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Abstract

  A compact ion storage and cooler ring S-LSR has been designed with the circumference and radius of

cuTvature of22.557 m and i.05 m, respectiveiy and now under construction at ICR Kyoto University. Onev ofthe

research subjects at S-LSR is laser cooling ofa 24Mg' ion beam with the kinetic energy of35 keV. Study of the

dys3mics of iog beums wklck is three--dimensicRal}y cecled by a stroftg cooling force uslftg rf cavities ls the

subject of the present thesis. The ultlmate aim is the gefteredoR ef a crystal beam wkich is extremely lew

emittance (low temperature) beam. The lanice structure of S--LSR is designed so as to be sgitable for generatioR

of a crystal beam. The main etements of S-LSR; namely, bending magnets and quadrupole magnets are designed

by using a three-dimensional magnetic field calculation code TOSCA with high precision. In the design of the

bending magnet, its pole shape has been carefu11y investigated in order to suppress the unwanted higher order

cornponents of the magnetic fieid. The adjustment of the effective length has also been tried. The real

characteristics ofthe fabrlcated magnets have becfi investigated through the magnetic field measurements, which

Rre refiected cR tke assignment ofeack magneite the positioft ifi S-LSR at the magfiet aligtftment.

  In order to fealizx:: a hlgh intcRsity three-dimensiowal crystal beam, it has beee kaowft that tke effect gf the

bending shear due to the linear dispersion has to be avoided. For this purpose, a methgd vvhlch asllircs the

deflection elernent superposing an electric field with the magnetic field has been proposed. This deflection

element can eliminate the effect of the linear dispersion, and the electrostatic potential included in the defiector

gives the ions necessary acceleration and deceleration for the stabilization of the 3D crystal structure. Thus the

bending shear is expected to be moved away. Such dispersion--free defiection element is to be realized by

inserting a cylindrlcal electrostatic dcfiector in the gap ofthe bending magnet. Due to severe size iimitation to be

ikstalled ift the magi}et gap "f 7g mm, the aspect radg of tke electrodes fer tke electrestatic defiector is not se

gogd as 3e!26 (gapll}eight), vvhick has beeR managed with a speclal strgctare of the eleetrede having shims at

both sides and intermediate electrodes. The effective length and the structure of the fringiRg field were desigued,

considering the consistency with the magnetic field obtained from the field measurement. Assuming the above

mentioned dispersion-free deflection elements for the lattice of S-LSR, the beam dynamics becomes equivalent

to the linear ion trap in which the crystallization of ions has already been observed. Although, in the case of

S-LSR, the electric fieid realized by two coaxiai cyiindricai electrodes with the dependence of 11r, does not make

afi operation poifit whlch satisfies so called "maintenance condition" of a crystal beam. The radiaily uniform

elecÅíAc field is feggd tc give sgck aft cpcratiek pgint as satlsfies tke "maiptekaRce cokditiefi". Realizaticft ofthe

radially imiform electrlc field in the ceAtral reglon of the defiector is cggsidered to be pgssible by tke adjgstment

ofthe potentials ofthe intermediate electrodes ofthe present electrostatic deflector.
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Chapter 1. Introduction

Chapter 1. Introduction

  In recent years, considerable experimental effort has been devoted in various fields to realize a low

temperature state of a multi-particle system. Laser cooling is one of the most powerfu1 means for this

purpose. It is often applied to charged particles confined in an ion trap where Coulomb ci}7stallization, an

ultimate low temperature state has already been achieved [1-l, 1-2, 1-3]. In the field of beam physics, other

cooling techniques, such as electron cooling and stochastic cooling, have also been employed to control the

rest-frame temperature of ion beams. By using the electron cooling technique, one-dimensional ordering of

an ultra--low-den' sity ion beam has been established at ESR and CRYRING [1-4, 1-5] (although it is

physically different from a crystalline state [1-6]). The laser cooling experiment at PALLAS, a circular RFQ

trap [1-7], has shown the observation of2D and 3D crystalline beams at the very low beam energy around 1

eV. Furthermore, the realization of a bunched crystal beam has been reported [1-8]. However, the 3D

crystallization of"fast ion beams" has not been accomplished in storage rings yet.

  Noting the similarity between ion traps and storage rings, we naturally expect that Coulomb crystallization

may be achievable even for a fast stored beam. Molecular dynamics (MD) studies have actually

demonstrated the possibility of a phase transition to a cnyystalline beam [1-9, 1-1O]. According to advanced

MD simulations where the realistic lattice structure of a storage ring is incorporated, it has been shown that

the crystal beam is not necessarily formed in any storage ring. It has been found that so-called maintenance

conditions exist for realization of a crysta1 beam in a storage ring. First condition is that the beam energy

must be below the transition energy; r Åq r, . The second condition is N År 2Vliv,, where N is the number

of the super period of the ring, and v, is the transverse tune [1-11]. ln addition to the maintenance

condition, a strong three-dimensional cooling force is also essential. Under the situation satisfying these

maintenance conditions, MD simulation shows that a variety ofcrystalline configurations can be formed in a

properly designed ring when a sufficiently strong three-dimensional (3D) cooling force is available [1-10,

l-11, 1--12, 1-13].

  As the storage ring equipping strong laser cooling device, TSR (MPI in Germany) and ASTRJD (Aarhus,

in Denmark) exist. However, the storage ring that can operate under satisfying the second maintenance

condition do not exist. The storage ring satisfying the maintenance condition, Crystal Storage Ring (CSR), is

planned at LNL in Italy. Furthermore, a small laser-equipped storage ring (Sh-LSR) is now under construction

at the ICR Kyoto University in collaboration with the National Institute of Radiological Sciences [1-14].

S-LSR has the super period 6 and, can operate under satisfying the maintenance conditions. Laser and

electron cooling techniques are to be applied, at S-LSR, to ion beams that have relatively low kinetic

energies. (Chapter. 2)

  In actual storage ring, each element constructing the storage ring has a bit of structural error. Therefore,

the number ofthe super period ofactual storage rings is one, strictly. In order to realize the ideal number of

super period, the construction error of each element has to be suppressed as far as possible. As explained

later, the stop bands induced by stmctural error of the ring element may influence on the realization of the

ultimate low temperature beam, thus they also should be suppressed. The bending magnets and quadrupole

magnets for S-LSR were designed precisely by using a 3D magnetic field simulation code TOSCA. Then,

the precise performance assessments by a field measurement were performed. And, optimum alignment to

suppress the effect ofeach error has been considered. (Chapter. 3)

  On the other hand, it has also been pointed out that the stability of a three-dimensional large particle

-1'



Chapter i. Introduction

x
xx

Fig. 1-l. The conceptual illustration of the shearing force. If all stored

panicles in a crystalline ground state have the same longitudinal velocity,

the revolution frequency ofa radially outer particle becomes longer than

that of an inner panicle. Consequently, the two particles are more and

more distanced longitudinally every turn, which eventually leads to the

melting of the crystalline state. The strength of the shearing force is

closely related to the momentum dispersioA, as shown in Section. 4.

number crystalline beam can be seriously affected by a dynamic effect peculiar to storage rings even if the

maintenance conditions are satisfied. The most essential difference between ion traps and storage rings is

whether the effect of momentum dispersion exists. In circular machines such as a synchrotron, or a storage

ring, the closed orbit of a stored charged panicle depends on its energy deviation from the design value. The

existence of this dispersion inevhably yields dynamic coupling between the horizonta1 coordinate and

longitudinal momentum of the particle, thus making the beam behavior more complicated compared with the

ion trap. If the dispersive effect is negligible, then ion traps and storage rings become almost equivalent

[1--15], which means that we encounter no substantial obstacle toward Coulomb crystallization. In general,

however, strong momentum dispersion is inevitable as far as regular storage rings are concerned. This is one

primary reason why the crystallization of fast stored beams is so difficult and has not been accomplished yet.

  The cooling force provided by a usual cooling device is designed so as to equalize the longitudinal

velocities of all stored ions, but such a force is not suitable for a 3D crystalline state with finite horizontal

extent. When the 3D crystal beam enters into the bending section, the particles constructing outer and inner

parts of the crystal structure are sheared due to the momentum dispersion, as illustrated in Fig. 1-1. Such

effect is called as shearingforce. In order to maintain the crystalline structure, stored particles must have an

identical "angular" velocity rather than an identical "linear" velocity; in other words, we must compensate

the difference in the revolution frequencies. As a solution of such a problem, tapered cooling has been

proposed [1-12]. in tapered cooling, particles at different radial positions are cooled towards different

velocities in order to realize the same "angular" momentum. However, no practical method to generate a

tapered light has been known.

  In this thesis, I propose an alternative scheme to stabilize 3D crystals; namely, a storage ring that has

deflection elements using magnetic field and electric field simultaneously. The deflection elements using

magnetic field and electric field simultaneously can suppress the dispersion. In this thesis such a deflection

element is called as dispersion-suppresser or dispersion-Lfree deL17ector.

  As I prove later, the scalar potential of the dispersion-suppressor causes the longitudinal acceleration (or

deceleration) ofparticles, automatically equalizing their angular velocities in the bending region. This means

that, in a storage ring constmcted by such defiectors, it is likely that 3D crystalline beams can be produced.

The beam dynamics in such dispersion-free ring has interesting properties as proved in Chapter 4. The

dispersion-tsuppressor described above is applied to S-LSR in order to demonstrate the practicability and

potential of a dispersionless system. As a possible application of the dispersion-free operating mode of

S-LSR. the laser cooiing ofa 24Mg' beam is planned. The storage ring, which is free-from shearing force, in

addition to satisfying maintenance oondition, is only the S-LSR in the world.

-2-



Chapter J. Introduction

1.1 Singleparticledynamics

  The motion ofa charged particle in accelerators is governed by Lorentz force [l-I 6]

                               !ltZ-q(E+v-xB) (1-1)
                               dt
vvhere P is the mechanical momentum, q is the charge state ofthe panicle. The electric field and magnetic

field in accelerators is given by

                        - OA --                       E=-Vip--blt-, B=VxA, (1-2)
  In accelerator physics, it is usefu1 to use a curvilinear coordinate system which has the design orbit of the

synchrotron or beam line, as the reference orbit (Frenet--Serret coordinate system) (Fig 1-2). In the following,

Hamiltonian formalism in the Frenet-Serret coordinate system is derived. We suppose that the coordinate of

the reference orbit of the beam line is defined by Fo.The tangent unit vector to the reference orbit is given

by

                              ,m.' .. 1 dr-(t) ., d7(S), (1-3)
                                               ds                                        dt                                  V, (t)

where vo(t) is the velocity ofthe reference panicle, s is the length ofreference orbit. And, the main normal

vector (unit vector perpendicular to the tangential vector on the tangential plane) is given by

                            n-' = -p(t) .,1(t) dtt(tt) =mp(s) dt'a(,S), (i-4)

where p is the radius ofthe curvature. The unit vector orthogonal to the tangential plane is given by

                                   x-.                                   b=hXS"n (1"5)
Then, as shown in Fig 1-2, we can express the coordinate ofa discretionary particle passing the beam line by

                                        -X                                r'=F, +xh+yb (1 -6)

 r,

         1Å~

/.X

particle position

                /
Reference orbit

Fig. 1 --2.

system for

line

Curvilinear coordinate

panicle motion in beam

-3'



Chapter 1. Introduction

From least action principle [1-17]

                      6f(-mc2 1-(d71cdt)2+q[Z•(d71dt)-Åë])it=O (1-7)

Here, we select the orbit length s, as the independent variable, instead of the time t. Then, Eq. (l-7) is

rewritten to

               6f(-mc (cdtlds)2-(d7!ds)2+q[Z•(drlds)-Åë(dtlds)])21s =O. (1-8)

Therefore, the Lagrangian in this coordinate system becomes to

                 L=-mc (cdtlds)2-(dilds)2+q[A'•(cti'lds)-ip(dtlds)] (1-9)

In this case,tbecomes one ofthe coordinates describing the particle motion. -
                                                                          -A-Next, we rewrite this Lagrangian by the coordinates x, y, t . The differentiation of the basis fi, b, S by s

becomes as follows

       dnaA(,S) - pi.) s-'(s)+T(s)b"(s), dbi.S) = -r(s)n"(s), dSel" ,S) = - p(i,) n-'(s), (i-io)

where T(s) is the torsion ofthe curve. wnen the relations (1-lO) are used, the differentiation ofthe position

Eq. (1-6) is expressed as

                      f,-(i+X)Y'+(f,-ry)n-'+(S/+-)5' (i-ii)

Substituting this relation to Eq. (1 -9), the Lagrangian in Frenet--Serret coordinate system is obtained.

             L = -mc (cdt 1 ds)2 - (1 +x! p)2 - (du / ds -yT)2 - (dy 1 ds +xT)2
                                                                               (1-12)                +q[(1 +x1 p) A, + (du 1 ds -yT) A. + (dy 1 ds + xT)A, -Åë(dt 1 ds)]

From Lagrangian (1-12), the canonical momenta are defined

                             OL OL OL                         PX=drt, Py=by,, Pt="Eitl7, (1-13)

where x' means differentiation with respect to s. The Hamiltonian can be derived, from this Lagrangian, as

 H = x'p. +y'p, +tP, -L
                                                                               (1-14)
    = -(1 +x1 p) (p, +gip)2 1c2 - m2c2 - (p. - qA. )2 -(p, - gA, )2 +g(1 +x1 p)A. - (xp, - yp. )T

The charged particle motion is governed by canonical equations derived from the Hamiltonian (1-14).

                           Ox-OH Op.- OH
                                   '                            Os Op. as Ox

                           by OH OP, 0H
                           5,=Op,' os =- by (lm15)

                           Ot-OH Op, OH
                           Os Op,' 0s at

Usual beam line of accelerators is designed in the horizontal plane. Therefore, T(s) is usually zero.

                                        --4-



Chapter 1. Introduction

1.2 Maj or elements of a storage ring

12.1 Bendingmagnet

  In this section, a charged panicle motion in a flat pole bendiAg magriet is shown. Such a bending magnet is

used for separated-function lattice storage ring as S-LSR. As shown in section 3, the magnetic field in such

bending magnet is uniform. The reference particle is bent with the constant bending radius po in the

bending magnet. Therefore, the reference orbit is a circle with the radius of po , and the vector potential of

the bending magnet is given by

                          (o, o, A,) :(o, o,-!il'L(p,+x)), (i-i6)

where By denotes the strength of the magnetic field in the banding magnet. The relation between the

bending radius and the magnetic field is given by

                                po= qB, p, (1-1 7)
When the vector potential is substituted to the Hamiltonian, it becomes to

                  H=-(1+xlp) p,2lc2-m2c2-pi-p,2+q(1+xllo)A. (1-18)

Substituting this Hamiltonian to the canonical equation, the equation of motion of the charged particle is

obtained. However, it is difficult to solve this equation directly. So, we usually use an approximated form of

Hamiltonian [1--18].

                         Hks -(i+-;IIi-)(gA,, +p- Px2ipP3) (i-ig)

wherep is the total kinetic momentum written as

                             p=m67c= p,2/c2-m2c2, (1-2o)
(IB and r are Lorentz factor). We have supposed that the transverse momentum p.,pyis much small

compared with the total kinetic momentum and the position deviation from the reference orbit x is far

small compared with the bending radius po. Therefore, higher order term of p.(y)/p and x/po are

neglected. This approximation is usually good approximation for actual accelerators. The momentum

deviation from the design value p, = mfior,c == Eo2 lc2 -m2c2 can be approximately given by

                           zip = p - po rv AZV, i. - 2;, (6(li.9r, )2 (i-2i)

where fioand ro are Lorentz factor ofthe reference panicle, and AE is the energy difference from the

reference particle defined by ZVi f (-p,)-m7oc2 (from Eq. 1-13, we can find that the -p, stands for

the energy of the particle.) Substitution of Eq. (1-21) together with Eq. (1-17) into Eq. (1-19) yields the

approximate normalized Hamiltonian

               "EZ" -i:i- 'u-xii/iil' E, +2;,2 (iil/ilillll' E, )2 +Pi+p,2P'2 + 2Xi,2 - j6i/lilll, E, -ili;" (i22)

From this Hamiltonian, we obtain the horizontal equation ofmotion in the bending region

                                          -5-



Chapter 1. Introduction

                               d2x x 1M                               ds2 rv-7i';+J6i 6o2Eo' (1-23)

when the energy deviation M from the reference particle is small, in Eq. (1-21), the second order term of

M can be neglected and the following relation is obtained.

                                       M
                                  Ap kf                                                                                   (1-24)
                                       6oc
Then Eq. (1-23) becomes to

                               dds21 Rs -i, +71s' 2il (i -2s)

The second term of the right hand side induces the orbit deviation due to the difference of the momentum.

This effect called as momentum dispersion or dispersion. The effect of the dispersion to the beam dynamics

is one ofthe most important themes in this thesis.

1.2.2 Quadrupole magnet

  A charged particle motion in a quadrupole magnet is described from the Hamiltonian by the similar way.

The quadrupole magnet has a function focusing a beam, but does not have bending effect. Thus, the

reference orbit in the quadrupole magnet becomes the straight line passing through the center of the

quadrupole. The vector potential ofthe quadrupole magnet is given by

                           (o, o, A,)=(o, o, -IZ,L (x2-y2)) (1-26)

where Bi is the field gradient of the quadrupole magnet. By the same way with the previous section, the

approximated normalized Hamiltonian is obtained.

                   "Et = illi R' - ,62,iZE, ' 2;,2 (/7(),IZE, )2 + Pi2;,2P'2 la 29pB: (x2 - f) (i-27)

The equations ofmotion are

                          ddilf,ll")Bl,x dds21fw-qpB,iy. (i-2s)

1.3 Storagering

  A separated function type storage ring is constructed with bending magnets and quadrupole magnets. In

addition to these elements, in usual case, an rf cavity is introduced for the purpose of beam bunching. Then,

the vector potential ofthe whole ring can be described as

               A, =- B2' (p, +x)+-ill B, (x2-y2)+6. (s) V,',F cos(cDt+Åë,) (1 -2g)

where By and Bi is the function of position s, By is constant in the bending section and By=O in the straight

section, Bi is constant in the quadrupole magnet and Bi=O in the other region, po is the bending radius of
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the bending section. The vector potential is periodic function with the period of the storage ring. The last

term of the right hand side means the vector potential of the rf cavity. By the same way with the previous

section, the Hamiltonian ofthe storage ring is obtained

  llEi ==-6i),IZE, [ll- fie,EE, + 2;,, (6?,EE, )2+ pNx2 ;fay2 +;(K..2 .K.y2)- 6, (,) qpv,:; ,.,(.t.ip,) (1-3o)

where

                                    1 qBi                                                     qKi
                              Kx= 2- , Ky= '
                                                     Po                                    p p,

p becomes to the function of s; p= po , in the bending region, afid p= co in the other region.

The periodic delta function in the last term of the right hand side can be written as [1-I9]

                                                2zhs                                       1
                     6. (s) cos(tut + ip,) st iCOS(tot - c + ipo)                                                                                   (l.-31)

where C is the length ofreference orbit in the ring. Here, we introduce a relative time At = t-s1i(7oc . This

quantity means the deviation of the circulation time of the panicle from the reference particle. Since the

bunching rf cavity is synchronized to the beam circulation, the relation 6oc = tooC12z stands up. wnen

this relation is used, the phase ofEq. (1-3 1) can be expressed as

                                 2zhs
                             nt-c +ipo =toN+ipo (1-3 2)
When the initial phase of the rf cavity is chosen to zero in order to maximize the bunching effect, the last

term ofEq. (1-30) becomes to

                          6.(s) gpV,s cos(cDt + ip,) ,, gpli{] costDAt (1.33)

For a particle near the bottom of the rf bucket (cDAt ÅqÅq 1) the cosine of the Eq. (1-33) can be expanded.

When the relative time is introduced and the cosine of the Eq. (1-33) is expanded, Hamiltonian (1-30)

becomes to

         fi .. 2;?1 .gK..2 .21?i +g K,y2 + 2;g (62,2E, )2 + cqpk. v2 - 6?,IIE, fl (1-34)

where v is the phase ofthe synchrotron motion, and constant terms are neglected. Ifwe put

                        PNer=;IJ,6i/)Il,E,' Ks=2cqpll:i (i-3s)

Hamiltonian (1-34) becomes to

                 ,Ei ,,, ,i;?L +gK..2 +211?L +g K,y2 +211?L +s K,g,x2 -!l:;,- p-. •. (1-36)

Therefore, the Hamiltonian of a charged particle motion in a storage ring is almost equivalent to the

Hamiltonian of three harmonic oscillators, except for the last term. The last term is called shear [1-10] or

shear term. For a hot beam, this term causes the effect of the linear dispersion (see section 1.2.1). The

influence ofthis term to crystal beams is discussed in detail, later.

-7-
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1.4

1.4.1

3D Laser cooling ofa fast ion

  Laser cooling of a fast ion beam

beam

 Laser cooling is a method to cool a mass ofatoms and ions confined in a finite g. ystem. In the laser cooling.

the momentum change ofthe particles induced by the absorption or emission ofphotons are utilized. A beam

circulating in a storage ring is a group ofions confined in a finite system. Now, we pay attention to thc state

ofan ion in the laser cooled beam. When the ion encounters a laser photon which has enersTy corresponding

to the excitation level ofthe ion, resonance absorption ofthe photon occurs. Then, the ion gains a momentum

which has been brought by the laser photon (Fig. 1-3-(b)). Later, the spontaneous emission ofa photon

occurs for the ion, and then the momentum of the ion changed by the emitted photon (Fig. 1-3-(c)). The

direction of the momentum of the spontaneously emitted photon is random and canceled out statistically, by

contrast with the absorbed momentum being same direction. During the cooling, the ion repeats this cycle.

After N cycle, the momentum ofthe ion becomes to

                                            N                               P= Po+MPa +2Pi:'n (1'37)
                                            n=1

Since the direction ofthe emitted photon is random, the last term ofthe right hand side becomes to zero.

(a)

 ptt

XN,,AutN.

(b)

(d)

    p,,

(c)

             .si) = l-)',, + Nii,, +Z l-)' ,.,,

            n-1
c= = =År`
Cycle of the resonant absorption

emission ofa photon.

 P = 1),, -t- I),,

Fig. 1-3.

/) = /)t, + IJ,, + PLl

of photon and

,s;,1,,

spontaneous

As the resulg the ion gains a momentum to the direction in vvhich the cooling laser irradiated. Therefore, the

wavelength of the laser sensed and absorbed by the ion gradually shifls from the resonance wavelength. Thus,

frequency ofthe absorption and emission decreases gradually. The excitation probability (photon absorption

probability) P can be described by the well known Lorenzian line shape.
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                                       S12
                               P=                                         , (1-38)                                         -+1+S                                  (2A/l')

where A isthe frequency detuning

                              A=2m,(1-l3)7-2nv, (1-39)
1,IC3 are the relativistic factorofthe target ion i,o isthe resonance frequency in the ion rcst frameand S is

the saturation paramcter defined by the ratio of the laser intensity and saturation density (S=I/l.t). Therefore,

the cooling laser gives the force depending on the velocity ofthe target ion v (Fig 1-4).

                                               ,S /2
                         F(v)=hkFP=hkF ,                                                                                (1-40)
                                          (2A 1 I-')-                                                  +1+S

where k is the wave number ofthe laser photon F is the inverse life time ofthe upper excitation state ofthe

ion (r =11T ).

AÅr

v-

                    VR V[M/S]
Fig 1-4. Shape ofthe laser force in velocity space.

When the cooling laser is superposed to the ion beam, the laser force acts so as to gather the ions in tail of

the velocity distribution ofthe beam (Fig 1-5). Ifcounter-propagating lasers are introduced, the shape ofthe

laser force in the velocity space becomes as shown in Fig l-6. In this case, a stable point is created in the

YJ

Åí

s
E

=J
.y
:
a
-

x,,

SR"

       t
       ==-

       E•

[)År g'

vlm/sl SR-
s' lm/sl

Fig l •-5. Change ofthe particle distribution in the veloeity space by the laser force.
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Aee
pa

                                             v
                Fig 1-6. Mechanism ofthe laser cooling ofa fast ion beam.

velocity space, and the ions captured to the laser force are gathered to this velocity. This is the mechanism of

the laser-cooling ofa fast ion beam. In the laser cooling, the cooling force acts on the longimdinal motion

only.

1.4.2 3D cooling induced by liner dispersion at an rfcavity

  From the Hamiltonian of the storage ring (Eq. (1-36)), it is found that the transverse motion of the

reference panicle is a hamionic oscillation (betatron oscillation), and the trace of the motion in the phase

space becomes to an elliptical orbit. The area of this elliptical indicates the degree ofthe venical motion and

the venical beam temperature and beam emittance.

  The cooling force acts on the longimdinal motion only. By the effect of the intra-beam scattering, the

transverse motion is also cooled slightly. However, the transverse cooling by the intra-beam scattering is

insufficient for the achievement of the ultimate low temperature, low emittance beam. If the longimdinal

motion and the transverse motion are strongly coupled, the betatron oscillation may damp accompanying the

damping of the synchrotron oscillation due to the laser cooling. If such a term as rtpoc exists in the

Hamiltonian (1-36), a strong directly dynamic coupling between the horizontal motion and the longitudinal

motion is realized.

 As a method ofthe strong transverse cooling, a coupling induced through dispersion at an rfcavity has been

proposed [1-22][1-23]. As briefly described in section 1.2.1, effect of the dispersion inevitably exists in the

storage ring, and the dispersion can be described as a function of position s. The closed orbit of an

off-momentum panicle shifts from the reference orbit. The closed orbit of the off-momentum particle is

described together with the dispersion function as

                  Åío (s)= Dx (s)' Iill,l! o' Åío (s) =Dx (s)' fi(),IIE,• (i '"4i)

These formulae are equivalent, but the second notation is used in this thesis. The momentum spread is

constant of the motion, in a conventional magnetic storage ring. However, when the element of the storage

ring includes electrostatic potential, the momentum--spread does not become the constant of motion. On the
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other hand, the energy spread AE is the constant of the motion, even if the storage ring includes

electrostatic potential (see chapter 4). Later, vve establish the Hamiltonian formalism of a storage ring

including not only magnetic field, but also electrostatic field. Thus, it is usefu1 to use the second form of Eq.

(1-41).

