion free state, the horizontal equation of motion of the reference particle is given by
d’x _ l+y, x+7§ AV, 1+7 AB,

2 T o AT T
ds p p Vs p B,

(4-35)

Then, the horizontal phase space coordinates of the reference particle before and after the field error region
are given by the extended transfer matrix. [4-20]

X, coskl —\/% sin/kl —]1; 1-coskl )Af X,

Pal=| —ksinvkl cos~/kl 71_— sinkl - Af P (4-36)

1 0 0 1 1

where [ is the length of the field error area of the deflector and the following notations has been
introduced

2
k:1+z/0 Af:Z_g_AVo_l'”’g ABy.

P p Ve P B
The extended transfer matrix (4-36) can be divided to the part of the orbit distortion induced by the field
error and the part of the deflection element

(ql l SO) ermr(sl | SO)Mdeﬂector(Sl | SO)

4-37)

(4-38)
| 1
—(1—coski Kl —=sinJkl 0
k( cos )Af cosvk Tk
=0 1 %sm\/—l A |- ksinvkl  cosvkl 0
00 1 0 0 1
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If the length / is enough small so that the element can approximate by thin lens, the first part of the
transfer matrix Eq. (4-38) can be written as

1 0 0
M, . (s, ls)=| O 1 0, -0, (4-39)
0 0 1

where @, and 6, are the kick angles induced by the field errors

2 A ‘ 2 AB
6, :2/_0__1{0_.1 9, _1+y A5, (4-40)
p VO p By

By using the transfer matrix formula (4-38), the COD is estimated.

From the field measurement of the bending magnet, we have found that the field errors of the dipole
magnets are far small compared with that of the electric field and the individual difference of each magnetic
field strength can be corrected by adjusting the excitation current with a bypath circuit. The six electrostatic
deflectors have not yet been completed. However the error of the electric field can be estimated. The main
cause of the error of the bending electric field is gap size error of the electrostatic deflector. But, it is difficult
to reduce the gap size error less than 0.1 mm from the circumstances on manufacture. When the gap error of
the electrostatic deflector is 0.1 mm, the error of the field strength becomes to AV, /¥, ~3.3x10~°. When
such field error exists, the closed orbit distortion becomes order of 10 mm. This is the same order of the gap
of the electrostatic deflector. To cope with such situation, careful adjustment of applied voltage to the main
electrodes is planned taking the real measured gap size into account. In order to realize such adjustment,
every main electrode in the 6 deflection elements is required to be powered by an individual high voltage
supply. With the condition that AV, /¥, is suppressed to be less than 1.6x10™, the COD is expected to be
less than *+ 1mm, which is thought to be tolerable size for beam circulation.

4.8 Consideration of the nonlinear effect

In this section, the higher-order Hamiltonian of the dispersion-suppressor is derived, and the effect of the
nonlinear term is considered. Here, the Hamiltonian is expanded up to the third-order terms. When the
Hamiltonian (4-4) is expanded, it becomes

2+ 2 2+ 2
H={1+—’i]qu—(1+i)p+p" Py PxTPy X (4-41)
Po Po 2p 2p P

When the condition of the equilibrium orbit (4-6) is substituted and the terms up to the third-order of x/ p,,
P.» p, and Ap/p are remained, the expanded Hamiltonian becomes

2 ~2 ~2 ~2 ~2 ~2 , =2

~ + + +

H= q2V0 ; +1(1+ q2V° j(xJ _(1+ xJAp__pr Py Pi*Pylp PetPy ¥ (4-42)
BiE, py, 2 BoEy A Po P ) Po 2 2 by 2 p

The momentum p =mfByc =/(p, +q¢,)* /c* —m’c* is expanded up to the power of (AE - g4, ), then,
the momentum deviation can be written as
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2 3
ApzAE_—q¢D— 1 (M“q¢1)) + 12 2[AE_q¢Dj (4-43)
JiXe 2p,\ By 237, B

When the momentum deviation Eq. (4-43) is inserted into (4-42), the Hamiltonian becomes as

~

H=H+H, (4-44)

where H, is the Hamiltonian up to the second-order terms and #, is the third-order terms.

2 e o 2],
~ +
oA 1(AE)+Px P, AE x[l av, ]+11 l(qujx_

= 21— —|1+— (4-45)
By 275\ B E, 2 BE . 7BE) 2| v \BE) |p

~ 1 (AEY P2+p2( AE ) B2+P:(. qv,\x 1 ( AE Y x qv,
Hy=~—7— - 2 |t - Tt 5| — =35
275 \ By Ey 2 B E, 2 BoEy )Py 2¥s\BoEy) Py By E, (4-46)
L] ( AE jL 4%, (1_3. 4%, ]_ ' x_( 7%, ]Z(H 4%, ]_lf{i”o_]
2 2 2 2 ) 2 3| a2 2 3 2
27, \ By E,y ) Py By E, B E, 2y Po\ By E, By E, 3p, \BE,

From this Hamiltonian of the dispersion-suppressor, the Hamiltonian of the flat pole bending magnet is

easily derived by setting the electric field ¥V, to zero. If the higher-order Hamiltonian of the
dispersion-suppressor compared to that of the dipole magnet one finds the dispersion-suppressor inevitably
includes nonlinear terms which are thought to be generated by nonlinear field. The reason is simple, the
electric field has radial position dependence (Eq. (4-2)), thus, it includes nonlinear components inevitably. It
is expected that the larger nonlinear component of the dispersion-suppressor limits the dynamic aperture and
causes some resonances. The effect of such nonlinear components is evaluated from the experimental result
of KEK electrostatic storage ring [4-21]. The Hamiltonian of the electrostatic deflector of the electrostatic
storage ring is also easily given, if the polarity of the scalar potential is reversed and the vector potential of
the magnetic field is eliminated from Hamiltonian (4-44) and the equilibrium condition (4-6). Then, one will
find the nonlinear component of the electrostatic deflector has the same formula as that of the dispersion-free
deflector.

