
Title Efficient and Scalable Implementation of an Object-Oriented
Multithreaded Language(Dissertation_全文)

Author(s) Umatani, Seiji

Citation Kyoto University (京都大学)

Issue Date 2004-03-23

URL http://dx.doi.org/10.14989/doctor.k11022

Right

Type Thesis or Dissertation

Textversion author

Kyoto University

llfiZ$il

tg

28

 Efficient and Scalable Implementation of

an Object'Oriented Multithreaded Language

Seiji' Umatani

 Efficient and Scalable Implementation of

an Object-Oriented Multithreaded Language

 by
Seiji Umatani

Submitted in partial fulfi11rnent of the

 requirements for the degree

 of Doctor of Informatics

in the Graduate School of Informatics.

Kyoto University

 January, 2004

Abstract

This thesis proposes various techniques for implementing a modern multithreaded lan-

guage OPA, which is an extended Java programming language that supports object-

oriented programming and exception handling. For object-oriented parallel computing

as in Java, each thread needs to keep its identity to implement the synchronized con-

struct and each thread should have ability for general synchronization (suspension and

resumption) to realize mutually-exclusive access to shared objects. For elegant exception

handling, OPA employs a 1'oin construct with dynamic scope which enables an exception

handler to catch an exception thrown by any of the child threads during parallel execu-

tion. For eflicient implementation of multithreaded languages, laziness is an important

idea; for example, Lazy Task Creation (LTC) is a well known technique fbr good load

balancing. In this thesis, we pursue laziness for the modern language features, including

thread identity preservation, general synchronization, and dynamically-scoped join. Also,

the OPA system generates C code for good portability; this makes the adoption of LTC

diMcult. Although the implementation of the Cilk language has already overcome this

dificulty in limited (well-structured) multithreaded computations, our implementation

not only adopts LTC but also supports the modern language features and furthermore

achieves better performance .than Cilk.

 OPA has loop constructs, and allows thread creation during a loop iteration. If we

use the usual implementation of LTC for loops, we cannot divide the iterations into

the uniformly sized works among the processors and the number of task creations will

become large. In order to obtain the efficient load-balancing of LTC even in such cases,

we propose an extension of LTC suitable for iterative thread creation.

 We propose an eMcient and portable implementation scheme of exception handling

for fine-grained multithreaded programming languages, and evaluate its performance.

We eliminate overhead for exception checks by unifying suspension checks and exception

checks. Since the OPA system employs LTC, we also describe the implementation issues

on such language systems. In fine-grained multithreaded programs, a lot of threads

are created, and the nesting of fork-join becomes deeper. Before handling an exception

thrown in the course of parallel execution, it is desired to wait until all threads sharing the

goal of the parallel execution finish (or abort) their execution. If we can abort execution

of threads that can be aborted as soon as possible, useless computation is avoided and

the total performance is improved. In this thesis we propose techniques for such case.

1

Contents

1 Introduction

1.1

1.2

1.3

Motivations

Our Approach

Organization of This Thesis

1

2

3

4

2 Background

2.1 Parallel Constructs .

2.1.1 Description of Parallel Execution by Syntactic Constructs .

2.1.2 Thread Creation and Thread Synchronization by Operations

2.1.3 Thread Synchronization by Syntactic Constructs.

2.2 Exception Handling ..

2.3 Implementation Issues

3 OPA Language

3.1 An Overview of the OPA Language

3.2 Object-Based Synchronization ...

3.2.1 Exclusive Parallel Processing.

3.2.2 Cooperative Parallel Processing

3.3 Fork-Join Parallel Processing

3.4 Exception Handling .

3.5 Cactus Stack Model.

3.6 Examples .

3.6.1 Fibonacci Numbers

6

6

7

7

9

11

13

15

15

16

17

19

20

22

25

28

28

 3.6.2 Data Parallel Processing

 3.6.3 Search

4 OPA Implementation

 4.1 RuntimeEnvironment
 4.2 Implementation of Join

 4.3 Management of Method Frames

 4.4 Thread Creation and Scheduling

 4.5 Sample Code: fib

5 Optimizations for Parallel Processing

 5.1 Basic Idea .

 5.2 Lazy Task Creation

 5.3 Laziness for Join Frame Management

 5.4 Sample Code: fib,........

6 Extehding LTC for Iterative Computation

 6.1 Inefficiency of par C all in a Loop

 6.2 Extension of LTC

 6.2.1 Dividing forall Style Loops

 6.2.2 Stock Mode Execution

 6.2.3 Performance Model

7 Implementation of Exception Handling

 7.1 Exception Handling within a Thre ad

 7.2 Exception Handling during Parallel Execution

 7.2.1 Propagation of Exception

 7.2.2 Throwing a st opped Exception

8 Related Work

 8.1 LanguageDesign
 8.1.1 Java

ii

29

29

31

32

32

36

41

44

47

47

48

56

58

61

61

63

63

64

66

68

68

70

71

74

79

79

79

8.1.2 ABCL/1

8.1.3 KL1 and Shoen

8.1.4 Qlisp .

8.1.5 Approaches Based on First Class Continuations

8.2 Implementation .

8.2.1 Restricted Parallelism

8.2.2 Arbitrary Parallelism

9 Performance Evaluation

9.1 Implementation of Multithread

9.1.1 Measurement Results.

9.1.2 Comparison with Cilk

9.1.3 Comparison with Previous Implementations

9.2 for-par Loop Execution

9.3 Exception Handling .

10 Conclusion

III

79

80

80

80

81

81

83

84

84

84

85

89

90

92

96

List of Figures

3.1

3.2

3.3

3.4

3.5

3.6

3.7

3.8

3.9

4.1

4.2

4.3

4.4

4.5

4.6

4.7

5.1

5.2

5.3

5.4

5.5

Fork-join parallel processing. .

Cooperative parallel processing. .

Mutually exclusive parallel processing.

Structured synchronization. .

Handling an exception which is thrown during parallel execution.

Transition of the cactus stack based on the structured synchronization. .

Transition of the cactus stack fbr an exception thrown during parallel

processlng....................................
fib code in the OPA language. .

search code in the OPA language. .

Compilation process of the OPA system.

Organization of the OPA runtime environment.

Join frames using weighted reference counts.

The code for join synchronization. .

M ethod invocation with the slow version C code.

M ethod invocation with the fast version C code. , .

Compiled (pseudo) C code for fib. .

Organization ofthe extended OPA runtime environment.

Thread creation with child-first scheduling policy. , .

Message passing implementation of LTC.

Thread object management in LTQ.................-･･-･
Lazy allocation of join frames. ･ ･ ･ ･

16

16

16

21

23

26

27

28

30

31

33

35

37

39

40

45

49

50

53

55

57

iv

5.6 Compiled (pseudo) C code for fib with laziness.

6.1 The amount of work between thief and victim.

6.2 Task steal in for-par loop execution .

7.1 The code for exception handling within a thread.

7.2 An exception across multiple threads .

7.3 Compiled C code for a fork with support for exception handling.

7.4 Exception stored in a deep-level join frame....

9.1 Speedup results (relative to sequential C code).

9.2 Breakdown of overhead for fib on a single processor.

9.3 results of forall-style for-par loop. . ..

9.4 results of non-forall-style for-par loop..

9.5 nqueens method .

v

59

62

64

69

72

73

75

88

88

91

91

95

List of Tables

9.1

9.2

9.3

9.4

9.5

9.6

9.7

Computer settings. .

Absolute execution time (and relative time to C in parentheses).

The number of thread creations, task creation, and steal.

Comparison with the conventional OPA implementation.

Speed up by implementing the abort mechanism.

Execution time to find the first answer.

Overhead of exception handling.

84

86

87

89

92

93

93

vi

Acknowledgements

First, I would like to thank my greatest supervisor, Professor Taiichi YUasa, for his

invaluable supports and directing me to this interesting research area.

 I would also like to thank my Prof. Masahiro Yasugi, who has led the OPA project.

He is great resources for discussing ideas and concerns. He is extremely helpfu1 and

willing to dedicate time to helping me.

 I am also gratefu1 to Dr. Tsuneyasu Komiya fbr his many insightfu1 comments and

supports, which really help me. ･
 The OPA project has been a team effort and I am indebted to all the people who

have contributed in some way to the OPA system.

 I am also grateful to Professor Kei Hiraki at the University of Tokyo for allowing us

to use Sun Ultra Enterprise 10000.

 Finally, I would like to thank my family. Their support has always been important

to me.

 The research was supported in part by the 21st century COE program in Japan.

Chapter 1

Introduction

In this work, we have developed several eMcient implementation techniques for a modern

parallel language. We are developing an object-oriented parallel language OPA (an

Object-oriented language for PArallel processing), and some of these techniques are used

to eficiently implement OPA's constructs for thread creation and synchronization, which

support a variety of parallel processing models including irregular computations using

dynamically created (forked) threads.

 The main advantage of our implementation techniques is that they do not interfere

with other advanced features which most modern parallel languages are expected to

provide, such as synchronization (or cooperation) of threads through objects, exception

handling, and so on.

 Among these features, in the OPA language, exception handling is designed so that

it is suitable for OPA's parallel execution model. As a result, implementation issues

for exception handling are closely related to the implementation techniques for thread

creation and synchronization. Therefore, we have implemented exception handling in

an eMcient manner while the implementation of threads keeps high performance in our

OPA system, and confirmed its high eficiency using several benchmarks.

 This thesis provides the details of our implementation for parallel processing and

exception handling.

1

1.1 Motivations

High-level programming languages for parallel processing are quite useful to develop

reliable, reusable and efficient applications on various parallel architectures including

shared-memory architecture and distributed-memory architecture. In high-level parallel

programming languages for practical parallel processing, it is desired for the programmers

to be able to describe practical parallel programs with irregular computation and/or

side effect easily and safely as well as to be able to execute them on parallel computers

efficiently. To support irregular computations, many practical languages have various

features for runtime thread creation and exception handling.

The primary reason for the utilization of parallel programming languages is that we

can expect our parallel program running on a parallel computer is much faster than the

sequential version of the program running on a uniprocessor machine. However, this

expectation sometimes results in disappointment because of the poor performance of

parallel programs.

Poor performance can be caused by several factors. The degree of parallelism in the

algorithms is one of the most important factors because it puts a strict upper bound on

the performance achievable by the program. Some algorithms have a limited amount of

parallelism and thus it is not possible to increase performance beyond a certain number

of processors.

Another factor is the inefficiency of the language implementation. Even if the degree

of parallelism is sufficient for scaling up with the number of processors, each parallel pro

gram executed on the inefficient implementation may have poor absolute performance

when compared to a sequential program. That is, while the performance of the im

plementation executing parallel programs needs to be scaled up with the number of

processors, the implementation must also take care about runtime overhead for parallel

constructs to achieve good absolute performance.

Some previous studies have tackled this problem and their parallel language imple

mentations achieve good absolute performance and relative speedup on parallel com

puters. But, some of these languages simplify parallel constructs for efficiency and, as

a result, limit the types of parallel processing they support. Moreover, unfortunately,

2

most of these implementations do not assume the features other than their own parallel

constructs. In particular, handling an exception during the parallel execution is not

well-defined in these languages.

 For this reason, when we implement a parallel language which supports modern

features such as exception handling or object-based synchronization for flexible and ir-

regular parallel processing, we cannot apply these previous techniques directly to our

implementation.

 In this thesis, we provide implementation techniques for our language OPA that

support the above features. These techniques can be applied to other modern languages,

and the result of this thesis will make it possible for programmers to use modern language

features in their parallel programs without being worried about its runtime overhead.

1.2 OurApproach
Multithread constructs and their implementation should satisfy the following properties.

First, they must be efficient. In other words, we must reduce the overhead of thread cre-

ation and synchronization. We would like to write fine-grained multithreaded programs

using them. So, if they incur unacceptable overhead, most programmers would not use

them and, instead, would create coarse-grained language-level threads h and manage

fine-grained programmer-level threads explicitly. For this reason, we propose eMcient

implementation (compilation) techniques for OPA. Next, the language system should be

portable. To achieve this, the OPA compiler generates standard C code. In contrast,

some other systems exploit assembly-level techniques for eMciency. Finally, they must

provide suficient expressiveness. Some other languages achieve eMciency by limiting

their expressiveness. For example, the fork-join constructs of Cilk[23, 7] employ "lexical-

scope", and Cilk does not provide other types of synchronization. Cilk's constructs are

simple but not flexible enough to write various irregular programs.

 In this thesis, we propose three techniques which reduce overhead of fork-join style

constructs. Their common key concept is laziness. Laziness means that we delay certain

operations until their results become truly necessary. First, activation frames can be

lazily allocated in the heap. In the case of implementing fine-grained multithreaded

 3

 Ianguages in C, since each processor has only a single (or a limited number of) stack(s)

 for a number of threads, frames for multiple threads are generally allocated in the heap.

 For the purpose of eMciency, we allocate a frame at first in the stack, and it remains

 there until it prevents other thread's execution. Second, a task can be lazily created.

 In this thesis, a task is (a data structure of) a schedulable active entity that does not

correspond to a single (language-level) thread. A blocked thread becomes a task to

release the processor and the stack it uses. Also, for the purpose of load balancing, each

thread may become a task to move around the processors. Our approach decreases the

number of actually created tasks while it keeps good load balancing. Furthermore, we

delay some other operations related to thread creation and, as a result, we can make

the cost of thread creation close to zero. Third, data structures for synchronization can

be created lazily. In OPA, such a data structure is necessary because synchronization

points are dynamically-scoped[30] and each thread may be blocked.

 In this thesis, we compare our efficient implementation of OPA with that of the

Cilk language, which is a parallel extension of the C language. Cilk has fork-join style

constructs, and its system achieves good dynamic load balancing on shared-memory

multiprocessors. Since Cilk does not provide other types of synchronization such as

communication (synchronization) through shared objects nor mutually exclusive method

execution as in OPA, the implementation techniques of Cilk cannot directly be applied

for OPA. However, by pursuing laziness, our OPA implementation obtains better per-

formance than the Cilk implementation in spite of the richer expressiveness of OPA.

1.3 OrganizationofThisThesis

The rest of this thesis is organized as fbllows. Chapter 2 provides some necessary back-

grounds about multithreading and exception handling. Chapter 3 overviews the OPA

language. Chapter 4 describes our previous implementation of OPA. In Chapter 5,

we propose lazy normalization schemes fbr the implementation of OPA. By "lazy nor-

malization", we mean that we create a normal and heavy version of an entity (e.g., a

heap-allocated frame) from a temporary and lightweight version of the entity (e.g., a

stack-allocated frame) only when the normal one is truly necessary. In Chapter 6, we

4

extend our implementation techniques to support iterative thread creation. In Chap-

ter 7, we present exception handling mechanism in our optimized OPA implementation,

Chapter 8 presents related work and discusses expressiveness, efliciency, and portability,

Chapter 9 shows benchmark results of some programs written in OPA and Cilk. Finally,

in Chapter 10, we present concluding remarks.

5

Chapter 2

Background

Before discussing the design and the implementation of the OPA language, we briefly

introduce and classify some kinds of parallel constructs and explain the syntax and the

semantics of exception handling in this chapter. We also mention some issues on efficient

implementation of these constructs.

2.1 Parallel Constructs

In this section, we discuss expressiveness of various constructs for the description of

parallel computations in terms of (1) conciseness of the description and (2) describable

types of parallel processing. Among various synchronization mechanisms of threads, we

focus on synchronization mechanisms which wait for the completions of threads. We

defer the discussion on the ease of handling exceptions until the next section. In our

discussion, we use a programming language with the following assumptions:

• Constructs for parallel processing are explicit.

• Side-effects are permitted. (such as in C and Java)

• Fine granularity of parallel processing is permitted by language systems.

6

2.1.1 DescriptionofParallelExecutionbySyntacticConstructs

Let us review the forall construct in terms of the two criteria. The forall construct

can be used to describe parallel processing as fo11ows:

 forall(i=1 to N) stat

where Nthreads are created and they execute stat in parallel, and their completions are

automatically synchronized. Concurrent Pascal-style cobegin . . . coend construct can

be used to specify a distinct statement for each thread as foIIows:

 cobegin stati; stat2; ... statN coend

where Nthreads are created each executing the corresponding stati and their completions

are automatically synchronized.

 The description by these constructs has the fo11owing features. (1) It is concise. (2)

It only supports a simple type of fork-join parallelism and does not support a variety

of parallel processing including irregular computations except for hierarchical structures

that are formed by using forall or cobegin ... coend in stat recursively.