  Next, we describe the motion of a panicle, on the rest frame of the off-momentum particle. Then, the

coordinate system is transformed. For example, the horizontal coordinate is rewritten by

                           -. AE                           X== X- Xo (S) =X- Dx (S)' 6,2 E,, (1 "'42)

and the other coordinates are also rewritten. This coordinate transformation from (x,pfV.,y,p"V y,t,-ZVi) to

(x',pM.,y-,p- ,,t,-ZVI) is summarized by the following generation function [1-24] [1-18]

  F(X'P"Y'Pwny't'-AE-)=(x-fili,lil-E,Dx)p-x+yPyhtAE-+po61],llME,daZ.)"x-`lit'(62,Il-E,)2DxdaLL,)X(1'43)

Then the Hamiltonian (1-34) is transformed to

 fi .. gi +gK..-2+l,2 .gK,y-2+g( ,J- Dpx )(,6fllEil, )2 + cqp:rf. [toAt-+ 1taz,.(ddZ,)x x-D.p-. )]2+ .(1-44)

From the 6th term of the right hand side of Eq. (1-44), it is found that linear coupling terms such as r gnt"t

arises (g-Lt -- tuAt ), if the dispersion function and its differentiation have finite value. Namely, the linear

coupling of the longitudinal and horizonta1 coordinates is generated by the rf cavity existing in the place

where finite dispersion exists. By the coordinate transformation, the existence of the linear coupling term is

found out.

  The venical motion is still independent to the other motions. It is known that the venical and horizonta1

motion is coupled by skew quadrupole magnet. By this way the motion of three directions is coupled. In

order to maximize these coupling effect, the frequencies of the betatron oscillation (betatron tune v.,v.)

and synchrotron oscillation (synchrotron tune v, ) have to satisfy the resonance condition.

                 v.-vy =integer, v.-v, =integer , (1-45)

1.5 Crystal beam

  The ground state ofa cooled beam was first studied by a storage ring model in which charged panicle are

confined in a time independent hamonic potential [1-9]. Subsequently, beam crystallization was studied by

Molecular Dynamics (MD) simulation in a time-dependent potential replicating the effect of the quadrupole

magnets and bending magnets of the storage ring [1-27]. The MD simulation study showed that when the

linear density of the beam increases, the structure of the crysta1 changes to higher dimensional structure;

string, zigzag, shell [1-28]. These states ofthe beams are in the lowest temperature state (ground state). Such

beams are called as "crystal beam". However, from some advanced MD simulations, it has been fond that the

crystal beam cannot be obtained by only cooling the stored beam strongly. There are some conditions to

achieve the crystal beam in a storage ring. The structure of various types of crystal beam are shown in Fig

1-7.
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Fig 1-7. Cross-sectional view of the crystal beams. The A. means the line density of the beam. The crystal

tructure changes to higher dimensional structure, as the line density of the beam is enhanced. The 2D crystal

structure extends in the weaker focusing direction of the ring. tn this simulation, an ideal tapered cooling

force is supposed. These structures were obtained by the MD simulation performed by Mr. Y. Yuri.

1.5.1 Hamiltonian of a space-charge dominated beam

When a beam temperature becomes low by the cooling, the space-charge effect becomes remarkably. In

this section, the Hamiltonian of such space-charge dominated state is considered. When the space charge

effect exists, the vector potential of the storage ring Eq. 1-29 becomes [1-25]

( 1-46)

( 1-47)

where the rf cavity is switched off for simplicity, A" is the vector potential due to the space-charge force. A

coasting beam is considered for simplicity, and it is assumed that the particles of beam have equilibrium

distribution. Then, we can put Asc = POVM;/C [1-18]. VJC is the scalar potential of the space-charge force.

The mean field Coulomb potential V.C can be written as [1-25]

1 2 1 2
Vsc = Vsc 0 + - Vsc xxX + Vsc nJX)l +- Vsc yyY + ....., 2' .-~ 2'

where Vsc,o is a constant term, and

v = a2v.rc
c.xy Ox0' ( 1-48)

are partial derivatives of space-charge potential evaluated at the reference orbit. The scalar potential ¢ is
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expressed as ip = Vl...The potential set to be zero at the reference orbit, that is Z,.,, :O. Since the scalar

potentia} exists, the Hamiltonian form of Eq. (1-14) is used. Substituting Eq. (1-46) for Eq. (1-14) and

neglecting the higher--order terms, the following Hamiltonian is obtained.

       At = - 62,llE, + 2;,, (6?,2E, )2 + PNx2 ; P""y2 + g (K.x2 + K,y2)+ p,qEV,:'cr,, - fi2,IIE, iX• (i-4g)

When the explicit formula ofthe space-charge is substituted to Eq. (1-49), it becomes to

iiZ=S[prW.2+(K.+pZ//,'C2Ur?,)x2]+{p"Vy2'(Ky'pZ//i.'rv7?,)Y2]"pZ/','C2X;,2'cy'2;,2(fi(l,ZE,)2N6(),IIE,ill'(i-5O)

wheretherelativetime At hasbeenintroduced.

1.5.2 Maintenancecondition

  As shown in refs [1-18][1-25], the linear coupling term due to the space charge force is negligible; i.e.

Z,.,.y fu O, when the panicle distribution is assumed to be symmetric with respect to the reference orbit.

Then, the equation of the betatron motion is given by

                          dd,21stiÅqKx+pZ/,S2Cz",2)x+;I-6(l,llE, (i-5iNa)

                          dd,2;Rs-(K,+pZ//,'"i';,,)y ' (1-51-b)

For a cooled beam, we can put AE fu O . K.(y) are functions ofs and, they denote the beam focusing or

defocusing effect of the lattice element of the storage ring. These equations are a kind of Hill's equation

[1-29]. For a particle being confined in the storage ring, K.(y) have focusing effect i.e. K.(y) have

positive sigr) on average. On the other hand V..,.(ew) denote the space charge repulsion, thus, they always

have negative sign. Equations (1-51) have the form of the equation of motion of oscillators, in broad

meaning. Therefore, the coefficients of x, y indicate the frequency of the betatron oscillation (betatron

tune). If the beam is strongly cooled three-dimensionally, the amplitudes of the betatron oscillations damp

accompanying the damping of the synchrotron oscillation. This means the beam size is reduced by the

cooling. Then, the space-charge repulsion increases. Therefore, the focusing effect in Eq. (1-51) becomes

weak, as the cooling progresses. And the tune value decreases. Therefore, the beam experiences various tune

value in the cooling process. According to ref. [1-25][1-26], for a synchrotron made of N super periods,
systematic half-integer stop-bands occur at the betatron tune N12Vlii, 3N12Vii.... When the beam

encounters this stop band in the cooling process, the beam temperature no longer decreases. If the betatron
tune values ofthe initial beam are below N12Vl! , the beam is cooled without experiencing such instability.

And an ultimately low temperature beam is achieved. Therefore, in order to achieve the crystal beam, the

betatron tune of the initial beam has to satisfy the condition

                                  vÅqN12j. (1-52)
This condition is called as maintenance condition together with the condition
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(1-53)

where Yt is the transition energy of the ring, Y is the Lorentz factor of the beam. The condition (1-53) is

usually satisfied in the case of low energy beams.

1.5.3 Shearing force

Even if all conditions for generation of crystal beam are satisfied, there is an obstacle to reach a high

intensity 3D crystal beam. The existence ofthe dispersion ofthe storage ring greatly affects to the stability of

the 3D crystal structure. For a coasting beam the longitudinal equation of motion is obtained from

Hamiltonian (1-50).

d (!!t) 1 [ x 1 ( M )]
~= Poc p - r~ P;Eo

(1-54-a)

(1-54-b)d (-!1E)ds p; =0,

The first term of the right hand side of Eq. (1-54-a) arises from the shear term; M/P;Eo . xlp. (Note that

the shear term gives the dispersion (section 1.3».

For a crystalline state, M is almost zero. Therefore the longitudinal equation ofmotion becomes to

d(!!t)
--

ds

1 x
---
Poc p

(1-55)

Here !!t describe the difference of the time that a particle reaches to the same longitudinal position s as the

, reference particle. In a crystalline state, particles of the crystal beam stop the betatron oscillation, and behave

as if breathing around the reference orbit [1-10] [1-25]. Therefore, in Eq. (1-55), the horizontal position of

the particle x has always same sign. The coefficient of x has finite value in the bending section.

Therefore, time difference I1t is increased whenever the particle passes through the bending section.

Eventually this effect leads to the melting of the crystalline state (Fig 1-1). Since this effect behaves as if

shearing the crystalline structure, we call this effect as shear or shearingforce. For a bunched crystal beam,

the time difference I1t is recovered at the rf cavity. However, the synchrotron oscillation is never damped,

even if a strong cooling force is provided, and this limits the reachable temperature of the 3D crystal (see

section 4.3).

For crystal beams, the shear term ofthe Hamiltonian of the storage ring gives the effect of "shear" and this

effect obstructs the stable formation of a 3D crystal. We have found that if a bending electric field is

introduced to a storage ring, in addition to the bending magnetic field, the shear term of the Hamiltonian of

the storage ring is eliminated. Then, for a hot beam, the linear dispersion in the storage ring is canceled. For

a crystal beam, the shearing force is canceled. In that case, the instability of the 3D crystal beam structure

due to the shearing force is removed (see section 4.5).

1.6 Strategy of the present theses

The above mentioned 3D laser cooling method is to be performed in an actual storage ring S-LSR. S-LSR

can operate satisfying the maintenance condition of a crystal beam. The parameters of laser cooling
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experiment at S-LSR are shown in chapter 2.

  As mentioned in previous sections, in order to generate a crystal beam in a storage ring, the maintenance

condition has to be satisfied ideally. This means the number of super period of the ring should be the ideal

number. Thus, the individual difference ofthe fabricated defiection element has to be suppressed as small as

possible. Since the strongly cooled beam experience various betatron tune in the cooling process, the beam

may encounter various resonance 1ines; for example, higher order resonances due to the multi-pole

components, non-structural resonances due to the breakdown of the lattice symmetry. Therefore, the

unwanted higher-order component field of the magnet has to be suppressed. From this point of view, the

design of the bending magnet has one of the most important roles for the realization of a crystal beam at

S-LSR. The detailed design process of the bending magnet aiming at realization of the ideal condition,

described above, for crystal beam at S-LSR is shown in chapter 3, and the details of the evaluation of the

fabricated magnets are also shown in chapter 3. The ideal state for the crystal beam is also preferable for the

conventional storage and cooling ofbeams.

  Even if the above described ideal condition for crystal beam is satisfied, the generation of a beam which

has a stable 3D crystal structure is difficult due to the problem of the bending shear, as described in section

1.5.3. The problem of bending shear is solved by the introduction of a dispersion-free deflector vvhich

includes a bending electric field, in addition to the bending magnetic field. For the case of S-LSR, the•

dispersion-free deflector is realized by inserting a cylindrical electrostatic deflector in the gap ofthe banding

magnet. The electrostatic deflector for S-LSR has intermediate electrodes in order to maintain the field

strength and distribution in a limited gap area of the bending magnet. A storage ring constructed with the

dispersion-free defiectors has interesting properties, not only the solution ofthe problem ofthe bending shear.

These are descried in chapter 4.

  In order to realize the ideal dispersion-free state in the deflector, the bending magnetic field and the

electric field have to be superposed completely in the same region. However, it is difficult to superpose the

both field completely in the fringing region due to the difference of the gap size and the end structure of each

bending element. If at least the effective lengths of the both fields become identical, the beam can be

circulated stably, although it is different from the ideal state. Thus the effective length and the structure ofthe

fringing field were designed, considering the consistency with the magnetic field distribution obtained from

the field measurement. In chapter 4, the structure of the electric field of the dispersion-free deflector of

S-LSR has cylindrical electric field, which is the simplest solution of Maxwell equation. However, in this

case of S-LSR, it cannot be operated satisfying the maintenance condition of crystal beams. Therefore, in

chapter 5, different type of electric field for dispersion compensation is investigated. Finally, it is found that

radially uniform electric field, which is attained by semi-hyperbolic electrodes, is suitable. It is also found

that this type of electric field can be realized, only changing the applied voltage of the intermediate

electrodes ofthe fabricated cylindrical electrostatic deflector of S-LSR.

  The three-dimensional cooling method by a normal rf cavity becomes not to be applicable in exchange for

the dispersion-free condition. Therefore, in the case of dispersion-free storage ring, so-called coupling rf

cavity has to be used for the 3D cooling. The coupling rf cavity can generate a direct coupling between the

longimdinal motion and the horizonta1 notion without dispersion (section 5.7).
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Chapter 2. Ion storage ring S-LSR

Chapter 2. Ion storage ring S-LSR

2.1 OutEine of S-LSR project

  A heavy ion storage ring S-LSR is now under construction by collaboration between National lnstitute of

Radiological Science and ICR, Kyoto University. The circumference ofS•-LSR is 22.557 m. This is compact

compared with the other storage rings t2-3]. An electron cooler and a laser cooling system arc equipped to

S-LSR. Thc major purposes of the S-LSR project arc the feasibility study ofapplication of laser produced

carbon ions as the injection for cancer-dedicated pulse-synchrotron, and approach to the ultra-cold beam with

use of laser cooling for low energy 24Mg' beam. The electron cooling is applied to the hot carbon ion beam

after phase rotation ofthe laser produced carbon ions [2-1]. In S-LSR, the fast extraction ofelectron coo1ed

short-bunch beams is also studied. In Fig. 2-l, the layout of S-LSR is illustrated and its main parameters are

listed in Table 2-1.
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Table 2- l Main parameters of S-LSR

Parameters Value
      Kinetic energy ofc6'

      Kinetic energy of Mg'

       Kinetic energy ofp

        Circumference
        Average radius

   Radius ofthe bending section

    Number ofthe super period

Deflection angle ofeach bending magnets

24 MeV (2 Mev/u)

    35 keV
    7 MeV
   22.557 m
    3.590 m

    l.05 m

      6
     6oo
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2.2 Lattice design of S-LSR

2.2.1 Design principle

The conditions for maintaining crystal beam gives the strongest restriction to the lattice design among the

research subjects of S-LSR. Therefore, the lattice design principle was almost dominated by the conditions

for the crystal beam [2-4]. The following conditions were considered.

(1) Small betatron phase advance.

In order to create a crystalline state beam, the horizontal and the vertical betatron tune have to be below

N / 2J2 (N is the number of the super period). Namely, a small phase advance per one super period is

required.

(2) Smooth beam envelope

In a storage ring, the beam is confined by the alternating focusing force (Eq. (1-51)). One can easily

understand that the smooth change of the alternating focusing force in the ring is better for maintaining the

crystalline beam structure. The smoother beam envelope is realized by introducing a combined function

type lattice [2-5]. However, the tune flexibility becomes the sacrifice.

(3) Small magnetic field error and the small alignment error of the magnets

If the magnetic field of each magnet has the error in its strength, the closed orbit distortion arises. The

error of the effective length also induces the closed orbit distortion. If the magnet includes quadrupole

component error, stop bands are generated near the integer or half integer tune operating point. If the field

error of each magnet is so large that cannot be neglected, the number of the super period becomes one.

This violates the maintenance condition. In order to realize the ideal number of super period, the field error

of each magnet has to be suppressed as far as possible. Furthermore, non-structural resonance [2-6] is also

induced in addition to the structural resonance. Since the beam experiences various tune values in the

cooling process, the width of such resonance lines should be suppressed.

(4) Small magnetic non-linear components of the magnetic field

The beam experiences various tune values until the beam becomes to ground state. If the elements of the

storage ring including the non-linear field components, higher-order stop band is generated. The cooled

beam has a possibility to encounter this stop band during the cooling process. If the width of the stop band

is very wide, the beam may not be able to overcome the stop band.

(5) Long straight section for the electron cooling and the laser cooling

The laser cooling efficiency is proportional to the length in which the beam and laser light are superposed.

Similarly the efficiency of the electron cooling is proportional to the length in which the ion beam and

electron beam are superposed. Since the attachments of the electron cooler occupy considerable area, it is

needed to ensure enough long straight section.
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2.2.2 Lattice structure of S-LSR

In order to realize the situation that the condition (1) consists with (5) by the small circumference, the

number of the super period was selected to 6. Then, the length of the straight section and the bending radius

were decided to 1.86 m and 1.05 m, respectively. The arrangement of the magnets was decided as shown in

Fig 2-2.
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l
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Fig 2-3. Stable region of the betatron

oscillation. In this figure, k1 and k2 mean

the field gradient of QMl and QM2. When

the field gradient has positive sign, it means

that the quadrupole magnet has defocusing

effect in the horizontal direction. k is the

normalized field gradient by the magnetic

rigidity of the beam k =B1 / BoPo

Fig. 2-2. The lattice structure of S-LSR. The number of

the super-period is 6. An rf cavity is introduced for beam

bunching. The rf cavity is also used for 3D cooling. In the

horizontal beam dynamics, the radial focusing effect of

the deflection element becomes remarkable due to the

small bending radius, and thus it is utilized for beam

focusing.

The one super period is composed of lattice elements as drifr/2-QM I-BM-QM2-driftl2. The stable region of

the betatron oscillation is shown in Fig 2-3. The stable operation is possible in the state that the both

quadrupole magnets have defocusing horizontally (1) or, one quadrupole magnet has horizontal focus, the

other quadrupole magnet has horizontal defocus (2), (3) (Fig 2-4).

(1) (2) (3)
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"'Hcnldh~~_=+B-_

Q.:\U Bending Q.\l~

focus drift focus

'CI"ic"ldlr~B-f----'=m-

Q;\l1 Bemlinl~ Q:\I2

Fig 2-4. Possible polarity of the QMl and QM2
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Chapter 2. Ion storage ring S-LSR

As the operating point of Mg', the point in which the field gradient of the quadrupole'magnet ki= k2 =l .27 m'2

and betatron tune (1.446, 1.436) has been supposed. At this operating point, the needed synchrotron tune for

the 3D cooling becomes O.44. The parameters at the operating point (1.446, 1.436) are shown in Table 2--2. It

is found that in this operating point, the needed values ofthe haimonic number become very large. Therefore

the 3D cooling will be performed at the operating point (2.067, 1.073), rather than this operatiRg point. The

beta-functions and dispersion function ofthe operating points (1.446, 1.436) and (2.067, 1.073) are shown in

Fig. 2-5, respectively. The both operating points satisfy the maintenance condition vT Åq N12j .

Table 2-2-a. Main parameters ofthe rf cavity for 3D cooling

Operation point (1.446, 1.436).

1-able 2-2-b. Main parameters ofthe rf cavity for 3D cooling.

Operation point (2.067, 1.073).

Quantity Value Quantity Value

Ions to be laser cooled

Total kinetic energy

Betatron tune

Synchrotron tune

rfvoltage

rf frequency

rfharmonics

Momentum compaction factor

  24Mg'

 35 keV

(1.446, 1.436)

   O.44

  125 V
 46.4 MHz

   2000

  O.664

Ions to be laser cooled

Total kinetic energy

Betatron tune

Synchrotron tune

rfvoltage

rf frequency

rfharmonics

Momentum compaction factor

  24Mg"'

 35 keV

(2.067, 1.073)

   O.07

   127 V

 2.32 MHz

   1OO
  O.325

  5,5
  5.0
  4.5
  4.0
'iS 3,s

Gf{ 3.0

  2.5
  2,O
  1,5
  LO
  O.5

      QMI BM QM2

2.45

2.40

2, 35

2.30

2.25

2.20

2, 15

2.10

2. 05

tr
x•

$
v

     O.O O.5 1,O 1.5 2.0 2.5 3,O 3.5 4,O
                  s(m)

Fig 2--5-a. The lattice functions at the operating

point (1.446, 1.436). Beta-functions and dispersion

function are drawn as a function of the position s.

In this operating point, 3D cooling may,be diffricult

because a high effTiciency rf cavity is required to

induce the synchro-betatron coupling. This

operating point will be used for cooling
experiments of costing beams. The transition

energy ofthis operating point is r, =1.231.

      QMI BM QM2
Er[[[M]]]ll]-D

   5,O                                     L30
   45
                                     L25   4.0
A
"U• 3.0 Lls krt$K
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Fig 2-5-b. The lattice functions at the operating point

(2.067, 1.073). In this case the field gradient ofQMI

and QM2 selected to ki=2.05 m-2 and, ki=-1.l2 m-2

respectively. the minus sign means the magnet has

focusing effect in the horizontal direction. The

transition energy of this operating point is
1, =1.754.
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2.3 Lasercooling

  The ion species possible to be cooled by laser are Li', Be', Mg' and Ca', etc. Most of the ion species

requires two kinds of lasers because of the level splitting. Only Mg' is possible to be cooled by a single

wavelength of 280 nm. Therefore, we decided to use Mg' beam as the beam to be laser cooled. The

circulation life time of the Mg' beam in the ring becomes longer in the lower energy region [2-5]. In the

present plan, the kinetic energy of Mg' ion is planned to be 35 keV. The expected life time is longer than 20

seconds, when the vacuum pressure better than a few times of 10-ii Torr is attained. And, in this energy

region, the Lorentz factor r is almost 1. Thus the maintenance condition 1, År r is enough satisfied. The

ion is injected to the ring directly from the ion source, therefore the kinetic energy is decided by the

extraction high voltage of the ion source. For the cooling of 35 keV Mg'i' , counter propagating lasers of the

wavelength 280 nm are to be used. First, the laser photons are generated by a green laser of the wavelength

532 mm. Next, a dye is excited by the green laser and then waveiength of 560 mm laser is emitted. Finally,

the dye laser is modulated to the waveleAgth of280 nm by a sub harmonic generator [2-1].

2.4 Requiredperformanceofthebendingmagnet

  As shown in Fig 2-5, the horizontal beta function in the bending section becomes larger compared to the

one in the straight section. Therefore, usefu1 horizontal aperture of the bending magnet has to be extended

compared to the straight section. From the consideration of the injection and extraction of the beams, the

horizonta1 usable aperture of the bending magnet was decided to 200 mm. Since the major use purposes of

S-LSR are not synchrotron acceleration of the beams, but the storage and the cooling of ion beams, the main

magnets (the bending magnets and the quadrupole magnets) are made by not lamination iron plates, but solid

iron. In this case, the fabrication error of the magnet can be suppressed well. This is desirable to satisfy the

condition (3) listed in section 2.2.1. Furthermore, the magnets of S-LSR were designed with the use ofhigh

precision 3D field calculation code. Various structures ofmagnets were tested in the field simulation, and the

most suitable structure to suppress the multi-pole field was decided.

  Even though the condition to attain a crystal beam is satisfied by the present method, the realization of a

stable large 3D crystal beam structure is thought to be difficult due to the effect of the bending shear. Thus

the introduction ofthe dispersion-free system mentioned in chapter 1 was decided.
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Chapter 3. Design and field measurement of dipole magnets for S-LSR

3.1 Introduction

  As mentioned in the previous sections, in order to realizc the ideal condition for a crystal beam, the

unwanted higher-order component of the bending magnet has to be suppressed, in the stage of the design.

The fabricated magnets have to be evaluated precisely, because the arrangement of the magnets is decided

based on the actual field distribution so that the closed orbit distortion is suppressed. Furthermore, the

precise evaluation ofthe effective length is needed to consider the consistency with the effective length of

the electrostatic defiector for dispersion compensation.

3.1.1 Outline of electromagnet

  A ferromagnetic meta1 and a coil shown in Fig. 3-1 are considered. We suppose that the magnetic flux

density is B and Bi in the air gap and the metal, respectively. When Ampe re 's law

                               gR•ds-Nl (3.i)
is applied to the pass shown in Fig. 3-1, the follovving relation is obtained

                              Bptg,'"?il.=NI (3'2)

where #o is permeability ofair, and k,, is relative permeability ofthe meta1. In ferromagnetic metals, the

value of k,, is about 102 to IO`. Therefore, the second term of the left hand side is negligible. Then, the

magnetic flux density in the gap is approximately obtained as

                                  Po NI
                               B=                                                                                 (3-3)
                                    g

where ,uo =4zxlO-H/m. From this relation, we can estimate the needed current I and the turn

number ofthe coil Nto generate the magnetic flux density B, with the gap height g .

[g

Fig 3-1 . An example ofelectromagnet. Fig 3-2. Flux in the electromagnet
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3.1.2 Saturation of the magnetization

The magnetic flux density is givcn by the relation

                                B= ltH, (3-4)
although, the permeability is not constant in ferromagnetic metals. The relation between B and H is

given by B-H curvc in ferromagnetic metals (for example, see Fig. 3-4). The value of i" = ki,,uo decreases

as H becomes 1arge. The magnetic field H in the electromagnet is decided by the excitation current I from

Amp(Sre's law. Therefore, for a high excitation current the second term of the left hand side of Eq. (3-2)

cannot be neglected and, the efliciency ofthe excitation ofthe field becomes worse. This situation is called

as saturation of magnetization. The effect ofthe saturation resnicts the upper limit of the efficient magnetic

flux density.

  In general, at the both ends ofthe pole, the magnetic field H in the iron becomes higher than that ofthe

center ofthe pole. As the excitation level becomes high, the iron ofthe pole end saturates earlier than the

center ofthe pole. Then, we consider that Ampere's law is applied for the pass A and B in Fig (3-2). For the

pass B, the second term in the right hand side of Eq. (3-2) can not negtect at the pole end because the

permeability reduces in this area. And the magnetic flux density in the air gap reduces in exchangc for the

increase of the second term in the right hand side of Eq. (3-2). Thus, for a high excitation current, the

magnctic flux density around the end ofthe gap becomes lower than that ofthe center ofthe gap. Namely,

the field distribution in the gap changes by the excitation current (Fig. 3•-3). This is one ofthe matters, which

has to bc conquered in the design ofthe magnet for synchrotron. The measures to solve this matter are to cut

beforehand the both ends of the pole, which are the parts easy to be saturated. By this method, a field
distribution vvithout depending on the ekcitation current is realized. The ideal shape of the pole end cut is

given by Rogowski's curve. [3-1]

Fig 3-3. conceptual illustration ofthe change of the field distribution by the excitation current. The change

      ofthe field distribution can be suppressed by cutting the pole end ofthe electromagrtet.

3.2 Design by a 2D field simulation

3.2.1 Designprinciple

  The basic parameters required for bending magnet are listed in Table 3-1. Althougli the required field

strength for the present experiment is about O.4 T, the maximum magnetic field has been set to O.95 T in

consideration of the possible future ramp up ofenergy.

                                        -24-



Chapter 3. Design andfield measurement ofbending magnetsfor S-LSR

Table 3-1. Required parameters

Parameters Value

     Bending angle

      Edge angle

    Bending radius
Horizontal useful aperture

Field strength for 7 MeV p

      24 Mev c6'

      35 keV Mg'

    Mass upper limit

      Ga hei t

 6oo
  Oo

1050 mm
200 mm
0363 T
O.387 T

O.125 T

5.0 tons

70 mm

The gap height is detemiined to be 70 mm, compromising the usable vertical aperture and the needed

excitation current. Then, the needed excitation current to generate O.95T is about 54000 AT. All parts of the

pole and yoke are constmcted with pure soft iron which has a good magnetic property. The B-H curve ofthe

pure soft iron is shown in Fig. 3-4.

                        2,5

2.0

ge
eW:a to5

1.e

e"s

e.e

10-    1o3
magnetic field (A/nt)

1o4

Fig. 3-4. B-H curve of iron used for S-LSR magnet

  There are several types of dipole magnets. For example, C-type, H-type and window-frame type are

considered (Fig 3-5). The C-type dipole magnet has advantage for the insenion of the vacuum chamber. And

the accuracy of the magnetic field is not affected so much by the error of the coil. However, field of the

C-type magnet has larger quadrupole and octapole component, because of the asymmetry of its structure.