In KEK electrostatic storage ring, the measured 1/e-lifetimes of stored ions are from 12-20 s. The lifetime

is limited by interactions with the residual gas, rather than the nonlinear field effect. This result means that
the reduction of the dynamic aperture due to the nonlinear effects and the higher-order resonances induced
by nonlinear field components doesn’t give so large effect to the beam dynamics, if the tune value of the
operating point is selected suitably.
For the case of S-LSR, the similar result is expected. The bending radius of S-LSR (1.05m) is larger than that
of the KEK electrostatic storage ring (0.25m). According to the higher-order Hamiltonian 7, , the
higher-order terms induced by the nonlinear component of the bending electric field are in proportion to
1/p2 or 1/ p} . Therefore, if the bending radius- O, is increased, the total effect of the nonlinear fields per
one turn becomes smaller. Furthermore, real aperture and beam emittance of S-LSR are small originally, thus,
the nonlinear effects may not become the problem. It is known generally that the nonlinear effects become
weak, as the beam size and emittance is reduced. Therefore, once a crystalline beam (which is ultimate low
emittance beam) is formed, the nonlinear effects become still smaller, although, the nonlinear effects may
influence the formation process of the crystal.
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4.9 Summary of this chapter

The dispersion-free storage ring might be useful for the stabilization of a 3D crystal beam, because the
shear heating mechanism is canceled, and the dynamics of the beam becomes equivalent to that of the linear
ion trap. MD simulations based on the Hamiltonian without the shear term was already performed in Ref.
[4-22], and it showed the generation of 3D crystalline beam, although, the beam focusing force of this MD
simulation was time-independent. A MD simulation including the time-dependent alternating focusing force
and higher-order nonlinear effects will be the scope of our further investigation.

This scheme is introduced to the ion cooler ring S-LSR, which is now under construction. In S-LSR, the
dispersion-suppressor is realized by inserting a cylindrical electrostatic deflector into the small gap of the
dipole magnet. The calculation of the beam dynamics has been performed based on the parameters of the
deflectors. From the result of the theoretical investigations, we have found that the dispersion-free mode of
S-LSR is a stable circulating mode of the beam free from the shear heating mechanism, and provides a lot of
capability for beam dynamics study, although, the dispersion-free mode of S-LSR has such a restriction as
not satisfying the second maintenance condition for beam crystallization. However, this problem can be
solved by introducing a different type of electrostatic field. The details of the new type of electric field are
described in the next chapter.
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Chapter 5. Optimum dispersion-free deflector for S-LSR

5.1 Search of the optimum dispersion-free deflector

As shown in the previous chapter, the dispersion-free deflector is realized by the combination of a flat pole
dipole magnet and a cylindrical electrostatic deflector. However, this dispersion-free deflector is not suitable
for a small size ion storage ring, because the radial focusing becomes too strong and this effect greatly
affects the beam dynamics. In the case of S-LSR, horizontal beta function and the vertical betatron tune
value are extremely enhanced. This violates the maintenance condition v, < N/ 242 . 1 is necessary to
search a dispersion-free deflector which has the weaker radial focusing effect. It is expected that the strength
of the radial focusing is changed by changing the radial field distribution in the electrostatic deflector. In this
chapter, possible electric field distribution satisfying Maxwell equation is investigated and the structure of
the electrostatic deflector is also investigated. Next, the beam dynamics in the electrostatic deflector and the
dispersion free deflector is formulated. Finally, the beam dynamics and lattice parameters of S-LSR are
investigated, when the suitable dispersion-free deflector is applied to S-LSR.

5.2 Possible solutions of Maxwell equation
5.2.1 Coordinate system

Maxwell equation is solved in a cylindrical coordinate system. The relations between rectangular
coordinates and cylindrical coordinates are given by

r=w/x2+y2 g1)=tan_IZ z=z

X
In the cylindrical coordinate system, the differential operators are given by the following formulas.

(gradp), = 56— ¢ (gradp),=- ¢ (gradp), =2 ¢
7 r Op 0z

210 1 ¢ 0’
Ap=—P+——P+——d+—
/ 6r2¢ r6r¢ r? 6(02¢ azz¢

5.2.2 Solutions of Laplace’s equation

In the space between the deflection electrodes, the scalar potential of the electrostatic field ¢ has to be
the solutions of Laplace’s equation.

Ag=0
We assume the solution of the form

#(r..2)= F(r.z)S(p). (5-1)

in order to separate the variables. Then, the Laplace’s equation can be separated as
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2 2

0 10 0 C
Br—2F(r,z)+;5F(r,z)+—a;—2—F(r,z)~r~2F(r,z)——-0 (5-2-a)

2

2 S(p)+CS(p) =0 (520
op

where C is optional constant. In order to realize the usable electrostatic potential as electrostatic deflectors,
the scalar potential ¢ must not have @ dependence. Therefore, S(¢) must be constant, and thus C must
be 0. Then, Eq. (5-2-a) becomes :

o’ 10 0’
-ér—z—F(r,z)+;é7F(r,z)+~aZ—2F(r,z)=() (5-3)

The solutions satisfying this differential equation becomes the usable electrostatic potential. Namely,
#(r.p,z)=aF(r,z)

where, a is constant.

S5.2.3 Possible electrostatic potential

There are the following three easy solutions.
(1) Spherical electrostatic deflector.

(-9

¢(r, o, z) = \/—r_z?—+—72— + const

The shape of the electrode to realize such the electrostatic potential is decided from the shape of the
equal potential surface. In this case, the shape of the electrode becomes a spherical surface.

(2) Cylindrical electrostatic deflector
¢(r, o, z) =a-In(r) + const (5-5)
The shape of the electrode is decided form the equation
In(r) = const . (5-6)

This solution is # = const . In the cylindrical coordinate system such a curved surface becomes cylinder.

(3) Hyperbolic electrostatic deflector
#(r,p,z)= a(r2 -2z )+ const (5-7)
The shape of electrode is decided form the equation
r’ +22* = const (5-8)

The solution is a hyperbola. Therefore, the cross section form of the electrostatic deflector becomes
hyperbolic curve.
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The linear combinations of these three solutions are also the solutions of Laplace’s equation. For example,
we consider the linear combination of the solution (2) and (3)

#(r.0.2)=alln(r) + n(r* +223))+C, (5-9)

where n and C' are constants
The cross section shape of the electrode to realize this electrostatic potential is shown in Fig. 5-1.
3

Fig. 5-1. Cross section shape of the deflector

The cross section shape is similar to a hyperbola, but not the hyperbola. Thus, we call such a electrostatic
deflector semi-hyperbolic electrostatic deflector. The semi-hyperbolic electrostatic deflector will bear
important role in the dispersion-free deflector.

In addition to the solutions (1)-(3), a toroidal electrostatic deflector exists [5-1]. However, the toroidal
electrostatic deflector is not needed for our purpose. Thus the details of the toroidal electrostatic deflector are
not described here.