2.1.2 Thread Creation and Thread Synchronization by Opera-
 tions

In order to describe a variety of parallel processing including irregular computations, a

number of languages have been designed, in which operations for thread creation and

thread synchronization (including operations on locations for synchronization) can be

used. For example, in Java language [10], a thread can be created at runtime and various

operations on the thread are supported. Here, we consider the fo11owing operations:

 thr = spawn stat;

where a thread executing stat (child thread) is created and the reference to the child

thread is obtained in the variable thr, and

 join(thr);

 7

where the completion of the child thread referred to by thr is waited for. The combi

nation of these operations enables the following description of parallel processing where

the number of created threads is not fixed:

{

int i, n = 0;
thread_t thr[N];
for(i=O;i<N;i++)

if (...) thr [n++] = spawn stat;
barrier(thr, n);

}

void barrier(thread_t *thr, int num) {
int i;
for(i=O;i<num;i++) join(thr[i]);

}

where a thread executing stat is created only when the condition is met and the synchro

nization of the completion of every thread is expressed explicitly by the join statement.

Similarly, in some languages which employ data-flow synchronization (i.e., such syn

chronization that a thread which tries to extract the value from a location is suspended

until the value of the location is determined), the following operations would be used:

ch = future exp;

where a thread evaluating exp in parallel is created and the reference to the location into

which the result value will be stored is obtained in the variable ch, and:

val = touch(ch);

where the value stored in the location referred to by ch is extracted to val after the

necessary suspension. The following description of parallel processing where the number

of created threads is not fixed is similar to that using spawn and join:

{

int i, n = 0, sum;
int_channel ch[N];

8

for(i=O;i<N;i++)
if(...) ch[n++] = future exp;

sum = reduce_add(ch, n);
}

int reduce_add(int_channel *ch, int num) {
int r = 0;
for(i=O;i<num;i++) r += touch(ch[i]);

}

where a thread evaluating exp is created only when the condition is met and the synchro

nization of the completion of every thread is expressed explicitly by the touch expression.

The description by these operations for thread creation (such as spawn and future)

and thread synchronization (such as join and touch) has the following features. (1) It

is not considered concise. In particular, the synchronization code (the loops with join

or touch in the above examples) and thread management code (the array operations

with thr or ch in the above examples) are required for the correct synchronization.

The possibility of introducing bugs increases because of the too specific description.

If the description of synchronization is incorrect, a serious symptom where the bug

identification is difficult may be led by a thread that the programmer considers dead

at some point while it continues its execution in practice. (2) It supports a variety of

parallel processing including irregular computations.

In languages where thread creation and thread synchronization are described with

explicit operations, the user cannot easily picture a configuration of the current parallel

execution context. This is because the synchronization point is not known until the

synchronization operation is actually performed; such a synchronization point is the

point where the result of the thread execution is necessary and should be known for the

user to realize the goal why the thread is being executed.

2.1.3 Thread Synchronization by Syntactic Constructs

To reduce the description for thread management, a syntactic construct is useful. For

example, in Cilk [23, 7] which is a parallel extension ofthe C language, the cilk construct

9

 can be used to define a cilk function, which automatically manages threads created

 during the execution of the function body:

 cilk void foo(...) {

 lnt 1' '
 for(i=O;i<N;i++)
 if(...) spawn juncall;

 sync;

 }

where a thread executing juncall is created only when the condition is met and the

synchronization of the completions of multiple threads is expressed explicitly by the

sync statement. The threads created lexically within the body of the cilk function

are automatically managed, and the sync statement expresses the synchronization of

the completions of all threads which have been created before the sync statement is

executed. In Cilk, thread creation is permitted only within cilk function bodies, and

the same synchronization as the sync statement is implicitly performed when returning

from cilk functions.

 Compared to the description by operations for thread creation and thread synchro-

nization, the description by the cilk construct and the spawn and sync operation has

the fo11owing features. (1) It is more concise. Thread management code is eliminated

and synchronization code is also reduced to a single sync statement. The possibility of

introducing bugs decreases because of the shorter description length. (2) It supports a

variety of parallel processing including irregular computations to some degree with the

restriction that the programmer cannot directly specify threads involved in some synchro-

nization and that one cannot allow a thread to survive across function--call boundaries

which means that one cannot define an independent function to abstract several thread

creations.

 Next we consider a new syntactic construct waitfor (it corresponds to the join

construct of the OPA language, see Chapter 3), which expresses both thread manage-

ment (rather than by cilk function) and thread synchronization (rather than by sync

operations) as fo11ows:

10

 waitfor stat;

where the completions of the threads created by spawn lexically within the body of

waitfor (similar to the cilk function body) are synchronized. An example is as follows:

 '
 {

 lnt 1' '
 waitfor for(i=O;i<N;i++)

 if(...) spawn funcall;

 }

 Compared to the description in Cilk, the description by the waitfor construct has

the fo11owing features. (1) It is more concise since sync operations are perfectly removed,

and the possibility of introducing bugs decreases. (2) It adds the restriction that the

programmer cannot change the synchronization point at runtime. (In Cilk, a sync

statement may appear anywhere a statement is allowed in a Cilk procedure, including

within the clause of an if statement and in other control constructs.)

2.2 ExceptionHandling

Exceptions provide a structured form ofjump that may be used to exit a construct such as

a block or a function (method) invocation. The name exception suggests that exceptions

are originally designed to be used for exceptional operations. Exception handling is a

basic mechanism that can be used to achieve the following effects: (1) jump out of a

block or a function (method) invocation, (2) pass data as part ofjump, and (3) return

to a program point that was set up to continue the computation.

 Exception mechanisms may be found in many modern programming languages, and

every exception mechanism includes two constructs:

 e an operation for throwing an exception, which aborts part of the current compu-

 tation and causes a transfer of control,

 e a handler mechanism, which allows a certain part of program code to be equipped

 with code to respond to exceptions thrown during its execution.

 11

 For parallel processing, we must extend the semantics of exception handling so that

an exception during the parallel execution that cannot be handled by a certain thread

can be properly handled.

 When parallel programs are well-structured with thread synchronization by syntactic

constructs, the extension of exception handling is obvious. For example, in the case

of a forall statement, an exception that is thrown during the execution of a forall

statement (including parallel execution of child threads) can be properly handled as

the exception of the forall statement itself. We can define the language semantics so

that, if a forall statement is wrapped by a try-catch statement, the exception thrown

during the parallel execution can be caught by the exception handler of the try-catch

statement and the whole parallel execution is stopped without using individual stop

operations.

 In the case of a waitfor statement, the extension is almost the same as for the

forall statement: that is, an exception that is thrown during the execution of a waitfor

statement can be properly handled as the exception of the waitfor statement itself.

 On the other hand, thread synchronization by operations complicates the semantics

of exception handling. The handling of an exception that is thrown during the execution

of a child thread is not so obvious; that is, the way how the exception can be propagated

outside the child thread is not trivial. In order to properly handle the exception, the

language has to prepare operations for propagating the exception to the parent thread

and for stopping a thread whose result is no longer needed, and the programmer has to

describe the exception handling explicitly and carefu11y with the timing consideration.

 In Java, operations for stopping multiple threads can be briefly described using a

ThreadGroup object to manage related threads, but the operation itself cannot be omit-

ted.

 In some language designs [11], when a thread performs a join operation to another

thread in which an exception is thrown, it receives the exception automatically, and when

a thread performs the touch operation to a location to which an exception is propagated,

it receives the exception automatically. For example, in the fo11owing code:

 {

 mt x, sum;

12

 int-channel chl, ch2;
 chl = future flO;
 ch2 = future f20;
 x = f30;
 sum = x + touch(chl) + touch(ch2);

 }

an exception that is thrown by flO can be handled as the exception of touch(chl).

However, operations for stopping threads are still required (in this case, the thread

executing f20 should be stopped) and also propagation of an exception is deferred

until the corresponding synchronization operations are perfbrmed. Furthermore, if the

language design employs explicit operations for storing a value to a synchronization

location, the operation itself will not sometimes be executed due to an exception. For

example, if flO is defined as fo11ows:

 int flO {

 mt y;
 int-channel ch;

 y=gO;
 ch = current-futureO;
 determine(ch, hO);

 }

the return value of hO is stored into ch explicitly. While an exception that is thrown

during the execution of hO may be propagated to ch, an exception that is thrown during

the execution of gO cannot be propagated to ch.

2.3 Implementationlssues

While a multithreaded language provides the programmers with a means to create and

synchronize multiple threads, the implementation techniques for such a language auto-

matically schedules these threads on processors of a parallel computer. To execute a

multithreaded program efliciently, the scheduler must keep the processors busy and re-

13

duce interprocessor communication as much as possible in order to realize ideal parallel

speed up.

 Forked threads must be executed by the processors of a parallel machine in a manner

consistent with the program-specified order, and in general, the assignment of threads to

processors must be done at runtime. In many programs, threads are created only condi-

tionally, and in these programs thread assignment cannot be determined until runtime.

Furthermore, even if the threads can be statically identified at compile time, estimating

the execution time of any given thread is not always possible; so load balancing should

be considered in runtime scheduling. To overcome this problem, we must separate the

language-level expression of parallelism in the program from the dynamic scheduling of

threads at runtime. A multithreaded language permits this separation by incorporating

a thread scheduler in its implementation.

 The implementation of a typical multithreaded language automatically manages the

low-level details of thread scheduling, and it does so with a "work-stealing" scheduler

that is probably eficient. When writing a high-performance parallel application in such

a language, the programmer can focus on expressing the parallelism in the algorithm

independently of scheduling details with the knowledge that the implementation delivers

high performance.

 Beside automatic scheduling of the threads, in order to make the execution perfbr-

mance of fine-grained multithreaded programs comparative with sequential or coarse-

grained multithreaded programs, the implementation techniques must reduce overhead

related to the threads. The separation of expressing language-level threads and schedul-

ing threads at runtime also allows the compiler to determine when costly operations are

actually performed and when such operations are delayed.

 The multithreaded language OPA and the compilation techniques presented in this

thesis treat these implementation issues carefu11y to deliver high performance.

14

Chapter 3

This chapter presents an overview of the object-oriented parallel language OPA [32,

31]. Some of the key features of the language are the specification of parallelism and

synchronization with fork-join constructs, irregular synchronization with object-based

mutual exclusion, and exception handling.

 In this chapter, we also describe cactus stack, which makes it easy to understand the

behavior of fork-join type of parallel programs.

3.1 An Overview ofthe OPA Language

OPA (an Object-oriented language for PArallel processing) is a parallel extension of Java

language [10]; we remove specifications on threads and monitors from Java and add new

constructs for structured synchronization and relaxed mutual exclusion. Its design is

intended to realize both ease-ofuse and high performance of parallel processing. Note

that we use Java as the base language because of its simple and clear semantics; our

proposed scheme can also be applied to other object-based sequential languages.

 OPA supports irregular parallelism with dynamically forked threads. In OPA, pat-

terns of parallel processing can be divided into three types according to the relation

among threads, namely fbrk--join parallel processing (Figure 3.1), cooperative parallel

processing (Figure 3.2) and exclusive parallel processing (Figure 3.3). (They are de-

scribed in detail later in this chapter.) In fork-join parallel processing, we divide a task

15

'a.

fork
, , , , ,

,J,
join , ,

Figure 3.1: Fork-join
parallel processing.

" ;,,;""."........ "., .. ,
..,' shared

object

Figure 3.2: Cooperative
parallel processing.

Figure 3.3: Mutually exclu
sive parallel processing.

into two or more subtasks; when a divided subtask can be executed concurrently, we can

fork and join a new thread for the subtask in a structured manner.

Objects are mainly utilized to represent complex data structures, where an object

can hold a reference to another object. In OPA, each object does not have a thread of

control; as in sequential object-oriented languages, the method lookup and the subse

quent method invocation on an object are performed by the thread that sends a message

to the object. Mutual exclusion (serialization) is necessary for concurrent accesses (mes

sage passings) to an object to read/write the object's state consistently. In addition,

objects are also used for cooperative parallel processing in which the related threads

synchronize/communicate with each other in the course of their execution. The latter

two synchronizations (cooperative and exclusive parallel processing) are recommended

only when parallelism cannot be realized by the structured fork-join parallel processing.

3.2 Object-Based Synchronization

In this thesis, by synchronization, we mean that a thread suspends its execution until

a resumption condition is satisfied. In OPA, most patterns of synchronization can be

realized by the structured fork-join statements. However, other types of irregular par

allel processing (cooperative and exclusive parallel processing) is necessary to describe

16

practical parallel programs. The support of such synchronizations in OPA makes its ex

pressiveness more powerful than other parallel languages based on fork-join parallelism.

3.2.1 Exclusive Parallel Processing

In the object-oriented parallel computing, mutual exclusion (serialization) is necessary

for concurrent accesses (message passings) to an object to read/write the object's state

consistently.

In Java, a lock is associated with every object. But Java does not provide a way to

perform lock and unlock actions separately; instead, their pairs are implicitly performed

by the synchronized construct. We can use a synchronized statement as follows:

synchronized(o~) ~at

The synchronized statement computes a reference obj; it then attempts to perform a

lock action on that object on behalf of the current thread, and does not proceed further

until the lock action has been successfully completed. After the lock action has been

performed, stat is executed. If execution of stat is ever completed, either normally or

abruptly (e.g., by throwing an exception), an unlock action is automatically performed

on that object.

For programmers' convenience, a method may be declared synchronized; such a

method behaves as if its body were contained in a synchronized statement. A synchronized

statement (method) permits a single thread to lock an object more than once for avoiding

unnecessary deadlocks.

OPA also provides the synchronized construct, but mutual exclusion realized by the

synchronized construct can be relaxed by permitting simultaneous read-only accesses

to the object, which results in the elimination of bottlenecks related to some objects

accessed by many threads concurrently and frequently.

For this purpose, non-blocking read-only methods are used in OPA. A non-blocking

read-only method may read the state of a mutable object but it can be executed with

out blocking. This is realized by updating the object state atomically. To incorporate

non-blocking read-only methods, OPA uses relaxed mutual exclusion for the method de

fined with keyword instant. By defining an instant method with additional keyword

17

readonly, the programmers can specify the instant method as read-only (RO) tYI=

All instant methods without readonly keyword are considered to be read-write (RV

type.

Both RO and RW methods read the necessary variables of the object into loc

variables atomically at the beginning of the method, while an RW method writes tl

values of local variables into the object atomically at the point where the rest of t1

method execution no longer updates the local variables. The compiler automaticall

determines the update point with flow analysis. OPA also introduces a vflush statemer

to specify the update point explicitly; the object is atomically updated when the vflus

statement is executed.

The RO method can read the state of an object, even if an RW method is runnin,

on the object. The RO method is prohibited only from reading the state which is partl:

updated.

In contrast, the consistency control over multiple objects is not performed automat

ically and must be specified explicitly.

In this way, the instant methods may be classified only at compile time. To in·

crease the number of RO methods further, OPA provides dynamic (runtime) methol

replacement, which can be written as follows:

setmethodCml, m2);

where ml and m2 are method names. Once the above method replacement is performed

on an object, ml messages sent to the object will be renamed to m2. In other words, when

the object obj's method is replaced, the message passing "obj .m1(...)" is executed as

if it were "obj .m2 (...)." By the dynamic method replacement, we can replace a RW

method with a RO method. It eliminates some bottlenecks since the RO method can be

executed with less strict mutual exclusion than the RW method.

This dynamic method replacement can also be used for cooperative parallel processing

which we explain in the next section.

18

3.2.2 Cooperative Parallel Processing

In cooperative parallel processing, related threads synchronize/communicate with each

other in the course of their execution. For instance, in producer-consumer relationship,

the producer and the consumer communicate in a pipelined manner.

In OPA, objects can be employed for synchronization among cooperatively parallel

threads which perform message passing to the shared objects. OPA provides useful

classes for synchronization, such as I-store class (used for I-structure), FIFO queue class,

and barrier synchronization class. An I-store object suspends all get accesses to it until

a put access instantiates its value.

The above predefined classes for synchronization are written in the OPA language.

For this purpose, OPA employs dynamic method replacement extended with the two

special keyword suspends and initial. For example, when an I-store object is created,

the following initialization is performed in the constructor:

setmethod(get, suspends);

Once get method is replaced to suspends, a thread which try to invoke get method

must suspend its execution until the producer puts the value in it and then resets the

replaced method in put method as follows:

setmethod(get, initial);

Java's approach for cooperative synchronization is different from OPA. Java employs

monitors[15] with wait 0 operation (to enqueue the current thread in the object's wait

ing queue and unlock the object), not ifyO operation (to dequeue a thread from the

object's waiting queue and make it runnable) and not ifyall 0 operation (to perform

notifyO operation for all threads in the object's waiting queue).

