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Preface

The reaction in solvent is common in our life. An infinite number of biochemical reactions

in our body, for example, proceed in aqueous phase. From the industrial aspect, many materials

are produced by reactions using various type of organic solvents. Although our society and

our body make use of a huge number of reactions in solvent everyday, the reaction, where

mechanism is fully elucidated by solvation theories, is very limited.

A theoretical approach to clarify the reactions in solvent was started from the end of 19th

century. The most difficult but most interesting point in the development of the solvation

theories is how to treat the infinite number of variables in solvent system. Many solvent models

have been proposed to tackle the difficulty. In the field of solvation chemistry, by using one

of the models or by combining some of the models, the reaction in solvent has been discussed

mainly based on solvation structure and the reaction field produced by solvent molecules.

Recently, a theoretical approach to study reactions in solvent from a different point of view

has been also proceeded. Thanks to the improvement of the computational system, the quan-

tum chemical calculation with solvation effect is becoming possible. In this field, the reaction

energies and the geometries of solute molecules are the main targets to be elucidated.

The theoretical study of the reaction in solvent is now active area, where the two fields of

solvation chemistry and quantum chemistry are overlapping. With computational chemistry

softwares, various type of the reactions in solvent have been studied. However the theoretical

approaches in this area seems to be biased toward one field. In most of quantum chemical

calculation with solvation effect, for example, the discussion is mainly focused on the elec-

tronic structure and solvation energies. To make clear the functions of solvent molecules, the
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microscopic character of the solvent, such as solvation structure, must be elucidated.

In this thesis, the solvation theories focused on both of electronic structure of a solute

molecule and solvation structure were developed. With these theories, the reaction in sol-

vent can be discussed at molecular level. The author carried out this study in the hope that the

theories developed here will enlarge the overlapping area between the solvation chemistry and

quantum chemistry and will work well to elucidate the mechanism of the reactions in solvent.
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General Introduction

Solvent molecules play a leading part of reaction in solvent. The electric field produced by

solvent has great influence to the reactivity of many reactions and the absorption and emis-

sion spectra. In some case, the solvent molecule itself works as a key substrate for chemical

reactions and biochemical reactions. With the recent developing theoretical methods and com-

putational systems, these systems are becoming the target of theoretical study.

ψ

g

V[g] V[ψ]

Scheme 1

The system of the reaction in solvent consists of infinite number of molecules. To charac-

terize such complicated system, what kind of properties should be considered? Because bond

breaking and bond forming are included in most of the reactions, electronic structureΨ of the

solute system is of course indispensable (scheme 1). Around the solute system, the solvent

molecules move vigorously at room temperature. By averaging the coordinates of the solvent

molecules around the solute molecule for a long time, a specific structure, such as hydrogen

bonding, is found. Because such a specific structure plays an important role to activate or

deactivate the reaction, the solvation structureg(r) is also important property to describe this

system (scheme 1).
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The electronic structureΨ and solvation structureg(r) are often considered as independent

functions. However, it is not true. The structuresΨ andg(r) produce the electrostatic potential

V [Ψ] andV [g] around them. Both ofV [Ψ] andV [g] lead to the change of the structuresg(r)

andΨ, respectively (see scheme 1). Therefore, the structuresΨ andg(r) are coupled with each

other through this potentialV .

The reaction in solvent is very complicated system, where solvent system and solute system

affect each other. To study the reaction in theoretical manner, how to evaluate the structuresΨ

andg(r), as well as the electrostatic potentialV plays key roles.

1 Electrostatic potentialV

A molecule consists of the positively charged nuclei and negatively charged electrons. These

particles produce the electrostatic potential around the molecule. In this section, the author

describes how to define the electrostatic potentialV as a functional of electronic structureΨ

and solvation structureg(r).

1.1 V as a functional ofΨ

When wave functionΨ is obtained for solute system, the electrostatic potentialV is exactly

calculated by,

V (r) =

∫
Ψ∗(r′)Ψ(r′)

|r − r′|
dr′. (1)

This is one of the fundamental property in quantum chemical calculation. By expandingΨ

with atomic orbitals, eq. 1 can be calculated easily [1].