5.3 Beam dynamics in the electrostatic deflectors

The beam dynamics in a spherical [5-2], a cylindrical [4-21] and a toroidal [5-1] electrostatic deflector has
been investigated and formulated by forerunner’s work. In this section, we newly formulate the beam
dynamics in the hyperbolic electrostatic deflector and the linear combination of the electrostatic potentials
shown in section 5.2. The formalism of the electrostatic deflectors and the dispersion-free deflectors has
many common features. In accelerator physics, Frenet-Serret coordinate system is usually used [4-4]. If a
circle of the radius p, in the cylindrical coordinate system is selected as the reference orbit of the
Frenet-Serret coordinate system, the relations between the cylindrical coordinates and the Frenet-Serret
coordinates are given by

Potx=r S = P y=z.

In the Frenet-Serret coordinate system, the differential operators are given by the following formulas.
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8 10 _ 3
(gradf), =—¢  (gradg),=—¢  (grad §), = o ¢

A¢=—};{%hg—¢+ﬁl%+—a~ha—¢]
X Oshos 0Oy Oy

where h=1+x/p,.
5.3.1 Beam dynamics in the hyperbolic electrostatic deflector

In the Frenet-Serret coordinate system, the electrostatic potential of the hyperbolic electrostatic deflector is
given by

#(x,p,5) =2 (1+iJ —2(1) ~1]. (5-10)
2 Po o

where the constants of Eq. (5-7) are selected so that the electrostatic deflector has a zero potential and the
bending field strength ¥,/ p, along the reference orbit. If the vector potential of the bending magnetic
field is eliminated from the Hamiltonian (4-13), we obtain the relativistic Hamiltonian which governs the
motion of a charged particle in a bending electrostatic deflector

2
H=——[l+i]\/(wj —m2cz—pf—p§ , (5-11)
Po ¢

where m and g are the rest mass and charge state of particles, ¢ is the speed of light, @, is the scalar
potential in the electrostatic deflector, p; is the longitudinal canonical momentum conjugate to time t. By
expanding the square root and leaving only low-order terms, Eq. (5-11) becomes

2+ 2
H:-(1+£)p+—px Py (5-12)
p 2p

where p=mpBr =\/(p, +q¢)* /c* —m*c? . Since the electric field strength is V,/p along the design orbit,
equilibrium kinetic momentum becomes

V.
Po= u'
Bic

The momentum deviation from the design momentum p = mg,y,c =+ p’/c* - m’c? can approximately be

(5-13)

written as

(5-14)

Ap=pp ~PE=0 1 (AE—qcstj _

Bc 2p,\ Bers
AE is the energy deviation from the design value —AE =my,c’ —(— p,) . Inserting Eq. (5-13) and
p=p,+Ap into Eq. (5-12) and neglecting nonlinear terms, one finds

~2 | ~2

~ +

H :—(Hij—[niJ——Ap (BB , (5-15)
o Po ) Po 2

where the transverse momenta have been scaled to be dimensionless; namely, p, = p,.,/p,- Substitution
of Eq. (5-14) together with Eq. (5-13) into Eq. (5-15) yields the approximate Hamiltonian
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— 2 2
- + AE AE AE
H:px Py _ —+ 12( - _(1+i2] > i+l(3+_12_j(ij _[l} (5-16)
2 BiE, 2y, \ ByE, Yo )BEy Py 2 Yo N Po P

From this Hamiltonian, the equations of motion in the hyperbolic electrostatic deflector are obtained.

2
AE
dfz‘(“iz _’%+L(1+L2] . (5-17-a)
ds Yo )Py P Yo ) B g
dy 2
= 5-17-b
e (5-17-b)

In non-relativistic limit y, =1, the hyperbolic electrostatic deflector has a horizontal focusing of the
strength 4/ p; and a vertical defocusing of the strength 2/ p .

5.3.2 Beam dynamics in the other electrostatic deflectors

The beam dynamics in two kinds of linear combinations of the electrostatic potentials such as Eq. (5-9) is
investigated. First, the beam dynamics in the semi-hyperbolic electrostatic deflector is investigated. As
shown in Eq. (5-9), electrostatic potential of the semi-hyperbolic electrostatic deflector can be expressed by
the linear combination of the cylindrical electrostatic potential and the hyperbolic electrostatic potential. The
ratio of the linear combination is supposed to be

2 2
$(x,y,5) = 2 (2—C)ln(l+—x—)+c l[1+£) _[_y_j 1
2 Po 2 Po Po 2

2 2
~ 1o 2-’C—+(C—1)(—x—) —C(l] ...
21 p Po o

where ¢ decides the ratio of the linear combination. In this case, the condition of the equilibrium kinetic
momentum is same as Eq. (5-13), and the Hamiltonian becomes

P 2 2
p=Pth AR, ]2( AE J—(1+—12-]~AEE~—X-+1(C+1+L2J[£] Gy 59
2 BE, 2y \ BE, 7o ) BoEy Py 2 Yo N\ Po 2\ p

Then, the equations of motion are

2
d—f:—(C+1+L2Ji2+L(I+L2]—%—E— (5-20-a)
ds Yo)Po P 7o ) B Eq
d> C
Es%i:?y (5-20-b)
0

In non-relativistic limit y, —> 1, the semi-hyperbolic electrostatic deflector has a horizontal focusing of the
strength (C—2)/ p; and a vertical defocusing of the strength C/ p] .

We also consider the following linear combination of the spherical electrostatic potential and cylindrical
electrostatic potential.

b(x,y,8) =V,4(1-C) 1n[1+ij—c[ Py _1}
Po J(py +x) + )

2 2
~V, _)i_.l(1+c)(ij +£(—'X—] +...
Py 2 Py 2\ py
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In the followings, we call an electrostatic deflector generating this electrostatic potential as a semi-spherical
electrostatic deflector. In this case, the condition of the equilibrium kinetic momentum is also same as Eq
(5-13), and the Hamiltonian becomes

L 34 i 2 2
=t b 1 LAE G AR 2 AR L el 2 2 E[ 2 s
2 BE, 27\ B E, Yo ) Boky Py 2 Yo Lo 2\ py

Then the equations of motion are

2
d_fz_(u_lz__c]iﬁL[niz} Ak (5-23-2)
ds Yo JPo P Yo ) BoEy
d’y C
- 5-23-b
o p ¥ ( )

In non-relativistic state, the equation of motion of a charged particle in electrostatic deflectors described
above can be summarized as follows.

2
d—f - —(2—n)i2+i—A£ (5-24-a)
ds Py Py Ey
d’y n
AL 5-24-b
72 P y ( )

The value of # corresponds to the following structure of deflectors.