The H-type dipole magnet has symmetric field with a small quadrupole and octapo!e component. And the

accuracy of the magnetic field is not affected so much by the error of the coil. But, in the insertion of the

vacuum chamber, the magnet has to be divided. The window-frame type magnet realizes the most uniform

magnetic field with a simple structure. However, the coil of the window-frame type magnet has a structure

so-called a saddle type (Fig 3-6). The coil ofthe saddle type is raised at the beam entrance and the exit ofthe

magnet, in order to ensure a passage of the beam. Therefore, in the fabrication process of the coil, a little

complicated process is required. In the case of S-LSR, it is impossible to adopt the window-frame type

magnet, because it is required that a hole to guide the laser light for beam cooling is made in the outer side of

the magnet. The coil of the window-frame type magnet obstructs this hole. For this reason, window-frame

type cannot be adopted. Therefore, the choice is resuicted to the C-type or the H-type. Since the H-type has

-25-
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larger advantagc in compactncss and the qualitÅrt of thc ficld compared with C-type, the H-type magnet is

adopted for S-LSR.

Fig 3-5 (a) C-typc magnet (b) H-type magnet (c) window frame type magnet

Fig 3-6. Structure ofthe saddle type coil
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 Fig 3•-7. The overview of the magnet series for S-LSR

 The layout around the bending magnet is shown in Fig. 3•-7. The shape ofthe magnet is determined to be

fan-shape to reduce the sagitta. At the entrance and the exit of the bending magnet,.f?eld clamp plates are set

                                -26-
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to cu"he tail of the fringing field. 1'he ficld clamp plate also has an advantage supprcssing the sextupolc

component in the fringing field region [3-2](see Section 3.3.3.4).

3.2.2 Design of the radial cross section structure

  The required horizonta1 usable aperture is 200 mm, this value was determined from the beam parameters

of the injection of 7 MeV proton. In the first stage of the design of the bcnding magnet, the details of the

radial cross section shape of the magnet were determined by a 2D field calculation under axial symmetry

condition. The goal of this process was to determine the structure generating uniform field, with a compact

iron yoke. The cross section structure is shovvn in Fig. 3-8. At both ends of the pole, so-called shims arc

attached to realize uniform field by a narrow pole (Fig. 3-9). And the both ends ofthe polc are cut in a circle

to avoid the change of the field distribution due to the effect of saturation. As the cutting management of the

pole end, a straight cut was also considered. However, from the result of the 2D field calculation, we have

found that when the straight cut is adopted, the wider pole width is required to realize the same effective

field area compared with the case ofcircle cut.

260

Unit: mm

Fig. 3-8. Upper halfofthe cross section ofthe bending magnet
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Since the magnet has fan shape, the inner return yokc designcd so as to have thickcr radial width compared

to the outer yoke, as shown in Fig. 3-9. By this way, the flux density in the outcr and inner return yoke was

kcpt in thc samc lcvcl. The calculated ficld distribution is shosvn in Fig. 3-10. The deviation of the field

strength is less than 5 Å~ 1O'5 at all excitation lcvel.
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Fig. 3-1O. Radial field distribution obtained from the 2D field calculation. The horizonta1 coordinate means

the distance from the reference orbit.

3.2.3 Design of the coil and the longitudinal cross section structure at the pole end

  In a conventional case, a headband type coil is utilized for H-type magnet. In order to ensure a large turn

number of the coil, keeping the iron core to be light weight, the cross section shape of the coil should be

wide (Fig 3-8). Then, the overhang ofthe coil at the beam passage aperture side becomes 1arge. On the other

hand, from the requirement ofthe lattice design, the space between the quadrupo}e magnet and the bending

magnet is limited to only O.2 m. From such reason, the coil of the S-LSR dipole magnet is bent up at the

beam passage aperture side, in order to secure enough space between the quadrupole magnet. Namely, saddle

type coils are employed for S-LSR, despite the H-type iron yoke.

The headband type coil has a function to suppress the leak ofmagnetic flux to the fringing region. In the case

ofS-LSR, the field clamp plate bears the role suppressing the leakage ofthe fringing field, instead ofthe coil.

The 2D field calculation of the longitudinal cross section stmcture at the pole end is performed under the

transverse symmetTy. This 2D calculation is important process to decide the effective length ofthe bending

magnet, The effective length is defined by

                                L.ff(s) == r. B,(s)/B, ds.

where s is the coordinate along the reference orbit of the beam. This integration is applied thorough the

region far enough from the pole end where the fringing field becomes negligible. The effective length

corresponds to the normalized value of tota1 bending magrtetic field on the reference orbit by the central

bending field strength Bo. The tota1 bending magnetic field for various excitation levels can be obtained by

multiplying the centra1 field strength and the effective length, as long as the saturation is negligible. For a
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high excitation curreng the influence of saturation arises. From the reason explained in section 3.1.2, the

field strength reduces near the longitudinal pole end i.e. around the beam entrance and the exit. Since the

area where the bending field exists is also changes, it may induce closed orbit distortion. in order to avoid

this problem, the Iongitudinal pole end also has to be cut, as well as Fig 3-9. In the case of S-LSR, the

longitudinal pole end cut is Rogowski's curve approximated by steps (Fig. 3-1 1). The effective length was

adjusted by shifting the starting point of the Rogowski cug so as to agree the actual pole length. The layout

ofthe pole, coil and field clamp in the 2D field calculation is shown in Fig. 3-12.

Median plane
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ln this calculation, matcrials which have infinite pemieability are attached on the field clarnp and the pole to

ensure the magnetic flux circuit. Such 2D field calculation method is good approximation. near the reference

orbit. it is proved by comparing with the rneasurcd fleld in section 3.9.5.

Although the reason that the head bend type coil has not been adopted is due to the problem of space

between the quadrupole magnet, the coil shown in Fig. (3-15) can be applied. This coil is the cornbination of

the head band type and the saddle type. This coil can suppress the sprcad of the fringing field, rather than the

saddle type. Finally, this type of coil is adopted for S-LSR, although the fabrication process becomes

complex. The magnctic flux in the fringing region when the combined type coil is applied is shown in Fig

(3-13) . And then the distribution ofthe fringing field becomes as shown in Fig (3-14).

  1.2

   1

be as

a
VxO.6

.cv

  e.4

  O.2

   o

275A
650A

                        ." .15 O 15 se 6 se
                                         s(cm)

 Fig. 3-14 Distribution ofthe fringing field. The distribution slightly changes at the tail ofthe fringing field

                                   by the excitation level.

It is difficult to estimate the situation ofthe fringing field exactly in the far region from the reference orbit by

such 2D calculations because of its symmetry condition. In order to search the structure of the fringing field

exactly, 3D field calculation is needed.

                                     Headband type Saddle type

                                Fig. 3-15. Combined type coil

The coil is constructed with bundling a hollow conductor. The material of the hollow conductor is copper

without oxygen, and the stmcture is a long hollow wire. By taking into account the balance between the

presser drop ofthe cooling water and current density, the diameter ofthe hollow conductor is decided to be a
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spuare of the size D14Å~ 14 mm, with the hole for cooling water of the diameter of di 10 mm. Then the

required turn number and the maximum excitation current become 650A and 44 turn per one coil,

respectively. The detailed parameters of the coil are shown in Table 3-2. The difference of the field strength

results from the gap size error is corrected by bypass circuit of the main power supply. Thus, the bending

magnet of S-LSR has no correction coil.
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Table. 3-2

Parameter Value

            material of the coil

  Cross sectional size ofthe hollow conductor

              turn number
   length ofthe hottow conductor per one coil

cross sectional size of the coil (inciuding insulator)

             comection coil
      number of waterway per one coil

pass length ofthe ccoing water per one waterway

          amount of flowing water

    pressure depression per one water way

     resistance ofthe coil per one magnet

  maximum excitation voltage per one magnet

           copper
       Dl4 mm- di 1O mm
4-layer, 11-line, 44 turn per one coil

            3.89m
          169Å~64 mm
           Nothing
              2
            85.6 m
      5.0 2/s (AT=25Åé)
       2.0 kg' weighticm2

       s.gxlo'2n (6oÅé)

        38.4V (60Åé)
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3.3

3.3.1

3D field calculation

  Field distribution

by TOSCA

  The purpose of the 3D field calculation is to check the result of the 2D calculation, under the more

realistic situation. Especially, the structure ofthe fringe field is investigated precisely. The upper halfof the

iron yoke used in the 3D calculation is shown in Fig. 3-17.

field clamp plate -'---kv,---.".

Å~
coil

                     hole to pass the cooling laser

Fig. 3-17-a. The outside appearance ofthe bending magnet for S-LSR

Fig 3-1 7-b. The pole surface structure.

  Tvvo through holes are made in the outer return yoke to pass the cooling laser. Therefore, the area of the

outer return yoke becomes slightly narrower compared to the 2D calculation. The radial field distribution

obtained from the 3D calculation is shown in Fig. 3•-18. The field distribution coincides with that of the 2D
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calculation within thc accuracy ofO.5Å~ 1O"i.

Fig 3-l8.

oca
Nca
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L,1))- IU,

1.5 v• le,

1.0XI04
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                              .v(m)
Comparison of the radial field disnibution, obtained from the 3D and the 2D calcutation. Both

are in agreement within the accuracy of Å}O.5xl04

3.32 Field clamp and coil effect and fringing fieSd

  As described in section 3.2.1, the field clamp plate suppresses the fringing field. In this section, the

function of the field clamp is shown in detail, comparing the result of the 3D calculation. In the beam

entrance or the exit of the bending magnet, the magnetic fiux leaks out to the fringing region (Fig. 3-19).

When the field ciamp plate is set to the fringing region, the magnetic flux passes through in the field clamp

in preference to the fringing air region because of its high permeability. This is the mechanism that the field

clamp suppresses the fringing field. However, if the excitation level is enhanced and the Ieak ofthe magnetic

flux to the fringing region increases, the amount ofthe fiux flowing to the field clamp also increases. Then,

the field clamp is saturated, and the ratio of the flux passing through the fringing air region increases. By

such reason, the distribution of the fringing field changes, even if the pole end of the magnet is cut in

Rogowski's curve.

                               iron:ifO;re fieldclam/tplate

magnetic flux

Fig 3•- 1 9. conceptual

To ensure the enough volume of the

illustration ofthe function of the field clamp plate

field clamp and to avoid the saturation is needed,
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this matter. In addition to this device, efirect of the coil is also important. In the 3D field calculation, two

types ofcoil were tested. In Fig. (3-20), the distribution ofthe flux in the field clamp at the excitation current

650 A is shown. In Fig. (3-20-a), the saddle type coil is used. In Fig. (3-20-b), the combined type coil shown

in Fig. (3-15) is used. Comparing these figures, we can find that the amount of the flux in the fietd clamp is

larger in the case of the saddle type coil, despite the same excitation current. In the case of the saddle type

coil, the field clamp plate slightly saturates, and the distri'bution ofthe fi'inging field changes. Ifthe thickness

of the plate is increased, the flux density in the field clamp can be suppressed even the case of the saddle

type coil. Bug since the space between the quadrupole magnet is limited, it is difficult to adopt 1arger

thickness of the field clamp. Thus, the combined type coil is adopted to the bending magnet for S-LSR.

although the construction process of the coil becomes complex.

Fig 3-20-a. The distribution ofthe magnetic flux in the field clamp and the iron yoke. In this cmse saddle

                   type coil is used with the excitation current 650A.

    Fig 3-20-b. The distribution of the magnetic flux in the field clamp and the iron yoke. In this case

combined type coil is used with the excitation current 650A. The amount of the magnetic flux in the field

                       clamp is suppressed compared to Fig 3-20-a.
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3.3.3 Multi-pole component ofthe calculated field

  As shown in Fig. (3-18), multi-pole component of the field is enough suppressed at enough inner side of

the gap. However, it is expected that the multi-pole component increases at the longitudinal pole end,

because the shims are cut down due to the Rogowski's steps and the gap height bccomes highcr duc to this

steps. Thus, we have to estimate the value ofthe multi-pole component.

3.3.3.1. Coordinate system

  In order to cvaluate the value ofthe multi•-pole componeng coordinate systcm has to be defined exactly. In

the analysis of the calculated field, the Frenet-Serret coordinate system shown in Fig (3-2 1 ) is used.

reference orbit

/

zÅq11ss

Fig. 3-21. Coordinate system.

;

l

;

l

;
,

/
L/tew

   reforence orblt

pess of the integrltion

Fig 3-22. Pass ofthe integration ofthe field

The effective length is defined by [3-2]

                             L,ff (x)= ,f7. B,(x, O, s)/B, ds. (3-s)

This formula is extended also for the orbits vvhich have the other radius than the reference orbit.

We introduce a concept ofeffective boundary to indicate the deviation of the effective edge ofthe magnetic

field from the actual edge of the pole. The effective boundary is defined by

                     Al,ff (x)= ff, B, (x, O, s)/Bo ds-l(1+ill:) (3'6)

vvhere the pass of the integration is shown in Fig (3-22), So is the coordinate ofa point on the center line of

the bending magneg Bo equals to the central field strength, l is the half length of the reference orbit in the

magnet and po is radius ofthe reference orbit. Thus, l(1+x/po) means the actual pole length at the

orbit radius po +x. Therefore, the effective boundary means the deviation ofthe effective length from the

actual pole length in each orbit radius.
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We can obtain the information about the multi-pole component from the effective boundary. The method to

obtain the multi-pole component is shown in next section.

3.33.2. Evaluation of the multi--pole component

  We suppose a simple model in order to assess the effective boundary. The expansion of the field

distribution of a bending magnet on the median plane up to third-order can be expressed as [3-3]

                  B, (x, O) s)=Bo+Bix+iilT/ B2x2 +ilT: B3x3 +•••= IE.i, l/ x", (3-7)

where B. (n21) denotes the coefficient of the multi pole component. The field of an actual bending

magnet has s dependence everywhere; B. = B. (s) . Then we can defme the following field integration

                  I(x) = .g?, B,(x, O, s)alS

                                                                                   (3-8)
                      .= .(:,Oie end By(x, o, s)dS + .[pl].i, ,nd By (x, O, S)dS'

The pass ofthe integration is same as Fig (3-22), but the region ofthe integration is divided at the edge ofthe

pole. Here the line element in the integration (dS) can be rewritten by using the line element on the

reference orbit ds; dS=(1+x/p)ds, where p is the radius of the reference orbit.( p=po in the

bending magnet, p= oo in the outer fringing region. The radius of the actual orbit graduaily changes

p= po to p=oo in the fringing region, but the deviation of the actual orbit from the reference orbit is

small. Thus this approximation is reasonable.) Then we obtain the following formula.

 I(x) ,. (1 + ili-) .gl,oie end [B, (s) + B, (s)x + g; B, (s)x2 + l/ B, (s)x3 + . . .]ds

      + .[7ote end [Bo (S) + Bi (S)X + ilT/ B2 (S)X2 + }/ B3 (s)x3 + • • •]ds

   = g7, B, (s)ds + x . [ .gl,ote end 71u B, (s)ds + .ll,7 B, (s)ds] + x2 • [ .g,loie end 71- B, (s)ds + sg, ;ir1 B, (s)ds] + . . . (3-g)

By this process, the integration pass has been summarized only to the reference orbit. We can find that each

coefficient of x is not merely the component of magnetic field of its order. The lower order component in

the bending magnet is mixed in each coeffTicient. We can also find that the field integration I(x)

correspond to the apparent magnetic field whioh is felt by the beam. In a flat pole bending magnet, the dipole

component behaves as if it is the quadrupole component. In the flat pole bending magnet a beam is focused

horizontally by the radial focusing effect, even if there is no quadrupole component. The apparent radial

focusing field generated by the dipole component corresponds to the frrst temi in the coefficient of x in Eq.

(3-9). Similarly, the quadrupole component in a bending magnet behaves as a sextupole component in a

formula of the horizontal chromaticity of the bending magnet. The apparent sextupole component
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corresponds to the first term in the coefficient of x2 in Eq. (3-9). These apparent effects arise due to the

finite curvature of the beam orbit. When the bending radius po is large, these effects are negligible.

(Actually, in Eq. (3-9), if po is set to co the mixing ofthe magnetic field components vanishes.)

Next, we consider the relation between the effective boundary Alqfif(x) and the field integration I(x).

The equation ofmotion ofthe reference panicle in the fiat pole bending magnet is given by

                                d2x 1
                                 ds2 ==-p,2 'X'

The equation of motion for the same reference particle in a quadrupole magnet is given by

                                d2x B,
                                 ds2 ="Bopo 'X

Therefore, the radial focusing is equivalent to the quadrupole field which has strength Bo1ioo. Thus, the

coefficient x of Eq. (3-9) means total apparent quadrupole component in the half of the bending magnet.

By eliminating the total radial focusing effect in the half of the bending magnet (x•Bollpo ), the actual

quadrupole component in the bending magnet can be extracted. And the total radial focusing effect in the

halfofthe bending magnet approximately coincides with the first term in the coefficient of x in Eq. (3-9).

                             x. Bpooi ,. x. .gl,Oie e"d .;6" B(s)ds (3-io)

Al,ff (x) and I(x) are connected by the relation

                             Ai.ff (x) su iiill) -i(i+i) (3-ii)

on the formula. Therefore, Al,ff(x) is the amount that the radial focusing effect is eliminated from the

normalized field integration I(x)IBo and the actual quadrupole component and the deviation of the

effective length are remained. For the case of S-LSR or a flat pole dipole magnet without edge angle, the

quadrupole component is strongly suppressed in the inner gap. Therefore, the coeencient of x2 in Eq. (3-9)

is almost the total sextupole component ofthe bending magnet. When the multi-pole components are enough

suppressed in the inner gap, the effective boundary can be expressed approximately by

      Aleff (X) R' IilJ- ([ j:, Bo (S)dS - Bol] +X' .l!,l Bi (S)CiS +X2 ' S.i.,. Zil/ B2 (S)dS +X3 ' ff..,. ;T: B3 (S)dS +''') ' (3""12)

This means that the first terrn ofthe expansion (Al,ff(o) ) represents the difference between the half effective

length and the half actual pole length on the reference orbit, and the coefficients of the higher order temis

represents the B.L product in the half region of the magnet. Therefore, by expanding the effective

boundary around the reference orbit (x=O) the information of the multi-pole component is obtained

approximately.

 The effective boundary obtained from the 3D field calculation using the iron core ofFig. (3-17) and the coil

(Fig. 3-16) is shown, at the high excitation current 650A and the low excitation current 275A. (Fig. 3-23)

1
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Fig. 3-23. Effective boundary obtained from the 3D field calculation based on the iron core shown in fig.

 (3-17). The effective lengths ofeach excitation level are slightly longer than the actual pole length.

From Fig. 3-23, we can find that the effective boundary slightly changes by the excitation current despite the

Rogowski's cut is applied to the longitudinal pole end. It is thought to be induced by the saturation of the

field clamp, rather than the saturation of the pole end. The effective length near the reference orbit is longer

than that ofthe end ofthe usable aperture (Å}O.1 m). This means that the sextupole component is included in

the effective boundary. When the effective boundary is expanded as

                          N,v (x)=b, +b,x+ b,x2 +..., (3-1 3)

these coefficients becomes as shown in table 3-3.

3.3.3.3. Suppression of the multi-pole component

  The cause ofthe sextupole component is the longer effective Iength near the reference orbit. Therefore, if

the actual pole lengh is slightly shortened near the reference orbit, the difference of the effective length

depending on the radial position may be reduced. At the same time, the sextupole component is suppressed.

In order to realize this situation, we cut down the last two steps ofthe Rogowski's cut, as shown in Fig. 3-24.

Fig. 3-24-a. Pole end stmcture to suppress the sextupole component. The last two steps of the Rogowski's

cut are cut down.
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Fig. 3•-24-b. detailed dimensions of the pole end cut.

By this way, the actual pole length near the reference orbit is shortened. The result ofthe 3D field calculation

using the iron core (Fig. 3-24) and the combined type coil (Fig 3-16) is shown in Fig 3-25, comparing the

result ofthe previous field caEculation.
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Fig. 3-25. Comparison of the effective boundary. When the

the radial difference of the effective boundary is reduced.
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is shown in Fig. 3-24-a is used,
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3.3.3.4. Evaluation of the multi-pole component

ThecoeMcients of the expansion of each effective boundary ofFig. 3-25 are shovvn in Table 3-3.

Table. 3-3. comparison ofthe multipole component

275A sextupole
  correctlon

650A sextupole
  correctlon

275A without sextupole

     correctlon
  650A without
sextu ole correction

bo(m)
bi(m-i)

b2(m-2)

-2.946E-04

7.626E-05

5.958E-03

4.934E-04

1.331E-04

3.114E-03

5.270E-04

5.255E-05

-- 1.588E-02

1.155E-03

8.933E-05

-- 1 .924E-02

From this table, we can find that the sextupole component is suppressed when the corrected iron core is used.

  We have fixed the design of bending magnet with the following conditions: the radial cross-section

structure Fig 3-8 is applied, and the combined type shown in Fig 3-16 is used. The longitudinal pole end cut

is approximated by Rogowski's cut as shovvn in Fig. 3-24-b. Final fixed parameters are shown in Table 3-4.

Table 3-4. Final parameters of the bending magnet

Parameter Value

      Type ofthe iron core

        Bending radius

          Gap height
          Pole width

        Bending angle
          Edge angle
   Maximum excitation current
   Coil number per one magnet

     tum number ofthe coil

Pole end structure at beam entrance

          main coil
        correction coil
   precision of the pole surface

     precision of other parts

            mass

                H-type
               1050 mm
                70 mm
                371 mm
                  6oo
                  Oo
              57200 AiT
                  2
           44 tum per one coil

       Rogowski cut with field clamp

Combination with a saddle and a headband type

            no correction coil

               Å}O.05 mm
               Å}O.1 mm
                4550 kg
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3.4 Outline of perfermance assessment of the bending magnets by field
   measurement

  The primary purpose of the field measurement is to check vvhether the completed magnet having the

performance as the design. The second purpose is to evaluate the difference ofeach magnet and to decide the

suitable arrangement ofthem, in the ring. Ifeach magnet has difference in the field strength and the effective

length, the difference of the bending angle at each bending section arises. This becomes the cause of the

closed orbit distortion. It is impossible to suppress the construction error and the individual difference ofthe

magnets completely. Even if the difference of each magnet exists, the closed orbit distortion can be

minimized by optimizing the arrangement of them, in the ring. Thus, we have to evaluate the individual

difference of each magnet by the field measurement, and we have to decide the suitable arrangement of 6

magnets based on the result of the field measurement.

3.4.1 Items ofthe field measurement

(1) Stability ofthe power supply, excitation current and central field.

  ln the real usage, the six bending magnets are connected in series to the power supply. The maximum

vokage ofthe main power supply for 6 bending magnets is 250 V, and the maximum current is 650A. Ifthe

excitation cunent is unstable, the bending magnetic field changes with time. This instability induces the

time-depending variation of the closed orbit, in addition to the closed orbit distonion generated by the

individual structural difference of the magnets. The stability of the power supply is measured by DCCT in

the state that the power supply is connected to a single bending magnet for the field measurement. The

detailed result of the measurement is shown in section 3.5.

(2) Excitation property of each bending magnet

  The excitation level of the bending magnets is set up to the target value after initialization excitation

process, in order to avoid the infiuence of the hysterisys. Even if each magnet is excited with the same

excitation pattern, the response of its magnetic field may have individual difference because ofdifference of

the magnetic property of the iron core. Therefore, we have to get hold of the information of all excitation

property of6 magnets. The detailed result ofthe measurement is shown in section 3.6.

(3) Individual difference ofthe central field at the same excitation current.

  In general, the central magnetic field Bo (main dipole component) differs with each magnet because of the

error ofthe gap height and the difference ofthe magnetic property. Ifthe error ofthe main dipole component

is tolerable range, the closed orbit distonion is minimized by optimizing the arrangement of 6 magnets.

When the error exceeds the permissible range, the main dipole component will be corrected by correction

current induced by the bypass circuit. The detailed result ofthe measurement is shown in section 3.7.

(4) Effective length

  The effective length implies the effective region where the bending magnetic field exists. The individual

difference of the effective length induces closed orbit distortion along the reference orbit.

The detailed instruments and methods of the measurement are shown in section 3.4.2, and the results are

shown in Section 3.9.

"41'



Chapter3. Designand,fieldmeasurementofbendingmagnetsforS-LSR

(5) Field distribution

  Ideally, the flat pole bending magnet has no higher order field component. However, the actual fabricated

magnet usually has a sextupole component due to the fmite width of the pole and a small quadrupole

component due to the construction error. The sextupole component of the bending magnet induces

resonances around at a certain operating point and beam instability may happen. The error of the quadrupole

component generates the "stop band" near integer or half integer tune values. In general, the effect to the

integer or half integer stop band is smaller than that of the error of the quadrupole magnets. We confimi the

degree ofthe quadrupole component error ofthe bending magnet by the field measurement. The higher-order

component included in the bending magnetic field induces resonances, and a kind of stop band is created

around the resonance line in the tune diagram [3-4] [3-5]. Therefore, we also have to investigate the degree

of existence of the higher-order component.

  The detailed instruments and methods of the measurement are shown in section 3.4.2, and the results are

shown in Section 3.9, together with the measurement ofthe effective length.

3.4.2 Main instruments for the field measurement

(1) Power supply

  The power supply converts a three phase alternating current (21O V Å} 100/o 50160 Hz) to a direct current.

The maximurn specification of the power supply is 200 kW. The assumed resistance of the power supply is

O.354 9, which corresponds to the total resistance of the six bending magnets plus the wiring resistance.

The maximum current and voltage is 650 A and 250V, respectively. The current stability is Å}50 ppm per 4

hour, at the maximum current. The ratio ofthe ripple to the maximum current is less than 50 ppm.

(2) Current meter

 The excitation current was measured by DCCT which is inserted in the internal circuit of the power supply.

(3) NMR
  When a nuclear magnetic moment associated with a nuclear spin is placed in an external magnetic field,

the different spin states are given different magnetic potential energies. In the presence ofthe static magnetic

field which produces a small amount of spin polarization, a radio frequency signal of the proper frequency

can induce a transition between spin states. This spin flip places some ofthe spins in their higher energy state.