In the classical limit, atomic chargeq is widely employed instead ofΨ. The electrostatic

potential is replaced by,

V (r) =
Na∑
i

qi

|r − ri|
, (2)

whereNa is the number of atoms andri is the position of the atom. In most case, the atomic

charge can be determined so that the potential calculated by eq. 2 reproducesV (r) evaluated

by eq. 1.
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1.2 V as a functional ofg(r)

The electrostatic potentialV generated by solvent molecules is calculated from solvation

structure. One of the most difficult points in the calculation is how to treat the solvent system,

which has infinite number of variables. To overcome (or avoid) the difficulty, many useful the-

ories such asmolecular simulation, integral equation theory, anddielectric continuum model

have been proposed (Fig. 1).

(a) (b) (c)

Figure 1:Examples of solvation theories; (a) Dielectric continuum model, (b) Integral equation theo-
ries, and (c) molecular simulation.

The most simple method is dielectric continuum model. In this model, the coordinates

of all of the solvent molecules are completely averaged (or ignored) and solute molecule is

immersed into a cavity embedded in the continuum (Fig. 1(a)). Because the solvent system is

characterized solely by a dielectric constantε, the equation to be solved becomes very simple.

When a solute molecule is put into a spherical cavity with radiusa, the electrostatic potential

is expressed with,

V (r, Ω̂) = −
∞∑
l=0

(l + 1)(ε − 1)

ε(l + 1) + l

rl

a2l+1

l∑
m=−l

Mlm(Ω̂), (3)

whereΩ̂ is Euler angle andMlm is the multipole moment of the solute molecule. The important

low-order terms were proposed by Born (l = 0) [2], Onsager (l = 1) [3], and Abrahamet

al.(l = 2) [4]. This strategy is very simple and the microscopic properties such as solvation

structure cannot be obtained.

In molecular simulation, solvent molecules are treated explicitly (Fig. 1(c)). The coordinate

sets of the molecules(r(i)
1 , r

(i)
2 , · · · , r

(i)
M ) at thei-th step are produced by the Metropolis method
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or equation of motion [5], whereM is the number of particles in this system. The electrostatic

potential produced by the solvent molecules is evaluated by,

V (r) =
1

N

N∑
i=1

M∑
j=1

qj

|r − r
(i)
j |

, (4)

whereqj is the atomic charge of thej-th particle andN is the number of the steps calculated

in this simulation. IfN andM were infinitely large, exact potential could be obtained in

principle. However, the calculation in reality is restricted with the finite numbers ofN (106 ∼

108) andM (102 ∼ 104).

In integral equation theories for liquids (IETs), the coordinate of each solvent molecule is

not calculated explicitly. Instead of the coordinate set(r
(i)
1 , r

(i)
2 , · · · , r

(i)
M ), the following pair

distribution is employed well [6–12],

ρ(2)(r1, r2) =
1

Ξ

∞∑
N=0

zN

(N − 2)!

∫
· · ·

∫
dq3 · · · dqNe

− 1
kBT

U(r1,r2,··· ,qN )
, (5)

whereΞ is the grand partition function,kB is Boltzmann’s constant,U is the intermolecular

interaction between molecules, andz is the activity. When a solute molecule is fixed at the

origin and the solvent system is homogeneous, the solvation structure around solute molecule

g(r) is obtained byg(r) = ρ(2)(r)/ρuρv, wherer is the vector from the origin to the solvent

site andρu (ρv) is the number density of the solute molecules (solvent molecules). With the

solvation structureg(r), the electrostatic potential is evaluated by the following equation,

V (r) = ρv

M ′∑
j=1

∫
gj(r

′)qj

|r − r′|
dr′, (6)

whereM ′ is the number of atoms in a solvent molecule andqj is the atomic charge of these

atoms.

The information of the coordinate set(r
(i)
1 , r

(i)
2 , · · · , r

(i)
M ) used in molecular simulation is

unnecessarily detailed for many purposes. On the other hand, the coordinates are completely

averaged in dielectric continuum model. By introducingg(r), the variables in eq. 6 are dramat-

ically reduced compared to those in eq. 4. Moreover,g(r) is informative enough to analyze the

solvation structure at molecular level. The preparation ofg(r) is the crucial task to compute

V [g] accurately.
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2 Solvation structure, g

Solvation structureg(r) is one of the most important properties for the system because it

connects directly to the electrostatic potentialV as shown in eq. 6.