Table 5-1. Field index (n) of electrostatic deflectors.

Structure of
electrostatic deflector

value of n 1 1>>0 0 0>n>-2 2

Spherical Semi-spherical ~ Cylindrical Semi-hyperbolic =~ Hyperbolic

From Eq. (5-20), it is found that the semi-hyperbolic electrostatic deflector can create the focusing strength
as same as the semi-spherical deflector, in the first order. Furthermore, the other combination, for example,
linear combination of Spherical and Hyperbolic electrostatic potential also realizes the same equation of
motion of the semi-hyperbolic or semi-spherical electrostatic deflector, in the first order. But, if the
higher-order effect is considered, one finds the linear combinations listed in Table 5-1 can realize a bending
field which includes the smaller nonlinear component.

5.4 Beam dynamics in dispersion-free deflectors
5.4.1 Beam dynamics

In the previous chapter, the dispersion-free deflector has been constructed by the combination of a flat
pole dipole magnet and a cylindrical electrostatic deflector. Now, we have formulas of the other type of
electrostatic deflector. The other combination of a dipole magnet and an electrostatic deflector can be
investigated by using these formulas, and it can create new dispersion-free deflection element. In the
following, the equations of motion of a charged particle in deflectors which are constructed with flat pole
dipole magnets and various electrostatic deflectors are investigated.

First, the combination of a dipole magnet and a semi-hyperbolic electrostatic deflector is supposed. In the
followings, we call this deflector as a semi-hyperbolic dispersion-suppresser. Then, the Hamiltonian is given
by Eq (4-4), the scalar potential is given by Eq. (5-18) the vector potential is given by Eq. (4-1). By the same
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way of the previous subsection, Hamiltonian (4-4) is expanded, and the momentum deviation Ap (eq.
(4-7)) and the equilibrium condition eq. (4-6) are substituted. Finally, neglecting the higher-order terms, the
Hamiltonian becomes

2 ~n =2
~ AE AE +
Fe_ 1( ]_'_px P, AE x[l_ qV, )

2E +2 2 2E 2 2E T 2 2E
BoEy 27\ K E, BE,y py 7o Bs 0
, . , (5-25)
IR 14 _L(Lj [_) +gq2_%(1]
2 BE, v\ Bk, Po 2 ByEg\ py
Then the equations of motion are
) 2
PP [T PO,
ds Po Bk, 7o \ B E, ‘ Po Vo BEy ) BBy
2
dy__C ah |, (5-26-b)

ds’ ,002 ﬁoZ E,

The last term of eq. (5-26-a) is cause of the linear dispersion. Therefore, if the relation gV / YoBoE, =1 is
satisfied, the linear dispersion is canceled out. This relation and the condition of the equilibrium orbit Eq.
(4-6) also leads the relation (1+1/7)E(p,) = BicB,, where E(p,) is the strength of the bending
electric field on the reference orbit; E(p,) =V, / p,. This condition is complete same as the dispersion free
condition shown in section 4.1 and 4.2.2 . When non-relativistic limit 7, =1 and the dispersion-free
condition gV, / veBIE, =1 are imposed, the strength of the horizontal focusing and the vertical focusing
become (2-C)/ p? and C/p}, respectively.

The case of the combination of a dipole magnet and a semi-spherical electrostatic deflector is also
investigated. In the followings, we call this deflector as a semi-spherical dispersion-suppresser. Then, the
scalar potential is given by Eq. (5-21), and the Hamiltonian becomes

AE 1 (AEY P2+P AE «x v,
2 +2 P °r + - D Y
0 L2 Yo \ By E, Yoy Ey

fi-- 2
2 BoEy py

2 2 2
2 B Ey v\ B E, o 2 BE\ P,

From this Hamiltonian, one can find that the linear dispersion is canceled out in the same condition of the

(5-27)

case of Hamiltonian(s -y5). In the non-relativistic and the dispersion-free condition, the semi-spherical
dispersion-suppresser has the horizontal focusing of the strength (2+C)/p; and the vertical defocusing
of the strength C/ p .

From the above results, it is found that the dispersion-free deflectors described above have similar rule
about the focusing strength to the electrostatic deflectors. In non-relativistic limit, the equations of motion of
a charged particle in dispersion-free deflectors can be summarized as

2
X _(arn) > | (5-28-a)
ds Po
d’y n
_n 5-28-b
At y ( )
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Table 5-2. Field index () of dispersion-free deflectors.

Structure of
electrostatic deflector

value of n 1 1>r>0 0 0>n>-2 -2

Spherical ~ Semi-spherical ~ Cylindrical  Semi-hyperbolic =~ Hyperbolic

5.4.2 Optimum dispersion-free deflector

Only the dispersion-free deflector with the combination of a flat pole dipole magnet and a cylindrical
electrostatic deflector has been proposed so far. Such dispersion-free deflector has the focusing effect only in
the horizontal (radial) direction. On the other hand, the semi-hyperbolic dispersion-free deflector has the
focusing effect in the both direction (see Table 5-2 and Eq. (5-28)). Especially, if the coefficient of the linear
combination C of the scalar potential Eq. (5-18) is selected to be C=1 (this corresponds to the field index
n=-1 in Table 5-2), this semi-hyperbolic electrostatic deflector has approximately radially uniform
electrostatic field near the reference orbit and it has the same focusing strength in the both directions. Thus,
the particles of the same charge state and mass can be bent and focused at the same focal point despite the
different kinetic energy. Therefore, if such deflector is used, the beam transport system can be constructed
without quadrupole magnets for the beam focusing, in addition to the dispersinless bend. It may become
powerful tool of mass analyzes. For relativistic particles, from Hamiltonian (5-25), the following equations
of motion of a charged particle in the semi-hyperbolic dispersion-free deflector are obtained

d*x x

7 = Y (5-29-3)

ds Po

d 2)’ 2 Y

? =y I_D—z— (5-29-b)
()

5.5 Easing of the shearing force

Our main purpose of using the dispersion-free deflector is to cancel the shearing force. As shown in
section 4.3, it is essential that the energy transfer between the kinetic energy and the potential energy at the
entrance of the dispersion-free deflector. It is afraid that the dispersion-free deflectors except for cylindrical
dispersion-free deflector induce the different acceleration or deceleration of the particles deviated from the
reference orbit vertically, because they have the vertical component of the electric field. Thus, we have to
investigate the effect of the vertical component of the dispersion-free deflectors.