Ifthe radio frequency signal is then switched off, the relaxation ofthe spins back to the lower state produces

a measurable amount of RIT signal at the resonant frequency associated with the spin flip. This process is

called Nuclear Magnetic Resonance (NMR). The precession of the proton spin in the magnetic field is the

interaction which is used in proton NMR. The proton spin will tend to precess around the magnetic field vvith

a frequency traditionally called the Larmor frequency. The Larmor frequency is proponional to strength of

the magnetic field. For a 1 T magnetic field this Larmor frequency is 42.5781 MHz. As a probe, a sample

containing protons (hydrogen nuclei) is placed in a strong magnetic field to produce partial polarization of

the protons. A strong RF field is also imposed on the sample to excite some of the nuclear spins into their

higher energy state. When this strong RF signal is switched off, the spins tend to return to their lower state,

producing a small amount of radiation at the Larmor frequency associated with that field. The emission of

radiation is associated with the spin relaxation of the protons from their excited state. It induces a radio

frequency signal in a detector coil which is amplified to display the NMR signal.
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  The NMR magnetic field meter used in our field measurement was ECHO DENSHI, EFM-2000AX. The

range ofthis NMR meter is O.1-2 T, and the resolution is O.1 pt T. The sample ofthe NMR probe is proton.

The NMR probe was placed near the center of the pole. The NMR probe can measure the absolute value of

the magnetic flux density. Since there is only dipole component at the center of the pole, we can regard the

value measured by NMR as the central field (main dipole component) of the magnet; Bo.

(4) Hall probe

  As a method of the measurement of effective length, a long flip coil measurement can be considered.

However, this method is not feasible for a sector magnet with the small bending radius, and we want to

investigate the detailed structure of the fringing field. Thus, we chose the field mapping method by a

Hall-probe. The field was measured on the points of rectangular grids. By this way, field distribution in the

bending magnet was measured.

  The function of a Hall seRsor is based on the physical principle of the Hall-effect. The Hall-effect is that a

voltage is generated transversely to the current flow direction in an electric conductor (the Hall voltage), if a

magnetic field is applied perpendicularly to the conductor. By reading out this voltage the magnetic file

component perpendicular to the Hall-element is measured. The Hall--effect is most pronounced in

semiconductors, and the most suitable Hall element is a small platelet made of semiconductive material.

  There is various type of Hall probe [3-5]. Hall effect has temperature dependence. Thus the value

measured by a Hall-probe has to be corrected with the temperature. Group3 Hall-probe performs this

correction automatically and exactly. Therefore, we chose Group3 Hall-probe. The Group3 Hall-probe

type-MPT-141 is connected to the tesla meter type-DTM-151. The measurable range ofthis Hall-tesla meter

system is Å}3 T. The range is divided to 4 region; O.3T, O.6T, 1.2T, 3.0T, and the resolution in each rarige is

O.1pT, 1pT, 1pT, and 1pT, respectively. The accuracy is within Å} (O.OIO/o of reading + O.O060/o of full scale)

at 250C. The sensor area ofMPT-14l is shovvn in Fig. 3-26-a, it is enough small for mapping. Hall probe can

measure only the field component perpendicular to the sensor surface. The main component of the field

measurement is By. Therefore the angle of the installation becomes important. Calibration of the absolute

value and the center ofthe sensor region were made as shown in section 3.8.
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         -qI :,kt::,,
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                   Att dimefisiens in mrn

Fig 3--26-a. Structure ofGroup3 Hall-probe MPT-141

(5) 3 axis drive stage

  The field mapping was performed, mounting the Hall-probe on a 3-axis drive stage. The drivable range of

this stage is (1450Å~440Å~260 mm; longitudinal, transverse, and venical, respectively.) The stage is driven

- 43 --



( 'hapter 3. Design and.lield niea,yurement qf'hendin,g, mag,neis.i`(r)i` SLL.S"le

with the resolution of5/t m by thrcc stepping rnotors. 1"he stcppin.qr mother driycrs arc connccted to TUJI

DIiNSHI PM4C four-canncl pulsc motor controller.

  Threc linear scales arc equippcd to each axis, in order to confinn that the motor system works well. The

position linearity ofthe pulse motor systern svas checked bÅrt these scales. We found that the longitudinal axis

has worst linearity. but the dcviation is only 20 )u m which iE accurate enough for our mapping purpose.

Fig 3-26-b. 3-axis drive stage used in the mapping measurement.

All instruments were controlled and read out by PC through a NI PCMCIA-GPIB card.

3.4.3 The precision of measurement

  The manufacturing error ofthe gap height is estimated to 70Å}O.05 mm. In order to investigate the effect

of this error to the magnetic field, the precision of the NMR and the Group3 Hall probe is desirable to be

within Å}1x104. This precision is achieved in the nominal performance. However, in the actual use, various

other factors to make the precision worse exist. For example, the oscillation of the Hall probe which is

attached to the tip of the 3 axis drive stage is considered as the factor. As proven later, even with the other

factors, the precision of the probes is enougli. The manufacturing error of the pole length is estimated to be

Å}O.1 mm. Therefore, the precision ofthe measured effective length is desirable to be within Å}O.1 mm.

3.5 Stability of the excitation current, the magnetic field and instruments

3.5.1 Surroundingsofthemeasurement

 The measurement had been performed at National Institute of Radiological Science. The bending magnet

and the instruments had been surrounded by vinyl sheets to suppress the changes ofthe temperature and air

flow.
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3.5.2 Initializationpattern

  Initialization of the excitation is needed to avoid the difference of the central magnetic field due to the

hysterisys. The excitation pattern of the initialization is shown in Fig 3-27. Initially, the excitation current is

raised linearly to the maximum value 650A during about 30 seconds. After maintaining the maximum

excitation level for 1O seconds or 30 seconds (TOP time in Fig. 3-27), the excitation current is set up to the

target value. After the central magnetic field settles down at the target value, the storage ofthe beam is to be

started. We investigated the suitable TOP time and FALL time in Fig. 3-27. As the TOP time, we testcd 10

seconds and 30 seconds. The time dependence ofthe central field is shown in Fig. 3-28. Each measurement

was performed 3 times independently. In the both cases, the central fields are settled to the certain values

after 800 seconds. The central field coincides with precision of2Å~ 1O'S in the both cases. Finally, we chose

the TOP time as 30 second, although the both cases were satisfactory.
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Fig 3-27. The exchation pattern ofthe initialization.
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3.5.3 Long time stability of the central field, the excitation current and the instruments

  As shown later, the mapping time per one measurement is about 4 hour. Therefore we have to investigate

the long time stability of the instruments, the magnet and exchation current, prior to mapping measurement.

The stability of the instruments during about 5 hour is shown in Figures 3-29--a-d together with the stability

ofthe excitation current and the central field. These values are measured at the same time. Thus, they must

correlate each other. For example, the NMR probe measures the absolute value of the magnetic flux density
g = B.2 +By2 +B,2 and the Group3 Hall probe measures the venical component of the field B,. In the

median plane of the magnet the B has only By component. Thus the value of the Hall-probe can be

calibrated with the NMR. Furthermore, the excitation current and the central field (Bo fu jl} Fu By ; at the

center of the gap) are correlated by the relation Eq. (3-3). They have to be in proportion. Therefore, if the one

ofthese values has large deviation from their correlations, its instrument or actual value is abnormal.
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Stability ofthe central field measured

by the Group3 Hall probe.

From Fig. 3-29-a, it is found that the fiuctuation of the excitation current is less than Å}5Å~10-6 at the

excitation level 275A. From Fig. 3-29-c, it is found that the central field reduces slowly (about 2Å~ 10-5

reduces), although the excitation current is almost constant. From Fig. 3-29h-b, it is thought that the

temperature ofthe iron core rises and then the gap height slightly increased. This is the cause that the central
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field reduces slowly. The reduction of the central {ield is small enough compared with thc target accuracy

and the resolution ofthe Group3. As shown in Fig. 3-29-d, the measured value ofGroup3 Hall probejumps

suddenly. The value of this jump is less than Å}1Å~10"i. This error is within the target accuracy of the

measurement and within the spccifications.

3.6 Excitation property ofeach bending magnet

  The relatlon between the central field Bo and the excitation current was investigated. Thc central field was

measured by NMR after the initialization described in section 3.5.2. The excitation current was changed by

50 A steps, except for 75 A and 100 A. The initiali7ation was performed for every excitation level. The

fabricated bending magnets have been numbered from 15012 to 15017. The B-I curve of the magnet number

150l2 is shown in Fig. 3-30.

 12000

 1OOOO
g
evasooo

di

2 600o
e-

:t 40DO

s
  2000

    o
                         O 1oo 2oo 3oo 400 .roO 600 7oo
                                        exc ltatlon current 1(A)

                     Fig. 3-30. B-I curve of the bending magnet No. 15012.

The central field deviates from the linear proportion to the excitation current at high excitation current. This

deviation originates in the saturation of the iron core. In order to express the relation between the excitation

current and the central field of each bending magnet, quantitatively, vve expand the B-I curve by the

following polynomial.

                    B(I)=ao+a,I+a2I2+a,I3+a,I"+a,I5+... (3-14)

Then, each coeMcient is shown in Table. 3-5.

Table. 3-5. CoeMcients ofthe ex ansion ofB-I curve

Magnet
 No.

15012 15013 15014 15015 15016 15017

be

al

a2

a3

fu

as

5.515E+O1

1.421E+O1

1 .475E-02

-6.140E--05

1 . 1 62E•-07

-7.979E- 1 1

4.948E+Ol

1.437E+Ol

1.31OE-02

-5.333E-05

9.584E•-08

-5.452E-1 1

4.974E+O1

1 .437E+O 1

1 .303 E-02

-5.256E-05

9.279E-08

-4.953E-11

5.289E+Ol

1 .427E+O 1

1.418E-02

•- 5.890E-05

1.I04E-07

-7.308E-1 1

4.979E+Ol

1 .435E+O l

l.321E-02

•- 5.371E-05

9.645E-08

-5.518E-11

4.613E+Ol

1.446E+O1

1.201E-02

-4.706E-05

8.056E-08

-3 .495E- 1 1
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In Table 3-5, the deviation of the coefficient of the linear component ai is too large despite usage of the same

power supply and the material of the iron core. In low excitation level, where the effect of the saturation is

negligible, the coefficient of the linear component is given by Eq. 3-3. The cause of the deviation of the

constant term ao and the linear component ai might be the error of the fitting due to including up to high

excitation level in the expansion of B-I curve. If the expansion is limited in the low excitation region, the

exact ai and ao may be obtained. When the relation ofB and I is fitted by a linear function B(I) = ao + ail

in the low excitation region up to 250A, 4000 Gauss, the coefficients becomes as shown in Table 3-6.

Table 3-6. Coefficients ofthe expansion ofB-I line. (Low excitation region)

Magnet No. 15012 15013 15014 15015 15016 15017

da

al

-4.1277E+OO -3.9880E+OO --3.9059E+OO -3.8285E+OO -4.2387E+OO -4.0818E+OO

1.5787E+OO 1.5786E+Ol 1.5786E+Ol 1.5786E+Ol 1.5786E+Ol 1.5784E+Ol

It is found that each coeflficient ai is in agreement within the precision of Å} 1 Å~ 10-4.

is most frequently used in the actual operation of S-LSR.

This excitation region

3.7 Individual difference ofthe central field

  ln actual use of the six bending magnets, they are connected in series to the power supply. Therefore, all

magnets are excited by the same excitation current. The gap height error and the difference of the magnetic

property induce the difference of the central fields, and they induce the closed orbit distortion together with

the deviation of the effective length, as briefiy explained in section 3.4.1. If the degree of the closed orbit

distortion is tolerable range, the storage ring is operated without correction current, although the bypass

circuit is equipped to the power supply The bypass circuit can adjust the excitation current of each magnet

individually. Delicate adjustment ofthe main excitation current is required in the actual circulation ofa beam.

If the correction ofeach exchation current is performed, each time, the operation becomes very complicated.

Therefore, we vvant to operate the storage ring without using the correction current basically. However, in the

case of dispersion-free operating mode (where the horizontal aperture is rather limited as 30 mm (see chapter

4)), carefu1 adjustment ofeach excitation current may be required.

  In order to decide the necessity of the correction current, we investigated the individual difference of the

central field. The central field was measured by the NMR at the end of the mapping measurement, since the

temperature of the iron core was considered relatively stable. The central field is slightly affected by the

temperature of the iron core because of the thermal expansion of the gap height. The central fields obtained

from each measurement are shown in table 3-7.

Table 3-7-a. Central field of each bending magnet

Magnet NO. Central field (Gauss) Excitation current (A) Air temperature in the gap (OC)

15012

15013

15014

15015

15016

15017

4337.876

4337.541

4337.159

4337.588

4337.106

4336.779

274.1160

274.1198

274.1180

274.1200

274.1170

274.1182

26.4

25.9

26.3

27.2

26.1

26.7
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Table 3-7-b. Converted central field excited with the completely samc excitation currcnt 274.12 (A)

Magnet NO.
Central field at the same excitation current(Gauss):

       Avera e value: 4337.370 Gauss
Deviation

15012

150I3

15014

15015

15016

15017

4337.939

4337.544

4337.19I

4337588
4337.153

4336.807

1 .3 E-04

4.0E-05

-4.1 E-05

5.0E-05

-5.0E-05

-1 .3E-04

 The excitation current in each measurement is slightly different because of the differcnce of the

circumstances ofthe power supply. Thus, each central fie:d is corrected for the same excitation current ustng

the B-I curves obtained in section 3.6. These data will be used in the estimation ofthe closed orbit distortion,

as described in section 3.1O.

3.8 Measurement ofeffective length and field distribution

 The field distribution of the bending magnet is mapped by two Hall-probes mounted on the 3 axis drive

stage. From the mapping data the effective length and the effective boundary, introduced in section 3.3, are

calculated.

3.8.1 Setupofthemappingmeasurement

 Two Hall probes are used to measure the B, and By component. Ideally, the B, component is 7Lero on the

median plane because of the symmetry of the magnet. Two Hall-probes are installed on a two axis holder

(Fig 3-31•-a). The holder is made so that the base plates (reference surfaces) of the Hall-probes intersect at

right angles betrween each other. However, the Hall-sensor may have finite angle against to the base plate

(Fig 3-26-a). Therefore, finally, the installation angle of the B, Hall-probe was adjusted so that it observes

the 1argest value ofmagnetic field. B, Hall-probe was used for the purpose ofthe confirmation ofthe B, field,

although we did not use the B, component for the beam dynamics calculation. Nevertheless, it is difficult to

Fig 3-3 1 -a. Two axis Hall-probe holder.
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sct the scnsor surfacc perpcndicularly to By. The measured valuc of the Hall probe is proportional to thc

value ofNMR. Therefore, we can calibrate the value of the Hall-probe by the value ofNMR (Fig 3-3 1-b).

The rclation of these values was investigated each time when the setup of the mapping measurement is

changed. The setup of the mapping measurement is shown in Fig. 3-32. The longitudinal axis of thc drive

f tage has a crossing angle of 1 O degree against to the normal line of the pole edge. The probe accessiblc area

is limited due to the small aperture ofthe field clamp. The probe accessible area is shovvn in Fig 3-33. Thus,

we divide the mapping region into two regions; beam exit side and entrance side.

Probeerm

'

. ',-t'-- ''-'- rr-';;•'::r',' -t--t -t
'

'tp.l

".' -.t

z
,t loe

3axisderivestage

/ Fieldclemp
i

4
x
Å~

Å~' reference orb'rk

Fig 3-32. Setup of the mapping measurement

x

reforence orbit

ts:v

/

Fig .3-33. Pro

Meppin

Probe accessible area

Helt probe

Field clamp

be accessible area and the mapping area.

-50-



Chapter3. Designand.fieldmeasurementofbendingmagnetsforS-LSR

3.8.2 Decisionofthemappinggridinterval

  The measurement was performed on the points of square grids. When the drive stage reaches to the target

point and stops, the probe arm starts oscillation. This oscillation may influence the measurement at the

fringing region. The oscillation damps according to time. And, the amplimde of the oscillation can be

reduced with the slow driving speed. However, if the enough waiting time for the oscillation damping and

the low driving speed are selected, long mapping time is needed. Therefore, the suitable waiting time and the

driving speed have to be investigated. It was also found that the degree ofthe oscillation was also depending

on the drive interval; i.e. the suitable drive method has to be considered together with the size ofthe mapping

grid. The size of the mapping grid also decides the total mapping time. As the grid interval becomes large,

the needed mapping time reduces, but the accuracy ofthe field integration becomes worse.

  First, two mapping were performed on the line of the reference orbit in the fringing region (the waiting

time to avoid the influence of the oscillation is ensured enough). One is 5 mm interval, the other is 10 mm

interval. Then the difference of these effective length was 4.6Å~ 10M7 m. Therefore, we decided the grid

interval to 1O mm, taking into account the total mapping time.

  Next, the waiting time at each mapping point and the treatment of the data measured at the mapping point

were considered. As shown in Fig. 3-7, when the bending magnets used in the ring the, quadrupole magnets

are put near the bending magnet. Therefore, the mapping was also performed with the quadrupole magnet.

The influence of the oscillation of the Hall-probe must be remarkable in the quadrupole field. Therefore, if

the suhable driving method is established in the quadrupole field, it is enough for the measurement of the

bending magrietic field. The data ofthe Hall-probe is read out every O.15 seconds, after reaching to the target

point. In Fig. 3-34, the data of 5 measurement points which are measured by the Hall-probe is shown. The

Hall-probe moves in the quadrupole field, and measures the field during 15 sec at each measurement point.

When the measurement modes ofthe tesla meter DTM-1 5 1 is selected "filter on", the response in a changing

field becomes worse. Therefore, we used the tesla meter in the mode "filter ofi?' and finally the measurement

value was averaged at each measurement point.

                      1171
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                      1170
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Fig. 3-34. The value which was read out from the Hall-probe. The data of the Hall probe during the

measurement of5 points in the quadrupole magnet is plotted. ln this case, the driving seed is selected

suitably. Thus, it is found that the effect of the oscillation is negligible compared with the fluctuation due to

the efficiency ofthe Hall probe.
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As sccn in Fig 3-34, it was found that the measured value at each point was fluctuating in the statc '`Filter

ofl"'. This fluctuation originatcs from the propertÅrt of the Group3 IIall-probe, but not the influence of the

oscillation. In Fig. 3-34, since the driving seed is selected suitably, the influence ofthe oscillation does not

arise. The oscillation of thc probe arm dumps almost completely, in 1 sec, cven ifthe drive specd and the

intcrval ofthe measurcment points are not selectcd suitably. Finally, it was decided so that the probe waits

during l sec after reaching the target point and then the probe mcasures the field 1O times during 1.5 sec. The

averaged value of the 10 times measurement at each point and the original 10 data were recorded,

respectively.

3.8.3 Alignmentmethod

  ln order to obtain the exact effective length and field distribution, the measured field value is needed to be

corresponded to the exact coordinate of its measuring point. Therefore, exact alignment of the banding

magnet and the 3-axis drive stage is essential. Especially to decide the relative Iongitudinal position of the

probe center to the bending magnet is important. In the case of S-LSR bending magnet, the possible mapping

                                              r :1 , frt r-rr,t-tr. tTr, T'-pmTtvwT

Nv

x

xsc

  Probe eccessible srea

    Trtnsverse exis

Line of the field integrition

N L

                                               Fig. 3-36-a. The knife-edge was mounted on the
                           Lengitudinel axis
                      :io' aluminum. Then, the aluminum block vvas placed
lliiegssur3e'ilii'ntCOOrdinate SYSteM Of the MaPping on the Rogowski's cut. The data shown in Fig.

                                               3-37 was obtained by the mapping measurement

                                               across the edge.

area at the same time is half region of the bending magneg as shovv in Fig. 3-33. (If all regions can be

measured at the same time, this complicated process is unnecessary, because the effective length can be

obtained merely integrating the measured field in the Iongitudinal direction.) Therefore, the longitudinal

deviation ofthe alignment is reflected to the error ofthe effective length almost directly.

  Firsg the longitudina: derive axis of the 3-axis drive stage was aligned with the line which has inclination

of 10 degree from the normal line of the pole edge (Figs 3•-32 and 3-33). The position of the stage was

recorded as the pulse number sent ftom the pulse motor. The 1 pulse corresponds to 5 " m. The pitch ofthe
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ball screw of the drive stage is S mm. The pulse motor turns one turn by 1000 pulse. In order to avoid the

back rash of the screw shafl. the measurement vvas always performed, driving to the same direction. The

coordinate system and the origin of the mapping measurement were decided as shown in Fig. 3-35. It is

diMcult to align the center of the Hall-probe sensor by using the mark on the probe, because this mark may

include the error. The most exact method is to use the magnetic field sensed by the Hall-sensor. The precise

position of the center ofthe HalE probe to the magnetic field center was calibrated with use ofthe sharp edge

ofa knife set to a certain position on the Rogowski's cut (Fig. 3-36) When the field vvas mapped on the line

crossing this edge, the field distribution shown in Fig. 3-37 was obtained. This field distribution can be fitted

by Gaussian. From the coordinate of the center of this Gaussian the absolute position of the origin vvas

obtained.

                                                 Probe arm             Hall sensor

Knife edger"-

Field clamp

Fig. 3-36-b. The set up of the measurement to calibrate the precise position of the center of

the Hall probe and the magnetic field center vvith use of a sharp edge of a knife set on the

Rogowski's cut. The field distribution along the line across the edge becomes as shown in

Fig 3-37.

(a)Mapping data to decide the longitudinal origin

                           [t=tl
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                 xAxisTne XAxisnb
Fig. 3-37. The field distribution obtained from mapping measurement across the edge. When the edge is

sharp, this field distribution can be fitted by Gaussian.
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3.9 Analysis of the measured field

  The mapped data becomes as shown in Fig. 3-38. From this data, effective length and the effective

boundary is calculated. Since the mapped field data exists on the points of rectangular grids, the mapped

points may not locate on the line of the field integration (Fig. 3•-35). Therefore, interpolation of the points

was performed. The mapped data were analyzed on the Frenet-Serret coordinate system defined in section

3.3.3.1.

3.9.1 Radianfielddistribution

  The radial field distribution near the center of the magnet is shown in Fig. 3-39. These radial distribution

were obtained from the mapping data. It is found that the radial field of all magnets has the same tendency.

The radial distribution slightly changes by the excitation current due to the saturation. The deviation of the

field distribution is within Å} 1 Å~ 10". The polynomial expansion of the radial field distribution correspond

to Eq. (3-7) is performed. The coeMcients of the expansion are listed in table 3-8.
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Fig. 3-39. The radial field distribution of6 magnets. The deviation fix)m a completely uniform field is within

Å}1Å~10". The deviation is slightly larger than that of the 2D and 3D field calculation (Fig 3-18). This

deviation is thought to be oaused by the fabrication error ofthe poIe surface. The error appears similarly with

all magnets. This tendency is thought to originate fiDm the method of the shaping of the pole surface. The

pole surfaces of6 magnets were simultaneously shaped on a very large lathe.
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1'able 3-8. Coe fficients ofthe polynomial expansion ofthe radial field distribution.

excitationcurrent 275A

Magnet No. l5012 15013 15014 15015 15016 150l7

Bl

B2

B3

B4

-2.967E•-04

-1.785E-02

-1 .093 E-OI

3.023E+OO

-9.153E-05

-1.591E-02

-l.782E-O1

2.991E+OO

-7.668E-05

-2.024E-02

-1.642E-O1

3.742E+OO

-4.854E-06

-8.376E-03

-1.896E-O1

3.480E+OO

2.721E-04

- 1 .650E-02

-1.880E-Ol

2.721E+OO

-8.025E-05

-1 .860E-02

-1 .934E-O 1

2.651E+OO

excltatlon current 650A

Magnet No. 15012 150l3 15014 15015 15016 15017

Bl

B2

B3

B4

-1.841E-04

-2.278E-02

-4.632E-02

3.318E+OO

7.969E•-05

-1.631E-02

-1.694E-O1

2.346E+OO

-3.276E-05

•-
2. 1 02 E-02

-2.007E-O1

2.660E+OO

3.880E-04

-2.242E-02

-2.245E-Ol

3.606E+OO

4.641E-05

-2.012E-02

-7.602E-02

2.453E+03

3.060E-04

-2.734E-02

-2.438E-Ol

4.834E+OO

3.9.2 Longitudinal field distribution

  The longitudinal field distribution, enough inner region ofthe magnet, along th

in Fig. 3-40.

  tSH)4

  1ne-o4

  oDEeo

 -11H)4

 -UE"mx -SDE"m
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 -es)E-o4
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            lx tw no 2to sso seo 4co "o sx                                   s ["ul

  Fig. 3-40. The longitudinal field distribution of magnet No. 15016 enough inner

region ofthe pole. The horizonta1 axis means the distance from the edge ofthe magnet.

The deviation from the uniform distribution is about Å} 1 Å~ 10q. The deviation of the

longitudinal field distributions of the other magnets is smaller than that of magnet

No.15016.

The longitudinal field distribution in the fringing region is shown in Fig. 3-4 1 . It is found that the structure of

the fringing field doesn't depend on the excitation curreng and the tail ofthe fringing field is well suppressed

by the field clamp.
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3.9.3

Fig. 3-41
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Difference of the effective length from the actual pole length

200

  From the mapping data, the deviation of the effective edge (boundary) of the field from the actual poie

edge is obtained. We define this value as dL ;

                     dL = S.if .,,.. By(O,O,S)1 Bods - actual halfpole length

As shown later, actual pole length also has error. Therefore, the effective length is obtained by taking into

account the individual difference ofthe actual pole length. The dL at the beam entrance side and the beam

exit side are shown in table 3-9, respectively. These data have been calculated from the mapping data, based

on Eq. (3-5).

Table 3-9. Difference ofthe effective edge from the actual pole end.

 Excitation current 275A Unit: mm
Mi(l[ljn.et dL, (beam exit side)

dL, (beam entrance

  side

Tota1 diffrerence of the effective length from

    the actual pole length dLR + dLL

15012

15013

15014

15015

15016

15017

-O.59Å}O.05
-O.86Å}O.05
- O.82 Å} O.05

-O.81Å}O.05

-O.88Å}O.05
- 1 .00Å}O.05

-O.04Å}O.05
-O.27Å}O.05

-O.18Å}O.05

-O.18Å}O.05

-O.46Å}O.05

-O.25Å}O.05

-O.6Å}O.1

-1.1Å}O.1

-1.0Å}O.1

-1.0Å}O.1

-1.3Å}O.1

-1.3Å}O.1
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Excitation currcnt 650A Unit: mrn

Magnet
NO.

dL,, (beamexitside)
dL, (beam entrance

  side

Total differencc ofthe effective length frorn

    the actual pole length dLie +dLL

15012

15013

150l4

15015

l50l6

15017

+O.29Å}O.05
-O.O1 Å} O.05

-O.03Å}O.05

-O.05Å}O.05

-O.28Å}O.05

-O.25Å}O.05

+O.67Å}O.05
+O.49Å}O.05
+O.53Å}O.05
+O.40Å}O.05
+O.25Å}O.05

+O.36Å}O.05

+1.0Å}O.1

+O.5Å}O.1
+ O.5 :!FL O. 1

+O.4Å}O.1

-O.OÅ}O.1

+O.1Å}O.1

  ln all magnets, the effective edge of beam entrance side is a little bit far from the pole edge compared with

the beam exit side. This difference is due to the structure ofthe coil (Fig. 3-36). The turn number of the head

band part ofthe coil at the beam entrance side becomes 2 turns more than that of the beam exit side, because

of the connection with the outer power supply and outer water pass. Therefore, the fringing field at the beam

entrance side becomes slightly larger.