However, the Java's approach has two problems. First, wait 0 operation is explicitly

performed in the middle of a method, it is more difficult to keep the state of the object

consistent. In OPA, every suspension occurs only before a method is invoked. Secondly,

in Java, only one waiting queue is associated with an object. Therefore, to waken a

specific thread prior to other threads waiting for their own conditions, we have to repeat

the wait 0 operation until its waiting condition is satisfied and use notifyall 0 at

19

every point where any of the waiting conditions may become true. When the number of

threads in the waiting queue increases, this scheme incurs significant overhead. In OPA,

a waiting queue is associated with every replaceable method on an object.

3.3 Fork-Join Parallel Processing

OPA employs a par construct and a join construct instead of spawn and waitfor in

Section 2.1.3. The rest of the thesis will use these par and join constructs. By attaching

keyword par to a method call (or a statement), the execution of the method call (or the

statement) is performed by a newly forked thread. By "join statement," statement is

executed by the current thread and the completions of the new threads created during

the execution of statement are joined with the cbmpletion of the join statement:

 join {

 par objl.mlO; 1/ create a thread
 par obj2.m20; /1 create a thread
 } 1/ synchronize the completions of the created threads

 When a value calculated by a created thread is used for the rest of computation,

components of a compound statement can be separated with a join label to indicate

that the part before the join label is ajoin block:

 {

 int x = par fl(n);

 int y = par f2(m);

 join:

 z=x+ y;
 }

where the scope of the bindings of the variables (such as x, y) initialized by created

threads is below the join label. The presence of the join label and the appropriate use

of variables can be checked at compile time.

 For synchronization, join targets (i.e. synchronizers) have dynamic scope in OPA.

More precisely, we define that a synchronizer established by join is dynamically scoped.

20

tork 2

join

rk1

fjoi

join

fork

1-1

-----d l

 1
 1
 1
 -- -- -11
 lt
 lt
 -e -t
 Joln
 block
 -- 11
 11
 11
 ll
 ----- 1
 1
 1
 1
 -dJ

Figure 3.4: Structured synchronization.

Dynamic scope means indefinite scope and dynamic extent, where references to an estab-

lished entity may occur anywhere and at any time in the interval between establishment

of the entity and the explicit disestablishment of the entity.

 For example, the execution of the following statement can be illustrated in Figure 3.4:

 join {

 par flO;
 fo;
 }

where fl and f are defined as fo11ows:

 flO { ･･･
 join {... par fl-10; ...}
 }

 fO { ... par f20; ... }

The join block in the figure represents the interval during which the body of join is

executed, where fl has a nested join statement. The join target of par f20 executed

in f is referred to using dynamic scope. The join target of par f20 will not change

even if we replace fO with par fO. The same join construct is employed in COOL [2]

21

which is a parallel dialect of C++, where thread creation is performed by calling parallel

functions (functions defined with keyword parallel); however, COOL does not involve

exception handling.

3.4 Exception Handling

The syntax for exception handling in OPA is the same as in Java. We first explain the

description and the meaning of exception handling in Java language. An exception can

be thrown by a throw statement:

throw exp;

where the value of exp must be an object representing the exception. Only objects that

are instances of the Throwable class (or of one of its subclasses) can be thrown by the

Java throw statement. The exception stops the current execution and the control is

transferred to the exception handler that is determined with dynamic scope.

The try-catch-finally construct is prepared for exception handling. Exception

handlers for an exception thrown during the execution of a try block are described as

catch clauses:

try {

II an exception may be thrown.

} catch(Exception1 ex1) {

... II may be executed for Exception1

} catch(Exception2 ex2) {

... II may be executed for Exception2

} finally {

... II always executed

}

A try statement executes a try block. The catch clauses will not be executed when

no exception is thrown. If an exception is thrown and the try statement has one or

more catch clauses that can catch it, then control will be transferred to the first such

22

try

stopped

stopped

stopped

 exception

.throw''

throw:'"

catch

Figure 3.5: Handling an exception which is thrown during parallel execution.

catch clause. A catch clause can catch and handle an exception (object) of the specified

class (or of one of its subclasses). If an exception is not caught, the exception will be

propagated to catch clauses for the outer try block. The exception handler is referred

to using dynamic scope; thus, the nesting of try blocks is dynamic: fbr example, if an

exception is not caught in a method body, the exception is propagated to the calling

point of the method.

 If the try statement has a finally clause, then the finally block is executed, no

matter whether the try block completes normally or abruptly (with an exception), and

no matter whether a catch clause is first given control. If an exception is thrown during

the execution of the finally block, the old exception (if any) is discarded.

 An exception that is thrown during the execution of a join block (including parallel

execution) can be properly handled as the exception of the join block itself. We can

define the language semantics so that, if the join block is wrapped by a try-catch

statement, the exception thrown during the parallel execution can be caught by the

exception handler of the try-catch statement and the whole parallel execution is stopped

without using individual stop or abort operations:

23

try {
join {

par flO;

fO;
}

} catch(...) {

}

The execution of the above statement is illustrated as in Figure 3.5. If an exception

cannot be handled by a thread, the exception is propagated to the join target of the

thread, which then stops the other threads sharing the same join target. Thus, the

description is simple and the handling of the exception during the parallel execution is

obvious.

The thread which handles an exception has to execute necessary finally clauses

before the control is transferred to a catch clause. The other threads that are stopped

due to the exception have to execute necessary finally clauses before their termination.

If a thread has acquired a lock for an object, the lock should be released as if the object

is unlocked in a finally clause.

With an instant method, the update of the object's data is performed atomically at

a single update point; therefore, if an exception is thrown before the update point, the

object's data remains unchanged. To enforce the update before throwing an exception,

we can use the vflush statement.

So far we have not discussed the complicated cases caused by multiple threads and

finally clauses. Only one exception should survive if two or more exceptions reach to

the same join target; and thus, one problem is how to determine the survivor. There is

a similar case in the following sequential execution: if an exception is thrown during the

execution of the finally block, the old exception (if any) is discarded in Java. However,

there is no difference in execution order among parallel exceptions. One solution to this

problem would be to give a priority to each exception. But, for simplicity, we decided

that the survivor is the exception that reaches first. The other problem is how to precisely

define the behavior of the stopped thread. It is an elegant idea to define the behavior

as automatically throwing a special (non-user) exception stopped except for two cases:

24

when stopped is being thrown and when a finally block is being executed. Although the

execution of a finally block is not stopped by other threads, the finally block itself

may throw an exception, possibly discarding the stopped exception. OPA avoids this

problem by defining that the stopped exception is automatically re-thrown.

3.5 Cactus Stack Model

In languages where thread creation and thread synchronization are described with syn

tactic constructs, the user can easily picture the configuration of the current parallel

execution context. This is because the synchronization point is known when a thread

is created; such a synchronization point is the point where the result of the thread ex

ecution is necessary and is regarded as a goal why the thread is being executed. In

sequential languages, an execution context forms a data structure, namely stack. Here

we imagine an ideal control stack which only saves control transfer information and does

not rely on an automatically-incremented program counter. The stack top holds the

information about the statement to be executed. If the execution of a function body

(consisting of statements) or a block body (consisting of (sub)statements) is required to

execute the current statement (which is popped from the stack), those (sub)statements

are pushed onto the stack. As such a stack, the user can picture the configuration of

the current execution context or can know the goal of the current execution. On the

other hand, the stack for parallel execution in Figure 3.4 would be a cactus stack, which

changes as is shown in Figure 3.6. Every created thread has a goal to continue the work

after the join; it has its own (sub)stack on a join frame which is used as a join target

(Figure 3.6). The join frame returns its control only after all the stacks on the top of it

become empty. The user can picture the configuration of the current parallel execution

context as a cactus stack. Furthermore, an exception that is thrown during the parallel

execution (Figure 3.5) makes the cactus stack change as is shown in Figure 3.7. These

transitions are also straightforward to the users.

25

E] thread's frame

join frame

create a join frame

fork a new thread

on the join frame

 o

 i

synchronize
the completion of

all threads on

the join frame

Figure 3.6: Transition of the cactus stack based on the structured synchronization.

26

ir)

thread's frame

join frame

exception

synchronize
the termination of

all threads on

the join frame

:iiiiiii

Figure

cessmg.

3.7: Transition of the cactus stack for an exception thrown during parallel pro-

27

 1
2

3

4

5

6

7

8

9

10

11

12

13

14

class Fib {

 private static int fib(int n) {
 if(n < 2) return n;
 else {
 int x = par fib(n-1);
 int y = fib(n-2);

 JOIn:
 return x+y;
 }

 }

 public static void main(String[]
 int r = fib(36);

 }
}

args) {

Figure 3.8: fib code in the OPA language.

3.6 Examples

Some examples are presented to see we can describe a variety of parallel programs easily

and safely with a small set of language constructs, such as join and par constructs for

synchronization, and try-catch-finally and throw constructs for exception handling.

3.6.1 FibonacciNumbers

Figure 3.8 shows a simple Fibonacci program written in OPA. par fib(n-1) at line 5

means that its method invocation is executed concurrently by a newly created thread,

Note that fib is a usual method; that is, we can also call it sequentially (line 6). This

is desirable because a parent thread can participate in the computation and the number

of thread creation can be reduced. In this program, the parent uses a join label, the

variant of join synchronizers, for safely using the value returned by its child. This join

label is required before the statement "return x+y;" to avoid the anomaly that would

occur if x is used before it is computed.

28

3.6.2 Data Parallel Processing

To perform a parallel method call for each element of an array obj s in a data-parallel

manner, we can write the program as follows:

join {

for(i=O; i<objs.length; i++)

par objs[i] .doit();

}

3.6.3 Search

To find two answers which are searched in parallel and stop the whole execution with

an exception (the fact that the answers were found), we can write the program as in

Figure 3.9.

29

 1

 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39･

40
41
42
43
44

11 main class (to catch the exception)
public class SearchStart {
 public static
 void main(String argv[]) {
 Table table = new TableO;
 try {
 join {
 Node node = new Node(O);
 node.search(table); // start parallel search
 }
 System.out.println("NotFound");
 } catch(Found excp) { 1/ if solutions are found
 System . out . println (''Found") ;

 }
 }
}

1/ Node for search
class Node {
 lnt p;
 Node(int pO) { p
 void search(Table

}

}

if (an
else {
 Node

}

par
par

space

= po; }
 table) throws Found {

answer is found) table.add(the answer);

 nodel = new Node(2*p+1),
 node2 = new Node(2*p+2);
node1.search(table);
node2.search(table);

11 Table for answers (throws an exception)
class Table {
 int[] answers = new int[2];
 int n = O;
 instant void add(int ans) throws Found {
 answers[n++] = ans;
 if (n >= 2) {
 vflush;
 throw new Found(this); /1 non-local exit with exception
 }
 }
}

Figure 3.9: search code in the OPA language.

30

Chapter 4

OPA Implementation

In this chapter, we explain several implementation techniques for our OPA language[33].

Among them, the implementation techniques for fork-join constructs described in this

chapter will be improved in the next chapter.

 Our OPA system consists of a source-to-source compiler from OPA to C and a runtime

system written in C. Figure 4.1 illustrates the process by which an OPA program is

compiled. OPA program files, which end with .opa by convention, are first translated

into ordinary C code by the OPA compiler, producing .c files. The C code is then

compiled using the C compiler and linked with the runtime system.

 In this study, we pursue the high performance by minimizing the role of the run-

time system and by performing some important operations for language-level thread

management such as thread suspension/resumption in the generated C code.

OPA
Runtime System

fib.opa
source-to-
source
compiler

 opac

fib.c
C compiler

 gcc

fib.o
linking
loader

ld

fib

Figure 4.1: Compilation process of the OPA system.

31

4.1 Runtime Environment

First of all, we present global organization of the OPA runtime environment. As shown

in Figure 4.2, each processor uses the following five data areas:

C stack This is used for C code which is generated by the OPA compiler. In the OPA

system, a single OS-level thread is running on each processor, so each processor

has only a single C stack.

Heap All objects created during the execution of an OPA program are allocated in

this area. In OPA, each object is associated with a queue which contains threads

(thread objects) waiting for acquiring the object's lock.

Frame area This area is managed with a free list of frames of a fixed size. Frames are

used for several purposes: heap-allocated activation records, join frames, thread

objects, and so on. In OPA, thread objects are semantically different from those in

Java. Since thread objects are not visible from the programmers, they are allocated

in this area for simplicity.

Ready Thread Queue This thread queue keeps pointers to thread objects that are

ready for running on the processor. A suspended thread waiting for acquiring an

object's lock is enqueued in the ready thread queue when the object is unlocked.

Also, a suspended thread waiting for the completion of join synchronization is

enqueued just after the synchronization. It is also used as a communication buffer

for thread migration among processors.

Processor Specific Data Other processor specific data are arranged in a single data

structure. For instance, it includes a field for method's return value, base addresses

of the above areas.

4.2 Implementation of Join

When exiting from a join block, of course, the parent thread needs to wait for the

completion of all the child threads created within the join block. When threads are

32

Heap Area

chedule

C stack

Frame Area

T

Ready
Thread
Queue

H

Figure 4.2: Organization of the OPA runtime environment.

33

created dynamically by operations, the number of child threads is, in general, known

only at run-time. Thus, the OPA system prepares a counter fbr each join block which

holds the number of child threads that has not yet joined to the join synchronizer.

 Join synchronizers are implemented as]'oin frames. The type ofjoin frames is defined

as follows:

 typedef struct j-frame {
 int w; 1* counter */
 int parent-jf; /* link to parent j-frame *1
 int parent-jw; 1* and its weight */
 f-frarne *parent-fr; 1* rendezvous *1

 }

 The usage of each field is explained in detail in the fo11owing explanation of fbrk-join

synchronization.

 A join frame is used as a counter to hold the number of child threads and is allocated

by a thread that enters a new join block. Each thread (more precisely, thread object)

has the reference to the join frame which corresponds to its join synchronizer. If we use

a simple counter for this purpose:

 e Whenanew thread is created at runtime, the thread has the same reference as the

 parent thread since they synchronize at the same join point, and then it increments

 the counter.

 e At the completion of the thread execution, it decrements the counter.

Counter value O means that the entire synchronization has been completed.

 Using a simple counter, each thread needs mutually exclusive accesses to incre-

ment/decrement the counter. To avoid this overhead of each thread creation, we adopt

weighted reference counting[1]. Figure 4.3 shows how join frames are allocated using

weighted reference counts. The initial value of a counter is non-zero (in Figure 4.3, 128),

and the thread that enters a new join block has the w'eight of the same value as the

counter together with the reference to the join frame as illustrated in Figure 4.3 (b). We

call them a weighted reference.

 34

join
block

 Thread 1

i[

]o-n
block 2

Thread

Thread 2

3

rhread 4

Thread
Object

 128

1

128

(a) Fork-join structure

(c)

i

Thread
Object

 64

1i

 (b)

Thread
Object
 1

 6

Creation of a new join frame

Thread
Object
 3

3

Thread
Object
 4

3

i

L

 Thread
 Object 2i Thread
 128 6 Object
 64 e,

 12s Ci2iD
The weight is split between two threads (d) Creation of a nested join frame

 Figure 4.3: Join frames using weighted reference counts.

35

 e When a new thread is created at runtime, the thread has the weighted reference

 that refers to the samejoin frame as the parent thread. The weight of the parent

 thread is split between these two threads (Figure 4.3 (c)).

 e At the completion of the thread execution, it subtracts its weight from the counter.

The benefit of this scheme is that creating a new child thread only needs the split of

weight and no more operation and synchronization.

 During the execution of a program, join blocks may be nested. For example, in the

code of Figure 4.3, when thread 1 enters a new join block (join block 2), it is included

in the join block 1 that was the join target of the thread until that time. Each join

frame has a link to the one-level outer join frame to keep the nested structures of join

blocks. A weighted reference to the outer join frame is used as a link, and when a thread

enters a new join block, its weighted reference is saved in the inner join frame (Figure 4.3

(d)). When exiting the join block (after synchronization), the saved weighted reference

is restored.