When the relative time Af =¢—s/f,c is introduced, from the Hamiltonian (5-24), (5-26), the same
longitudinal equations of motion as Eq. (4-16) are obtained. Therefore, for crystal beams (AE =0), the
difference of the revolution time of each particle doesn’t depend on its radial position x in the
dispersion-free condition. These are the same result as the dispersion-free deflector constructed with a
cylindrical electrostatic deflector. The difference arises in the second-order. The momentum spread is
approximately given from Eq. (5-14). For crystal beams (AE =0), the momentum deviation in the
dispersion free deflector can be written as

2
Ap  q¢ 1 [ q¢
b aby 1[4t (5-30)
Dy BoE, 2y, \ B E,

- 96 -



Chapter 5. Optimum dispersion-free deflector for S-LSR

For the case of the cylindrical dispersion-free deflector, Eq. (5-30) gives the relation

2
X X
2. 5—-7§(~) (531)
Po Po 0

The first-order term cancel the shearing force, but the second order term cannot cancel the shearing force.
However, in general, the extent of the beam (x, y) of crystal beams is far small compared to the bending
radius p; . Therefore, even if the crystal structure is distorted by the higher-order effect, the amount is very
small, and the distortion could be enough recovered at the cooling section and the bunching rf cavity. In this
case, the equilibrium temperature of the crystalline beam discussed in section 4.3.4 is determined by the
higher-order shear heating. Thus, the equilibrium temperature is very low, compared with the case in which
the linear dispersion remains. In the same way, the momentum spread in the semi-hyperbolic dispersion-free
deflector is given by the equation

A 2 2 2 2
ap zygi_ﬁ(i] _7_0(_)’.J (5-32)
Py Po 2\ P 2{p

The last term is thought to cause a shear in vertical direction in the second order. This term arise because of
the vertical component of the electric field. But this term is second-order. Thus, this term doesn’t become
problem. The other dispersion-free deflectors also have difference only in the higher order.

5.6 Application to the lattice of S-LSR

5.6.1 Transfer matrix calculation

The beam dynamics in S-LSR is investigated when the semi-hyperbolic electrostatic deflector is
introduced instead of the cylindrical electrostatic deflector. The lattice parameters are obtained by the
transfer matrix calculations. The linear transfer matrix of the semi-hyperbolic dispersion-free deflector
becomes as

cos Vk L —}c—sin,/ka 0 0 0 0
- kx_sin,/ka cos Ak, L 0 0
| B

M- 0 0 cos \/k, L \—/_rsm,/kyL 0 0

0 0 - Jk, Lsin [k, 1L cﬁ,s\/m 0 0
0

(5-33)

L
0 0 0 P
Blrs

0 0 0 0 0 1

where the following notations have been introduced.

_1
P P

For the case of the storage of 35 keV **Mg' beam, non-relativistic approximation y, =1 is good

k

X

approximation. From the linear transfer matrix, the stable region of the betatron oscillation and the lattice
parameters of S-LSR can be calculated. The stable region of the betatron oscillation is shown in Fig. 5-2.
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Fig. 5-2. Stable region of the betatron
oscillation. The field gradient of two
quadrupole magnets k; and k, are selected
as the parameter. The minus sign of the
field gradient means defocus in the

ki (m2)

horizontal direction.

ks (m2)

The characteristic of this stable region is that the ring can operate without quadrupole magnet. This is the
result from that the deflection element has the focusing effect in both directions. The tune values at the
operating point k;, k,=0 are (2.1109, 2.1109). At this operating point, the horizontal and vertical beta
functions have a completely same shape because the dynamics of the both direction becomes same (Fig. 5-3).
It is found that this operating point satisfies the second maintenance condition at S-LSR.

deflector ql}adrupole magnet
7/
gl oyl il
3.75 - ‘ . - , . . . ; 1.0
1B |\ B L 0.9
2.75 - 0.7
. ] - 0.6
£ 225 - 0.5 §
= 1 - 0.4 o
1.75 N n 0.3
- 0.2
1.25 -
_ }’f 0.1
0.75 e e T e 0.0
0.0 5.0 10.0 15.0 20.0 25.0
s(m)

Fig. 5-3 Beta-functions at the operating point (2.1109, 2.1109)

In Fig. 5-2, the operating points except for (2.1109, 2.1109) have different horizontal tune value and vertical
tune value, because the quadrupole magnets break the balance between the horizontal and the vertical
motions. In real operation, it thought to be better that the tune values are slightly changed by imposing the
quadrupole magnet, in order to avoid the strong coupling resonance between horizontal motion and vertical
motion.
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5.6.2 Fringing field effect

As shown in ref. [5-3], the fringe field of the dipole magnet induces a weak defocus effect in the vertical
direction, even if the magnet has no edge angle. We have found that the edge of the dispersion-free deflector
of S-L.SR also has the defocus effect in the vertical direction. The fringing field of the electrostatic deflector
falls to zero faster than that of the bending magnet (Fig. 5-4). Thus, the fringing field of the electrostatic field

can be approximated with a sharp edge and the magnetic field is approximated with a linear fringing field.
(Fig 5-5)
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Fig. 5-4 Real fringing field of the deflection element of S-LLSR
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|
edge of the deflector

e

w(s)| ideal orbit

actual orbit

b
linear fringe region

| 1]

Fig. 5-6 The situation of the fringing field and the orbit of the particle seen from the vertical direction

If a charged particle is injected to the deflection element perpendicularly, the particle begins to be bent before
the real edge of the deflection element because of the fringing field of the bending magnet (Fig 5-6). The
condition of the equilibrium orbit in the region I in Fig. 5-6 is expressed as

pO =gB b]
= s O<s<— 5-34
o(s) qB,(s) ( 5 (5-34)
where B,(s) is the  vertical component of the bending  magnetic field
(B,(s)=B,s/b,B,(b)=B,=2p,/qp,) and s is the approximate length of the orbit from the starting
point of the bending. Then the bending radius becomes

125 [O<s<é) (5-35)
p(s) py b 2
Therefore, the angle to the edge of the deflection element at the position s becomes
s 2
w(s)= I ! dr=""_ (O <s< é) (5-36)
o P(T) Pob 2
By the same way, the equilibrium orbit condition in the region II in Fig. 5-6 is expressed as
Po_ _¢B (5)- p.r? (é<s<bj 5-37
2(s) q y( )= Do¥o 2 ( )
The bending radius and the angle to the edge of the deflector in the region II in Fig. 5-6 are expressed as
1 _25-b2 (é<s<b) (5-38)
ps) py b 2
$ 2
wis)=-2 s [Lgr=S 5, b (9<s<b) (5-39)
4p, gﬁKT) pb Py 2p, 2