3.9.4 Individuat difference of the actual pole length

  From the

length has in

precise three-dimensional measurement by a laser tracker, it was

dividual difference, The Iength shown in Fig. 3-42 vvas measured.

Fig. 3-42.

Terlet for elipment

 i
i Nn'!

''
x. .lt

                      reference orbit

Measured length to investigate the indivi

found that the actual

dual difference ofthe actual pole length

pole

Table 3-1O. Actual le len of the 6 bendin ma ets. Unit: mm

Magnet No
IR(beam exit

   side
IL (beam entrance

     side
Tota1 actual pole length

alon thereferenceorbit
deviation from the
   ideal value

  150l2

  15013

  15014

  15015

  15016

  15017
ideal value

605.68

606.I7

606.16

606.05

606.48

606.07

606.22

606.49

606.08

606.24

605.99

606.26

606.31

606.22

1099.281

1099.371

1099.523

1099.160

1 099.857

1 099.506

1 099.560

-O.279

-O.189

-O.037

-O.400

O.297

-O.054
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3.9.5 Individual difference ofthe effective length and BL product

  Combining the data of tables 3-9, and 3-1O, the effective length of each magnet is obtained.

become as shown in table 3-11

These values

Table 3-1 1 . Effective length ofeach magnet

Excitation current 275A Unit: mm

Magnet
NO.

effective length (beam exit

        side
effective length (beam entrance

          side
Total effective length

15012

15013

15014

15015

150I6

15017

549.78-O.54-O.59Å}O.05
549.78-O.05-O.86Å}O.05
549.78-O.06-O.82Å}O.05
549.78-O.17-O.81Å}O.05
549.78+O.26-O.88Å}O.05
549.78-O.I5-1.00Å}O.05

549.78+O.27-O.04Å}O.05
549.78-O.14-O.27Å}O.05
549.78+O.02-O.18Å}O.05
549.78-O.23-O.18Å}O.05
549.78 + O.04 - O.46 Å} O.05

549.78+O.09-O.25Å}O.05

1099.56-O.9Å}O.1

1099.56-1.3Å}O.1

1099.56-1.0Å}O.1
1099.56-1.4Å}O.1

1099.56-1.0Å}O.1

1099.56-1.3Å}O.1

Excitation current 650A

Magnet
NO.

effective length (beam exit

        side
effective length (beam entrance

          side
Total effective length

15012

15013

15014

15015

15016

15017

549.78-054+O.29Å}O.05
549.78-O.05-O.O1Å}O.05
549.78-O.06-O.03Å}O.05
549.78-O.17-O.05Å}O.05
549.78+O.26-O.28Å}O.05
549.78-O.15-O.25Å}O.05

549.78+O.27+O.67Å}O.05
549.78-O.14+O.49Å}O.05
549.78+O.02+O.53Å}O.05
549.78-O.23+O.40Å}O.05
549.78+O.04+O.25Å}O.05
549.78-O.15+O.36Å}O.05

I099.56+O.7Å}O.1
1099.56+O.3Å}O.1

1099.56+O.5Å}O.1

1099.56-O.1Å}O.1
1099.56+O.3Å}O.1

1099.56+O.IÅ}O.1

The deviation of the BL product at the excitation current 275 A (274.12 A) can be obtained from tables. 3-7

and 3-11, the result is shown in Fig 3-43.
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                     J2.0E04
                     s.oF.o4
                     4.0E-04
                           15012 15013 ISO14 ISO15 15016 15017
                                         Magnet No

              Fig 3-43 . Deviation ofthe BL products at the exchation current 275 A.
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ln Fig. 3-43, the BL product of the magnet No. 15012 is obviously 1arge. In order to reduce the size of the

deviation of the BL products the position of the field clamp of magnet No. 15012 was shifted 2 mm to the

pole side. By the 2D field calculation, the reduction of the effective length was estimated to be shortened
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O.27 mm. The result of the field measurement showed that the effective length on the reference orbit has

been shortened about O.30 mm. (Table. 3-l2)

  By this adjustment, the individual difference of the effective length and the BL products were reduced at

low excitation current. Even for the high excitation current, the individual difference of the effective length

and the BL products were reduced. After the adjustment ofthe effective length ofthe magnet No. 15012, the

following effective length and BL products has been obtained.

Table 3-12. Effective length

15012.

 Excitation current 275A

of each magnet, after the adjustment the effective

Unit: mm

length of the magnet No

Magnet
NO.

effective length (beam exit

        side
effective length (beam entrance

          side)
Total effective length

15012

15013

15014
15015

15016

15017

549.78-O.54-O.92Å}O.05
549.78-O.05-O.86Å}O.05
549.78-O.06-O.82Å}O.05
549.78-O.17-O.8lÅ}O.05
549.78+O.26-O.88Å}O.05
549.78-O.15-l.OOÅ}O.05

549.78+O.27-O.33Å}O.05
549.78-O.14-027Å}O,05
549.78+O.02-O.18Å}O.05
549.78-O.23-O.18Å}O.05
549.78+O.04-O.46Å}O.05
549.78+O.09-O.25Å}O.05

1099.56-1.5Å}O.1

1099.56-1.3Å}O.1

1099.56-1.0Å}O.1

1099.56-1.4Å}O.1

1099.56-1.0Å}O.1

1099.56-1.3Å}O.1

Excitation current 650A

Magnet
NO.

effective length (beam exit

        side
effective length (beam entrance

          side)
Total effective length

15012
15013

15014

l5015

15016

15017

549e78 rm Oe54+O-19Å}O•05

549.78-O.05-O.OlÅ}O.05
549.78 - O.06 - O.03 Å} O.05

549.78-O.17-O.05Å}O.05
549.78+O.26-O.28Å}O.05
549.78-O.15-O.25Å}O.05

549.78+O.27+O.35Å}O.05
549.78 ;' O.14+O.49 Å} O.05

549.78+O.02+O.53Å}O.05
549.78-O.23+O.40Å}O.05
549.78+O.04+O.25Å}O.05
549.78-O.15+O.36Å}O.05

1099.56+O.3Å}O.1
1099.56+O.3Å}O.1

1099.56+O.5Å}O.1

1099.56-O.1Å}O.1

1099.56+O.3Å}O.1

1099.56+O.1Å}O.1

ts g:ge,l•]

..

'

.wwoum

-2.0 -1.5 Jl,O -O.5 O.O O.S 1.0
         Design pole length - Effcctive length rmml

 Fig 3-44. Deviation ofthe effective length from

      the design pole length.
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3.9.6 Effectiveboundaryandmulti-polecomponent

  The information of the multi-pole component of the measured field can be obtained by comparing the

measured effective boundary and the forrnula ofeffective boundary Eq. (3-l2)

  Therefore, by comparing the expansion ofthe measured Al,ff(x) with the right hand side ofEq. (3-12)

the total value of the multi-pole component B.Lln! (B.L product) in the half region in the bending

magnet can be estimated. However, as described in section 3.3.3.2, this is an approximate method. In this

section, the multi-pole components are calculated from the effective boundary by the more precise method.

As shown in Eq. (3-8), The field integration to obtain the effective boundary can be divided to inner gap

region and the outer fringing region.

1 . Effective boundary in the inner side ofthe magnet.

Al.ff 1mu,, g.p = [ 1- ( g,ote end Bo (s)cis + x o {Il,ole end Bl (s)ds + x2 . [ cr, le end 71s- Bl (s)ds + .gl,ete end Srl B2 (s)ds] + x3 [ .g7,ole end ;Jn ilTl B2 (s)ds + . . .)

                                                                               (3-15)
2. Effective boundary in the fringing region.

   Aleff l.fiti.g, = t[ ,[7.t. .nd Bo (S)alS + X ' S i.t. ,nd Bi (s)ds + x2 ' .g7.ie .nd g/ B2 (s)ds + x3 ' .lli,i. ,.d ;/ B3 (s)ds] (3-1 6)

The total effective boundary is the summation ofEq. (3-15) and Eq. (3-16). When the following notations are

defined

                 c. =: .III,Oie e"d ili:/ B. (s)cis (3-17)

the effective boundary in the inner gap can be written as

   Aleff m.er gap = Co + X' Ci + X2 ' (J3J Ci + C2 )+ X3 ' (;6- C2 + C3 )+'" + X" (;s- Cnri + Cn ) +"'' (3-1 8)

The relations to the coeffTicients of the expansion of the effective boundary of the inner gap

Aleff linnergap== bo +bix+b2x2 +b3x3 +... are given by

              bO=CO' bi ==Ci' b2==!Ci+C2' bn=!C.-i+C. (nÅr2)' (3-19)
                                 Po Po
where b. (n 2 O) is the known amount obtained from the measured effective boundary.

First c, and c,can be obtained by comparing the polynomial expansion of the measured effective

boundary. Next the higher order component c, is obtained from the relation

                                       l                                   b, =-Cl +C2
                                      Po
If the value of c, is decided, the higher-order component c, is also obtained by the similar way.

Repeating such process, the coefficient c. is decided one after another. By this way the actual multi-pole

component in the inner gap region is obtained. The multi-pole components in the outer fringing region are

obtained directly from the polynomial expansion of the measured effective boundary. The summation of the

muki-pole component in each region becomes exact total multi-pole component in the bending magnet. The

total multi-pole components in the half region of the magnet (beam entrance side and beam exit side) are

shown in table 3-13.
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Table 3-13. Total multi-pole component in the halfregion ofthe magnet.

          bo = ill-( .[,7 Bo (S)dSmBol) = Aleff (O) bn =71s- ff, iT/ Bn (s)ds
(3-20)

beam entrance side

excltatlon current 275A

Magnet No. 15012 15013 15014 15015 15016 15017
bo(m)

b,(mO)

b2(mml)

b3(mny2)

b4(mm3)

-3.350E-04

-2.844E-04

-2.529E-02

-9.847E-02

2.389E+OO

-2.732E-04

-5.15OE-04

-2.050E-02

-1292E-O1

7.831E-O1

-1.851E-04

-9.417E-04

-1 .497E-02

-5.229E-02

4.479EOI

-1.724E--04

8.795E-04

-2.189E-02

-- 2.349E-Ol

1.532E+OO

-4.647E-04

-5.260E-05

-1.793E-02

-2.313E-Ol

2.890E-02

-2.476E-04

2.770E-05

-1.772E-02

-1.573E--Ol

-1.048E+OO

excitation current 650A
Magnet No. 15012 15013 15014 15015 15016 15017

bo(m)
b,(mO)

b2(m-i)

b3(mr2)

b4(m-3)

3.481E-04

2.597E-04

-k 2.383E-02

-2.163E-•Ol

-4.074E-Ol

4.955E-04

-5.880E-04

-2.292E-02

-- 4.693E-"02

-1.137E+OO

5.250E-04

-6.322E-04

-- 3.063E-02

-2.106E-O1

2.5 1 4E+OO

4.084E-04

1.209E-03

-2.504E•-02

-3.474E-O1

-6.316E-Ol

2.576E-e4

-9.770E-05

-3.147E--02

-2.184E-O1

-4371E-Ol

3.721E-04

2.026E-04

-2.892E-02

-1.661E-Ol

-8.910E--03

beam exit side

excitation current 275A

Magnet No. 15012 15013 15014 15015 15016 15017
bo(m)

b,(mo)

b2(mml)

b3(m-2)

b4(m'3)

-9.243E--04

-3.058E-04

-• 2.695E-03

-1.532E-Ol

-3.392E-O1

8.581E-04

-1.202E--04

-• 1.519E--03

-1.115E-O1

-2.089E+OO

'8e241E04

-7.570E-OS

-1.470E-02

-1.286E-Ol

3.284E+OO

-8.141E-04

1.570E-04

-2.037E-02

-1.812E-O1

3.351E+OO

-8.397E-04

1.138E--03

-5.072E-03

-- 2.450E-Ol

-2.722E-Ol

-1 .006E-03

-2.070E-05

-1.019E-02

-1.839E-Ol

1.111E+OO

excltatlon current 650A

Magnet No. 15012 15013 15014 15015 15016 15017
bo(m)

b,(mo)

b2(m-i)

b3(m-2)

b4(mr3)

1.890E-04

1 .849E-04

-4.230E-02

-5.421E-02

5.794E+OO

1.61OE-06

3270E-05
-7.567E-•03

-3.366E-02

-- 1.918E+OO

-3.470E-05

-5.563E-04

-2.683E-02

-1.081E-O1

5.376E+OO

-4.800E-05

-l .997E-04

-2.980E-02

-- 5.653E-02

3.122E+OO

-2.813E-04

4961E-04
-1.096E-03

-3.254E-02

-9.832E-Ol

-3.618E-04

-- 1.972E-04

-1 .994E-02

9.001E-03

3.936E+OO

In the followings, measured effective boundaries of all bending magnets are shown.
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Fig. 3-46. Structure ofthe effective boundary ofall magnets.
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3.10 Arrangement of the 6 magnets to minimize the closed orbit distortion

  The BL product ofa bending magnet decides the bending angle. Ifthe bending magnets ofa storage ring

have individual difference in the BL products, as shovvn in Fig. 3-45, the bending angle of each bending

section deviates from the ideal value. This becomes the cause of the closed orbit distortion. In this section,

the closed orbit distortion of S-LSR is investigated, and the suitable arrangement of the 6 magnets to

minimize the closed orbit distortion is decided under the condition without using the correction current.

3.10.1 Evaluation of the extra kick angle at each bending magnet

  When the bending magnet has error in the main dipole component Bo, the equation ofmotion of reference

particle in this magriet becomes as [3-41

                     d2x 1 IM
                      ds2 =-7i;' X-J8 B,' (3-21)
  The extra bending angle induced by the field error AB is given by

                du du IM                7t er't of theamsmet -"iii' entrance of th,a.gn,t =za Bo L (3-22)

where L means the length ofthe bending magnet and du/ds is the angle with respect to the reference orbit.

When the magnet has the error AL in the effective length, in addition to the field strength, it is equivalent
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that the short bending magnet which has length AL and field strength Bo +AB is attached to the ideal

length bending magnet. The bending radius of the beam in this additional part is given by

                             1 1 IAB
                             -=-+m (3-23)                             P Po po Bo

Therefore, the particle is bent at this additional part. This bending angle is given by

                            I)ll= 2i,l (1+ (iil,!) (3-24)

The magnet which has central field Bo +AB and effective length L+AL bends the beam excessively

with the angle

         ekfck = 21,il + JS, ABB, (L+zNL)=i(t\l + iii,? [1+ llil!]) ti Jill, (ll: + (iil,l), (3-2s)

compared to the magnet which has central field Bo and effective length L . From tables 3-7 and 3-10, the

deviation ofthe bending field AB and effective length AL can be obtained. By substituting these values

the extra kick angle ofeach magnet is calculated.

3.102 Substitution to MAD

  The effects of the field errors of each magnet are calculated by MAD8. The effect of the error of the BL

products is calculated by using the element Closed orbit cozrector ofMAD8. The closed orbit corrector only

changes the angle of the reference panicle. The kick angle of the closed orbit corrector is calculated at both

the beam entrance side and beam exit side. The kick angle ofthe closed orbit corrector is calculated from Eq.

(3-25). The multi-pole components obtained in section 3.9.5 are also taken in MAD8. in MAD8 the strength

ofthe thin multi-pole is defined by

                   K.L =(LIB, p, )(a"B, fax") (3 -26)

Therefore, K.L is expressed by using the b. shown in Table. 3-13.

                        K.L=n!b.IPo (3-27)
This value corresponds to the total strength of the multi-pole component in the half region of the bending

magnet (beam entrance side or the exit side). The multi-pole components are included to the transfer matrix

calculation by a thin lens approximation. Such thin lenses are installed to the beam entrance and exit of the

bending magnet.

3.10.3 Optimum arrangement ofthe 6 bending magnets

  The closed orbit distortion has been calculated in various arrangements of 6 bending magnets. Finally, we

have decided the arrangement of 6 magnets as shown in Fig. 3-47. The closed orbit distortion in this

arrangement is shown in Fig. 3-47.
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Fig 3-47. Arrangement of 6 bending magnets to minimize the cEosed orbit distortion. The closed orbit

distortion was catculated at the operating point (1.74, 1.09). This operating point is to be used for the

injection of 7 MeV proton. The closed orbit distortion has to be most suppressed in this operation.

3.11 Field measurement in off-median plane

 The mapping measurement was also performed in off median plane (y=Å} 15 mm). When the magnet has

vertical symmetry, the field structures in the planes r-15 mm and y=15 mm have to be identical. Hovvever,

we found that the effective length in the plane y= 15 mm differs from that in the plane of y.-15 mm. In Fig

3-48, the effective boundaries ofthe beam entrance side ofmagnet No. 15017 is shown. The effective length

on the plane y:-.15 mm differs about O.3 mm from that ofy=-15 mm. It is diMcult to explain this difference

by the measurement error because the measurement error ofthe effective boundary was estimated to be O.05

mm. Furthermore, the effective boundary of the other magnets showed the same tendency; the effective

length becomes long, as the height ofthe mapping plane becomes lower.
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Fig. 3-48, The effective boundaries of the beam entrance side ofmagnet No. 15017. The effective length of

y=15 mm and y=-15 mm are obviously difference. This is contrary to the requirement from the venical

symmetry ofthe magnet; the effective length ofy=15 mm and y==-l5 mm have to be same.
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  Then, "'e found thc l'lall probe had tilt angle in the longitudinal dircction. as shown in Fig 3-49. Sincc the

Hall-probe measures the field component pcrpendicular to the Hall-sensor, ifthe probe is tilt as shown in Fig•

3--49, the field strength which is sensed by the Hall probe diflrcrs by the height from thc medial plane in thc

fringing field.

/HeU probe'

Median pta-.etl \kvKma

Fig. 3-49. Magnetic fiux line in the fringing region.

In the case ofour measuremeng the Halt probe had tilt angle opposite to that ofFig. 3-49. Thus, the effective

length measured by longitudinally leaned probe becomes longer as the height of the measurement plane

becomes low. After the longitudinal tilt angle was corrected as small as possible, the difference of the

effective length became very small. In Fig. 3•-50, the effective boundaries ofthe beam exit side ofmagnet No.

1 5012 are shown. In this measurement a Hall-probe which is corrected the tilt angle are used. The difference

of the effective length is suppressed less than O.07 mm. These values almost agree within the measurement

error. In this measuremeng the mapping region was limited only in the fringing region, although, it is

sufficient to see the height dependence of the effective boundary.
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ffective boundaries ofthe beam exit side ofmagnet No. 15012

Therefore, we can conclude that the cause of the height dependence of the measured effective length is

longitudinal tilt angle ofthe Hall probe. Ifone will measure the effective length at off-median plane, one has

to notice the longitudinal tilt angte of the Hall-probe.

  Since the Hall-probe senses only the perpendicular field component to the sensor, the accuracy ofthe field
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measured by Hall-probe in the region where more than two field components exist such as fringing region in

off median plane, is not guaranteed, and it is important to correct the tilt angle of the probe accurately. In the

case of the mapping measurement in the median plane, the small tilt angle of the probe did not become

problem, since the magnetic field has only vertical component. The value read out from the Hall-probe is

calibrated by the value ofthe NMR.

3.12 Summary of the novel scheme described in this chapter

  Bending magnets for S-LSR were designed using the 2D field calculation code POISSON and 3D field

calculation code TOSCA. In the 3D field calculation, suitable pole end stmcture to suppress the sextupole

component of the fringing field was investigated. Finally, the pole length near the reference orbit was

shortened with the intention of suppressing the sextupole component. The relation of the coil structure and

the saturation ofthe field clamp were also investigated by the 3D field calculation. When the saddle type coil

was applied, the amount of the flux flow into the field clamp becomes much, and the field clamp becomes

easily saturated. When the combined type coil (Figs. 3--15, 3-16) was applied, saturation of the field clamp

was suppressed.

  The result of the field measurement showed that only one magnet has the large deviation of the BL

product, among the six bending magnets. We corrected the effective length of this magnet by adjusting the

position of the field clamp. The distance of the movement of the field clamp was expected from the 2D field

calculation beforehand. The result of the field measurement of the corrected magnet agreed with the

expectation by the 2D field calculation. Therefore, we can find that the 2D field calculation in the fringing

field reproduces the actual state, near the reference orbit.

  We have shown a method to estimate the total multi-pole component in a bending magnet. The

information of the multi-pole components is obtained from the polynomial expansion of the effective

boundary. In the calculation of the multi-pole component from the effective boundary, it was found that the

coefficients of each order term are not merely the field components of its order. The lower order field

component arises in the higher order component as the appearance field (see section 3.3.3.2) in the bending

region. In the fringing region, the coefficients of each order term directly show the field components of its

order. The actual order ofthe field and the appearance field which arises in the coefficients ofthe expansion

of the effective boundary can be separated by the method shown in section 3.9.6. And the exact total

multi-pole component of the bending magnet can be obtained by the summation of the value ofthe inner gap

region and the outer fringing region.
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Chapter 4. Dispersion-free storage ring

4.1 Dispersionlessbend

  As discussed in chapter 1, if the effect of the dispersion can be eliminated, a 3D crystal beam structure

may be stabilized. The method of a dispersionless bend (double achromatic bend) is often used in a low

emittance radiation ring. The double achromatic bend is realized by a quadrpole magnet and two bending

magnets [4-1]. Such beam optical system can eliminate the dispersion at the entrance and exit ofthe bending

section. However, this method cannot eliminate the dispersion completely in the bending section. In order to

stabilize the 3D crystal beam, the dispersion has to be eliminated all around of the ring. It is impossible to

eliminate the dispersion at the bending region by using a magnetic field or an electric field only. On the other

hand, if a bending electrostatic field is combined to the bending magnetic field, the dispersion can be

eliminated at the whole of the bending region [4-2][4-3]. In order to realize the dispersion free bending field,

the direction of the bending electric field and the bending magnetic field has to cross at right angle. This

bending field can be realized by a combination of dipole magnet and an electrostatic deflector (Fig 4-1).

When the beam has a central velocity vo, the relation between the bending electric field E and the bending

magnetic field B is written by
                             (l +t, )E(Po)= -ve Å~ B,

where ro and po denote the Lorentz factor and the bending radius of the beam, respectively.

                                                 sector magnet
                                               /

                                                     electrode

ili3E

XB

N.s

                                    Po

                                                   l
                                                   i
Fig. 4-1 . Example of a dispersion-free bending element. A curved electrostatic deflector is insta11ed in the gap

of a dipole magnet. Note that the direction of the electric field is radially outward.

4.2 Dispersionsuppresser

4.2.1 Formillationofthebendingfield

  In the dispersion-free deflection element, if the ratio of the superposition of the electric field and the

magnetic field is changed, it can create the situation in which the dispersion is suppressed. Thus in the
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followings, we call generally the deflection element in which the dispersion is not eliminated completely, as

a disLpersion-suppresser. In this section, the equation of motion in the dispersion-suppresser is formu(ated in

the Frenet-Serret coordinate system. The bending field of the dispersion-suppresser has to be the solution of

Maxwell equation. We suppose the magnetic field is created by a flat pole dipole magnet. Then the vector

potential can be written as

                                         B
                                   A,"mkSL (Po +X), (4-1)
The electric field is created by a cylindrical electrostatic deflector which is the simplest equal potential

surface obtained from the solution of Maxwell equation, and such a electrostatic deflector is ordinarily used

in an electrostatic storage ring [4-21]. Then the electric field and the electrostatic potential can be written as

                                   E.(x)= VO (4-2)
                                           Po +x

                      Åë. :=-V, ln(1+-ii:-)=v, il.i, (-il)"(ii-)n (4-3)

The direction of the bending electric field is opposite to the conventional electrostatic deflector, in order to

compensate the dispersion.

4.22 Equationofmotion

  Hamiltonian of a dispersion-suppressor is derived in Frenet•-Serret coordinate system [4-4]. Choosing the

path length s as the independent variable, we obtain the relativistic Hamiltonian, that governs the motion ofa

charged particle in a bending region where not only a dipole magnetic field but also an electric field for

dispersion compensation is present, ofthe form [4--5]

H = -(1+iliJ
pt

 +qÅëD )2 -m2c2 -

-q
(i+i)A,,

(4-4)

where m and q are the rest mass and the charge state of particles, c is the speed of light, ÅëD is the scalar

potential in the electrostatic deflector, pt is the longitudinal canonical momentum conjugate to time t, and we

have assumed that the vector potential A only has the longitudinal component, i.e. A ==(O, O, A.). By

expanding the square root and leaving only low-order terms, Eq. (4-4) becomes

                        H=dn(i+i)gA, -(i+i)p+PX2ipP;, (4-s)

where p=m/71c = (p,+qÅë)2lc2-m2c2 with 6 being the normalized velocity by the light speed c. This

is good approximation when the transverse momenta p. and py are far small compared to the longitudinal

momentum. In a conventional beam transport line or an accelerator, this approximation is always effective.

The scalar potential in the electrostatic deflector is given by Eq. (4-3) and the vector potential is given by Eq.

(4-1). Note that the equilibrium kinetic momentum p,(imfi,r,c) is not equal to qB,p due to the

existence of the bending electric field. Since the electric field strength is V, 1 po along the design orbit, the

equilibrium kinetic momentum becomes

                                              qVo
                                  p,= qB,p,- • (4-6)                                              /7oc
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The momentum deviation from the design momentum p, =mfi,1,c=ffc2 -m2c2 can approximately

be written as

                     Ap .p-p, ., ZVI i;,cgipD -2;, (AEfiiclq,ipD)2, (4-7)

where AE is the energy deviation from the design value -AE == m7,e2 -(- p,). This relation is obtained

by taking up to the second order term of AE or qip,,.Jnsening Eq. (4-1) and p= p, + Ap into Eq. (4-5)

and neglecting nonlinear terms, one finds

                 AZ=;,2Zii+;(1+6qo2Zi)(io)2-(1+i)Appo+pNx2;prwy2, (4.s)

where the transverse momenta have been scaled to be dimensioniess; namely, P.(y) = p.ly)lp,. Substitution

ofEq. (4-7) together with Eq. (4-3) into Eq. (4--8) yields the approximate Hamiltonian

     AF =- fili,llZE, ili-(1 - 7,s?,oE, )- 6fi,ZE, + 2;,, (6fi,;ZE, )2 + prVx2 i p"N'y2 +[1 + ii?, (Eq,,Mi, )2] 2xi,, , (4Ng)

From this Hamiltonian, we obtain the horizontal equation ofmotion in the bending region

                  dds2,X"Nv{i+Åí;,(Eq,,Zi)2]i,+J(i-r,2qi6:,OE,)J6i,)2E, (4-iO)

  Clearly, the last term in the right hand side of Eq. (4-1O) gives rise to linear dispersion, and its coefficient

1!p,(1-qV,fl,2fi,2E,)decides the strength of the dispersion. It is thus possible to control momentum

dispersion over a wide range by changing the electric and magrietic field strengths with the condition (4-6)

fulfi11ed. ln particular, dispersive effects can be minimized provided that

                                         gVo -
                                                1, (4-ll)                                       7?oj6gEo -

which leads, by using Eq. (4-6), to V,lp= B, •[JCkr/(2-iB2)]. This equation indicates that, when the beam

energy is high, a very large voltage is needed to compensate dispersive effects. Therefore, the present

dispersion suppressor is relevant only to low-energy beams. From Eqs. (4-6) and (4-11), we find
(1+1/7,2)V,/p, =B,J6,c that is identical to the dispersion--free bending condition described in section 4.1.