 Next, Figure 4.4 shows the (C macro) code fbr synchronization at the end of a join

block. At lines 4-5, the thread locks the join frame and subtracts its weight from the

counter, and then checks whether the counter value is O at line 6. If it is not O, the

thread must be suspended until all threads synchronize to it. A rendezvous is prepared

in each join frame as a field parent-fr and the list of frames for the suspended thread

is set into the field (line 10). A detailed method of suspending a thread is described in

the next section.

4.3 ManagementofMethodFrames

An OPA thread may invoke methods in a nested manner during its execution. In the

most sequential language such as C, a series of sequential function calls are realized

using a single stack. In C's runtime model, a processor executes a function using a stack

frame allocated at the top of the stack. This means that the model does not assume

multiple threads, so we cannot write C code that allocates multiple threads on the

stack and executes them concurrently by context switch among them. For this reason,

 36

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

#define WAIT-FOR-ZEROO do { NN

 join-frarne *jf = pr-'>jf; NN
 OPA-SPrN.LOCK(jf->join-lock); NN
 a= jf->w-pr->jw; NN
 if (a) { 1* child thread exist yet *1 NN

 f-frarne *fr = ALLOC-FR(pr); NN
 jf->parent.fr = fr; NN
 OPA-RELEASE-LOCK(jf->joindlock); NN

 1/ save continuation NN
 pr->callee-fr = fr; return SUSPEND; NN

 } else { 1* I am last thread *1 NN
 OPA.RELEASE-LOCK(jf->join-lock); NN

 FREE-FR(jf, pr->fv); NN
} while(O)

 Figure 4.4: The code for join synchronization.

37

multithread implementations generally use a separate stack for each thread in the most

simple manner, or they use frames allocated in heap instead of stack frames.

 The OPA system uses heap frames for multiple threads. A method invocation is

implemented as a sequential function call from a processor's scheduler (it is part of the

runtime system written in C), and, at the beginning of the called C function's body, the

content of the method's heap frame is moved onto the stack. (Tb avoid confusion, we

refer to invocations in OPA as method invocations and C calls as function calls.)

 Because heap frames must keep the caller-callee relations (implicit on stack), a callee's

frame should point to the caller frame, and so one thread is represented as a list of frames

in heap. To execute this form of a thread, the kernel code of the scheduler is implemented

as fo11ows:

 while(fr) { fr = (fr->f)(pr, fr); }

fr refers to a heap frame and a field f points to a function that starts (or resumes) the

method execution. The OPA compiler generates two versions of C code (function) for

each method, and here, the slow version code is pointed to from f. The fast version code

is described later. pr passed to f as a first argument is a pointer to the data structure

that keeps a processor's specific data (mentioned briefly in Section 4.1). fr is also passed

as an argument so that slow version code can save/restore the state.

 The slow version function returns a pointer to the heap frame that should be executed

next. In this way,

 e When a function completes its execution, as in Figure 4.5 (a), it returns a pointer to

 the parent's heap frame (the next element of the list). The method's return value

 is set into a fixed place (pr->ret) and the parent takes it out when it resumes.

 ret is defined as an union type so that it can hold any type of value (e.g., ret.i

 for int).

 e When a function invokes a new method, as in Figure 4.5 (b), it allocates a heap

 frame for the new thread, initializes it (e.g., puts the method arguments in it),

 links a pointer from the child's heap frame to the parent's heap frame, saves the

 parent's continuation in its heap frame and returns a pointer to the child's heap

 frame to the scheduler.

 38

chedule

[iEiiiii3>

chedule

(a)

chedule

Figure 4.5

chedule

schedule

chedule

: Metho

 (b)

d invocation with the slow version C code.

39

call

chedule

Figure 4.6: Method invocation with the fast version C code.

 e When a function is suspended, it saves its continuation in its heap frame and returns

 O to the scheduler. O is also returned when a thread completes its execution (i.e.,

 it has no more heap frame to be executed). If the scheduler gets the return value

 O in fr, it breaks the while loop to look for a next thread to execute.

 In the above method, the states (continuations) of all methods are saved into heap

frames and a stack frame is used only as a temporary place for caching the data needed

by the currently running method. For more practical use of C stack, the OPA system

uses almost the same technique for frame allocation as Hybrid Execution Model[21].

They use two kinds of frames (stack frames and heap frames) and two versions of C code

(fast version and slow version).

 e a method invocation is performed not by the scheduler but by the function currently

 running on the top of the C stack using a sequential call of the fast version C

 function (Figure 4.6). The parent's continuation is automatically saved in the

 stack. Also, explicit initialization of the child frame is not necessary since the

 initialization code is automatically generated by the C compiler.

40

• When a function completes its execution, it simply returns to the caller. (The

problem of the method's return value is discussed later.)

• If the current thread is suspended, all stack frames must be evacuated into heap.

For this, the fast version code allocates a new heap frame, saves its own state in it,

and passes a pointer to the heap frame to the caller so that a list of heap frames

can be constructed.

In Hybrid Execution Model, when a callee is suspended, a pointer to the callee's heap

frame is returned as a return value of a C function call. If a callee completes its execution

normally, it returns O. The problem is that, besides a pointer to the heap frame, the

callee must return the method's return value. In Hybrid Execution Model, the method's

return value is stored in another place (in memory) allocated by the caller in advance.

However, this method incurs memory access overhead to get the return value for each

call. To reduce this overhead, the OPA system returns the method's return value as a

return value of the C function call, and the special value SUSPEND (that is selected from

rarely used value, e.g., -5) indicates that the callee may have been suspended. In such a

case, the caller checks further if a pointer to the callee's heap frame is stored in a fixed

place (pr->caller-fr). If it is not there, it can decide that the method's return value

happens to be the same as SUSPEND.

As described above, a fast version function does not include the code for restoring

the state saved in the heap frame, and a method invocation is realized as a sequential C

function call (and a lightweight suspension check after the call). Thus, as compared to

the method which uses only slow versions of code, the system performance is improved

considerably.

4.4 Thread Creation and Scheduling

In this section, we present techniques for thread management used in the previous OPA

implementation. Particularly, we explain thread creation, scheduling of runnable threads

and dynamic load balancing. These techniques have a large influence on the whole

41

performance of the system. So, the ineflicient techniques explained in this section are

improved in Chapter 5.

 First, we give a concrete shape (expression) to each thread in the OPA runtime sys-

tem. It manages each thread with a meta thread object (that is invisible to programmer).

The type of thread objects is defined as fo11ows:

 typedef struct thread.t {
 j-frame *jf; 1*- a pointer to join frame */

 int jw; /* weight *1
 f-frarne *fr; 1* continuation *1

 thread-t *next;
 }

The pair of jf and jw is the weighted reference and fr is the thread's continuation, that

is, a pointer to (the front of) the list of heap frames. next is used to construct a waiting

thread queue when the thread is suspended for mutual access to a certain object. In

addition, the OPA system uses thread objects for thread identification; fbr example, it

enables Java's synchronized methods which allows a thread holding a lock to acquire

the same lock more than one times.

 We must explain about a thread's continuation in more detail. Like future and

touch operations of section 2.1.2, in order to pass a child thread's return value to its

parent, a placeholder to store it must be allocated. (On the other hand, a method's

return value is returned through pr->ret in the slow version code, since the parent

method is always called from the scheduler immediately.) Also, the continuation must

include the synchronization process (that is, subtraction of weights from the counter and

(possibly) resumption of the waiting thread). For these purposes, an additional heap

frame (join-to) is appended to the list of heap frames to process 'fjoin synchronization

after completion of the thread. The heap frame has a field used as a placeholder (ret).

A parent thread has a pointer to the heap frame and gets the return value from there

after synchronization.

 As mentioned earlier, if the scheduler gets the return value O in fr, it breaks the

while loop to look for a next thread to execute. Each processor has a ready thread queue,

a local pool for runnable threads, and the scheduler selects the next thread out of the

42

threads in the queue. When a thread that has been suspended becomes runnable, it is

enqueued into the queue.

A newly created thread is also enqueued into the ready thread queue. Then, a thread

creation is performed as follows:

1. creates a thread object,

2. splits weight between the parent thread and the child thread,

3. saves a continuation for starting from the beginning of the forked method's body,

4. appends the frame join_to, and

5. enqueues the thread object to the processor's local runnable thread queue.

The ready thread queue is also used as a communication buffer for thread migration,

that is, a new thread object can be enqueued to another processor's ready thread queue.

(This might be profitable in distributed-memory environments where data locality is also

the key factor of the system performance.)

A ready thread queue is a doubly-ended queue (deque) and thread objects are en

queued at its tail. When a processor's stack becomes empty, it takes a thread from

the local ready thread queue's tail and executes it. In other words, a processor uses its

runnable thread queue like a LIFO queue. This is because it is more efficient to schedule

a child thread first rather than its parent thread which must wait for the completion of

the child thread.

When a processor becomes idle for its local ready thread queue becomes empty, it may

steal a thread from the head of another processor's ready thread queue, thus enabling

dynamic load balancing. The reason why the thread at the queue's head is chosen to

be stolen is that it is expected to have the largest amount of work among all threads

the processor owns. (More precisely, because of OPA's irregular parallelism (cooperative

parallelism and mutual and exclusive parallelism), it is not always true that the thread

at the queue's head is the largest.)

43

4.5 Sample Code: fib

To conclude this chapter, fast version C code for fib of Figure 3.8 generated by the OPA

compiler is shown in Figure 4.7. (In the code, a comment that begins with / / indicates

that certain detailed operations are abbreviated for readability.) Each OPA's method is

compiled to a C function. In addition to the method's parameters, the C function has

another parameter pr that is a pointer to the data structure that keeps a processor's

specific data.

In Figure 4.7, when a thread enters a join block, it allocates a new join frame njf

(line 7). The pair of pr->jf and pr->jw holds the weighted reference that the current

thread has at the moment. So, at line 8, the current thread stores a pointer to the outer

join frame into the new (inner) one and, at line 9, the thread comes to refer to the inner

one.

A thread creation is processed at lines 11-16:

1. creates a new thread object nt (line 11),

2. splits a weight for the newly created thread (line 12)

3. saves a continuation for starting from the beginning of the forked method's body

(lines 13-14).

4. appends the frame join_to to process join synchronization after completion of the

new thread (line 15).

5. enqueues the thread object to the processor's local ready thread queue (line 16).

Lines 18-24 correspond to a sequential method invocation. After returning from

a sequential call of the corresponding C function, it is checked if the callee has been

suspended (line 19). In such a case, since the caller belongs to the same thread as the

callee, the caller also saves its own continuation (lines 20-21), links the callee to itself

(line 22), and informs its own caller that it has been suspended (line 23).

When it exits from the join block (lines 25-26), it synchronizes using pr->jf as

described in Figure 4.4. At line 27, it gets a return value from the placeholder after

synchronization has completed.

44

 1'

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

int f--fib(private.env *pr, int n) {

 f-frarne *callee-fr; thread-t *nt;

 f-frame *nfr; int x, y; f-frame *x-pms;
 if(n < 2) return n;
 else {
 1* enter a join block *!
 frame *njf = ALLOC-JF(pr);

 njf->bjf = pr->jf; njfd>bjw = pr->Jw;
 pr->jf = njf; pr->jw = njf->w;
 /* create a new thread */
 nt = ALLOC-OBJ(pr, sizeof(thread-t));
 nt->jf = pr->jf; nt->jw = SPLIT-JW(pr, pr->jw);
 nt->cont = nfr = MAKE.CONT(pr, c-.fib);
 1/ save continuation (including n--1)

 x-pms = MAKE.CONT(pr, join-to); nfr->caller.fr =
 enqueue(pr, nt);
 1* sequential call *1
 y = f-.fib(pr, n-2);
 if((y==SUSPEND) && (callee-fr=pr->callee-fr)) {
 f-frame *fr = MAKE-CONT(pr, c--fib);

 11 save continuation
 callee-fr->caller-fr = fr;
 pr->callee.fr = fr; return SUSPEND;

 }
 WA:T.FORdZERO O ;
 pr->jf = pr->jf->bjf; pr->jw = pr->jf'>bjw;

 x = x.pms->ret.i;

 return x+y;
 }
}

x-pms;

Figure 4.7: Compiled (pseudo) C code for fib.

45

 In summary, our previous implementation schemes of OPA incur unacceptable over--

head for fine-grained multithreaded programs.

46

Chapter 5

Optimizations for Parallel
Processing

In this chapter, we improve the implementation schemes for fork-join constructs de

scribed in the previous chapter[27, 28]. A goal of the improvement is to reduce fork-join

constructs' overhead close to zero so that the absolute execution time of fork-join style

parallel programs on a single processor becomes close to the sequential version of pro

grams, while it supports good load balancing.

5.1 Basic Idea

Implementations of OPA's advanced features have a large impact on the performance

of the fork-join constructs. For example, to support synchronized method, our OPA

implementation allocates a new thread object at each thread creation. To support coop

erative parallelism and exclusive parallelism, it employs thread suspension/resumption

mechanism and uses dynamically created data structures for synChronization, i.e., join

frames. Also, if join target was not determined with dynamic scope, instead of using

join frames, counters for join synchronization might be embedded in thread objects or

thread continuations.

In OPA, those data structures are indispensable and the percentage of their runtime

overhead is large in each thread creation and join synchronization. In this chapter, we

propose three techniques which reduce these overhead. Their common key concept is

47

laziness. Laziness means that we delay certain operations until their results become

truly necessary.

First, allocating heap frames can be lazily performed. In Section 4.3, we allocated

a stack frame at first for efficiency, and it remains there until it prevents other thread's

execution. In this chapter, we delay heap frame allocation not only for each sequential

method invocation, but also for each thread creation; allocating heap frames for both

the parent thread and the child thread can be delayed until another processor becomes

idle and steals work from it.

Second, a task can be lazily created. In this thesis, a task is (a data structure of)

a schedulable active entity that does not correspond to a single (language-level) thread.

A blocked thread becomes a task to release the processor and the stack it uses. Also,

for the purpose of load balancing, each thread may become a task to move around the

processors. Our approach decreases the number of actually created tasks while it keeps

good load balancing. Furthermore, we delay some other operations related to thread

object creation and, as a result, we can make the cost of thread creation close to zero.

Third, data structures for synchronization (join frames) can be lazily made.

The global organization of the OPA runtime system described in Section 4.1 is ex

tended as follows (Figure 5.1). Two data structures are added:

lazy task queue (LTQ) it includes pointers to thread objects and keeps track of the

threads currently running on the C stack.

join stack it includes pointers to join frames and used by threads currently running on

the C stack for finding its join target; they cannot directly refer to its join frame

since it might not yet be allocated.

Also, some fields are added in the processor specific data area (pr) used for interprocessor

communications of work steal.

5.2 Lazy Task Creation

As described in Section 4.4, the conventional OPA system creates a task, i.e., a full

fledged thread object, at the time of thread creation. In other words, every thread

48

Heap Area

T

ehedule

C stack

LTQ

H

Frame Area

128

T

Ready
Thread
Queue

H

Join stack

Figure 5.1: Organization of the extended OPA runtime environment.

49

heduie

A

HI

RTQ

hedule

B

A ltI

RTQ

sehodule
hetlute

B

A

RTQ

Figure 5.2: Thread creation with child-first schedu

T

ling policy.

H

creation is realized as "eager" task creation.

 Lazy Task Creation (LTC)[20] is used for an efficient Multilisp[12] implementation

originally. LTC dynamically creates tasks only when thread migration must be perfbrmed

for load balancing thus relieving the programmer from having to think about thread

granularity. In brief, the basic idea of LTC is as fo11ows:

 e At thread creation, the processor starts a child thread's execution prior to the

 parent. The parent's continuation is (automatically) saved in stack.

 e An idle processor (thief) steals a task by extracting (a continuation of) a thread

 from the bottom of the processor's stack and making a task from it.

The advantages of LTC are (a) saving the parent's continuation takes no more cost than

a sequential function call. (b) It enables dynamic load balancing by allowing a thief to

extract a thread from the victim's stack.

 Now, consider that we may realize these two processes in C. First, saving a parent's

continuation is accomplished by a normal C function call, so we need no more consider-

ation. Second, we encounter a problem that we cannot extract a continuation from a C

stack in a portable manner.

 In contrast, the Multilisp system manipulates the stack at assembly level. When it

creates a thread, a pointer to the parent's stack frame is saved in the processor's local

queue (Multilisp's LTQ). A thief can find victim's bottom continuation using LTQ.

50

 To realize this process at C level, a parent's continuation must be saved into its heap

frame in advance. The creation of a new thread is perfbrmed as shown in Figure 5.2.