2
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When the dipole magnet has the linear fringing field, the magnetic field has the longitudinal component in

the fringing region [5-3]. The strength of the longitudinal component of the magnetic field is expressed by

B
B.(y)= Toy (5-40)
where By denotes the strength of the vertical component in the gap of the bending magnet. When the charged
particle passes through the linear fringing region, it receives a vertical force depending on the angle ()
from the longitudinal component of the magnetic field [5-3]. The equation of the vertical motion is written

by

d’y _gB,(y)siny(s)

5-41
ds’ D (5-41)
Integrating this equation in the fringing field region, the following relation is obtained
d d 5b
@ A _.y (5-42)
ds|, ds|, 12p;,

From Eq. (5-39), one finds the horizontal bending angle is the same as that of the sharp edge. Therefore in
the fringing field region, only the vertical motion is corrected, in the first order. By a thin lens approximation,
the fringing field effect can be expressed by the transfer matrix

1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
M = 0 0 5b2 10 0 (5-43)
12 p,
0 0 0 0 1 0
0 0 0 0 0 1

When this effect is taken into account, the betatron tune value falls a little and the balance of the horizontal
and the vertical betatron motion is broken at the operating point k;, k,=0. For example, at the operating point
ki, ky=-0.21, the betatron tune becomes (2.009, 2.017) and the beta functions becomes as shown in Fig 5-7.
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Fig. 5-7 Beta-functions at the operating point (2.009, 2.017)
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5.7 Effect to the beam cooling

5.7.1 Maintenance condition

From the consideration in section 4.3.4, it is found the first maintenance condition (y < y,) is satisfied in
any type of dispersion-free rings. On the other hand, the second maintenance condition N > 2\/51/,,. has not
been satisfied unless the storage ring which has enough large bending radius and super period is provided.
Especially, when the cylindrical dispersion-free deflector has been used, it has been impossible to satisfy the
second maintenance condition in the lattice structure of S-LSR. As shown in previous section, when the
semi-hyperbolic dispersion-free deflector is used, it is possible to satisfy the second maintenance condition in
the lattice structure of S-LSR safely. Then, all obstacles to reach the 3D crystal beam at S-LSR might be

removed.
5.7.2 3D laser cooling by a coupling rf cavity

The problem of the maintenance condition has been resolved. Thus, a 3D beam crystallization might be
achieved in S-LSR, if an enough strong 3D cooling force is provided. Since there is no dispersion in the ring,
a 3D laser cooling method using the coupling induced by a normal rf cavity through the dispersion is
impossible. It has been shown that a coupling rf cavity can generate the direct coupling between the
longitudinal motion and the horizontal motion without dispersion [5-5]. The coupling rf cavity scheme
greatly succeeded in the lattice of TARN II [5-4], however, this scheme is not necessarily successful in the
lattice of S-LSR. In the case of TARN II, in addition to the coupling effect of the coupling cavity, the
coupling effect at the bunching cavity induced by the dispersion also has been effective. On the other hand,
in the case of S-LSR, the effect of the bunching cavity cannot be expected, because there is small dispersion
or no dispersion. Only the effect of the coupling cavity is the reliance at the first stage of the laser cooling.
However, it is possible to obtain an enough coupling effect by a properly designed coupling cavity with
realistic parameters [5-4]. We consider the case that the coupling cavity is introduced in addition to the
bunching cavity which was described in section 4.3.4. The vector potential of the TM,;, mode of the
coupling rf cavity is given by the formula [5-5]

A= [0, 0, Y sin(ﬁjcos(%)sin(a)ct+¢c)} (5-44)

(/) a

14

where a cavity which has a width of 2a and the height of 2b is supposed. When the extent of the beam is
enough small compared to the width of the cavity (x/a <<1, y/b <<1), the Hamiltonian of the coupling rf
cavity is given by the formula

~ +p
PP AR 12( A J_”‘IVc * Sin@yi + 4,05, (s—5.) (5-45)
2 ﬁO EO 2}’0 ﬁo E() by, a

¢. denotes the initial phase of the coupling cavity. If the relative time Af =(—s/f,c is introduced, the
phase of the coupling cavity can be written as

sin(@,f +4,)0,(s —s,) =sin(@ At +y )5 (s —s,) (5-46)
. is chosen to be zero, in order to obtain the maximum coupling effect. Namely, if the bunching rf cavity

and the coupling cavity is synchronized so that the center of the bunch pass through the coupling cavity at

-102 -



Chapter 5. Optimum dispersion-free deflector for S-LSR

the phase . =0, the maximum coupling effect can be obtained. For a particle near the bottom of the rf
bucket (@ Ar <<1), the Sin function of Hamiltonian (5-45) can be expanded. Then, a direct coupling term

between longitudinal coordinate and horizontal coordinate arises without dispersion. From the canonical
equation, the following relations are derived

O(AE s e
_uzﬂ__t__()p(s_sb) (5-47-a)
os p, a
ap V. At
D (5-47-b)
os P, a
By using these relations, the linear transfer matrix of the coupling rf cavity is obtained.
1 0 0 0 0 0
/
o B _ 7.
. BoEa
0 1 0 0 0 =
Wi = (5-48)
0 0 0 1 0 0
OV DR Ot 1 0
PoBoE,a

The lattice parameter of the ring can be obtained from this matrix. However, this transfer matrix is not
symplectic. Therefore this matrix is not suitable for multi-turn particle tracking [1-17]. For the multi-turn
particle tracking, different type of approximation is needed in the derivation of the transfer matrix.