When the dispersion-free condition (4-11) is satisfied, the horizontal equation of motion in the bending

region becomes

                                    d2x 1+1:
                                      2 fU N 2 'X)                                                                                      (4-12)
                                    ds Po

where the horizontal motion has been decoupled from the longitudinal motion in linear approximation.

4.3 Application to a sto rage ring

  For the transport ofcharged particles, dispersion-free deflection elements were proposed in [4--2] and [4-3].

But this scheme has never been used in the design of synchrotrons and storage rings up to now, because the
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required electric fields become too large for panicle beams used in these accelerators. We propose the

possibility of incorporating this scheme in a low energy storage rlng. In this section, we show some

characteristics ofa storage ring constructed with dispersion-suppressors.

4.3.1 Hamiltonianofastoragering

  A beam circulating in a dispersion--free storage ring receives only the alternating focusing force, thus, one

can expect the beam dynamics of the dispersion free ring coincides with that ofa linear beam transport line

or a linear ion trap. In this section, the Hamiltonian of the storage ring constructed with
dispersion-suppressors is investigated. Here, a separated function type lattice is assumed. When quadrupole

magnets and an rf cavity are taken into account in addition to dispersion-suppressors, the vector potential

becomes

                   A, := -B2' (p+x)+-ll B, (x2 -y2)+6, (s) V,',U7 cos(ct)t+Åë,) (4--13)

where B, is the gradient ofthe quadrupole field. VR. and Åëo are avoltage amplitude and an initial

phase of the rf cavity, respectively. Since a storage ring is considered now, the rf frequency to is constant

and tu= htoo,where roo is the angular revolution frequency ofthe synchronous particle and h is the

harmonic Rumber. The rfcavity is installed at the straight section ofthe coordinate s == O.

When Eq. (4-13) and ,p = po + zsp are inserted into Eq. (4-5) and nonlinear terms are neglected, one finds

          "Ei' =- 6i),IZE, ill (i- iifi#, E, )- 6ill,illE, + 2;,2 (fi2,IZE, )2 + PNi ;PN'2 +; (Kxx2 +Kryy2) (4-i4)

                    q VRi7
              m 6. (s)                         cos(tot + Åëo )
                     Potu

where

                       Kx-71T,[i+Åí,;(Aq,,K.,)2]-q,K,i, K,=q.K,i

io,Af, and K, are function of s; io=/oo, K'=Vo in the bending region, and p=oo, K=O in the

other regions. Ki is Bi in the quadrupole magnet region, and Ki =O in other regions. IfHamiltonian

(4-14) is compared 'to that of the conventional magnetic storage ring Eq. (1-30), one can find that the

difference arises in the frrst term (shear term).

4.3.2 EffectoftheeRectrostaticpotential

  The electrostatic potential ofthe dispersion--suppressor causes the energy transfer between kinetic energy

and potential energy of charged panicles while conserving the total energy. Here, the tota1 energy means

summation ofthe kinetic eAergy and potential energy, and it corresponds to E in the notation used in this

thesis. One can find that AE is also an approximate constant ofmotion, ifthe rfvoltage is not imposed (see

Eq. (4-l4)). On the other hand, the kinetic energy and the momentum may not be constant, in contrast with a

conventional magnetic storage ring.

  Suppose an ion beam is strongly cooled by a cooling force in a storage ring. If the design orbit is linear,

the momentum spread eventually vanishes, i.e. ztp = O , at low temperature limit where the beam is Coulomb
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crystallized. As shown in Ref [4-6], [4•-7], vvhen the density of the beam is low, crystalline structure is a ID

chain. Ifthe density is larger than the 1D state, a 2D crystalline structure is developed in the weaker focusing

direction. Ifthe density is enhanced more, the particles naturally arrange into a 3D crystal structure, and the

beam has a finite horizontal extent. In an ordinary storage ring, however, the condition z)bp :O does not

meet the stability requirement of a crystalline state with a finite horizonta1 extent because the bending

magnets generate the shearing forces as briefly discussed in chapter 1, a radially outer particle must travel

slightly faster than the inner panicles, so as to realize a condition such that the angular velocities of all

panicles, rather than the linear velocity, are identical. The stability ofa multi-dimensional crystalline beam is,

therefore, not guaranteed unless the cooling force is "tapered" [4-8]. By contrast, the present dispersion-free

system can compensate the difference of the angular velocities even if the cooling force is not tapered,

because of the above energy transfer mechanism. However, in order to realize this condition, it is essential

that the ring has a straight section, in addition to satisfying a dispersion free condition. The reason is as

follows.

  First, for pedagogical purpose, we consider a dispersion-free ring with a constant bending field i.e. the

whole circumference of the ring is occupied by the bending element. The cooling force acts so that the

momentum spread approaches to zero, and the momentum is almost constant in this ring, like that of

conventional rings. If the beam has finite horizontal extent, this situation is not suitable for the condition of

3D crystal beam; namely, all panicles don't have the same "angular" momentum. This ring is merely

dispersion-free.

  Next, we consider a dispersion--free ring which has straight sections. In such a ring, the momentum is not

constant because of the acceleration (or deceleration) of the charged particle at the entrance (or exit) of the

bending section. The relation between the deviation of the total energy AE and the momentum deviation

z!Årp is given by Eq. (4-7). Ifa beam is cooled at a straight section, the momentum deviation Z\, becomes

zero and the energy deviation AE also becomes zero because of the zero scalar potential. When a beam

with a finite horizonta1 extent enters into the bending region, the particles receive some kinetic energy gain

(loss) from the deflection electric field in exchange for loss (gain) ofthe potential energy. The amount ofthe

gain depends on the horizontal coordinate x. When ltfp,1ÅqÅql, Eq. (4-3) gives ip. s-V,•x/p, and,

accordingly, the potential along an inner orbit is higher than that along an outer orbit; in other words, a

particle traveling in the region of negative x (positive x) is decelerated (accelerated) at the entrance of the

electrostatic deflector. At the exit, the opposite effect takes place, and the particle recovers the original

kinetic energy before entering the bending region. Now, AE is zero, because of the cooling at the straight

section, and it is zero all around ofthe ring, since it is constant of motion. Then, if once an ideal ground state

[4--9] is reached, from Eq. (4-7), one obtain the relation pfwp,+(gV,l6,cp,)ox. This relation can be

rewritten, with the condition (4-11), as p f p, fu 1 + 12x f p, or, equivalently,

                                  vx                                 - ti1+                                             , (4-15)                                 V, Po
where v denotes the velocity ofa particle at the horizontal position x, and v, : fi,e . It is now evident that the

angular velocities of all panicles are approximately the same. We can thus suggest that the stability of a

three-dimensional crystalline beam is greatly improved in the dispersion-free storage ring presented in this

thesis.

  Even if the storage ring satisfy the dispersion-free condition, making panicles to have the same angular

velocity is impossible without the straight section. Thus, it is essential to "cool at the straight section (which
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has no electrostatic potential)" and to cause the acceleration (or deceleration)

entrance (or exit) ofthe bending section.

of the charged panicle at the

4.3.3 Analyticaltreatmentoftheshearingforce

  As shown in previous subsection, the effect of acceleration (or deceleration) at the boundary o'f the

bending section plays an important role. This effect is included in the Hamiltonian formalism automatically

in this thesis. Therefore, we can show these effects analytically. The first term of the Hamiltonian (4-14)

yields dynamic coupling between the horizontal coordinates and longimdinal mornenta. From the derivation

process ofthe horizontal equation ofmotion (4-1O), one finds this shear term [4-1O] generates the dispersion

term of the equation of motion. As shown in section 1.5.3, the shear term also generates the shearing force.

Here, in order to show the effect of the shear term explicitly, the rf cavity is svvitched off. When the relative

time At = t-sf17oc is introduced, from the Hamiltonian (4-14), the longitudinal equations ofmotion are

given by

                      d(dAst) :/7ic [lil (i - ri/72' E, )mtiIt' (61i'IZE, )] (4-i6)

-ddk(-pZX,E)-o,
(4-17)

  The first term ofthe right hand side ofthe equation (4-16) represents the shearing force, and it is generated

from the shear term. The second term represents the difference of the revolution time caused by the energy

deviation. According to Eq. (4-16), in a crystalline state (where M =O, it is constant in the ring) with a finite

horizontal extent x,the difference ofthe revolution time is dominated by the shearing force and its strength

is proponional to the strength ofthe dispersion 11p(1 -qV,1r,i i68Eo)•

  For the dispersion-free condition (4-11), the shearing force canceled out and the revolution time doesn't

depend on the horizontal extent of the beam, x. Therefore, in a storage ring constmcted with

dispersion-suppressors, the cancellation of the shearing force is synonymous with the cancellation of the

dispersion.

  The shear temi is caused by the geometric factor ofbending; namely, this term exists because ofthe finite

bending radius p . This term causes crucial difference between the Hamiltonians of the storage ring and

linear ion trap. Fortunately, this term is canceled out at the dispersion free condition. Then, although there are

bending sections, the dynamics of the particle becomes the same as straight section.

ln the dispersion-free condition, the Hamiltonian (4ny-14) becomes equivalent to the Hamiltonian of rf linear

ion trap in which the ions are restricted to a finite length. Therefore, the beam behavior in the dispersion-free

ring, except for higher-order nonlinear terms, is similar to that in a linear ion trap in which multi-dimensional

crystal stucture has been observed experimentally [4-1 1]. The discussion about nonlinear terms is performed

in Section 4.8.

4.3.4 Effect of the rf cavity

in this section, the effect of the rf cavity is taken into account. When the periodic delta function 6p(s) is

expanded in a Fourier series, we obtain the expression [4-12]
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                                         1                                                  2nhs
                      6. (s)cos(tot+ip,) Rs i. cos(tot- c +Åë,) (4-18)

where C is the length ofreference orbit in the ring. Ifthe relation 6oc = tuoC12n is utilized, the phase of

Eq. (4-18) can be expressed as

                                  2zhs
                              totHc +Åëo=toN+Åëo (4--19)
Then, only the longitudinal equation ofmotion (4-1 7) is corrected by the effect ofthe rfcavity.

                                 d(AE) qV.
                                   d, =c SinÅë (4-2o)
where the synchrotron phaseÅë : AÅë+ip, = cDAt +ip,is introduced. In the followings, the initial phase of the rf

cavity Åëo is set to zero so that the reference particle may not have energy gain and synchrotron oscillation.

Then, Eq. (4-20) gives an energy change so that the particles vvhich are deviated from the design phase

experience oscillation.

  In a low beam current limit in which the space charge effect is negligible, the longitudinal equation of

motion of the dispersion-free storage riRg becomes the synchrotron equation which has phase slip factor

op = -1/r,2 . Thus the synchrotron oscillation is stable. This result is reasonable, because the phase slip factor

is defined by ny=a-1/7,2 and the momentum compaction factor of the dispersion-free ring is zero;
a=11CgD.(s)1]o(s) ds= O. Here D. (s) is horizonta1 dispersion function ofthe ring, and it is zero all around

the dispersion free ring. This result means the dispersion-free ring has infinite high transition energy

z, :1/-vzl'.

  As shown in Section 1.5.2, there are so-called maintenance conditions for realization ofa crystal beam in

a storage ring. First maintenance condition is that the beam energy must be below the transition energy;

rÅq7,.The second condition is IVÅr2jv,, where N is the number of the super period of the ring, and

v,, is the transverse tune. The dispersion-free ring satisfies the first condition in principle. If the

dispersion-free storage ring has a 1arger number of super periods or a large bending radius, it is thought to

satisfy the second condition in general. Consideration of the second maintenance condition is described in

Section 4.6.2.

  In the followings, we consider the crysta11ine state, in order to explain analytically the heating mechanism

of the crystalline beam induced by the dispersion. In a 3D crystalline state, betatron oscillation is strongly

suppressed, and the particles no longer oscillate across the reference orbit. This means such particles always

have the same sign of x in Eq. (4-16). Ifa bunched 3D crystalline beam continues to be cooled by a cooling

force in the straight section, the energy spread AE ofEq. (4-16) approaches zero. But, in the bending region,

the deviations of the synchrotron phases Aip=tuzV of radially outer and inner particles are increased

because of the first term of Eq (4-16) (shearing force), if the dispersion-free condition is not satisfied. This

increase of the synchrotron phase deviation AÅë affects the energy spread AE through Eq. (4-20).

Eventually, the energy spread is extended by the rf potential through Eq. (4-20). Finally, this heating rate

balances with the cooling rate ofthe cooling force. Because of such a mechanism, the reachable temperature

ofthe 3D crystalline beam is limited.

  in the dispersion-free condition, this heating mechanism is completely suppressed due to the cancellation

of the first term of Eq. (4-l 6), and, the stability of the 3D crystalline beam is greatly improved. In this state,

the energy spread zVi of the final equibrium state becomes zero. As shown in Ref. [4-13], the synchrotron

oscillation of the crystalline beam is strongly suppressed despite the finite bunch length (finite phase

deviation Aip). This is the same reason as the suppression of the betatron oscillation of a 3D crystalline
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beam which has a finite transverse extent. Thus, the synchrotron motion of the 3D crystalline beam is

suppressed completely.

In order to realize a strong three-dimensional laser cooling, the method of utilizing a synchro-betatron

coupling induced by the rfcavity [4-l4] has been proposed. However, in the dispersion-free storage ring, it is

difficult to generate synchro-betatron coupling by a normal rf cavity, because there is no dispersion. in the

dispersion-free case, we can use a coupling rfccrvity [4-15], [4-13] for the 3D cooling. The coupling rfcavity

scheme realizes the synchro-betatron coupling by using a special mode ofthe rf electric field which depends

on the transverse position. For a low energy storage ring, even in the dispersion-free case, the coupling rf

cavity can create the enough coupling strength for 3D cooling. The eftergy transfer between longitudinal

motion and transverse motion becomes comparable, in order, to that of the energy of the laser photon for

cooling, by reasonable applied vohage to the coupling--cavity.

4.4 Designofthedispersion-suppresserforS-LSR

  Dispersion-free deflector or dispersion suppresser has never been constructed. The first proposal of the

dispersion-free deflector [4-2], [4-3] is application to mass-analyze. However, it has been difficult to

construct a deflection element as shown in Fig. 4-1, because the electric field ofthe electrostatic deflector is

reduced by the influence of the wall of the vacuum vessel or the pole of the bending magnet. Furthermore,

the result that the panicles are bent with the same angle not depending on the kinetic energy is also realized

by the independent use ofthe bending electric field and magnetic field [4-16]. The construotion ofthe beam

line for mass-analyze by setting the electrostatic deflector and the bending magnet independent position is

easier than the insenion of the electrostatic deflector to the gap of the bending magnet. From the above

?tM'

Peie af{hR skpcte•diaghe{

.k.tua,,.%•"".va.va.va2tU.ff-•t.va'.va'r'`z.T/metftvaiz.z.2-tla'tveZ.Zt,Z-2x'M'tlEve'vaz.z.

EofrQ

     30

    Åë2
:::@::@:::ee::]mp:::

E!IE rkSl:
 "'all of the vacuum vessel

't ''/ ti

Fig 4-2. Cross-section around the electrostatic deflector. The height ofthe electrostatic deflector is limited

by the gap size of the dipole magnet and the vacuum vessel. The electrostatic deflector is constmcted by a

pair of main electrodes and four pairs of intermediate electrodes. The ideal field disnibution is maintained

by the intermediate electrodes. In addition to the electrodes, support plates and ceramic plates are

introduced for the purpose of keeping the position of the electrodes.
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reason, such deflection element as a dispersion-suppresser has never bcen constructed. But now. the use Of

the dispersion-suppresser is essential for the stabilization ofthe 3D crystal beam structure.

  In order to rcalize the dispersion-suppresser, an clectrostatic deflector has to be installed in the gap of the

dipole magnet of S-LSR. Therefore, the height of the electrostatic deflector is limited. In a conventional casc,

the height of the electrostatic deflector is secured enough, in order to avoid the reduction of the strength of

the electric field due to the leak of the lines of electric force. In the case of S-LSR, in stead of the

enhancement of the height of the electrodes, intermediate electrodes are introduced to maintain the strength

and the distribution ofthe electric field (Fig. 4-2).

Fig 4-3-a. Fig 4-3-b.
Equal potential surfaces around the electrostatic deflector

  Comparing Figs. 4-3-a and Fig. 4-3-b which are result of the electrostatic field calculation, it is found that

the intermediate electrodes maintaining the field strength and the distribution near the center of the aperture.

The pink lines represent the equal potential surface. If there is no intermediate electrode (Fig 4-3•-b) the

interval ofthe equal potential surface line changes by the height in the electrostatic deflector. This means the

bending field strength and the distribution changes by the height of the beam pass. In Fig 4-3-b, it is also

found that interval of the equal potential surface line becomes wider compared with that of near the main
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Fig. 4-4. The deviation of the redial field distribution from the ideal distribution, in the

deflector.

etectrostatic
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electrodes. This means that the field streAgth is weakened due to the upper and lower conductor plats

attached for maintaining the interval of the main electrode. Furthermore, it is difficult to generate the enough

strong bending electric field, with the structure shown in Fig 4-3-b.

  As the horizontal aperture of the electrostatic deflector becomes wider, it becomes better for the beam

injection and circulation. However, even ifthe intermediate electrodes are introduced, when the horizontal

aperture becomes larger, the deviation of the radial distribution of the field from the ideal distribution

becomes larger and many intermediate electrodes are required. Finally, the horizontai aperture has been

determined as 30mm compromising the available aperture for beam injection or circulation and the deviation

of the radial distribution of the electric field. The radial field distribution calculated by 2D field calculation

code POISSON are shown in Fig. 4ti-4. It is found that the deviation from the ideal field distribution is

suppressed within the accuracy of 1 Å~ 1O"3 in the region Å} 1 cm from the reference orbit.
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Fig 4-5. Deflection element for S-LSR. The deflection element is constmcted by a dipole magnet which has

no field gradient and a curved electrostatic deflector. The electrostatic deflector is installed in the gap ofthe

dipole magnet. The electrostatic defiector can be moved out, when the deflection element is used as a

normal dipoge magnet
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  S-LSR has to be used as not only dispersion-free ring but also a conventional magnetic storage ring. When

the power supply of the electrodes is switched off, S-LSR can be used as a magnetic storage ring. Hovvever,

this is contradicting to the design principle of the magnetic mode of S--LSR, because the horizontal and the

vertical aperture are limited to only 30 mm and 26 mm, respectively. In order to manage both a wide

horizonta1 aperture magnetic storage ring and a dispersion-free ring with a precise bending electric field, the

mechanism to move the electrostatic deflector from the reference orbit to the shunting station has been

introduced (Fig 4-5).

  As a possible application of the dispersion--free operating mode, the laser cooling of a 24Mg' beam is

planned. The kinetic energy ofthe 24Mg' beam is supposed to be 35 keV. The electric and magnetic fields

needed for dispersion-free storage ofa 35 keV 24Mg' beam are 6.7xl04 V/m and O.252 T, respectively. These

values are in a reasonably attainable range. The momentum spread of the injected 24Mg' beam with the

kinetic energy of35 keV is expected to be less than 1OM3. The emittance ofthe 24Mg'i beam which is directly

pulled out from an ion source is estimated to be about 40zmm mrad. The 24Mg' beam will be injected into

the ring, without further acceleration. Since the aperture of the electrostatic deflector is small, the small part

ofemittance ofthe beam is selected by a double slit. The emittance ofthe injected beam is to be adjusted to

the size of 1 to 10 zmm mrad by the double slit. The design of the electrostatic deflectors for S•-LSR has

been fmished and they are installed to the vacuum vessel Fig (4-5). The performance test of the

dispersion-free deflector has been performed by using a beam pulled out from the ion source directly. A 25

keV i4Ni beam was utilized for this test. The result of the test showed the linear dispersion is canceled out

with good precision, when the strength of the bending magnetic field and the electric field satisfy the

dispersion--free condition [4-23].

4.5 Synchrotronmotionofthedispersion-freemode

  The equation ofthe synchrotron motion ofthe dispersion-free ring is derived from Eqs. (4-16) and (4-20).

For a particle near the bottom ofthe rfbucket ( tDAt ÅqÅq 1 ), the synchrotron equation can be written as

                             dd,29==-17sq.VzR3kEto,cip--A2,,na7q,,VER,bch,ip (4-2i)

The angular frequency per unit length is

thus the synchrotron tune becomes to

9=
2ng VRp•h

        '6o27o2EoC2
(4-22)

                                   9C- qV.,-•h                               "S=2z- 2z)83r,2E, (4'23)

Here, we can find this formula is the expanded form ofthe conventional storage ring. The synchrotron tune

ofthe conventional storage ring is given by the formula [4-1 7]

vs =

q V.,ihlrp1

where rp is phase slip factor ofthe ring. As

 2nfi,2Eo

shown in Section 4.3.4,

(4-24)

the phase slip factor of the dispersion
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free ring is -11ro2 . The absolute value of rp ofthe magnetic mode of S-LSR is usually less than 1, on the

other hand that ofthe dispersion-free mode is always ij : -1 . Therefore, at the dispersion-free condition, the

rf voltage or the harmonic number required for the same synchrotron•-tune is rather lovver than that of the

magnetic mode.

4.6 Transfer matrix formula

4.6.1 Formulationofthetransfermatrix

  In this section, the lattice parameters of S-LSR are calculated by the transfer matrix analysis [4--18]. The

transfer matrix acts on the phase space coordinates(x, pN.,y, prW,,-czXt,M), where pv = zVi/fi,E, . The transfer

matrix of the dispersion-suppressor is derived by solving the canonical equation from Hamiltonian (4-9).

From the horizontal and the vertical equation of motion the following relations are obtained

                     arc ofi rw Eb2 ofi
                     i,=crp.=PX 5,=crp,=PNy (4-25)

Therefore, in this notation, the slopes x',y' coincide with the normalized canonical momenta p"".,p,;

x'  = pN ., y' = prw , . By solving the horizontal equation ofmotion (4-1O) the following solution is obtained

               x== x, cosVj7s+p'v., ksin Gs+m71-f(i-cosVEs) (4-26)

               pN. = -x, V)i; sin Rs+p'w., cos Gs+m71- il; sin Vite/s (4-27)

where xo and prV .o is the initial value, and the following notations have been introduced to simplify the

formula.

                     k-[1+ik,(6q,,Mi)2]i, d=(1-r,,qfi?,oE,);t- (4-2s)

The venical equation of motion is same as that of the drift space. The longitudinal canonical equations are

given by Eqs. (4-16) and (4--17). If Eq. (4-26) is substituted to Eq. (4-16), the equation about -cAt is

obtained.

     d(MdC.At)=-71J[x,dcosV)ls+pN.o ftsinVjls+m71u{2-(1-cosVis)-Mi,216,] (4-29)

This differential equation can be solved, and the solution is

-cAt = -xo 71I- ft; sin sLEs + p"v.o 71I-fcos Rs -m Ei,2 12 (s -# sinVj(Js)+m 7,2i6,2 s+const (4-3o)

The initial condition decides the value of the consiant in Eq. (4-30), and the solution of the longitudinal

motion becomes to

- cAt == -xo il ' ft sin ViEs m pA'.o iZ- ;l (1 " cos VJi;s) - PV[ i,2 -dk2 (s - # sin V)ls) di r,21fi,2 s] - cAto (4"3 1)
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From the above relations,

Inthistransfermatrix, L

the linear transfer matrix is derived

 denotes the path length ofthe reference particle in the dispersion-suppresser.

M==

   cosVk;L

- V)l sin VkL

     g

- 71g- iil; sin xm;L

     o

   isinVj}L

    'cosV)EL

       o

       o
- -!- g!1 (1 - cos V)IL)

 6ok
       o

o o o -!-!!1(1-cosVii;L)
              fio k

ooo -d sin V)IL
               fio R

o o i -J2I?, 12 (L-i sin aL)+  L
6o2ro2

(4-32)

4.6.2 Lattice parameters of dispersion"nyfree mode

  First, the stable region ofthe betatron oscillation is calculated. For the dispersion-free condition, the stable

region is shown in Fig. 4-6. The field gradient of QMI and QM2 (ki and k2) in Fig. 2-2 are used as the

parameters. The field gradient ki and k2 are normalized by the magnetic rigidity of the 35 keV 24Mg' beam;

k = Bi /Bopo . The stable region of betatron oscillation is drawn by selecting a region which satisfies the

condition that the absolute value of the traoe of the transverse transfer manix of one super period is less than

2.
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Fig. 4-6. The stable region of the betatron oscillation. The stable region is plotted on the

defocusing quadrupole plane. The beta-functions ofthe operating point A1 are given in Fig. 4--8.
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Fig. 4--7. The tune values corresponding the operating points ofFig 4-6

  At the operating point Al of Fig. 4-6, the betatrofi tunes become (1.49, 3.49), and the value of the beta

functions becomes minimum in the stable region. The beta-functions of this operating point are shown in Fig.

4-8 as the functions of the position s along the reference orbit. The lattice parameters of the operating point

Al are compared to that ofusing only magltetic field, ln the case ofonly magnetic field, the horizontal and

vertical tunes are selected to (1.44, 1.44). In this case, beta functions become as shown in Fig. 4-9.
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Fig. 4-9. Beta-functions as a function of the position s. In this case deflection elements are used as

conventional dipole magnets. The betatron-tune are (1.44, 1.44).
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  We have found that at almost all the usable operation point, the dispersion-free case has a larger fi. than

in the magnetic case and the venical tune is enhanced. The reason for this can be found from Eqs. (4-6) and

(4-10). One finds that the radial focusing of the dispersion--suppressor can be controllable without changing

the bending radius by changing the ratio of the two bending field, and at the dispersion-free condition, the

radial focusing has twice the strength of that of the dipole magnet. In S-LSR, the radial focusing of the

deflection element is utilized for the horizontal focusing. Thus, the betatron motion of the beam is greatly

affected by the radial focusing strength of the deflection element. In the horizonta1 direction, the strength of

the defocusing of the quadrupole magnet has to be increased, in order to compensate the increase of the

radial focusing. Naturally, in connection vvith it, the focusing strength of the quadrupole magnet in the

vertical direction becomes large. Because of such reasons, the betatron tune, especially the vertical tune of

the dispersion-firee mode is increased. Thus, as shown in Fig 4--7, the tune value satisfying the second

maintenance condition doesn't exist in the stable operating point of S-LSR

  The lattice design of S--LSR had been designed to satisfy the two maintenance conditions for the

crystalline structure, in the magnetic mode [4-l9]. The dispersion-free mode of S-LSR has advantage in the

cancellation ofthe shear heating mechanism, although the second maintenance condition for crystal beams is

not satisfied. Therefore, in order to achieve a crystal beam, a different form of electric field is required (in

order to suppress the venical tune in S•-LSR). In fact such a form can be found, as will be described in the

next chapter.