 1. creates a fu11-fledged thread object: that is, creates a thread object, splits weight,

 saves a continuation (including join-to),

 2. suspends the parent thread and enqueues it to runnable thread queue, and

 3. retums a pointer to the child thread's continuation to the scheduler.

As compared with the previous OPA's method, the allocation of heap frames is not

delayed. It only changes the scheduling policy so that the child thread is executed first

on the processor. However, preparing the fu11-fiedged parent seems to be necessary fbr

work steal.

 This method is similar to what is employed in the Cilk implementation[7]. Cilk also

saves a parent's continuation into its heap frame in advance. But, Cilk forks a new

thread by calling the fast version function directly from the caller as in original LTC.

This is possible in Cilk because it always allocates a heap frame and saves a continuation

in it fbr every cilk function. This means that Cilk's continuations are always stealable.

On the other hand, creating a new thread as a direct function call from the caller is

impossible in OPA because it delays allocations of heap frames for method invocations,

that is, continuations are saved only in the C stack. So, at the time of a thread creation,

the caller thread must be explicitly suspended for evacuating its own stack frames.

 In this method, a thief can steal a thread without manipulating victim's C stack

although it incurs a certain amount of overhead on every thread creation, particularly

for saving a parent's continuation. Instead, we want to keep the parent's continuation

on the C stack at the time of thread creation. Thus, heap frame allocation is delayed

until a thread really needs to be suspended (or be stolen). In order to solve this problem,

we adopt a message-passing implementation of LTC[4]. Its feature is that a thief does

not access another processor's local data including its stack. The thief simply sends a

message for a task request to a randomly selected victim and waits fbr the response. A

victim, when it notices the request, extracts a continuation from its own stack, makes a

task from it, and sends it back to the thief. We use polling to check a request message,

 51

and an efficient polling technique is found in [6]. Polling is also used for exception

handling and garbage collection in the OPA implementation.

Figure 5.3 describes the behavior of the message passing implementation of LTC in

OPA. Thread objects which correspond to the running threads on the C stack is kept in

LTQ (not ready thread queue) in the same order as the stack. If heap frame allocation for

one of those threads is delayed, its thread object is not full-fledged. At thread creation

in Figure 5.3 (a), the parent's thread object is enqueued at the tail of LTQ. Then, a new

thread object for the child is created and the fast version C function is called directly

from the parent. After the normal return from the child thread, the parent thread takes

out its own thread object out from the tail of LTQ and continues its execution. When

the current thread (at the top of the C stack) is blocked (Figure 5.3 (b)), only this

thread is suspended and evacuated to heap as before. The difference appears when the

control returns to its parent thread (not the scheduler). The parent thread can notice the

suspension of the child in the same way as suspension check after a method invocation

(i.e., comparing the return value with SUSPEND). The parent thread takes out its own

thread object out from the tail of LTQ and continues its execution. When a processor

receives a request message (Figure 5.3 (c)), in order to extract a continuation from the

bottom of the C stack, it temporarily (internally) suspends all continuations (threads)

above it. The way how each thread is suspended is the same as (b). Each thread

decides whether it must be suspended or it can continue (i.e., steal or just a suspension

of its child thread) by examining the processor's message box only for steal messages

(pr->thief_req).

After these operations, the bottom continuation has been converted into a task at

the head of LTQ and can be sent to the thief. The disadvantage is that it converts all

the continuations on stack into tasks, not only the bottom continuation. However, LTC

assumes well-balanced divide-and-conquer programs, and during the execution of such

programs, we expect for only a few times of stealing to happen. Also, even in unbalanced

programs, we avoid the overhead as follows: the victim does not resume all tasks in the

task queue with stack frames (i.e., completely recover the C stack) to restart, but the

victim resumes a task taken from its tail with slow version code, and uses the remaining

tasks for the later request without the conversion overhead.

52

B

A

LTQ

T

H

E!K>'

c

B

A

LTQ

hedule

T

H

hedule

B

A

LTQ

hedule

T

H

(a) fork

TH

:':':':':::::':'t:t':':':

.:t:.:t:t:t:tt-:t:tt:t-tt:ff:

cBALTQ

:::::::::･:･:･:-:･:･:･:-:

I .-

suspend

hedule

c

B

A

LTQ

T

B

A

LTQ

H

chedule

T

H

Figure 5.3:

 hedule

 (b) suspension

 -'"'' T '""' cc
 BB
 A
 H

 LTQ LTQ chedule @ hedule V
 (c) steal

Message passing implementation of LTC.

T

H

53

 From the above discussions, the order of means by which a processor (scheduler) finds

a next thread to execute: (1) takes from the tail of LTQ, (2) takes from the head of the

ready thread queue, and (3) sends a request message for steal.

 So far, we present how we can extract the bottom continuation from C stack. How-

ever, for now, only two of five operations of task creation (listed in the Section 4.4), saving

continuation and queuing, have we done lazily. In order to bring the cost of thread cre-

ation as close to that of sequential cal} as possible, we need adequate modifications to

the remaining three operations.

 The important point is that a child thread is called from a parent as normal function

call. If a child can continue its execution until the end without blocking (i.e., on C stack):

 e the thread's return value can be passed through the function's retum value (not

 through placeholder), and

 e since the child thread always complete its execution before the parent thread

 reaches the end ofjoin block, there is no need to split weight between them.

Only when a child thread has blocked, a join-to frame for synchronization (and a

placeholder) is appended.

 In this way, we can notice that, when neither steal nor suspension happen, we do

not use the contents of thread objects which is created at each thread creation at all

(at least, in current implementation): heap frames (continuations) are not allocated and

weighted references are not configured. Thus they are only used for thread ID.

 It means that a thread object needs to be unique only while the corresponding thread

lives in stack. Then, it is redundant to allocate a thread object at each thread creation

in the same place of LTQ for many times. We decide not to free the thread object at

thread's termination, and reuse it fbr the next thread creation by keeping it in LTQ.

Thread objects are allocated at initialization of LTQ. When a new thread is created,

the tail pointer of LTQ indicating the current thread is incremented. Stealable thread

objects (tasks) are now between the head and the tail (excluding what the tail points

to). When a thread leaves stack for suspension, since it brings its thread object together,

a substitute one is allocated as in Figure 5.4 (a). When a processor resumes a task, it

54

oallocate

!

-

chedule LTQ

H

(a) suspension

chedule

---AiAt-t----t-t--ttt-tAA4A--------------
A.
--t

J-
A-
---t----t----AAAA--t-4At-A------tt--tAt-t-

--t

AA
A-

.A
iAtt-----A----AtAt-t---ttA---AA--i---4--J

N

 PEI

Figure 5.4:

T

H

 LTQ chedule LTQ
 PE2

 (b) steal

Thread object management in LTQ.

-
--,,-,

H, T

55

frees the thread object that has been already in task queue's head. Altogether, when a

thief steals a task from a victim, the two thread objects at the head of their LTQs are

exchanged as in Figure 5.4 (b).

5.3 Laziness for Join Frame Management

In the previous section, there is a lazy normalization scheme in which we do not have

to split weight at all times. In this section, we extend this laziness to the process of

entering/exiting a join block. As described before, it can be said that there is an implicit

synchronization between a parent and a child thread on C stack. Then, as long as all the

threads that synchronize to a certain join block execute in the same stack, that is, no

heap frame is allocated for those threads, there is no need to use a counter for this join

block. In such a case, the corresponding join frame exists only for maintain the depth of

nested join blocks (recall that they have a pointer field to the outer join frame).

Alternatively, instead of allocating join frames, we prepare a stack (j oin stack)

for each processor. It stores pointers to some (not all) join frames. We can delay

the allocation of a join frame until heap frames are allocated for some threads that

synchronize at the join point. In that case, the corresponding element of the join stack

is empty. The reason why we use a stack, not a simple depth counter, is that we want

to allocate a join frame and store it into the join stack when the above condition is not

satisfied. By probing the element of the join stack whose depth is equal to the depth of

nested join blocks, threads running on the C stack can find whether the join point has

been allocated a join frame.

The fork-join data structure in Figure 4.3 is improved to Figure 5.5. At initial state,

the join stack is empty. After entering join blocks for several times, it only needs to

increment the top pointer (Figure 5.6 line 7) and the state becomes to Figure 5.5 (a)

(Be sure that there is one join frame at the bottom, and this is what resumed task has

already had.) In the case of exiting a join block without making the join frame, it only

needs to decrement the top pointer. If certain thread blocks and join stack's top has

no pointer to a join frame, it allocates a new join frame, set the pointer to stack top,

and split the weight (Figure 5.5 (b).) When extracting a continuation for steal, all the

56

Thread

mhread

Thread

4

3

1 4

j s-tOP -

96

hechit

(a) No join frame

g2g2,

Thread
Object 4

 6

Thread

Thread

3

1

64

v

4

edd

12S - js.top

 (b) A single join is

 :l]l,i::S ,

 ::Ij::: , @

 @

 t2s 2

 Thread
 objectl ne 4 Ne " o g:::,･js-top

 :2g:,

 (c) All join frames are allocated

Figure 5.5: Lazy allocation ofjoin frames.

 57

 96

frame

g::2,

allocated

join frames are allocated and split weights for all the threads. In addition, functions

that executed in its local join block need to link a pointer between join frames to remain

nested join block structure in heap. The final state ofjoin block structure looks like

Figure 5.5 (c).

5.4 Sample Code: fib

To conclude this chapter, we describe the details with Figure 5.6. It is fast version C

code for fib of Figure 3.8 with laziness and a thread is created in lines 13-26. A function

call at line 14 corresponds to a child thread's execution. The important point is that a

child thread is called from a parent as normal function call. If a child can continue its

execution until the end without blocking (i.e., on stack),

 o the thread's return value can be passed through the function's return value (not

 through placeholder), and

 e since the child thread always complete its execution before the parent thread

 reaches the end ofjoin block, there is no need to split weight between them.

In Figure 5.6, at line 14, thread's return value is set to x directly.

 A suspension check at line 15 is the same as the conventional one. That is, while

extracting the bottom continuation, all functions on stack act as if all threads were

blocked. Only when a child thread has blocked, a frame for synchronization (and a

placeholder) is appended (line 16), and only in such a case the parent thread examines a

pointer to the placeholder and get a return value (Iine 39). (Note that weight has been

split at the point of blocking (e.g., after polling) and set into the child's thread object.)

 At line 17, it checks a task request. Since the non-zero value (the thief processor

ID) means that this processor is requested to extract the bottom continuation, it starts

suspending the parent thread (Iines 18-23). Itq-ptr points to the corresponding thread

object in the task queue. The way of splitting the weight differs from that of conventional

code, and we explain this in the next subsection.

 Ultimately, in the case ofno suspension or steal, code for a thread creation has reduced

to lines 13-15, and 26. In other words, the overhead as compared with sequential call is

 58

1

2
3

4
5
6

7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44

int f--fib(private-env *pr, int n) {
 f-frame *callee-fr; thread.t **ltq.ptr = pr->ltq.tail;
 int x, y; f-frarne *x-pms = NULL;
 if(n < 2) return n;
 else {
 1* enter a join block *1
 pr->Js-top++;
 1* polling here */
 if(pr->thief-req) {
 /1 suspension code here
 }
 1* create a new thread *1
 pr->ltq-tail = ltq-ptr+1;
 x = fd.-fib(pr, n-1);
 if((x==SUSPEND) && (callee-fr=pr->callee-fr)) {
 f-frame *x-pms = MAKE-CONT(pr, join-to); callee-fr->caller-fr =
 if(pr->thief-req) {
 f..frame *fr = MAKE-CONT(pr, c--fib);
 (*ltq-ptr)->jf = *(pr->js.top); (*ltq-ptr)->jw = SPLIT-JW(pr,
 (*ltq-ptr)->cont = fr;
 1/ save continuation
 SUSPEND-IN-JOrN.BLOCK(pr); ,
 pr->callee-fr = fr; return SUSPEND;
 }
 }
 pr->ltq-tail = ltq-ptr;
 1* sequential call */
 y = f--fib(pr, n-2);
 if((y==SUSPEND) &a (callee-fr=pr->callee-fr)) {
 f-frame *fr = MAKE.CONT(pr, c--fib);
 1/ save continuation
 callee-fr->caller.fr = fr;
 SUSPEND-IN.JOIN-BLOCK(pr);
 pr->callee-fr = fr; return SUSPEND;
 }
 !* exit join block *1
 if(*(pr->js.top)) {
 WAIT-FOR-ZERO O ;
 if(x-pms) x = x-pms->ret.i;
 }
 pr->Js-top--;
 return x+y;
 }
}

Figure 5.6: Compiled (pseudo) C code for fib with laziness.

x-pms;

pr->J W) ;

59

only a pair of increment/decrement of the task queue pointer and a check for suspension.

60

Chapter 6

Extending LTC for Iterative

Computation

In this chapter, we address the problem that LTC cannot achieve good performance for

programs that fork many threads in a iteratively executed loop construct, such as for

or while.

6.1 Inefliciency ofpar Call in a Loop

Essentially, load balancing by LTC is effective only in tree-recursive parallel programs.

The fo11owing code is an example of such code:

 fc..) {
 if('''){ ''' }
 else {

 Par f(...);
 f(''');
 }
 }

This code assumes that there is no significant difference in the amount of work that

a newly created thread and the parent continuation have, that is, we can say that a

thief can get the moderate work (the parent continuation) from the viewpoint of load

balancing (as illustrated in Figure6.1 (a)). In Figure 6.1, each node represents a single

61

/Steal 1

- Steal

c

/

/

1

(

(

(

 Steal 2

(a) Tree recursive (b) Loop
 Figure 6.1: The amount of work between thief and victim.

method invocation or a single iteration of a loop. A dotted branch means a thread

creation (par call).

 On the other hand, the OPA language, as well as Java or C, has loop constructs and

it enables to create new threads iteratively. The following is an example of such code:

 for(int i = O; i < N; i++)

 par g(i);

The problem of executing this code (we call it for-par loop) in LTC is that the work

of the parent continuation would be much larger than the work of the child thread as in

Figure 6.1 (b). Assuming that all iterations have almost the same amount of work, the

continuation of a par call at the iteration i = O includes the remaining N - 1 iterations,

so the ratio of the amount of work is about N- 1 : 1.

62

 When the amounts of work for a victim and a thief are unbalanced like above, the

one that is assigned the smaller work would immediately becomes idle and causes a work

steal. In the above case, the number of work steals is equal to the number of iterations,

thus incurs significant overhead.

 In the next section, we propose several eMcient load-balancing methods those are

also effective in OPA's loop constructs. The above problem also arises when we write

tail-recursive programs on Scheme implementations which originally use LTC for load

balancing. Our methods can also be applicative to those cases in principle.

6.2 ExtensionofLTC

6.2.1 Dividing forall Style Loops

First, let us consider the foIlowing code:

 for(int i = O; i < N; i++)

 par g(i);

For this for-par loop, we can identify the loop control variable and the count of iterations

at compile time. Also, the loop body contains only apar call and the values needed to

the par call (a target object, a method to be invoked, and arguments) do not depend on

the results of the previous iterations, that is, this for-par loop is a forall-style loop

that has inter-iteration parallelism.

 If a message for a task request arrives at a victim while it executes a forall-style

for-par loop, it is desirable to leave the first half of the remaining iterations for the

victim itself and sends back the second half (and the continuation of the Ioop) to its

thief. (In figure 6.2, the size of A is the same as that of B.) If messages arrive at a victim

from multiple idle processors, it is possible to divide the remaining iterations equally

among the thieves and the victim.

 The task steal operation of LTC described in Section 5.2 is modified as fbllows[25, 26].

When extracting a continuation from the head of LTQ, the victim increases the control

variable i of the continuation by the count of iterations for the thief. Instead of the

continuation, it puts a new task that only contains a for-par loop ranging over the

63

Steal

v(A)

y

(B)

Figure 6.2: Task steal in for-par loop execution.

iterations fbr the victim at the head of LTQ. If another request message arrives again

later, it splits the range of i, creates a new task that only contains the same for-par

loop (it only differs in the range of i), and sends it back to the thief.

6.2.2 Stock Mode Execution

Generally, a for-par loop's body may contain any kind of statement(s). Consider the

following code:

 for(int i = O; i < N; i++) {
 j = h(i, j);

 par g(j);

 }

In this code, the argument j of the Ii-th par call to gO is decided only after performing

the for-par loop fori= O to Ii - 1, and the (sequential) calls to hO fori == O to Ii

 64

must be completed before the Ii-th par call to gO.