 

 

 

 

 

3D distribution functionRadial distribution function

Scheme 2

What does the solvation structure look like? The structure of solid state is very clear. All of

the molecules take the almost fixed coordinates and the structure is completely ordered. On the

other hand, in gas phase, the molecules move randomly and the structure around a molecule is

completely uniform all over the space. The solvent structure is between them; not completely

ordered and not completely uniform.

When the probability of finding two particles at a distance is observed, the 1D solvation

structure called radial distribution function (RDF) is evaluated (scheme 2). RDF has been

employed to characterize solvation structures for a long time. By neutron scattering and X-ray

diffraction, RDFs of liquid systems were obtained by performing Fourier transformation of

the static structural factors [13–17]. They can also be obtained by theoretical methods such

as molecular simulation [5] and IETs [6]. In the case of Reference Interaction Site Model

(RISM) [11,18], which is one of the most popular IETs, the RDF between sitesα andβ, gαβ,

is calculated by the following equations,

gαβ(r) = hαβ(r) + 1, (7)

hαβ(r) =
∑
δγ

ωαδ ∗ cδγ ∗ ωγβ(r) +
∑
δγ

ωαδ ∗ cδγ ∗ ρvhγβ(r), (8)

gαβ(r) = exp

[
− 1

kBT
uαβ(r) + hαβ(r) − cαβ(r)

]
, (9)
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where * denotes the spacial convolution integral,uαβ(r) is the potential between siteα and

siteβ, andcαβ(r) is the direct correlation function.ωαβ(r) is the intramolecular correlation

function, which defines the molecular geometry.

RDFs have been well employed to discuss the solvation structure. However, it becomes

very difficult to imagine the solvation structure only from RDFs as the number of atoms in a

molecule increases. Even in the case of water, the assignment of some peaks in the RDF is

very difficult only with the 1D data. This is because the information about the angular part is

completely integrated out in RDF.

The computational methods which can directly evaluate 3D solvation structure have also

been developed. The solvation structure of liquid water, for example, was discussed in detail

with molecular simulation approach [19–21]. In the case of IET, three-dimensional RISM (3D-

RISM) [8, 22] has been applied to much larger and more complicated solvation systems than

those evaluated by molecular simulation, such as hydration structure around a protein. The

solvation structure of the siteα around a solute moleculegα(r) is evaluated with the following

equations,

gα(r) = Hα(r) + 1 (10)

Hα(r) =
∑

β

Cβ ∗ ωβα(r) +
∑

β

Cβ ∗ ρhβα(r) (11)

gα(r) = exp

[
− 1

kBT
uα(r) + Hα(r) − Cα(r)

]
, (12)

whereuα(r) is the potential function between siteα and the solute molecule. This method has

been applied to the solvation structures of not only the small systems [23] but also the hydration

structure around a protein [24–26]. Although the 3D solvation structure calculated by 3D-

RISM or molecular simulation is much more informative than the RDF, high computational

cost and long computational time are required to obtain accurate solvation structure.
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3 Electronic structure, Ψ

The wave functionΨ with solvation effect is determined by the following equation,[
Ĥ0 + V̂

]
|Ψ〉 = E |Ψ〉 , (13)

whereĤ0 is the Hamiltonian of a solute molecule in isolated state andV̂ is the electrostatic

interaction operator [27–30]. As shown in scheme 1, the wave functionΨ affects solvation

structureg(r) throughV [Ψ] and theg(r) affects the wave functionΨ throughV [g(r)]. The

operatorV̂ is introduced to incorporate the interaction.

Eq. 13 can be derived from the variation condition on free energy of the system [31, 32].

The total free energy is written by

G =
〈
Ψ|Ĥ0|Ψ

〉
+ Enuc + Gsol [V [Ψ], a1, a2, · · · , aM ] , (14)

whereEnuc is the nuclear repulsion energy.Gsol is the solvation free energy evaluated under the

electrostatic potentialV [Ψ] and some variablesai (i = 1, · · ·M) characterizing solvents (ex.

h andc in RISM). The trial function to be minimized with the constrains to the orthonormality

of the wave function is defined, as follows;

L ≡ G + E(〈Ψ|Ψ〉 − 1). (15)

Variations with respect to the functions yield

δL =
∑

i

(
∂Gsol

∂ai

)
δai + 2

〈
δΨ

∣∣∣∣Ĥ0 +

(
∂Gsol

∂V

)(
∂V [Ψ]

∂Ψ

)
− E

∣∣∣∣ Ψ

〉
. (16)

BecauseGsol is minimum with respect to{ai} in this scheme, the first term of eq. 16 is 0.