4.7 The field error

  A dispersion-free storage ring has never been constructed. Thus, we have to investigate the influence of

the fieid error of the dispersion-suppressor. In the case of S-LSR, the construction errors of the electrostatic

deflectgrs will cause the larger field errors than that of the bending magnet because of its structure, i.e. the

gap of the electrostatic defiector is smaller than that of the bending magnet, thus the error of the gap size
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causes the larger error of the field strength, and the existence of the intemiediate electrodes complicates the

simation. Closed orbit distortion (COD) is considered as an influence of the field error. The COD of the

dispersion-free mode of S-LSR should be estimated exactly, because the horizonta1 aperture ofthe deflectors

is only 30 mm. The coefficient V, in Hamiltonian (4-9) represents the strength ofthe bending electric f;eld.

Thus, the error of Vo will generate the closed orbit distonion. Similarly, the error of the strength of the

dipole magnetic field will generate the COD. We suppose that the field error exists uniformly in the

dispersion•-suppresser. Then the field errors can be included to the Hamiltonian by the formula

                     Åë+Aip= -(V, +AV, )• lnCl+!) (4-33)
                                        k Pol

                    A+zN2i=(o, o, --B-y "2ZXBy (p,+x)) (4-34)

Since now the closed orbit distortion ofthe reference panicle is needed, a condition (M = O) is supposed.

For the dispersion free state, the horizontal equation ofmotion ofthe reference particle is given by

                    dd,21fu-1+p7,o2x+f'Avio-1+p7o2ABB,' (4-3s)

Then, the horizontal phase space coordinates ofthe reference panicle before and after the field error region

are given by the extended transfer matrix. [4-20]

Xl

PN
xi

1

  cos Rl

- V)l ,in V)i;l

o

iZ; sin lti

 cos VX;l

o

lli (1 m cos V]El)(lyc

JJIZi sin Vki • z!sf

      i

xo

peW

.O

1

(4-36)

 where l is the length of the field error area of the defiector and the following notations has been

introduced

                     k,.,1+pr,o2 Af=,1j,-Avlilo-1+p7o2Z!BSB,y (4-37)

The extended transfer matrix (4-36) can be divided to the part of the orbit distortion induced by the field

error and the part of the deflection element

              M(Si [ So)= Merror(Si 1 So)Mdeflector(Si [ So)

                                                                               (4-38)

  o i(i-cosV)lihf

O 1 ftsinltl•Af

  cos Ml

- ViE sin VX;l

    o

fl; sin gi o

 cosViii;l o

   Ol
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 If the length l is enough small so that the element can approximate by thin lens, the first part of the

transfer matrix Eq. (4-38) can be vvritten as

Mki,k (s2lsl)=

1

o

o

o

1

o

o

0Li-0B

1

(4-39)

where eE and eB are the kick angles induced by the field errors

                         o. =l2?i Avio •i e. =i+pro2 ABB,y •i (4m4o)

By using the transfer matrix formula (4-38), the COD is estimated.

  From the field measurement of the bending magnet, we have found that the field errors of the dipole

magnets are far small compared with that of the electric field and the individual difference of each magnetic

field strength can be corrected by adjusting the excitation current with a bypath circuit. The six electrostatic

deflectors have not yet been completed. However the error of the electrio field can be estimated. The main

cause ofthe error ofthe bending electric field is gap size error ofthe electrostatic deflector. But, it is difficult

to reduce the gap size error less than O.1 mm from the circumstances on manufacture. When the gap error of

the electrostatic deflector is O.1 mm, the error of the field strength becomes to AV, 1V, N3.3Å~10L3 . When

such field error exists, the closed orbit distonion becomes order of lO mm. This is the same order of the gap

of the electrostatic defiector. To cope with such simation, carefu1 adjustment of applied voltage to the main

electrodes is planned taking the real measured gap size into account. ln order to realize such adjustment,

every main electrode in the 6 deflection elements is required to be powered by an individual high voltage

supply. With the condition that Av,/v, is suppressed to be less than 1.6xl04, the COD is expected to be

less than Å} lmm, which is thought to be tolerable size for beam circulation.

4.8 Consideration of the nonlinear effect

  In this section, the higher--order Hamiltonian of the dispersion-suppressor is derived, and the effect of the

nonlinear term is considered. Here, the Hamiltonian is expanded up to the third-order terms. When the

Hamiltonian (4-4) is expanded, it becomes

                  H=-(i+ilir)qA, -(i+;lt)p+Px2ipP; +Pi+pP; jl:. (4-4i)

When the condition ofthe equilibrium orbit (4-6) is substituted and the terms up to the third-order of x1 p,,

pN. , p'V , and ztp / p are remained, the exp anded Hamiltonian becomes

   iiz := ]i\,,Mi isJ +g(1 + i,Vi )(ii-)2 -(1 + iilli-) if,l + prvx2 ; pNy2 - pNx2 ; pN,2 ii:,l + ptw.2 ; p-,2 -Ei- (4-42)

 The momen tum p = m6rc = Mq Åë. )2 lc2 -m2c2 is exp anded up to the power of (AE - qip. )3 , then,

the momentum deviation can be writtefi as
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ztp ti
AE -gipD - 2S, ( ZVi - 9ipD )2. I zVi - qipD

6oc fioClo 2p,2r,2 iC7oc

)3

(4-43)

When the momentum deviation Eq. (4-43) is inserted into (4-42), the Hamiltonian becomes as

                             N rNJ N                             H = H, +H, (4-44)

where H, istheHamiltonianuptothesecond-ordertermsand fi, isthethird--ordertemis.

i]ii =-fi(l,IIIE, +2;,, (6(i,IZE, )2 + PN"2 ;PNy2 - 61i,IZE, i, (i-r,,q63,oE, )+S[i+;,J(i,Mi )2] Xi, (4-4s)

jEi2 =- 2;s (iii/i:Z,E, )3 - p'v.2

    '2;8(,(ii,:'E,)-pXili"fi9,2Zi

;pNy2 (ii;/ifZ,E,)+P'"x2;PNy2(i-Eq,,Zi)
x-+Po

(i-3,q,,Mi)-,;g-;i(,q,,Zi,)2(i.

     /33Eo

qVo ) 1 x3
lilsE,J-g' Zli,iT

1

2r

g(      2AE )i
     (E9,,Zi

(l-3-Eg,2PE'i'o ) (4-46)

  From this Hamiltonian of the dispersion-suppressor, the Hamiltonian of the flat pole bending magnet is

easily derived by setting the electric field Vo to zero. If the higher-order Hamiltonian of the

dispersion-suppressor compared to that of the dipole magnet one finds the dispersion-suppressor inevitably

includes nonlinear terms which are thought to be generated by nonlinear field. The reason is simple, the

electric field has radial position dependence (Eq. (4-2)), thus, it includes nonlinear components inevitably. It

is expected that the larger nonlinear component of the dispersion-suppressor limits the dynamic aperture and

causes some resonances. The effect of such nonlinear components is evaluated from the experimenta1 result

of KEK electrostatic storage ring [4-21]. The Hamiltonian of the electrostatic deflector of the electrostatic

storage ring is also easily given, if the polarity of the scalar potential is reversed and the vector potential of

the magrietic field is eliminated from Hamiltonian (4-44) and the equilibrium condition (4-6). Then, one will

find the nonlinear component ofthe electrostatic deflector has the same formula as that ofthe dispersion-free

deflector.

  In KEK electrostatic storage ring, the measured I le-lifetimes of stored ions are from 12-20 s. The lifetime

is limited by interactions with the residual gas, rather than the nonlinear field effect. This result means that

the reduction of the dynamic aperture due to the nonlinear effects and the higher-order resonances induced

by nonlinear field components doesn't give so large effect to the beam dynamics, if the tune value of the

operating point is selected suitably.

For the case of S-LSR. the similar result is expected. The bending radius of S-LSR (1.05m) is larger than that

of the KEK electrostatic storage ring (O.25m). According to the higher-order Hamiltonian fi,, the

higher-order terms induced by the nonlinear component of the bending electric field are in proportion to

1/p,2 or l1p,3.Therefore, if the bending radius- Po is increased, the total effect ofthe nonlinear fields per

one turn becomes smaller. Furthermore, real aperture and beam emittance of S-LSR are small originally, thus,

the nonlinear effects may not become the problem. It is known generally that the nonlinear effects become

weak, as the beam size and emittance is reduced. Therefore, once a crystalline beam (which is ultimate low

emittance bearn) is formed, the nonlinear effects become still smaller, although, the nonlinear effects may

infiuence the formation process ofthe crystal.
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4.9 Summary of this chapter

  The dispersion-free storage ring might be usefu1 for the stabilization of a 3D crystal beam, because the

shear heating mechanism is canceled, and the dynamics ofthe beam becomes equivalent to that of the linear

ion trap. MD simulations based on the Hamiltonian without the shear term was already perfomied in Ref.

[4-22], and it showed the generation of 3D crystalline beam, although, the beam focusing force of this MD

simulation was time-independent. A MD simulation including the time-dependent alternating focusing force

and higher-order nonlinear effects will be the scope ofour further investigation.

  This scheme is introduced to the ion cooler ring S-LSR, which is now under construction. ln S-LSR. the

dispersion-suppressor is realized by inserting a cylindrical electrostatic deflector into the small gap of the

dipole magnet. The calculation of the beam dynamics has been performed based on the parameters of the

deflectors. From the result of the theoretieal investigations, we have found that the dispersion-free mode of

S-LSR is a stable circulating mode ofthe beam free from the shear heating mechanism, and provides a lot of

capability for beam dynamics study, although, the dispersion-free mode of S-LSR has such a restriction as

not satisfying the second maintenance condition for beam crystallization. However, this problem can be

solved by introducing a different type of electrostatic field. The details of the new type of electric field are

described in the next chapter.
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Chapter5. 0ptimumdispersion-freedeflectorforS-LSR

5.1 Searchoftheoptimumdispersion-freedeflector

  As shown in the previous chapter, the dispersion-free deflector is realized by the combination ofa flat pole

dipole magnet and a cylindrical electrostatic deflector. However, this dispersion-free deflector is not suitable

for a small size ion storage ring, because the radial focusing becomes too strong and this effect greatly

affects the beam dynamics. In the case of S-LSR, horizontal beta function and the venical betatron tune
value are extremely enhanced. This violates the maintenance condition v7i Åq A[12j . It is necessary to

search a dispersion--free deflector which has the weaker radial focusing effect. It is expected that the strength

of the radial focusing is changed by changing the radial field distribution in the electrostatic deflector. In this

chapter, possible electric field distribution satisfying Maxwell equation is investigated and the structure of

the electrostatic deflector is also investigated. Next, the beam dynamics in the electrostatic deflector and the

dispersion free deflector is formulated. Finally, the beam dynamics and lattice parameters of S-LSR are

investigated, when the suitable dispersion-free deflector is applied to S-LSR.

5.2 PossiblesolutionsofMaxwellequation

5.2.1 Coordinatesystem

  Maxwell equation is solved in a cylindrical coordinate system. The relations between rectangular

coordinates and cylindrical coordinates are given by

              r=V?T5J5' q=tan-iX z=z
                                     x
In the cylindrical coordinate system, the differential operators are given by the following formulas.

                O 10 O     (gr"dÅë)r = s,T ip (gr"dÅë)q=IoqÅë (gradÅë)z =b.T ip

               o2 lo 1 o2                                       a2
         AÅë= or2 Åë+75.rÅë+7' 6q2 Åë+ sz2Åë

5.2.2 SolutionsofLaplace'sequation

  In the space between the deflection electrodes, the scalar potential of the electrostatic field ip

the solutions of Laplace's equation.

                            Aip -O

We assume the solution ofthe form

                      ip (r, Åë, z) = F(r, z)S (q),

in order to separate the variables. Then, the Laplace's equation can be separated as

has to be

(5-1)
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                02                                        02                            10                                                    C
                o,2 F(",Z)+7b,T F(r,z)+ s.2 F(r,z)-7T, F(r,z)=O (s-2-a)

                          02
                             s(q)+cs(op) =o (s-2-b)                         Oq2

where C is optional constant. In order to realize the usable electrostatic potential as electrostatic deflectors,

the scalar potential ip must not have Åë dependence. Therefore, S(q) must be con stant, and thus C must

be O. Then, Eq. (5-2-a) becomes '

                      a2                                               02                                  10
                      o.2 F(r,Z)+7zs,T F(r,z)+o.2 F(r,z) =O (s-3)

The solutions satisfying this differential equation becomes the usable electrostatic potential. Namely,

                       Åë(r, q, z) = aF(r,z)

where, a isconstant.

5.2.3 Possibleelectrostaticpotential

  There are the following three easy solutions.

 (1) Spherical electrostatic deflector.

                      Åë(r,q, z)=ulsk:ii +const (s-4)

   The shape of the electrode to realize such the electrostatic potential is decided from the shape of the

 equal potential surface. ln this case, the shape ofthe electrode becomes a spherical surface.

 (2) Cylindrical electrostatic deflector

                         ip(r,q,z)=a•ln(r)+const (5-5)
   The shape of the electrode is decided form the equation

                               ln(r)= const. (5-6)
   This solution is r = const . In the cylindrical coordinate system such a curved surface becomes cylinder.

 (3) Hyperbolic electrostatic deflector

                          ip(r,q, z)= a(r2-2z2)+ const (s-7)

   The shape of electrode is decided form the equation

                              r2+2z2=const (5-8)
   The solution is a hyperbola. Therefore, the cross section form of the electrostatic deflector becomes

   hyperbolic curve.
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The linear combinations of these three solutions are also the solutions of Laplace's equation. For example,

we consider the linear combination ofthe solution (2) and (3)

                         Åë(r,q,z)=a(ln(r)+n(r2+2z2))+C, (s-g)

where n and C are constants

The cross section shape ofthe electrode to realize this electrostatic potential is shown in Fig. 5-1.

3

2

1

zo

-1

-2

-3

/

  /
-=1
a

                                  O 1 2 3
                                             r
                          Fig. 5-1. Cross section shape ofthe defiector

The cross seotion shape is simiiar to a hyperbola, but not the hyperbola. Thus, we call such a electrostatic

deflector semi-hyperbolic electrostatic deflector. The semi-hyperbolic electrostatic deflector will bear

important role in the dispersion-free defiector.

  In addition to the solutions (1)-(3), a toroidal electrostatic deflector exists [5-1]. However, the toroidal

electrostatic deflector is not needed for our purpose. Thus the details of the toroidal electrostatic deflector are

not described here.

5.3 Beam dynamics in the electrostatic defiectors

  The beam dynamics in a spherical [5-2], a cyliRdrical [4-21] and a toroidal [5--1] electrostatic deflector has

been investigated and formulated by forerunner's work. In this section, we newly formulate the beam

dynamics in the hyperbolic electrostatic deflector and the linear combination of the electrostatic potentials

shown in section 5.2. The formalism of the electrostatic deflectors and the dispersion-free deflectors has

many common features. ln accelerator physics, Frenet-Serret coordinate system is usually used [4-4]. If a

circle of the radius po in the cylindrical coordinate system is selected as the reference orbit of the

Frenet-Serret coordinate system, the relations between the cylindricai coordinates and the Frenet-Serret

coordinates are given by '

                     po +x=r s== poq y== z.
ln the Frenet-Serret coordinate system, the differential operators are given by the fo11owing formulas.
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(gradÅë)x = 8. ip           10
(gradip)s = Ai, ip

(grad ip)y == s5
y Åë

AÅë==
i[il}hg.Åë+s,izip,+gha,Åë,]

where h=1+x1po.

5.3.1 Beam dynamics in the hyperbolic electrostatic deflector

  In the Frenet-Serret coordinate system, the electrostatic potential ofthe hyperbolic electrostatic deflector is

given by

                    Åë(x, y, s)= -lg'L [(i+i;:;-)2 -2(i;:J)2 -i] (s-io)

where the constants of Eq. (S-7) are selected so that the electrostatic defiector has a zero potential and the

bending field strength Vo 1po along the reference orbit. If the vector potential of the bending magnetic

field is eliminated from the Hamiltonian (4-13), we obtain the relativistic Hamiltonian which governs the

motion ofa charged panicle in a bending electrostatic deflector

                    H (1+rt (pt +qipD )2 -m2c2 -p (s-")

where m and q are the rest mass and charge state of panicles, c is the speed of light, ÅëD is the scalar

potential in the electrostatic deflector, pt is the longitudinal canonical momentum conjugate to time t. By

expanding the square root and leaving only low-order terms, Eq. (5-1 1 ) becomes

                            H= -(1.fl )p. piippy2, (s-1 2)

where p=m]6rc= (p,+qip)2lc2-m2c2. Since the electric field strength is Volp along the design orbit,

equilibrium kinetic momentum becomes

                                   po = SZ,2• (s-i3)

The momentum deviation from the design momentum p, =mfi,r,c= p,2lc2 rmm2c2can approximately be

wrltten as

                      ztpxp-p, Rs AEII,.qipD -2;, (AE6i.zq,ipD )2 (s-14)

zVl is the energy deviation from the design value -tMi=m7,c2-(-p,). lnsening Eq. (5-13) and

,p = po + Ap into Eq. (5-12) and neglecting nonlinear terms, one finds

                       fi :-(i+i]l-)-(i+;l-) {ll,l+P'Vx2;PNy2, (smis)

where the transverse momenta have been scaled to be dimensionless; namely, P.(.)=p.ty)!p,. Substitution

ofEq. (5-ny14) together with Eq. (5-13) into Eq. (5-15) yields the approximate Hamiltonian
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      ]Ei; = 7i ; P'Vy2 - ,6/ill,E, + 2;,, (6(),flllE, )-(i + iil,J) fi(l, IIE, -ili;- +;(3 + iil;, )(i:;:-)2 -(-Js:;-)2 (s-i6)

From this Hamiltonian, the equations of motion in the hyperbolic electrostatic deflector are obtained.

                      ddil= m(3+ ili,-) i;, +71IJ (i+ljl;,),(32,IilE, (s-i 7-a)

                             dds2;=Jil,Jy (s-17-b)

In non-relativistic limit lo -År1, the hyperbolic electrostatic deflector has a horizonta1 focusing of the

strength 41 po2 and a vertical de focusing of the strength 21 p,2.

5.3.2 Beam dynamics in the other electrostatic deflectors

  The beam dynamics in two kinds of linear combinations ofthe electrostatic potentials such as Eq. (5-9) is

investigated. First, the beam dynamics in the semi-hyperbolic electrostatic deflector is investigated. As

shown in Eq. (5-9), electrostatic potential of the semi-hyperbolic electrostatic deflector can be expressed by

the linear combination of the cylindrical electrostatic potential and the hyperbolic electrostatic potential. The

ratio ofthe linear combination is supposed to be

           ip(x, y, s) = !ii'L I(2 - c) in(i + ilir) + c[S (i + iiJ )2 - (ilk)2 - S]i

                                                                               (5v18)
                   -{•[2fi.(.-,G)2-.(rt)2. ]

where c decides the ratio of the linear combination. In this case, the condition of the equilibrium kinetic

momentum is same as Eq. (5-13), and the Hamiltonian becomes
     fi - e'W; +2 p'Wy2 - ,c{/)Il,E, + 2k (/g(),IIE, )-(1 +;IJ, ) xil/)ll,E, i+S(c+1+IÅíJ, )(i)2 -{i(;l;-

Then, the equations ofmotion are
                    Zil - -(c+i + ;ls• ) i + -71(l- (i + -iil•J) ,(i•IIII.,

                              d2y C
                              ds2 =7]It Y

ln non-relativistic limit 7o --År 1 , the semi-hyperbolic electrostatic deflector has a

strength (C - 2) 1 p,2 and a vertical defocusing of the strength C 1 p,2 .

  We also consider the following linear combination of the spherical electrostatic potential an

electrostatic potential.

              ip(x, y, s) = Vo l(i - C) in(i + ilX) -C [ (p, +P.O)2 + y2 - i]l

                      RJv,[i::--g(i+c)(il:-)2+{i'L(-Js:J)2+ l
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{n the followings, we call an electrostatic deflector generating this eiectrostatic potential as a semi-g. pherical

electrostatic deflector. In this case, the condition of the equilibrium kinetic momentum is also same as Eq

(5--13), and the HamiltoniaR becomes

  A' = fiX2 "2 P'2 m Åí,EE, "2;,2 (fili,iZE, )h(i+sl?,-) fi(l,IZE, "illlm+"Å}(i+iil,J-c)(i)2 +-:il(-;l;-)2 (s-22)

Then the equations ofmotion are

                           dd,il=m(i+il;,-C)i2+ s-(i+il:,)6(i,XE, (s-23-a)

                           ddige=-pC,2Y (5-23-b)

In non-relativistic state, the equation of motion of a charged panicle in electrostatic deflectors described

above can be summarized as follows.

                            ddil =-(2hn) i2 +71Jff iÅrE, (s-24-a)

                            dds2I =in i2y (s-24'b)

The value ofn corresponds to the following stmcture ofdeflectors.

Table 5-1. Field index n ofelectrostatic deflectors.

    Structure of
electrostatic deflector

Spherical Semi-spherical Cylindrical Semi-hyperbolic Hyperbolic

value ofn 1 1ÅrnÅrO o OÅrnÅr-2 -2

From Eq. (5-20), it is found that the semi-hyperbolic electrostatic deflector can create the focusing strength

as same as the semi-spherical deflector, in the frrst order. Furthermore, the other combination, for example,

linear combination of Spherical and Hyperbolic electrostatic potential also realizes the same equation of

motion of the semi-hyperbolic or semi-spherical electrostatic deflector, in the first order. But, if the

higher-order effect is considered, one 'finds the linear combinations listed in Table 5-1 can realize a bending

field which includes the smaller nonlinear component.

5.4 Beamdynamicsindispersion-freedeflectors

5.4.1 Beamdynamics

  In the previous chapter, the dispersion-free deflector has been constructed by the combination of a flat

pole dipole magnet and a cylindrical electrostatic defiector. Now, we have formulas of the other type of

electrostatic deflector. The other combifiation of a dipole magnet and an electrostatic deflector can be

investigated by using these formulas, and it caft create new dispersion-free deflection element. in the

following, the equations of motion of a charged particle in defiectors which are constructed with flat pole

dipole magnets and various electrostatic deflectors are investigated.

  First, the combination ofa dipole magnet and a semi-hyperbolic electrostatic deflector is supposed. In the

followings, we call this defiector as a semi-hyperbolic dispersion-suppresser. Then, the Hamiltonian is given

by Eq (4--4), the scalar potential is given by Eq. (5-18) the vector potentiat is given by Eq. (4-1). By the same
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way of the previous subsection, Hamiitonian (4-4) is expanded, and the momentum deviation Ap (eq.

(4-7)) and the equilibrium condition eq. (4-6) are substituted. Finally, neglecting the higher--order terms, the

Hamiltonian becomes

              i7 -- /72,ZE, + 2;,, (6?,ilE, )2 + PNx2 ; PNy2 - i7e,EE, il:(i - 7,,9i7?,oE, )

                  '{i-C Xi +h• (,q,,"i )2](i)2.t' i,vi ci)2 (s-2s)

Then the equations ofmotion are

               dd,21=-S,,[i-c,6%,Ui+ijl,J(E9,2Zi)2]x+71t-(i-r,2q,67,OE,),(72,SIE, (sh26-a)

               ddil==-pCo2A9o2ViY (5ti26-b)
The last term ofeq. (5-26-a) is cause ofthe linear dispersion. Therefore, ifthe relation qV,/ro21(il8Eo = 1 is

satisfied, the linear dispersion is canceled out. This relation and the condition of the equilibrium orbit Eq.

(4-6) also leads the relation (1+lll,2)E(p,)== fi,cB,, where E(p,) is the strength of the bending

electric field on the reference orbit; E(po) = Vo 1po . This condition is complete same as the dispersion free

condition shown in section 4.1 and 4.2.2 . When non-relativistic limit 7o ---År1 and the dispersion-free

condition gV,/1,2178E, ='1 are imposed, the strength of the horizontal focusing and the venical focusing

become (2-C)lp,2 and Clp,2,respectively.

  The case of the combination of a dipole magriet and a semi-spherical electrostatic deflector is also

investigated. ln the followings, vve call this deflector as a semi--spherical dispersion-suppresser. Then, the

scalar potential is given by Eq. (5-21), and the Hamiltonian becomes

           ii' -- 6(l,;ZE, + 2;,, (fi(l,(ZE, )2 + PNi g P'Wy2 - ,(71i,;ilE, ;IIi-(i - i,,9fi7,oE, )

               +g[1+cEq,2Mi,+1,(Eq,,Zi,)2](i)2-giAq,,zi,ci)2 (s-27)

From this Hamiltonian, one can find that the linear dispersion is canceled out in the same condition of the

case of Hamiltonian(s' -2s-År. In the non-relativistic and the dispersion-free condition, the semi-spherical

dispersion--suppresser has the horizontal focusing ofthe strength (2+C)!po2 and the venical defocusing

ofthestrength Clp,2.

  From the above results, it is found that the dispersion-free deflectors described above have similar rule

about the focusing strength to the electrostatic deflectors. In non-relativistic limit, the equations ofmotion of

a charged particle in dispersion-free deflectors can be summarized as

                                dd.2gX, = -(2 + n) i, (s-2s-a)

                                dds2; == :,2Y (5-28-b)
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Table 5-2. Field index (n) ofdispersion-free deflectors.