 Also, in the fbllowing code:

 for(List xs = li;xs != null;xs = xs.cdr)

 par xs.car.fO;

each par call can be performed only after finding the corresponding element of the list

by executing the sequential part of the loop.

 In general, if a for-par loop contains any statement(s) except par call, because of

their side-effects, we cannot extract any par call from the loop prior to their execution.

Additionally, since its control variable might be substituted (updated) irregularly, the

number of the remaining iterations is not known exactly.

 Therefore, in those cases, we split a for-par loop as fo11ows:

 e Since the number of the remaining iterations is not known, the number of the

 iterations for the victim (A in Figure 6.2) is determined heuristically: it is large

 enough to limit the number of steals and small enough to avoid cache overflow

 caused by the stored infbrmation for A.

 e Before the victim extracts the continuation (B in Figure 6.2), it completes the

 execution of the sequential code fbr A.

 To realize this, we prepared an alternative execution mode (namely, stock mode):

 e Every statement except par call is perfbrmed normally.

 e Instead of an actual call, each par call's information is stored (stocked) into a

 specific table (prepared for each processor).

For a task steal, before extracting the bottom continuation, we execute the continuation

in the stock mode so that we can store par calls into the table in advance. Just after

the table is filled with par calls, the processor is resumed to the normal mode and the

continuation is sent back to the thief as B. If another request message arrives again later,

the victim simply splits the par calls just in the middle of the table.

65

6.2.3 PerformanceModel

In this section, we model the execution of a non-forall-style for-par loop (that is, the

number of its iterations cannot be analyzed at compiled time) and verify that it is more

eMcient to execute it in the stock mode than to execute in normal LTC.

 In the fo11owing paragraphs, we analytically estimate the execution time of three

cases: tree recursive code in normal LTC, for-par loop code in normal LTC, and

for-par loop code in the stock mode.

Tree recursive code in normal LTC Assuming that threads are so fine-grained that

the work can be divided equally among the processors, we can estimate the number of

task transfers (that is nearly equal to the number of task creations) as follows. Let P be

the number of processors, 71, the total amount of work (that is, the execution time on 1

PE), Tt the amount of work of the minimum task, and C the time required for a task

transfer, the number of task transfers is approximately (P - 1) log2((71,/P)/([Z-1 + C)).

 For example, when P = 10PE, 7h = 10 seconds, 7Hl = O.OOI seconds, and C == 0.001

seconds, the number of task transfer is about 80 times and the overhead of task transfer

per processor is negligible (80 times * 2PE * O.OOI seconds / 10PE = O.O16 seconds).

for-par loop code in normal LTC For example, in the fo11owing code:

for(so;c;s2){sl;par p;}

throughout this loop (except at the beginning and the end), the pattern "after s2, c, si

is sequentially executed, p is forked" is repeated.

 First, we examine its execution in normal LTC on a single processor. Let 71i be the

execution time of the sequential part (s2, c, si) and 7lo the concurrent part (par p),

the execution time per iteration is 7' b + 7},.

 Next, we examine its execution in normal LTC on multiple processors. Let CTk be the

time spent on stealing a task from a victim and 71; be the time spent on giving a task to

a thief, the execution time per iteration is 7- 1, + 7b + 71, + 7lo.

 From these examination, we can estimate that the execution time is increased in the

ratio of (7-k + 71;)/(7b + 7},). Here, 7Y contains the time for suspension/resumption and

 66

the time for task creation/transfer. Furthermore, 7-I, contains time to wait fbr a thief to

notice a message by polling, as well as wait fbr 71]. Because a thief may be forced to wait

while another thief succeeds in stealing from the same victim, the increase of the number

of processors cause the increase of waiting time, thus resulting in poor performance, that

is, insuMcient speedup results.

for-par loop code in the stock mode Let m be the number of iterations to be

stored, 7b the time to store a single par call, and CT) the time to take a par call out of

the table, we can estimate that the execution time during m iterations is 71, + m(71i +

7b) + 7b + m(CT} + [T},).

 Here, CZI, contains the time to wait for the completion of storing m calls (m(7-l7 + CTb)).

When we assume that m is relatively large and so that the time to wait for a victim to

notice a message by polling (included in 71,) divided m is negligible, we can calculate

that the execution time per iteration is 2(71, + 7-b) + (Z + 7},).

 Therefore, we can conclude that the stock mode has an advantage over normal LTC

if CZHI, + 71, > 7-Ii + 27}, + 7-; is satisfied. Here, the right side members of this inequality

are likely to be relatively small since all these operations are performed within a single

processor (that is, there is no need for synchronization/cooperation).

67

Chapter 7

Implementation
Handling

of Exception

In this chapter, we present eficient implementation techniques for exception handling on

the OPA system which delays various operations as described in the previous chapter.

 First, we explain how an exception that is thrown and handled within a single thread

is implemented.

 Next, we describe how an exception that is thrown during the parallel execution can

be propagated as shown in Section 3.5. Moreover, we can implement them by eMcient

techniques that match the system's thread scheduling policy. (iHin our OPA system, it

means LTC.)

7.1 ExceptionHandlingwithinaThread

To realize exception handling in OPA, we need to implement the fo11owing mechanisms:

throw statement: an exception that is thrown in a function is assigned to the function's

 local variable ex temporarily. As described later, an exception may be assigned to

 other places until it reaches a handler.

catch handler: the code for a handler is generated into the C code (function) for the

 method that includes the try-catch statement. A handler checks local variable ex.

68

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

 ; otherwise,

 For example, the fo11owing OPA code is compiled to the C code shown in Figure 7.1:

 '
try {

 fo;
 throw new MyExceptionO;
} catch(MyException e) {

 ---;
}

 1* sequential call */

 x = f"fO;
 if((x==SUSPEND) ka (callee-fr=pr->callee.fr)) {

 if(ex = pr->ex) {

 goto CONT.EX-O;
 }
 f-frarne *fr = MAKE.-CONT(pr, c--f);

 1/ save continuation
 callee-fr->caller.fr = fr;
 pr->callee.fr = fr; return SUSPEND;

 }
 1* throw statement */
 ex = ALLOC.OBJ(pr, sizeof(objbody-MyException));

 goto CONT-EX-O;
CONT EX O:
 if(instance-of(ex, cls-MyException)) {

 - - - ;

 else {

 pr->ex = ex;
 pr->callee-fr = EXCEPTION; return SUSPEND;
 }

 Figure 7.1: The code for exception handling within a thread.

 If it can handle the exception, the body of the catch clause is executed

 the exception is re-thrown from this point.

69

 Method local exception mechanisms are realized as fo11ows. The beginning of a han-

dler code is identified with an unique label in its C function (at line 15). When an

exception is thrown in the same function, it is assigned to ex and then control jumps to

the beginning of the inner most handler code by a goto statement (lines 13-14). The

exception may be re-thrown for some times in a function since try-catch constructs can

be nested in a method.

 An exception that is not caught within a function (method) must be propagated to

its caller. Therefore, the callee puts the exception into pr->ex and then return to the

caller (lines 19-20). The caller checks pr->ex just after the call (lines 4-6) and, if an

exception is set, it re-throws the exception by method local exception mechanisms (that

is, it jumps to the inner most handler). The callee called with fast version code returns a

value SUSPEND to the caller so that the caller have only to check the return value in most

cases instead of checking pr->ex after every call, while the callee called with slow version

code returns a pointer to the caller (as before) and the caller always checks pr->ex.

 So far, we have not discussed finally clauses. In brief, the code for a finally clause

is also generated into the C code for the method that includes the finally clause. Inside

a try block that has afinally clause, a statement that escapes from the try block,

such as normal completion of the try block, return statement, break statement, and

throwing (or re-throwing) an exception, is fo11owed by a goto statement which jumps to

the beginning of the inner most finally block. After the execution of the finally block,

the control is transferred according to the context of its escape.

7.2 Exception Handling during Parallel Execution

As described in Section 3.4, in the OPA language, if an exception cannot be handled

by a thread, the exception is propagated to the join target of the thread, which then

stops the other threads sharing the same join target. Also, in order to stop the other

threads sharing the same join target, we defined that they automatically throw a special

exception stopped.

 To realize these features, we must implement the fbllowing:

 e how to propagate an exception to a join frame.

70

• how to direct the other threads to throw an stopped exception.

7.2.1 Propagation of Exception

We added a field ex to each join frame so that an exception that is propagated from a

certain thread can be stored into it. Each assignment to ex must be done in the same

mutually exclusive manner as decreasing a counter of weighted reference counts. Note

that we do not override the ex field if an exception has been already assigned to it, since

we have decided that the survivor is the exception that reaches first in Section 3.4.

A thread that enters a join block checks jf->ex just after the join synchronization.

If it finds an exception in jf->ex, it re-throws the exception immediately. The way of

re-throwing an exception (goto statement) is the same as before, and the code is inserted

between line 17 and line 18 of Figure 4.4.

The way of propagating an exception to a join frame in fast version code differs from

the way in slow version code since, in fast version code, allocating the join frame may

be delayed using laziness.

In a sample program of Figure 7.2 (a), we can picture the configuration of the context

as a cactus stack in Figure 7.2 (b), where an exception is thrown in a thread that executes

b (). In the actual implementation, the exception is passed along the C stack as shown

in Figure 7.2 (c). Also, a part of the compiled C code for Figure 7.2 (a) can be found in

Figure 7.3. As in the case of calling a fast version function as a method invocation that

is described in the previous section, a fast version function as a new thread returns a

value SUSPEND and the parent thread checks pr->ex only if the return value is SUSPEND.

At this point, if the corresponding join frame is not allocated yet, the system allocates it

and stores the exception in pr->ex into it. After this, all threads (including the parent

thread) that synchronize at this join point should be stopped as soon as possible. Then

the parent thread throws a stopped exception immediately (the way how the remaining

threads which run on other processors (if any) are aborted is explained in the next

section). In the case of slow version code, a thread itself stores an exception into its join

frame in j oin_to code.

Using the above methods, ajoin frame may be allocated only for storing an exception.

71

fo {
 join {

 par aO
 par cO
 }
}

 (a)

 g.to,gp,2g,.

;

;

aO {
 par
}

OPA program

bO;

stopped
exception

exception

a

b c

f thread

joinframe

pt exception

b

a

f

 (b)

exception

Cactus stack

2

stopped
exception

 1

join frame

3

 (c)

Figure 7.2:

ex:

C stack of the implementation

An exception across multiple threads.

72

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

/* create a new thread *1

pr->ltq-tail = ltq-ptr+1;
callee-fr = f"a(pr);
if(callee-fr) {
 if(pr->ex) {
 (*ltq-ptr)->jf->ex = pr->ex;
 /1 throw a stopped exception
 }
 f-frame *fr = MAKE.CONT(pr, join-to); callee-fr->caller-fr = fr;
 if(pr->thiefdreq) {
 f-frame *fr = MAKE-CONT(pr, c--a);
 (*ltq-ptr)->jf = *(pr->js-top); (*ltq-ptr)->jw = SPLIT-JW(pr,

 (*ltq-ptr)->cont = fr;
 1/ save continuation
 pr->callee-fr = fr; return SUSPEND;
 }
}

pr->ltq.tail = ltq-ptr;

Figure 7.3: Compiled C code for a fbrk with support for exception handling.

pr->J W) ;

73

That is, in this case, there is no thread that has been moved to another processor or

has been suspended among the threads sharing the same join target. Here, we examine

whether it is possible to delay the allocation of this join frame further. Instead, we

store the exception into a fixed place pr->ex_bak. The exception is re-thrown after the

synchronization that is, in most cases, performed without a join frame (precisely, a join

frame may be allocated later because the parent thread that throws a stopped exception

may be suspended in a certain finally block). The problem is that we must always check

whether an exception exists not only in join frames (if any) but also in pr->ex_bak at

exiting every join block. Checking pr->ex_bak incurs additional overhead on every join

block performed during a program execution. Because we can assume that the number of

exceptions thrown during a program execution is much smaller than the number of join

blocks performed, it is more efficient to allocate a join frame at the time an exception is

actually thrown.

7.2.2 Throwing a stopped Exception

When an exception reaches a join block, all threads that synchronize at the join block

are stopped as soon as possible. The important point is that they must throw a stopped

exception on their own so that they can execute finally blocks before their termination.

If all of these threads are on the C stack where the exception is thrown, only the parent

thread have to throw a stopped exception as explained previously. By contrast, if some

of them have left from the C stack, cooperation with the other processors is necessary.

A running thread periodically checks its join frame's ex field by polling. However,

checking the immediate join frame that corresponds to the inner most join block is not

sufficient for finding an exception. For example, while executing a parallel program

pictured as a cactus stack in Figure 7.4, thread 6 (and also thread 8-12) cannot find an

exception that has been thrown in thread 7 and stored in join frame C by checking only

join frame D (or E, F). As a consequence, each thread must periodically check all join

frames that can be found by following the parent_j f field iteratively from the immediate

join frame (we call this operation an abort check).

A drawback of the above way is that, if the nesting level of join blocks is rather deep,

74

 should be stopped

r-------"-------" "' --"--------
12Mthread 8

1110
9

ee
joinframe

'exceptlon

FE-----

6

exception

4
2

D--"I11-m

7
5 3

B ------tc --- ----------
1

A

Figure 7.4 : Exception stored in a deep-level join frame.

.
t

1

1

t

I

1

1

l

t

1

1

1

1

l

1

-

'

75

the cost of a single abort check is relatively high. Particularly, the threads irrelevant

to the exception (that is, the ones that do not have to be stopped) always check join

frames up to the root of the cactus stack. This means that the irrelevant threads suffer

from greater overhead. Another drawback is that the overhead is proportional to the

frequency of polling, even if the number of the exceptions that are thrown during program

execution is very small.

To improve this method, firstly, we prepare a new field quit in each join frame, which

is used as a flag and is initially set off. The quit that is set on means that the whole join

block should be stopped. Using this, we can reduce the overhead of a single abort check.

In Figure 7.4, when thread 9 finds an exception in join frame C by an abort check, it

also sets the flags of join frame D and F on. (For simplicity, the quit in join frame C is

set on when an exception is stored in it.) After that, thread 11 can notice that it must

be stopped by checking only the quit flag in join frame F.

In a similar way, we prepare another field, namely checked, in each join frame to

indicate that the last abort check confirmed that there was no exception below it (and,

of course, no exception is set into any join frame below it after the last check).

More precisely, this checked field is a time-stamp. In this method, time is managed

as a global (static) counter of type into Everytime a new exception is stored in a certain

join frame, this counter is incremented and the exception is identified (time-stamped)

by the value of the counter. By comparing the time-stamp of a new exception and that

of join frame(s), each thread can decide wheter it must do abort check now or not.

Next, we show that, instead of polling periodically, the system has only to do abort

checks at specific situations. Each thread is usually executed in the state of "no need to

do abort check". The precise definition of the state is:

The last abort check of the thread confirmed that it did not have to stop and,

after that, no exception is set into any join frame.

A thread does abort check when one of the following events that make the above

condition unsatisfied occurs:

• A new exception is stored in some join frame while the thread is running.

76

 e The thread is resumed. While it was suspended, a new exception may be stored

 in some join frame.

 On the other hand, when a new thread is created as a fast version function call, there

is (almost) no need to do abort check. We examine it divided into three cases:

 e When the child thread starts its execution, it is in the state of "no need to do abort

 check." This is because the child thread and the parent thread share the samejoin

 target and the parent is in the state of "no need to do abort check" just before the

 call.

 e When the child thread returns normally, the parent is in the state of "no need to

 do abort check." This is because the child thread and the parent thread share the

 samejoin target and the child is in the state of "no need to do abort check" just

 before the return.

 e When the child thread is stopped, the parent must also throw a stopped exception

 because they share the same join target. If the stopped exception that the child

 thread threw for its own use reaches the check code for the par call (Figure 7.3,

 lines 4-17), the parent throws an stopped exception by the code of Figure 7.3

 (line 7) automatically, i.e., without explicit abort check. Only in the case that the

 stopped exception of the child thread does not reach the parent, the parent must

 do abort check just after the return. Note that this abort check is done only if the

 return value is SUSPEND because only when the child thread is suspended after it

 throws an stopped exception, the stopped is removed from pr->ex. So, it does

 not incur more overhead in the case of normal return.