5.8 Realization of the electric field

The cross section view of the electrostatic deflector of S-LSR is shown in Fig. 5-10. The intermediate
electrodes of the electrostatic deflector are introduced in order to maintain the field strength at the center of
the aperture. But, we have found these intermediate electrodes create a new possibility which realizes various

—— Main electrodes

—4- > X
i Unit: cm

[t A B R LR e d]

\ Wall of the vacuum vessel

Fig. 5-10. Coordinate system in the electrostatic deflector.
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structures of bending electric field in the electrostatic deflector. The voltage applied to the intermediate
electrodes strongly dominates the distribution of the electric field distribution in the electrostatic deflector.
From the result of the field calculation code POISSON, it is found that the both of the ideal field distribution
of the cylindrical electrostatic deflector and semi-hyperbolic electrostatic deflector can be generated near the
reference orbit. From the electrostatic potential of the semi-hyperbolic electrostatic deflector (Eq. (5-18)),
ideal field distribution near the reference orbit are obtained as

,/0 VO
E (X) E () s0d (5-49)

Po o

The field distribution along the x axis and the y axis in the electrostatic deflector (Fig. 5-10) is shown in Figs.
5-11 and 5-12.
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Fig. 5-11. Radial field distribution of the E_ component along the horizontal
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Fig. 5-12. Vertical field distribution of the E, component along the vertical axis.
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From Fig. 5-11, the deviation of the radial field distribution from the ideal distribution is almost less than =+
1X107 in the region —1<x <1(cm). The field gradient of the E, component on the vertical axis is
obtained by fitting the field distribution within the region ~0.5 <y <0.5 (cm) by a linear function. The
obtained field gradient is -6.0404 V/cm®. The deviation of this value from the ideal field gradient calculated
from Eq. (5-49) (-6.0496 V/cm®) is 1.5X 107, Therefore, the ideal field distribution (Eq. 5-49) are realized
near the reference orbit. However, the deviation of the field distribution becomes large if it separates from
the x and y axis. The dispersion free mode of S-LSR will be utilized for the purpose of experimental research
of a 3D crystal beam. Thus, the circulation of a high current and large emittnce beam is not required. It might
be enough that if the usable aperture is secured in the small region around the reference orbit.

5.8 Summary of this chapter

Various types of bending electric field structure have been investigated. It has been found that the radial
focusing and the vertical focusing in electrostatic deflectors or dispersion-free deflectors can be controlled
under conserving the total value of the focusing force (the field index). Among the various possible
dispersion-free deflectors, the semi-hyperbolic deflector has optimal focusing force as the deflector for
S-LSR. When the semi-hyperbolic type electric field is introduced for dispersion compensation, S-LSR can
operate satisfying the second maintenance condition. Such electric field can be realized by the use of existing
electrostatic deflector, only changing the voltage of the intermediate electrodes. The Hamiltonian of a
coupling rf cavity has been shown. The coupling cavity can generate a direct coupling between horizontal
motion and the longitudinal motion in the dispersion free storage ring.
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Conclusion

Conclusion

An ion storage and cooler ring S-LSR, now under construction at ICR Kyoto University, is to be utilized
for the investigation about the realization of a crystal beam. The bending magnets for S-LSR were designed
by using a high precision three-dimensional magnetic field simulation code TOSCA. The bending magnet
was designed to have the maximum field strength 0.95 T, the bending radius 1.05 m, bending angle 60° and
the gap height 70 mm. In the design of the magnet, the structure to suppress the change of the field
distribution due to the saturation was applied; the radial pole end was cut with a circle, the longitudinal pole
end was cut off with the shape of the Rogowsli’s curve. The last two steps of the Rogowski’s cut were
deformed for the purpose suppressing the sextupole component. The field clamp plates were attached to the
beam entrance and the exit of the magnet to suppress the tail of the fringing field. Based on the field
measurements, the assignment of the magnet position was determined taking the difference of the effective
lengths into account, in order to suppress the closed orbit distortion of the circulating beam. The closed orbit
distortion has been suppressed less than £ 1 mm.

The use of the dispersion-free deflection element was proposed to solve the problem due to the bending
shear. It was shown analytically that the shearing force is removed when the linear dispersion is canceled all
around of the bending section. The dispersion-free system can compensate the difference of the revolution
time of each particle of a crystal beam all around the ring. This system might be able to stabilize the crystal
beam by the conventional laser cooling force. In order to obtain an enough strong three-dimensional cooling
force by a normal rf cavity, it is essential that the storage ring has finite dispersion. For the case of
dispersion-free mode of S-LSR a coupling cavity scheme is to be used. The coupling rf cavity can generate a
coupling effect between the horizontal and the longitudinal motion without dispersion. For the case of S-LSR,
the dispersion-free deflector has been constructed with a combination of a flat pole bending magnet and a
cylindrical electrostatic deflector. The dispersion-free operating mode is to be applied for the laser cooling
experiment of a 35 keV Mg" beam. In this case, the required strength of the bending magnetic field and the
electric field are 0.252 T and 6.67 X 10* V/m, respectively, which are well attainable range. The effective
length of the electrostatic deflector was designed to be as close as possible to the value of the magnetic field,
and such difference has been suppressed within 0.5 mm. The cylindrical electrostatic deflector for S-LSR has
intermediate electrodes, in order to attain the needed field homogeneity under the influence of the inner wall
of the vacuum vessel. The intermediate electrodes also create a new possibility of the electrostatic deflector,
they can control the field structure in the electrostatic deflector by the adjustment of the potentials applied to
them. The dispersion-free mode of S-LSR using the combination of the flat dipole magnetic field and a
cylindrical bending electric field which has radial position dependence as £ (x) oc (p, +x)”', extremely
enhances the betatron tune of the vertical direction, and dose not satisfy the second maintenance condition of
crystal beams. When a radially uniform electric field is introduced, the vertical betatron tune of S-LSR is
reduced. A semi-hyperbolic electrostatic deflector can realize such bending electric field theoretically, and
then S-LSR becomes to have operating points satisfying the second maintenance condition. The electrostatic
deflector for S-LSR can realize this radially uniform electric field near the reference orbit by adjusting the
voltage of the intermediate electrodes, it is considered to contribute to the creation of a stable
three-dimensional crystal beam.
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Appendix Beam focusing element without chromatic aberration

A.l Introduction

A quadrupole magnet or electrostatic quadrupole is often used in beam transport line. Such focusing
elements inevitably cause a chromatic aberration. For example, the focusing strength of a quadrupole magnet
depends on the particle energy, it is characterized by the magnetic rigidity of the focused particle;
1/ f=¢qBL/y; where f is approximated focal length, B; is field gradient of the quadrupole magnet, L
is the length of the magnet, y, is magnetic rigidity ( x5 = p/q), q is charge state of the focused particle.
For the electrostatic quadrupole, a similar relation exists; 1/ f =qV,L/ y, where V; is field gradient of the
electrostatic quadrupole, L is the Ilength of the element, Xr  is electrostatic rigidity
(xz=pvig=¢q %+ /m). If such chromatic aberrations can be eliminated, the precision of the mass analysis
is thought to be greatly improved. From above formalisms, one finds that the response to the focusing
strength differs for the same momentum deviation, because of the difference form of the field rigidity. Thus,
by combining such elements, it is thought to be possible to suppress the influence of the chromatic aberration.
As shown in previous chapters, in the case of beam bending, it is possible to eliminate the linear dispersion
by combining the electrostatic deflector and bending magnet. On the analogy of the dispersion-less bend, we
investigate the beam dynamics in the focusing element using quadrupole magnetic field and quadrupole
electric field simultaneously.