    Structure of
electrostatic deflector

Spherical Semi-spherical Cylindrical Semi-hyperbolic Hyperbolic

value ofn 1 1ÅrnÅrO o OÅrnÅr-2 -2

5.42 Optimumdispersion-freedeflector

  Only the dispersion-free deflector with the combination of a flat pole dipole magnet aRd a cylindrical

electrostatic deflector has been proposed so far. Such dispersion-free deflector has the focusing effect only in

the horizontal (radial) direction. On the other hand, the semi-hyperbolic dispersion-free deflector has the

focusing effect in the both direction (see Table 5h-2 and Eq. (5-28)). Especially, ifthe coefficient ofthe linear

combination C of the scalar potential Eq. (5-18) is selected to be C==1 (this corresponds to the field index

n==-1 in Table 5-2), this semi-hyperbolic electrostatic defiector has approximately radially uniform

electrostatic field near the reference orbit and it has the same focusing strength in the both directions. Thus,

the particles of the same charge state and mass can be bent and focused at the same focal point despite the

different kinetic energy. Therefore, if such defiector is used, the beam transport system can be constructed

without quadrupole magnets for the beam focusing, in addition to the dispersinless bend. It may become

powerfu1 tool of mass analyzes. For relativistic particles, from Hamiltonian (5-25), the following equations

of motion of a charged particle in the semi-hyperbolic dispersion-free deflector are obtained

                            d2x x
                                 =-2 (5-29-a)                             ds2                                    Po

dds2

;=mro2 pY
o2

(5-29-b)

5.5 Easing of the shearing force

  Our main purpose of using the dispersion-free deflector is to cancel the shearing force. As shown in

section 4.3, it is essential that the energy transfer between the kinetic energy and the potential energy at the

entrance of the dispersion-free deflector. It is afraid that the dispersion--free deflectors except for cylindrical

dispersion-free deflector induce the different acceleration or deceleration of the particles deviated from the

reference orbit venically, because they have the vertical component of the electric field. Thus, we have to

investigate the effect ofthe vertical component ofthe dispersion-free defiectors.

  When the relative time At =t-sl,61,c is introduced, from the Hamikonian (5-24), (5-26), the same

longitudinal equations of motion as Eq. (4-16) are obtained. Therefore, for crystal beams (z)LE =O), the

difference of the revolution time of each panicle doesn't depend on its radial position x in the

dispersion-free condition. These are the same result as the dispersion-free deflector constructed with a

cylindrical electrostatic deflector. The difference arises in the second-order. The momentum spread is

approximately given from Eq. (5-14). For crystal beams (AE=O), the momentum deviation in the

dispersion free deflector can be written as

                       A.P,'umAe,2Åëi',m2k(fiq,2ipED,)2 (s--3o)
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For the case ofthe cylindrical dispersion-free deflector, Eq. (5-30) gives the relation

                             Zsp sr,2 mX -r,2CrilL-)2 (s-31)
                              Po Po kPo7

The first-order term cancel the shearing force, but the second order term cannot cancel the shearing force.

However, in general, the extent of the beam (x, y) of crystal beams is far small compared to the bending

radius po.Therefore, even if the crystal structure is distorted by the higher-order effect, the amount is very

small, and the distortion could be enough recovered at the cooling section and the bunching rf cavity. In this

case, the equilibrium temperature of the crystalline beam discussed in section 4.3.4 is determined by the

higher-order shear heating. Thus, the equilibrium temperature is very low, compared with the case in which

the linear dispersion remains. In the same way, the momentum spread in the semi--hyperbolic dispersion-free

deflector is given by the equation

                       ApP, ti io2 -i -f' (ili-)2-!{i'-(J3:)2 (sm32)

The last term is thought to cause a shear in vertical direction in the second order. This term arise because of

the vertical component of the electric field. But this term is second-order. Thus, this term doesn't become

problem. The other dispersion-free deflectors also have difference only in the higher order.

5.6 Application to the lattice of S-LSR

5.6.1 Transfer matrix ca'lculation

  The beam dynamics in S--LSR is investigated when the semi--hyperbolic electrostatic deflector is

introduced instead of the cylifidrical electrostatic deflector. The lattice parameters are obtained by the

transfer matrix calculations. The linear transfer matrix of the semi-hyperbolic dispersion-free deflector

becomes as

M=

  cos Vi(;.L

- VI;sin Vill-L

     o

     o

     o

     o

Å} sin Vill-L

 cos Vkl-L

    o

o

o

o

      o

      o
   cos VZI;)LL

- VnyL sin V]FJ-L

      o

      o

where the following notations have been introduced.

                            k.= 12 ky=lo2

                                 Po

For the case of the storage of 35 kev 24Mg'

approximation. From the linear transfer matrix, the

parameters of S-LSR can be calculated.

l

P,2

g
l7i iyua sin Vi(i;'L

 cos VZIJ-L

    o

    o

o

o

o

o

1

o

o

o

o

 o
 L
fi8ig

 1

(5-33)

          beam, non-relativistic approximation lo :1 is good

          stable region of the betatron oscillation and the lattice

The stable region ofthe betatron oscillation is shovvn in Fig. 5-2.
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       3 - Fig. 5-2. Stable region of the betatron
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The characteristic of this stable region is that the ring can operate without quadrupole magnet. This is the

result from that the deflection element has the focusing effect in both directions. The tune values at the

operating point ki, k2 =O are (2.1109, 2.1109). At this operating point, the horizontal and venical beta

functions have a completely same shape because the dynamics of the both direction becomes same (Fig. 5-3).

It is found that this operating point satisfies the second maintenance condition at S-LSR.

                        deflector quadrupole magnet
                        i /=]wwRla--

                  3• 75 ' leO                          fi.1'                                A o.9
                  3'25 // O.8
                                                                  Oe 7                  2. 7.S
                                                                  O.6

                                                                     -vf               Ct i" O.4C)"                  le 75                                                                  Oe3
                                                                  O.2                  ls25 Dx
                                                                  Oe 1

                  O. 75 O.O                     OeO 5eO 10•O 15•O 20mO 25eO
                                         sÅqm)

                  Fig. 5-3 Beta-functions at the operating point (2.1109, 2.1109)

ln Fig. 5-2, the operating points except for (2.l109, 2.1109) have different horizontal tune value and venical

tune value, because the quadrupole magnets break the balance between the horizontal and the vertical

motions. In real operation, it thought to be better that the tune values are slightly changed by imposing the

quadrupole magnet, in order to avoid the strong coupling resonance between horizontal motion aRd vertical

motlon.
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5.6.2 Fringing field effect

  As shown in ref. [5-3], the fringe flield ofthc dipole magnet induccs a weak defocus etl'ect in the vcrtical

direction, even ifthe magnct has no cdge angle. Wc have found that the cdgc ofthc dispersion-frcc deflector

ofS-I.SR also has the defocus effect in the vertical direction. The fringing field ofthc clcctrostatic deflector

falls to zero faster than that ofthe bending magnct (Fig. 5-4). Thus. the fringing field ofthc electrostatic field

can be approximatcd with a sharp edge and the magnetic fieid is approximated with a lincar fringing field•

(Fig 5-5)
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                                             edge of the detlector
                                           /

                                    y7(s) ideal orbit

                    ---- /
                                                           .                                                            h-                                     LSt 'k- ...
                                                                  .-L                                            actual orbit

                                                             Po
                                         b

                                     linear t'ringe region
                                           di

  Fig. 5-6 The situation ofthe fringing field and the orbit ofthe particle seen from the venical direction

If a charged particle is injected to the deflection element perpendicularly, the particle begins to be bent before

the real edge of the deflection element because of the fringing field of the bending magnet (Fig 5-6). The

condition ofthe equilibrium orbit in the region I in Fig. 56 is expressed as

                             p{o,) =qB, (s) (o ÅqsÅq g) (s-34)

where B,(s) is the venical component of the bending magnetic field
(B,(s) :Bos1b,B,(b)=B, =2p,1qp,) and s is the approximate length of the orbit from the staning

point ofthe bending. Then the bending radius becomes

                              p(i,)=il X• (oÅqsÅqg) (s-3s)

Therefore, the angle to the edge of the deflection element at the position s becomes

                         y(s) == lfp(i.) dT= i,2b (oÅqsÅqg) (s-36)

By the same way, the equilibriurri orbit condition in the region II in Fig. 5-6 is expressed as

                       p{o,)- =qB, (s)-p,r,2 (g ÅqsÅqb) (s-37)

The bending radius and the angle to the edge ofthe deflector in the region II in Fig. 5-6 are expressed as

                            p(1,) =ili S-bb 12 (g ÅqsÅq b) (s-3 s)

                 q(s) == 4bp, +)lrp(iT) dT := iib-7I+2bp, (g ÅqsÅqb) (s-3g)

                             i

                                         -100-



Chapter 5. Optimum dispersion:free deLflectorfor S-LSR

When the dipole magnet has the linear fringing field, the magnetic field has the longitudinal component in

the fringing region [5-3]. The strength ofthe longimdinal component ofthe magnetic field is expressed by

                                 Bo                          B, (y) =-s-y (s-4o)
where Bo denotes the strength ofthe vertical component in the gap ofthe bending magnet. When the charged

particle passes through the linear fringing region, it receives a venical force depending on the angle gLt(s)

from the longitudinal component ofthe magnetic field [5-3]. The equation ofthe venical motion is written

by

                      d2y qB,(y)siny(s)

                      ds2= p, (5-41)
Integrating this equation in the fringing field region, the following relation is obtained

                       dy                             dy 5b
                       T.b-i,,rv 12p,2 'Y (5-42)
From Eq. (5-39), one finds the horizontal bending angle is the same as that of the sharp edge. Therefore in

the fringing field region, only the vertical motion is corrected, in the first order. By a thin lens approximation,

the fringing field effect can be expressed by the transfer matrix

M=

1

o

o

o

o

o

o

1

o

o

o

o

o

o

1

5b
12 p,2

  o
  o

o

o

o

1

o

o

o

o

o

o

1

o

o

o

o

o

o

1

(5-43)

When this effect is taken into account, the betatron tune value falls a little and the balance of the horizontal

and the vertical betatron motion is broken at the operating point ki, k2=:O. For example, at the operating point

ki, k2:=-O.21, the betatron tune becomes (2.009, 2.01 7) and the beta functions becomes as shown in Fig 5-7.
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5.7 Effect to the beam cooling

5.7.1 Maintenance condition

  From the consideration in section 4.3.4, it is found the first maintenance condition (r Åq 1, ) is satisfied in

any type ofdispersion-free rings. On the other hand, the second maintenance condition N År 2jv,. has not

been satisfied unless the storage ring which has enough large bending radius and super period is provided.

Especially, when the cylindrical dispersion--free deflector has been used, it has been impossible to satisfy the

second maintenance condition in the lattice structure of S-LSR. As shown in previous section, when the

semi-hyperbolic dispersion-free deflector is used, it is possible to satisfy the second maintenance condition in

the lattice structure of S-LSR safely. Then, all obstacles to reach the 3D crystal beam at S-LSR might be

removed.

5.7.2 3D laser cooling by a coupling rf cavity

  The problem of the maintenance condition has been resolved. Thus, a 3D beam crystallization might be

achieved in S-LSR, ifan enough strong 3D cooling force is provided. Since there is no dispersion in the ring,

a 3D laser cooling method using the coupling induced by a normal rf cavity through the dispersion is

impossible. It has been shown that a coupling rf cavity can generate the direct coupling between the

longitudinal motion and the horizontal motion without dispersion [5-5]. The coupling rf cavity scheme

greatly succeeded in the lattice of TARN II [5-4], however, this scheme is not necessarily successfu1 in the

lattice of S-LSR. In the case of TARN II, in addition to the coupling effect of the coupling cavity, the

coupling effect at the bunching cavity induced by the dispersion also has been effective. On the other hand,

in the case of S-LSR, the effect of the bunching cavity cannot be expected, because there is small dispersion

or no dispersion. Only the effect of the coupling cavity is the reliance at the first stage of the Iaser cooling.

However, it is possible to obtain an enough coupling effect by a properly designed coupling cavity vvith

realistic parameters [5•-4]. We consider the case that the coupling cavity is introduced in addition to the

bunching cavity which was described in section 4.3.4. The vector potential of the TM2io mode of the

coupling rfcavity is given by the formula [5-•5]

                 Z=[o, o, toVc. sm(j:})cos(2ayt)sm(to,t+ip,)] (s-44)

where a cavity which has a width of 2a and the height of 2b is supposed. When the extent of the beam is

enough small compared to the width ofthe cavity (x1a ÅqÅq 1, y1b ÅqÅq 1 ), the Hamiltonian of the coupling rf

cavity is given by the formula

            il = PN"2 ; PN'2 - ,6i/ilZ,E, + 2;,, (i62,llE, )- p'Zq,toV`. :ism(to,t + Åë,)6, (s - s,) (s-4s)

ip. denotes the initial phase of the coupling cavity. If the relative time At = t-s11iloc is introduced, the

phase ofthe coupling cavity can be written as

                    sin(co,t+Åë,)6,(s-s.)=sin(to.At+gv.)6,(s-s.) (5-46)

eLt. is chosen to be zero, in order to obtain the maximum coupling effect. Namely, if the bunching rf cavity

and the coupling cayity is synchronized so that the center of the bunch pass through the ooupling cavity at
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the phase y/. =O. the maximum coupling efi'ect can be obtained. For a particle near thc bottom of the rf

bucket { ld, At ÅqÅq 1 ), the Sin function of Hamiltonian (5-45) can be expanded. Then, a dircct coupling tcrni

between longitudinal coordinate and horizonta1 coordinate arises without dispersion. From the canonical

equation. the following relations are derived

                               O(oA.E,, ) = 7ZZpll ,V" :V:iJ b',(s - s,) (5'47-a)

                               crPx ngl!. At
                               -Z5.i= p, -El-6p(S-Sh) (s-47-b)

By using these relations, the linear transfer matrix ofthe coupling rfcavity is obtaincd.

M=

                          rrqll,   O 100-                                  o
                         IBoEoa

  nqJi,            OOO O 1Po fioEoa

(5-48)

The lattice parameter of the However, this transfer matrix is not
symplectic. Therefore this tracking [1-17]. For the multi-turn
particle tracking, different typeo derivation ofthe transfer matrix.

5.8 Realization of the electric field

   The cross section view of the electrostatic deflector of S-LSR is shown in Fig. 5•-1O. The interrnediate

electrodes of the electrostatic deflector are introduced in order to maintain the field strength at the center of

the aperture. But, we have found these intermediate electrodes create a new possibility which realizes various
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Coordinate system in the electrostatic deflector.
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structures ot' bending clectric field in the elcctrostatic dcflector. The voltage applicd to the intermcdiate

clcctrodes strongly dominates thc distribution of thc electric ficld distribution in thc clectrof tatic deflector.

From thc rcsult ofthe field calculation code POISSON, it is found that the both ofthe ideal field distribution

ofthe cylindrical electrostatic deflector and semi-hyperbolic electrostatic deflector can be generated near the

rcference orbit. From the electrostatic potential of the semi-hyperbolic electrostatic deflector (Eq. (5-18)),

ideal field distribution near thc reference orbit are obtained as

                          E.(x)t-!['ILO E., O,) :- UO, •y (5-49)
                                  Po Po-
The field distribution along the x axis and the y axis in {he electrostatic deflector (Fig. 5-1O) is shown in Figs.

5-1l and 5-12.
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From Fig. 5-1 1, the deviation ofthe radial field distribution from the ideal distribution is almost less than Å}

1Å~10r3 in the region -1gxg1(cm). The field gradient of the E, component on the venical axis is

obtained by fitting the field distribution within the region -O.5 g y S O.5 (cm) by a linear function. The

obtained field gradient is -6.0404 Vlcm2. The deviation of this value from the ideal field gradient calculated

from Eq. (5--49) (-6.0496 Vlcm2) is 1.5 Å~ 10'3. Therefore, the ideal field distribution (Eq. 5--49) are realized

near the reference orbit. However, the deviation of the field distribution becomes large if it separates from

the x and y axis. The dispersion free mode of S-LSR will be utilized for the purpose of experimental research

ofa 3D crystal beam. Thus, the circulation ofa high current and large emittnce beam is not required. It might

be enough that ifthe usable aperture is secured in the small region around the reference orbit.

5.8 Summaryofthischapter

 Various types of bending electric field structure have been investigated. It has been found that the radial

focusing and the vertical focusing in electrostatic deflectors or dispersion-free deflectors can be controlled

under conserving the total value of the focusing force (the field index). Among the various possible

dispersioft-free deflectors, the semi-hyperbolic deflector has optimal focusing force as the deflector for

S-LSR. When the semi-hyperbolic type electric field is introduced for dispersion compensation, S-LSR can

operate satisfying the second maintenance condition. Such electric field can be realized by the use of existing

electrostatic deflector, only changing the voltage of the intermediate electrodes. The Hamiltonian of a

coupling rf cavity has been shown. The coupling cavity can generate a direct coupling between horizontal

motion and the longitudinal motion in the dispersion free storage ring.
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Conclusion

Conclusion

  An ion storage and cooler ring S-LSR, now under construction at ICR Kyoto University, is to be utilized

for the investigation about the realization of a crystal beam. The bending magnets for S-LSR were designed

by using a high precision three-dimensional magnetic field simulation code TOSCA. The bending magnet

was designed to have the maximum field strength O.95 T, the bending radius 1.05 m, bending angle 600 and

the gap height 70 mm. In the design of the magnet, the structure to suppress the change of the field

distribution due to the saturation was applied; the radial pole end was cut with a circle, the longitudinal pole

end was cut oflf with the shape of the Rogowsli's curve. The last two steps of the Rogowski's cut were

deformed for the purpose suppressing the sextupole component. The field clamp plates were attached to the

beam entrance and the exit of the magnet to suppress the tail of the fringing field. Based on the field

measurements, the assignment of the magnet position was determined taking the difference of the effective

lengths into account, in order to suppress the closed orbit distortion ofthe circulating beam. The closed orbit

distortion has been suppressed less than Å} l mm.

  The use of the dispersion-free deflection element was proposed to solve the problem due to the bending

shear. It was shown analytically that the shearing force is removed when the linear dispersion is canceled all

around of the bending section. The dispersion-free system can compensate the difference of the revolution

time ofeach particle ofa crystal beam all around the ring. This system might be able to stabilize the crystal

beam by the conventional laser cooling force. In order to obtain an enough strong three-dimensional cooling

force by a normal rf cavity, it is essential that the storage ring has finite dispersion. For the case of

dispersion-free mode of S-LSR a coupling cavity scheme is to be used. The coupling rf cavity can generate a

coupling effect between the horizontal and the longitudinal motion without dispersion. For the case of S-LSR,

the dispersion-free deflector has been constructed with a combination of a flat pole bending magnet and a

cylindrical electrostatic deflector. The dispersion-free operating mode is to be applied for the laser cooling

experiment of a 35 keV Mg' beam. In this case, the required strength of the bending magnetic field and the

electric field are O.252 T and 6.67Å~ 104 Vlm, respectively, which are well attainable range. The effective

length of the electrostatic deflector was designed to be as close as possible to the value of the magnetic field,

and such difference has been suppressed within O.5 mm. The cylindrical electrostatic deflector for S-LSR has

intermediate electrodes, in order to attain the needed field homogeneity under the influence ofthe inner wall

of the vacuum vessel. The intermediate electrodes also create a new possibility of the electrostatic deflector,

they can control the field structure in the electrostatic deflector by the adjustment of the potentials applied to

them. The dispersion-free mode of S-LSR using the combination of the flat dipole magnetic field and a
cylindrieal bending electric field which has radial position dependence as E.(x) oc (po +x)"i , extremely

enhances the betatron tune ofthe vertical direction, and dose not satisfy the second maintenance condition of

crystal beams. When a radially uniform electric field is introduced, the venical betatron tune of S-LSR is

reduced. A semi-hyperbolic electrostatic deflector can realize such bending electric field theoretically, and

then S-LSR becomes to have operating points satisfying the second maintenance condition. The electrostatic

deflector for S-LSR can realize this radially uniform electric field near the reference orbit by adjusting the

voltage of the intermediate electrodes, it is considered to contribute to the creation of a stable

three-dimensional crystal beam.
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Appendix Beamfocusingelementwithoutchromaticaberration

A.1 Introdllction

  A quadmpole magnet or electrostatic quadrupole is often used in beam transport line. Such focusing

elements inevitably cause a chromatic aberration. For example, the focusing strength of a quadrupole magnet

depends on the particle energy, it is characterized by the magnetic rigidity of the focused particle;

1lf = qB,L1z. vvhere f is approximated focal length, Bi is field gradient ofthe quadrupole magnet, L

is the length ofthe magnet, .zr. is magnetic rigidity (x. = p1g), q is charge state ofthe focused particle.

For the electrostatic quadrupole, a similar relation exists; 11f = gV,L/,ifE where Vi is field gradient ofthe

electrostatic quadrupole, L is the length of the element, XE is electrostatic rigidity

( zE = pv1g = q;zk 1m). If such chromatic aberrations can be eliminated, the precision of the mass analysis

is thought to be greatly improved. From above fonnalisms, one finds that the response to the focusing
strength differS for the same momentum deviation, because of the difference form of the field rigidity. Thus,

by combining such elements, it is thought to be possible to suppress the influence of the chromatic aberration.

As shown in previous chapters, in the case of beam bending, it is possible to eliminate the 1inear dispersion

by combining the electrostatic defieetor and bending magnet. OR the analogy of the dispersion-less bend, we

investigate the beam dynamics in the focusing element using quadrupole magnetic field and quadrupole

electric field simultaneously.

A.2 Hamiltonianformalism

 A HamiltoRian governing the motion of a charged particle around a focusing element vvhere not only a

quadrupole magnetic field but also a quadrupole electric field is present is derived. Choosing the path length

of a desigrt particle s as the independent variable, the relativistic Hamiltonian is given by the following form

[A-1] [A-2],

H=- (Pt +9Åë)2 .m2c2 -p
-gAs, (A-1)

where m and g are the rest mass and charge state of the particle, c is the speed of light, ip is the scalar

potential ofthe electrostatic quadrupole, pt is the canonical variable conjugate to timet, x,y,p.,py are

horizontal and vertical coordinate and momentum, respectively, and we have assumed that the vector
potential A only has the longimdinal component, i.e. A = (O, O, A,) . The design particle passes through in

the center ofthe quadrupoles and its momentum is p,. p, is constang because there are no electric and

magnetic fields on the orbit ofthe design particle. In this appendix, Hamiltonian is expanded by the different

method to the previous chapters, for the purpose showing thejustice ofthe expanded formula.

The relative energy error is represented by the deviation from the energy of the design particle

Eo = e2pe2 ÅÄm2c4 ,

E 1

poc poc 6o'
(A-2)
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where

E=
then,

fio is nomial

      c2p2+m2e
     the transverse

becomes to

ized velocity of the design particle; 11fi, == E, 1p,e and E is energy of the particle;

` + qip = -p, . The Hamiltonian Eq. (A-1) is normalized by the design momentumpo,

 momentum is scaled dimensionless; p'"dy) =lky)lpo and normalized Hamiltonian

ii .. - E-qÅë)2 m

        poc J fi
 9As

-p  Po
(A-3)

Insening Eq. (A-2) into the Hamiltonian (A-3),

fi =-

it becomes

M-qÅë
       +-         6o

qAs

Po

AEi, eqÅë) + ( AE - qÅë)2 - qAs

Po

(A-4)

 The scalar potential of eiectrostatic quadrupole can be expressed as ip==Vi(x2-y2)/2,where Vi is the

gradient ofthe electrostatic quadrupole lens, Vi = Vi in the focusing element and Vi = O in other region.
The vector potential of a quadrupole magnet is given by .2i = (O,O,A, ) with A, : B, (x2 - y2 ) 1 2, wh ere B,

is the gtadient ofthe quadrupole magnet, Bi = Bi in the focusing element and Bi =O in other region. If

the extent of the transverse motion of the particle is small, Eq. (A-4) can be expanded. If the square root is

expanded and left only lower-order terms up to third order, Hamiltonian (A-4) becomes

r- M lH=- +            2r,2

+

,68 Eo

  qVi

 MY- 1
fi,2EeJ

(x2 - y2)-

   2To2 j(73 Eo

qVli

M )3 + pNi 2 -2+ Py M P""i+pt

(x2 -y2)-

   fie2Eo 2

29Bp: (x2 - y2År

(A--5)

26o2 Eo 27o2 fio2Eo fio2Eo

where the constant term is neglected. From HamiltoAian (A-5), it is found that the energy deviation

constant ofmotion. Thus, the transverse equations ofmotion are derived from Hamiltonian

M is

dd,2

1fu-
[(i,zi,-qpB,i)-[(1+Iiil?,-)6q,,Zi,-qpB,i]li/i2,iZE,lx

dd.ly,Ftf((fiq,,Zi-qpBi)-[(1+t,)fiq,,Zi,-gpB,i]/i/i),iZE,ly

(A-6a)

(A-6b)

  The second term of the each equation represents the chromatic aberration. From eq. (A-6), one finds that

the first-order chromatic aberration is vanished under leaving the effect of focusing, ifthe relation

(i + "illtl-)Vt = Bivo

(A-7)
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is satisfied. This relation completely coincide with the condition

magnetic field simultaneously.

of dispersion-less bend usin g electric and

A.3 Chromatic aberration-free optical system

  As shown in ref. [4-16], it is possible to eliminate the dispersion at the final focal point by an electrostatic

defiector' and a bending magrtet set at individual positions. However, it is impossible to eliminate the

dispersion all around of the orbit. in order to eliminate it all around of the orbit, the use of bending electric

field and bending magnetic field at the same position is essential (see chapter4). On the analogy of above fact,

it is thought to be possible to eliminate the chromatic aberration at the final focal point by a quadrupole

doublet constructed wnh a quadrupole magnet and an electrostatic quadrupole (Fig. A-1).

                    e!ectrostaticquadrupole quadrupolemagnet

"LPr-4tr
Fig. A-1 Arrangement of the elements (horizontal direction)

In th

k,=

in lens approximatioA; k,L ÅqÅq1,k2L ÅqÅql, the transfer matrix is given by th

qV, 1 172E, k2 = qB, 1p , and L represents the length ofeach element.

              ([:l:), [:IZ),) (6 O(,l, O(6 f)(-2,, 3)

e following forms. Here,

(A-8a)

                   2'al'yl Yalaal)=(8 D(-2,L S(6 g)(klL 3) ("-8b'                  (

In order to focus the parallel beam at the same focal point horizontally and vertically, the condition

ki =k2 =k should be satisfied. Then, the focal length f is indicated by 11f=k2dL2.For a small

kinetic energy deviation E - E(1 + 6) , the condition that the focal length in the horizontal direction to be

invariable is described as

                               (1+il:,)-l+nekkdd (Atg)

The values of k, d and L which satisfy Eq. (A-9) exist. However, in this case, the vertical focal length

cannot be invariable, at the same time. Namely, it is impossible to eliminate the chromatic aberration in both

directions. In the case of quadrttpole triplet, it is difficult to eliminate the clnromatic aberration in both

directions. Therefore, it is essential to use the quadrupole electric field and quadrupole magnetic field in the

same region, in order to eliminate the chromatic aberration in both directions simultaneously.
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On the other hand, in the case of optical lenses, there is no directivity such as beam focusing element. Thus,

in order to eliminate the chromatic aberration, it is sufficient only to satisfy Eq. (A-9). The size of chromatic

aberration ofthe optical lens is depends on refractive index ofthe material. Therefore, magnetic rigidity and

electrostatic rigidity correspond to the refractive ifldex ofthe material ofthe optical lens.
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