 A new exception is broadcast to all processors if the exception is stored into some

join frame. So, it may be broadcast even though no thread that synchronizes at the

join point moved to other processors. It may be broadcast even though all threads that

moved to other processors have already synchronized at the join point. To avoid these

situations, it is broadcast only if the weight value of the join frame where a thread stores

an exception is not equal to the weight of the weighted reference that the thread has.

77

Precisely, the entity that is broadcast to all processors is not a (reference to) exception

object itself but its time-stamp. Each thread keeps the time-stamp when it did the last

abort check in its thread object. By comparing these two time-stamps, a thread can

distinguish a new exception from the ones for which it has already done abort check, so

it can avoid unnecessary checks.

78

Chapter 8

Re1ated

In this chapter, we discuss some of the previous work related to the theme of this thesis.

8.1 LanguageDesign

8.1.1 Java

Parallel processing in Java,[10] is described using the Thread class. A new thread is

created by creating a new Thread object. The join operation is provided as a join

method on the Thread object. As was described in Section 2.1.2, such explicit join

operation makes the programming complicated. Exception handling in Java is designed

to handle an exception within the current thread in which the exception is thrown and

not to propagate outside the thread.

 The design of OPA is intended to keep possible compatibility with Java; however,

the synchronization and the exception handling are extended using syntactic constructs.

8.1.2 ABCL/1

Exception handling in a concurrent object-oriented language ABCL/1 [16] is described

as methods for exception messages. In ABCL/1, every concurrent object has a thread

of control and it can send a message to a concurrent object to invoke a method (script)

on the target object concurrently. When an exception occurs during the execution of a

79

method of an object which receives a message M, an exception message is generated and

sent to the sender or the reply destination of M.

Since ABeL/l is based on concurrent objects, the exception handling is also dealt

with by specifying the behaviors of objects to send/receive an exception message. On

the other hand, in OPA, exception handlers can be specified independently of objects;

furthermore, related threads can be stopped automatically.

8.1.3 KLI and Shoen

For a concurrent logic language KLl, "shoen" [3] is used to manage a group of goals.

A group consists of all goals which are derived from a single initial goal. Shoens can

be nested. When a goal raise an exception, the exception is handled by the shoen.

Each shoen has a report stream and a control stream for the communication and it can

propagate an exception to the outside of the shoen.

The approaches to the exception handing in KLl and in OPA are similar. However,

a shoen in KLl is a process with its own I/O and it deals with the internal exception.

On the other hand, in OPA, the exception handler deals with the exception for a task

possibly with parallel execution.

8.1.4 QIisp

The earlier Qlisp [8] is intended to describe a variety of parallel processing easily and

safely with a small set of language constructs. The approach of the earlier Qlisp is

very similar to our scheme; in particular, the design for stopping the related threads

was described in the report. [8] In the later Qlisp, [9] lots of constructs are added; III

particular, the qwait construct serves as the join construct in OPA.

8.1.5 Approaches Based on First Class Continuations

In some sequential languages, the rest of computation (continuation) can be reified as

a first class continuation. The first class continuations are useful to describe non local

exit, exception handling and coroutines.

80

In parallel languages, without first class continuations, coroutines can be realized by

simply using multiple threads of control. Non local exit and exception handling can

also be realized by using the catch-throw constructs of this thesis. Thus, we think the

necessity of first class continuations is small in parallel languages. We think, however,

the notion of continuation is important to describe the semantics of parallel languages.

The study by Katz and Weise [17] and the study by Hieb and Dybvig [13, 14] are

Scheme-based studies on first class continuations for parallel processing. The study by

Katz and Weise proposes a scheme to navigate parallel execution and to obtain the same

result in parallel execution with future [11] and first class continuations as in sequential

execution removing futures. The study by Hieb and Dybvig [13, 14] proposes constructs

to extract (i.e. capture and remove) a part (subtree) of cactus stack (as in Fig. 3.6) and

reify it as a first class datum. The reified subtree can be called at any point. However,

their construct does not support finally clauses.

8.2 Implementation

There are many multithreaded languages or multithreading frameworks that realize low

cost thread creation and/or synchronization with automatic load balancing. We classify

these languages/frameworks roughly into two categories. One class is for those that

support only restricted parallelism. The other class is for those that supports arbitrary

parallelism.

8.2.1 Restricted Parallelism

WorkCrews[29] is a model for controlling fork-join parallelism in an efficient and portable

manner. When it creates a new thread, it creates stealable entity, (i.e., task) and con

tinues the parent's execution. If the task is not yet stolen when the parent reaches its

join point, the parent calls it sequentially. If the task is stolen, the parent thread blocks

while waiting for the stolen task's join. Note that, in this model, once a parent thread

calls a child thread sequentially, it is impossible to switch context to the parent thread

even if, for example, the child thread blocks. So, this model can only be applicable to

well-structured fork-join parallelism.

81

Lazy RPC[5] is an implementation scheme of parallel function call in a C compatible

manner. It uses a similar technique as WorkCrews, and so the same restriction on parallel

call.

FJTask[19, 18] is a Java's library for fine-grained fork-join multithreading and its

technique is similar to Lazy RPC.

Since WorkCrews, Lazy RPC and FJTask employ restricted (well-structured) fork

join parallelism, each task can be started with the stack which is already used by some

other tasks; thus the cost of task creation is comparable to that of object allocation.

Cilk[23, 7] is an extended C language with fork-join constructs and, like OPA, its im

plementation is a compiler from Cilk to C (and runtime). Its implementation technique

is also based on LTC-like work steal. However, in several points, it differs from OPA.

First, a join construct is lexically-scoped, and does not support other types of synchro

nization. These simplify the management of child threads. Second, its base language is

C, so it does not provide exception handling. Third, it does not have a synchronized

construct, that is, there is no need to manage thread identity. Fourth, for work steal,

Cilk saves a parent thread's continuation in a heap-allocated frame at every thread cre

ation. Indolent Closure Creation[22] is a variant of Cilk implementation and it employs

a polling method similar to OPA for LTC. A different point from OPA is that a victim

reconstructs the whole stack from all the tasks except the stolen one before continuing

its execution.

As compared with Cilk's lexically-scopedjoin-destination, we think that OPA's dynamically

scoped one is more applicable. This is because a thread's join-destination can be deter

mined as dynamically as a function's caller (return-destination) is determined, and as

additionally as an exception handler (throw-destination) is determined. Furthermore, in

Cilk, functions that fork some other threads should be called concurrently to avoid poor

load balancing, since the sequential call prevents the caller from proceeding without the

completion of all threads forked in the callee.

The lexically-scoped join-destination makes the Cilk implementation simple and effi

cient with the programming restriction. By contrast, OPA realizes a dynamically-scoped

join-destination in an efficient manner using laziness, so it does not impose any restriction

on programmers. In addition, it is possible to write "lexically-scoped" style programs

82

in OPA and the compiler can confirm that these programs conform to lexically-scoped

style.

8.2.2 Arbitrary Parallelism

LTC[20] (and message passing LTC[4]) is an efficient implementation technique for Mul

tilisp. Multilisp provides dynamic thread creation and general synchronization through

future (and implicit touch) constructs, but, it does not have fork-join constructs and

so programmers may need some skill to write correct programs. Stack manipulation

for work steal is implemented in assembly level, then limited portability. Employing a

polling method for LTC is originally proposed in message passing LTC.

StackThreads/MP[24] is also a stack-based approach for multithreading. It enables

one processor to use other processor's stack-allocated frames for work steal. It enables

general synchronization without heap-allocated frames. To realize this, it only works on

shared-memory multiprocessors, and is implemented by assembly level manipulation of

stack/frame pointers.

As compared with these languages, OPA has benefits of both categories: simple fork

join constructs, high portability, and general synchronization. In addition, it supports

other advanced features like exception handling, synchronized method, and so on.

83

Chapter 9

Performance Evaluation

9.1 ImplementationofMultithread
 '
In this section, we evaluate the performance of our OPA implementation compared with

Cilk 5.3.2[23], which is known as a good implementation of fine-grained multithreaded

languages on multiprocessors. The configurations of the shared-memory parallel com-

puter for this measurements are shown in Table 9.1.

 We ported 5 Cilk benchmark programs (fib, knapsack, cilksort, matmul, heat),

that come with the Cilk distribution, into OPA. We also use a binary tree search program

described in Section 3.6 for the measurements of the overhead of exception handling.

9.1.1 Measurement Results

Table 9.2 are measurement results of five programs on the SMP. Also, Table 9.3 shows

the number of counts of thread creation, task creation and steal while executing the

Table 9.1: Computer settings.

Machine

CPU
Main Memory
Num of CPUs
Compiler

Sun Fire 3800

Ultra SPARC III 750MHz, 8MB L2 cache

6GB
6

gcc 3.0.3 (with -03 -mcpu=ultrasparc option)

84

programs on our OPA implementation. In order to measure these counts, we added the

code which increments the corresponding counter for each event into the C programs

generated by the OPA compiler. In all programs, since the overhead of the additional

code for these counts is kept between 2-5% of the whole execution time, its probe effect

is negligible. The number of counts of thread creation during the execution of a program

is independent of the number of processors. The number of counts of steal (and task

creation) in the heat program seems much larger than the other programs. Because

its overall computational structure is organized as step-by-step computations in which

each step is completed with a global barrier, these counts seem to be proportional to the

number of steps (in this measurement, approximately 40).

9.1.2 ComparisonwithCilk

Figure 9.1 shows speedup results of OPA and Cilk programs relative to sequential C

programs, that are made from Cilk programs by eliminating all the occurrence of three

keywords: cilk, spawn and sync.

 Both OPA and Cilk systems show almost ideal speedups (5-6 for 6 CPUs). This

means both systems can efficiently distribute workloads among processors. However,

in all benchmark programs, OPA system achieved better absolute performance than

Cilk as shown in Table 9.2. These results mean that our OPA implementation incurs

less overhead for thread creation and synchronization than Cilk. (In the heat program

whose thread granularity is not so fine, the absolute execution time is almost the same in

both systems.) In cilksort and matmul, The difference between two systems is not so

remarkable as the difference in fib and knapsack. This seems to be because cilksort

and matmul use arrays. More precisely, In Cilk programs:

 int A [N] ;

 f(thA[N/2]);

we can pass the latter part of an array A[N] to fO as apointer argument to the cor-

responding element of the array. In OPA programs, however, arrays are Java's array

objects:

 int A = new int[N];

 85

Table 9.2: Absolute execution time (an d relative time to C in parentheses).

(sec)

#of PEs 1 2 3 4 5 6

fib(38)

CCilkOPA 3.36

12.1
(3.6)6.21(1.82)

knapsack

CCilkOPA 5.03

9.05
(1.80)7.42

(1.48)

cilksort

CCilkOPA 2.29

3.42
(1.49)2.91

(1.27)

matmul

CCilkOPA 5.02

7.74
(1.54)7.12

(1.42)

heat

CCilkOPA 6.49

6.58
(1.01)6.63

(1.02)

86

Table 9.3: The number of thread creations, task creation, and steal.

#of PEs 1 2 3 4

fib(38)

thread

task

steal

o0 91

9

160

19

63,245,985

253

37
423548

knapsack

thread

task

steal

oo 99

14

223

25

26,839,428

294

39
379608

cilksort

thread

task

steal

0o 104

21

774

176

7,072,482

360

84
1,1771,434
265321

matmul

thread

task

steal

oo 82

25

964

249

23,967,450

850

163
1,8722,646
334522

heat

thread

task

steal

oo 82

82

450

489

171,990

730

835
9651,252
1,1131,471

 f(A, N/2);

where we must pass (a reference) to an array object itself and an index indicating the

latter part separately. Also, an access to an element of the array in fO takes more cost

(for index calculation) than Cilk. These overhead that is irrelevant to multithreading

seems to hide the advantage of OPA programs.

 In Cilk, the relative execution time of fib to C is 3.6: that is almost the same as the

result of the paper[7], 3.63. In the paper [7], the overhead of heap frame allocation is

about 1.0 and that of the THE protocol is 1.3. The THE protocol is a mostly lock-free

protocol to resolve the race condition that arises when a thief tries to steal the same

frame that its victim is attempting to pop.

 In OPA, the relative execution time of fib to C is about 1.82, and the breakdown

of OPA's serial overhead for fib is shown in Figure 9.2. The total execution time is

smaller than that of Cilk, primarily because the OPA system lazily performs heap frame

allocation and the OPA system employs a polling method to resolve the race condition

between a thief and its victim; that is, the OPA system only incurs the overhead of

 87

6

5

oA

94
.$

ts

:t3

g
8
g2
co

1

o

 OPA-fib -)(- Cilk-fib --X--

 opA-knapsack + Cilk-knapsack "+' .-"-.-"----"-..--..-------.-----... '--L"-.

 OPA-cilksort -)l(- Cilk-cilksort --ue･ ."
 -tt
 OPA-matmul- Cilk-matmul･･O-- -' ttt
 OPA--heat- Cilk-heat---- -----""- '---;-.'-"'---------- ' --'-

 -" .
 " -- t- t -- ttt -m-- -t-
 .---------------"-H-L"-------------r------------- ----j-------- ------ -----t""---------i)--rt------

 /- .o""p"
 t -t ttd- t vt vt V -:l:---.-.-.-------.--"---....------ ---.... .- - ------------. -----..------.."-------------. ' t- t- ' -- - -- .. ---- -･- -× ･- -- - --..---"-.e--..-- -. .-xt- -1--.------m.-.---.-.--.-v.-.t"fXr.r.:--.--..--------"---....--.-.

 - -- ... -- ･-× -･- - ..- . -- -×- -･-
 ×---

o

 number of processors

Figure 9.1: Speedup results (relative to sequential C code).

6

fib

o O.5 1 1.5 2

- suspend Ei] thread N join Z polling D other

Figure 9.2: Breakdown of overhead for fib on a single processor.

88

Table 9.4: Comparison with the conventional OPA implementation.
(sec)

A B C D Cilk

fib(32)fib(38) 16.3

292(estimated)

O.86

15.4

e.72

12.9

O.37

6.8

O.67

12.1

suspension check for each method (thread) call, that is about O.04, and the overhead of

polling, that is about O.02, rather than the overhead of heap frame allocation (stealable

continuation creation) plus the overhead of the THE protocol. StackThreads/MP uses

the same technique as the OPA system, but it only exhibits almost comparable perfor-

mance to the Cilk system. This seems to be because the language of StackThreads/MP

does not directly permit a thread to return a value or to join to the parent thread; those

operations must explicitly be expressed and performed with additional overhead.

 In practice, the above evaluation needs to be fixed because of the richer expressiveness

of OPA. First, the second recursive call of fib can be expressed as a sequential call

in OPA, reducing a thread creation cost. Second, supporting advanced features such

as thread identification for Java-style locks, dynamically-scoped synchronization, and

thread suspension requires additional overhead. More specifically, the overhead of the

lazy task queue manipulation (thread) is about 0.34 and that ofjoin stack manipulation

and counter check for join synchronization is about O.42. Even with these additional

overhead fbr the richer expressiveness than Cilk, our implementation of OPA incurs

smaller overhead than Cilk by pursuing "laziness".

9.1.3 Comparison with Previous Implementations

Finally, we compared our OPA implementation with laziness to previous OPA imple-

mentations using fib. To verify the effect of each technique, we prepared four versions

of previous implementations:

 (a) lazy heap frame allocation for method invocation,

 (b) (a) plus lazy task creation (including lazy heap frame allocation for thread cre-

 ation),

89

 (c) (b) plus lazy creation of thread objects,

 (d) (c) plus lazyjoin frame allocation,

where the later version pursues more laziness than the former ones.

 The results are shown in Table 9.4. In implementation (a), since we cannot compute

fib(38) because of memory deficiency, we also measured fib(32); the value of fib(38)

in (a) is estimated from the ratios of the other versions and Cilk (they are almost the

same, approximately 18). Here, we only give the results on a single processor. Using

multiple processors, we can achieve ideal speedups fbr all versions (and Cilk). First, we

can find that the effect of LTC is considerable. This is because the implementation (a)

creates a task for each thread creation and because its scheduling policy (that continues

the execution of a parent thread at the time of thread creation) does not fit fork-join

style parallel processing then causes many context switches. Next, from the results

of implementation (b) and (c), we can see that the runtime overhead for supporting

advanced features is relatively high. In fact, if manipulations related to these features

were not changed to the above ones (Figure 9.2 thread, join), the OPA system could not

be a match for the Cilk system.

9.2 for-par Loop Execution

In this section, using two sample programs, mandelbrot and nbody, which contain

for-par loop(s), we show that our techniques described in Chapter 6 enable these pro

grams th be executed with good load balancing while normal LTC cannot achieve it.