A.2 Hamiltonian formalism

A Hamiltonian governing the motion of a charged particle around a focusing element where not only a
quadrupole magnetic field but also a quadrupole electric field is present is derived. Choosing the path length
of a design particle s as the independent variable, the relativistic Hamiltonian is given by the following form
[A-1] [A-2],

2
H=—\/(————‘”’+q¢) -m'c’ - pl - p} ~¢d,, (A1)
C

where m and g are the rest mass and charge state of the particle, ¢ is the speed of light, ¢ is the scalar
potential of the electrostatic quadrupole, p; is the canonical variable conjugate to time ¢, x,y,p,,p, are
horizontal and vertical coordinate and momentum, respectively, and we have assumed that the vector
potential A only has the longitudinal component, i.e. A =(0, 0, 4;). The design particle passes through in
the center of the quadrupoles and its momentum is p,. p, is constant, because there are no electric and
magnetic fields on the orbit of the design particle. In this appendix, Hamiltonian is expanded by the different
method to the previous chapters, for the purpose showing the justice of the expanded formula.

The relative energy error is represented by the deviation from the energy of the design particle
E, = \/czpo2 +m?ct,

AE_E 1 Ny
Do P By (A2)
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where S, is normalized velocity of the design particle; 1/, = E,/ p,c and E is energy of the particle;
E = \/czpz-i-—mzc4 + g¢ = - p, - The Hamiltonian Eq. (A-1) is normalized by the design momentum py,
then, the transverse momentum is scaled dimensionless; ﬁw) =Py P, and normalized Hamiltonian
becomes to

ﬁ____\/[E_‘I(é] 1 _I~72_ﬁ2“qu (A-3)

2 2 x y >
DoC 0o Do

Inserting Eq. (A-2) into the Hamiltonian (A-3), it becomes

2
~ AE — . A
H=_\/£_q¢+_1_]_ PSR 7}

pc By e T T py

2
AE - AE — A
=_\/1+3[ q¢)+[ q¢) oo
Bo PoC Po€ Do

The scalar potential of electrostatic quadrupole can be expressed as ¢ =V, (x* —y*)/2,where V| is the

(A4)

gradient of the electrostatic quadrupole lens, V; =V, in the focusing element and V;, =0 in other region.
The vector potential of a quadrupole magnet is given by A= (0,0,4,) with 4 = B,(x*-y*)/2,where B

is the gradient of the quadrupole magnet, B, = B, in the focusing element and B, =0 in other region. If
the extent of the transverse motion of the particle is small, Eq. (A-4) can be expanded. If the square root is
expanded and left only lower-order terms up to third order, Hamiltonian (A-4) becomes

H=-

AE 1 (AE Jz_ 1 (AE J3+ﬁ§+ﬁﬁ_ AE B+ P
BiEy 27\ B E,) 27\ BYE, 2 BE, 2

v 1 AE v,

+ qzl (x2_ Z)_ . 5 qzl

2B, E, 2y BoEy By E,

(A-5)

(x? _yz)_g_fj_:(xz _yzl

where the constant term is neglected. From Hamiltonian (A-5), it is found that the energy deviation AE is
constant of motion. Thus, the transverse equations of motion are derived from Hamiltonian

2

d;z_[qfl gﬂ] [HLZJ 9V, 4B | A | (A-6a)
ds ,BOE(, Po 7o ﬂoEo Do ﬂoEo

&’y _ (qu _quj_ (HL] aV, 4B | AE | (A-6b)
as* |\ BE, po Yo )ByEy P |BE,

The second term of the each equation represents the chromatic aberration. From eq. (A-6), one finds that
the first-order chromatic aberration is vanished under leaving the effect of focusing, if the relation

1
(1 +—7)Vl — By, (A-T)

0
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is satisfied. This relation completely coincide with the condition of dispersion-less bend using electric and
magnetic field simultaneously.

A.3 Chromatic aberration-free optical system

As shown in ref. [4-16], it is possible to eliminate the dispersion at the final focal point by an electrostatic
deflector and a bending magnet set at individual positions. However, it is impossible to eliminate the
dispersion all around of the orbit. In order to eliminate it all around of the orbit, the use of bending electric
field and bending magnetic field at the same position is essential (see chapter4). On the analogy of above fact,
it is thought to be possible to eliminate the chromatic aberration at the final focal point by a quadrupole
doublet constructed with a quadrupole magnet and an electrostatic quadrupole (Fig. A-1).

electrostatic quadrupole quadrupole magnet

/

—

\

T
T

L L /

Fig. A-1 Arrangement of the elements (horizontal direction)

In thin lens approximation; kL <<1,k,L <<1, the transfer matrix is given by the following forms. Here,
k,=qV,/ B°E, k, =qB,/ p, and L represents the length of each element.

[(x|x) (x|a)):(l lj(l L)(l d)( 1 L) (A-82)
(a|x) (ala)] \O0 LA\KL 1AO 1A-k,L O

ly) la) _ 1 I 1 LYl dyfy 1 L (A-8b)
(aly) (ala) 0 1IA-kL TAO 1ALkL O
In order to focus the parallel beam at the same focal point horizontally and vertically, the condition
k =k, =k should be satisfied. Then, the focal length f is indicated by 1/ f = k*dL’*. For a small

kinetic energy deviation E — E(1+ &), the condition that the focal length in the horizontal direction to be
invariable is described as

ve ) 1—kdL

The values of ¥, d and L which satisfy Eq. (A-9) exist. However, in this case, the vertical focal length
cannot be invariable, at the same time. Namely, it is impossible to eliminate the chromatic aberration in both
directions. In the case of quadrupole triplet, it is difficult to eliminate the chromatic aberration in both
directions. Therefore, it is essential to use the quadrupole electric field and quadrupole magnetic field in the
same region, in order to eliminate the chromatic aberration in both directions simultaneously.
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On the other hand, in the case of optical lenses, there is no directivity such as beam focusing element. Thus,
in order to eliminate the chromatic aberration, it is sufficient only to satisfy Eq. (A-9). The size of chromatic
aberration of the optical lens is depends on refractive index of the material. Therefore, magnetic rigidity and
electrostatic rigidity correspond to the refractive index of the material of the optical lens.
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