Also, we ported two programs into Cilk in order to compare the performance of the

OPA implementation and the Cilk implementation. For this measurements, we used

another shared-memory parallel computer: Sun Ultra Enterprise 10000 (Ultra SPARC

II 250MHz, 10GB Main Memory, IMB L2 Cache, 64CPUs).

 First, the measurements results ofmandelbrot are shown in Figure 9.3. This program

computes the Mandelbrot set within a range of O S x,y < 1000. It contains a nested

for-par loop where the inner loop has a single par call. Using our method, iterations of

the loop are divided equally among processors and, unlike simple block distribution, our

90

:/

EO

-"c"
..o...

8
fl

cu

25

20

15

to

5

o

"r

tt.t.

"..t

 normal OPA -
 ..."･-bo'ck'OPr(!]---x---
 ･･･:.･,;,4--,,' forall OPA -･-gtE---
,,,,.,,..,, ./i... CjiE,...f.....

g
 -"*

v;"l;b.za="#v==?"....nt

Da

8
g
co

 64

 16

 4

 1

O.25

1

(a)

2

---{r

 ,, no,r,x,a,i8:X:.I::I-."-

 '''''''"''l'------:-i-....J:f.9!i.9orP,",･xi:.::J:

......are:;'iii-{iiiif-}:::"'--IIf.II:Iiill.................

"."
"""" ".y....aj...

 4 8 16 32 64 1248 Number ot PEs Number of PEs
Execution Time (sec) (b) Speed up
 Figure 9.3: results of forall-style for-par loop.

16 32 64

G8
5
E
･.="

e-

8
$
-

80

70

60

50

40

30

20

10

o

s

SXXx"stXkxx * '

 s/ . ' '4I[// s-;::[

 N -i "S{lsss*---'''- '

 ' .i;,.)l---.il-'i '

no,r,:lg,i8BA¥:.::-x--

 Cilk ----E---

1.i.,"･i'

i"

 ..l

:"..h-.V -
..
g.-.-1'...li

1 2 4 8 Number of PEs

 (a) Execution Time

 Figure 9.4:

Da

8
g
co

 64

 16

 4

 1

025

--
i･- -i･････ ' ""11//'li.{k!-F//,i':.i

.g.e?{f, 'x';;;ilil}";'l';''l':;'//'l-'-- -' i.......... i

 '';'"''''''"'t' Lsk

---x---

--- "re---

 Number of PEs

(sec) (b) Speed up
results of non-forall-style for-par loop.

16 32 64

91

Table 9.5: Speed up by implementing the abort mechanism.

(msec)

#ofPEs 1 2 3 4 5 6

withoutabortmechanism
withabortmechanism

speedup

O.029

O.027

1.08

O.223

O.066

3.35

O.371

O.093

3.97

O.487

O.148

3.30

O.597

O.150

3.97

O.728

0.158

4.61

method enables to re-divide iterations (repeatedly) so that the whole work of the for-par

loop, where there is a significant difference in the amount of work among the iterations,

can be distributed equally among processors. By contrast, the OPA implementation with

normal LTC and the Cilk implementation do not achieve good load balancing since they

cannot limit the number of task steals.

 Next, the measurements results of nbody are shown in Figure 9.4. This program

simulates the motion of a number of bodies (for this measurement, N = 1024) moving

under fbrces exerted on each by all the others. This program consists of two phases: one

is for computing forces acting on each body, and the other is for updating the properties

of each body, such as position, velocity, and acceleration. These two phases are both

written as a loop which iterates on the set of N bodies. Since the set is represented as

a linked list of bodies, there must be an operation to find the next element of the list in

each iteration. This means that these loops are non-forall-style for-par loops. Even

in this case, as shown in Figure 9.4, stock mode execution achieves better load balancing

results than normal LTC and Cilk.

9.3 ExceptionHandling

In this section, we evaluate the OPA implementation of exception handling. We use the

same computer as in Section 9.1.

 We measured two kinds of runtime costs: one is the time spent for aborting threads

and the other is the overhead of additional operations by implementing exception han-

dling.

 First, we use nqueens for the measurement of the time fbr abortion. It searches

92

Table 9.6 : Execution time to fi nd the first answer.
(sec)

#ofPEs 1 2 3 4 5 6

withoutabortmechanism
withabortmechanism

6.97

6.30

7.00

6.30

7.06

6.36

7.13

6.41

7.20

6.50

7.28

6.56

Table 9.7 : Overhead of exception handl ing.

(sec)

of PEs 1 2 3 4 5 6

fib(38)

without exception handling

 with exception handling

 overhead rate

6.81

7.36

1.08

3.41

3.68

1.08

2.27

2.45

1.08

1.70

1.84

1.08

1.36

1.48

1.09

1.13

1.24

1.10

14-Queen

withoutexceptionhandling
withexceptionhandling

overheadrate

3.38

2.71

O.80

1.72

1.43

O.83

1.20

O.99

O.82

O.92

O.77

O.84

O.76

O.64

O.84

O.64

O.55

0.86

answers concurrently and, when it finds the first answer, it throws an exception to

terminate the whole program. Figure 9.5 shows the nqueens method (this method uses

bitmaps to represent the configurations of the chess board). We measure the interval

between the time when it throws an exception and the time when the exception is caught.

The size of the board is 30x30 (nqueens(30)). The results are shown in Table 9.5. For

comparison, Table 9.6 shows the interval between the time when it starts searching and

the time when it finds the first answer.

 On a single processor, since no join frame is allocated and no abortion is performed,

there is no difference between the two implementations. By contrast, on multiple pro-

cessors, the time for abortion is reduced obviously. We can also find that, while the time

for abortion increases with the number of processors on the implementation without

abort mechanism, the time is almost the same among any number of processors on the

implementation with abort mechanism. From these results, we guess that more effects

can be achieved as we use more processors.

 Next, to measure the overhead by implementing exception handling, we use fib and

the variation of nqueens that searches all the answers, i.e., no exception is thrown (the

size of the problem is fib(38) and nqueens(14), respectively). Since both programs

93

have no exception handler and throw no exception, we can measure only the overhead

by implementing exception handling. The results are shown in Table 9.7.

We can see that the overhead offib(38) is only 8% on average.

Conversely, the implementation of exception handling speeds up the execution of

nqueens (14). This is due to optimizations performed by the GCC compiler. In the C

code generated by the OPA implementation without exception handling, each method

(thread) call is followed by the code for suspension check and the subsequent suspension

process. In spite of the low frequency of suspension, the GCC compiler assigns a lot of

registers for the suspension process. This prevents the effective assignment of registers

for other parts of the code that are executed frequently. By implementing exception

handling, an exception check is added at the beginning of each suspension process. This

cause the GCC compiler to aware that the frequency of executing the suspension process

(following the exception check) is low, then the compiler assigns more registers for other

parts than for the suspension process. That is why the implementation with exception

handling achieves better performance for nqueens (14) .

94

it(y == n) {

throw new Found(n); II find the answer
} else {

bitmap = MASK & -(left I down I right);
try {

join {
while (bitmap != 0) {

bit = -bitmap &bitmap;
bitmap ~= bit;
par nqueens(n, y+1, (left I bit)«l,

down I bit, (right I bit»>l);

II compose the answer and re-throw

}

}

}

} catch(Found e) {
e.insert(down);
throw e;

}

1 private static void nqueens(int n, int y,
2 int left, int down, int right) throws Found {
3 int bitmap, bit;
4

5

6

7
8
9

10
11
12
13
14
15
16
17

18

19
20
21
22
23 }

Figure 9.5: nqueens method.

95

Chapter 10

Conclusion

In this thesis, we proposed efficient and portable implementation techniques for OPA's

fork-join constructs. OPA supports several advanced features such as mutual exclusion,

Java's synchronized method and dynamically-scoped synchronization coupled with ex-

ception handling.

 Supporting these features has been considered to degrade the effectiveness of existing

eMcient implementation techniques for fine-grained fork-join multithreaded languages,

e.g., lazy task creation. Our implementation techniques pursued "laziness" for several

operations such as stealable continuation creation, thread object allocation and join

frame allocation.

 We compared the OPA implementation with the Cilk implementation. We confirmed

that the performance of OPA programs exceeded that of Cilk programs, which indicates

the effectiveness of our techniques.

 Also, we proposed efficient techniques for good load balancing by which we can di-

vide a loop which contains fork statement(s) in the manner that a victim can remain

approximately half of the iterations as its own work. We confirmed that the performance

of the OPA system executing such programs scaled up sufficiently with the number of

processors.

 We also present the eMcient and portable implementation techniques of exception

handling for the OPA language. By examining the measurement of the time fbr abortion,

we confirmed that parallel search programs can complete their execution faster using our

96

abort　system．

97

Bibliography

[1] David I. Bevan. Distributed garbage collection using reference counting. In Pt4RLE:

 Parallel Architectures and Languages Europe, number 259 in LNCS, pages 176-187.

 Springer-Verlag, 1987.

[2] Rohit Chandra, Anoop Gupta, and John L. Hennessy. COOL. In Gregory V. Wilson

 and Paul Lu, editors, Parallel Programming U3ing C++, chapter 6. The MIT Press,

 1996.

[3] Takashi Chikayama, Hiroyuki Sato, and Toshihiko Miyazaki. Overview ofthe paral-

 lel inference machine operating system (PIMOS). In Proceedings of FGCS'88, pages

 230-251, 1988.

[4] Marc Feeley. A message passing implementation of lazy task creation. In Proceedings

 of international VVorkshop on Parallel Symbolic Computing: Languages, Systems,

 and Applications, number 748 in LNCS, pages 94-107. Springer-Verlag, 1993.

[5] Marc Feeley. Lazy remote procedure call and its implementation in a parallel variant

 of C. In Proceedings of international Workshop on Parallel Symbolic Languages and

 Systems, number 1068 in LNCS, pages 3-21. Springer-Verlag, 1995.

[6] Mark Feeley. Polling efficiently on stock hardware. In Proc. of Cooference on Runc-

 tional Programming Languages and Computer Architecture, pages 179-190, June

 1993.

98

 [7] Matteo Frigo, Charles E. Leiserson, and Keith H. Randall. The implementation of

 the Cilk-5 multithreaded language. ACM SIGPLAAI Notices (7]'LDI'98?, 33(5):212-

 223, 1998.

 [8] Richard P. Gabriel and John McCarthy. Queue-based multi-processing Lisp. Tech-

 nical Report STAN-CS-84-1007, Department of Computer Science, Stanfbrd Uni-

 versity, 1984.

 [9] Ron Goldman and Richard P. Gabriel. Qlisp: Parallel processing in Lisp. LEEE

 Software, pages 51-59, July 1989.

[10] James Gosling, Bill Joy, and Guy Steele. 71he Java Language S?)ecofication. Addison-

 Wesley Publishing Company, 1996.

[11] Robert H. Halstead. New ideas in parallel Lisp: Language design, implementation,

 and programming tools. In T. Ito and R. H. Halstead, editors, Parallel Lisp: Lan-

 guages and Systems, volume 441 of Lecture Notes in Computer Science, pages 2-57,

 Sendai, Japan, June 5-8, 1990. Springer, Berlin.

[12] Robert H. Halstead, Jr. Multilisp: a language fbr concurrent symbolic computation.

 ACM 7leansactions on Programming Languages and Systems (TOPLAS?, 7(4):501-

 538, 1985.

[13] Robert Hieb and R. Kent Dybvig. Continuations and concurrency. In ACM Coof

 on the Principles and Practice of Parallel Programming (PPoPP?, pages 128-136,

 March 1990.

[14] Robert Hieb, R. Kent Dybvig, and Claude W. Anderson, III. Subcontinuations.

 Lisp and Symbolic Computation, 7(1):83-110, 1994.

[15] C. A. R. Hoare. Monitors: an operating system structuring concept. Commun.

 ACM, 17(10):549-557, 1974.

[16] Yuuji Ichisugi and Akinori Ybnezawa. Exception Handling and Real Time Features

 in an Object-Oriented Concurrent Language. In Concurrency: 71heory, Languages

 99

 and Architecture, volume 491 of Lecture Notes in Computer Science, pages 92-109.

 Springer-Verlag, 1990.

[17] Morry Katz and Daniel Weise. Continuing into the future: On the interaction of

 futures and first-class continuations. In ACM Conjbrence on Lisp and jFleLnctional

 Programming, pages 176-184, June 1990.

[18] Doug Lea. Concurrent Programming in Java: Design Principles and Patterns. Ad-

 dison Wesley, second edition, 1999.

[19] Doug Lea. A Java fork/join framework. In Proceedings of the ACM 2000 cooference

 on Java Grande, pages 36-43. ACM Press, 2000.

[20] Eric Mohr, David A. Kranz, and Robert H. Halstead, Jr. Lazy task creation: A

 technique for increasing the granularity of parallel programs. IEEE 7hansactions

 on Parallel and Distributed Systems, 2(3):264-280, July 1991.

[21] John Plevyak, Vijay Karamcheti, Xingbin Zhang, and Andrew A. Chien. A hybrid

 execution model for fine-grained languages on distributed memory multicomputers.

 In Proceedings of the 1995 conj1?rence on Supercomputing (CD-ROM?, page 41. ACM

 Press, 1995.

[22] V. Strumpen. Indolent closure creation. Technical Report MIT-LCS-TM-580, MIT,

 Jun 1998.

[23] Supercomputing Technologies Group. Cilk 5.3.2 Reference Manual. Massachusetts

 Institute of Technology, Laboratory for Computer Science, Cambridge, Mas-

 sachusetts, USA, 2001.

[24] Kenjiro Taura, Kunio Tabata, and Akinori Ybnezawa. StackThreads/MP: Integrat-

 ing futures into calling standards. In Proceedings of A CM SIGPLAAI Symposium on

 Principles & Practice of Parallel Programming (PPoPjFV, pages 60-71, May 1999.

[25] Seiji Umatani, Masahiro Yasugi, Tsuneyasu Komiya, and Taiichi YUasa. Extending

 lazy task creation to support iterative thread creation. In Proc. of Joint Symposium

 100

 on Parallel Processing 2001(LTSPP2001?, Kyoto, Japan, pages 157-164, June 2001.

 (in Japanese).

[26] Selji Umatani, Masahiro Yasugi, Tsuneyasu Komiya, and Taiichi YUasa. Extending

 lazy task creation for iterative computation. LPSJ 71ransactions on Programming,

 43(4):948-957, 2002. (in Japanese).

[27] Seiji Umatani, Masahiro Yasugi, Tsuneyasu Komiya, and Taiichi Yuasa. Pursuing

 laziness for eficient implementation of modern multithreaded languages. In Proc. of

 5th International Symposium on High Pe7:formance Computing (7SHPC- IO, pages

 174-188, October 2003.

[28] Selji Umatani, Masahiro Yasugi, Tsuneyasu Komiya, and Taiichi Yuasa. Lazy nor-

 malization techniques for an object-oriented parallel language opa. LPSJ 7b7ansac-

 tions on Programming, 2004. to appear (in Japanese).

[29] Mark T. Vandevoorde. and Eric S. Roberts. WorkCrews: An abstraction for con-

 trolling parallelism. international Journal of Parallel Programming, 17(4):347-366,

 1988.

[30] Masahiro Yasugi. Hierarchically structured synchronization and exception handling

 in parallel languages using dynamic scope. In Proc. of International VVorkshop on

 Parallel and Distributed Computing for Symbolic and frregular Applications, July

 1999.'

[31] Masahiro Yasugi, Shigeyuki Eguchi, and Kazuo Taki. Eliminating bottlenecks on

 parallel systems using adaptive objects. In Proc. of international Conjerence on

 Parallel Architectures and Compilation 7lechniques, Paris, Iibeance, pages 80-87, Oc-

 tober 1998.

[32] Masahiro Yasugi and Kazuo Taki. OPA: An object-oriented language for paral-

 lel processing - its design and implementation -. ll'SJ SIG AIotes 96-PRO-

 8(SWoPP'9tij, 96(82):157-162, August 1996. (in Japanese).

101

[33] Masahiro Yasugi, Seiji Umatani, Tomio Kamada, Yusuke Tabata, Tomokazu Ito,

Tsuneyasu Komiya, and Taiichi Yuasa. Code generation techniques for an object

oriented parallel language opa. IPSJ Transactions on Programming, 42(SIG 11

(PRO 12)):1-13, November 2001. (in Japanese).

102