Therefore, the optimal wave function is calculated by the following equation,

E |Ψ〉 =

[
Ĥ0 +

(
∂Gsol

∂V

)(
∂V [Ψ]

∂Ψ

)]
|Ψ〉 (17)

If the second term in brackets on the right-hand side is replaced byV̂ , eq. 17 is equal to eq.

13.

Hybrid approaches have been developed by combining with many solvation theories. In

quantum mechanical/molecular mechanical (QM/MM) approach, small systems, such as the
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excitation reaction ofH2CO [33], glycine [34], andSN2 reaction [35] in aqueous phase were

investigated precisely. In dielectric continuum approach, Polarizable Continuum Model (PCM)

[36–40] has been applied to various physicochemical systems, such as diazine in polar sol-

vent [41], 5-fluorouracil and uracil in acetonitrile and water [42], and solvatochromism of

betaine-30 [43]. Although these methods have been widely used, they have some weakpoints;

the former method requires much computational cost and time, and the latter method cannot

evaluate the solvation structure.

QM calculation

Point charge assignment

 

 

 

 

 

RISM calculation

Ψ V[Ψ]

V[g]

g

+0.4

-0.3

-0.3
-0.3

-0.4

+0.3

+0.3

+0.3

1

23

Scheme 3

The hybrid QM calculation with RISM (RISM-SCF) [28, 32, 44, 45] is one of the powerful

method to overcome the weakpoints in the QM/MM approach and dielectric continuum model.

In the procedure of RISM-SCF, the cycle in scheme 3 is taken;1© point charges on atoms

are evaluated after QM calculation,2© RISM calculation is performed with the electrostatic

potentialsV [Ψ], and 3© QM calculation is carried out with the electrostatic potentialV [g]

produced by the RDFs. This cycle is repeated until self-consistent structures betweenΨ and

g(r) are obtained. With this strategy, not only the solvation energies but also 1D solvation

structure, RDF can be evaluated. Moreover, the calculation of electrostatic potentialV [g]

with RDFs is so simple that the computational cost and time are much smaller than those

of QM/MM approach. RISM-SCF has been applied to many systems in solution, such as

SN2 type reaction [46, 47], electron transfer reaction [48], proton transfer reaction [49], and
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charging process of organic compounds [50].

4 Problems in the calculation of solvation structure and elec-
tronic structure

Effective solvation theories have been proposed and applied to many systems to investigate

solvation structure and electronic structure with solvation effect theoretically. However, there

are still some problems to be solved.

In the analysis of solvation structures, 1D solvation structure (ex. RDF) and 3D solvation

structure have been investigated. RDFs have important information about solvation structure

and have been widely employed in experimental and theoretical studies. However, because the

information of angular part is completely integrated out, it is difficult to image the orientation

of solvent molecules from only RDFs as the number of atoms in a molecule increases. 3D

solvation structure is more convenient information in this analysis than RDF, but the required

computational cost and time are huge even with the recent computer system. To obtain the

informative 3D solvation structure with reasonable cost and time, new methods are required.

In the calculation of electronic structure, RISM-SCF is very powerful tool which can calcu-

late not only the electronic structureΨ but also the solvation structureg(r). The computational

cost of RISM-SCF is much smaller than that of QM/MM approach. Moreover, the method can

obtain the solvation structure, which cannot be calculated with the dielectric continuum model.

This method is becoming a powerful tool to study the reaction in solvent theoretically. How-

ever, it has been showed that the calculation of RISM-SCF for complex solute molecules such

as metal complexes doesn’t converge. To enlarge the applicability of RISM-SCF, different

strategies should be developed.

5 Survey of the present thesis

In this study, the author developed the solvation theories focused on both of the solvation

structure and electronic structure to overcome the problems. This thesis consists of two parts.
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In part I, two theoretical approaches to obtain 3D solvation structure were proposed. In

chapters 1 and 2, the method to reconstruct the 3D solvation structure from RDFs was devel-

oped. The 3D solvation structure is expanded with real solid harmonics and the expansion

coefficients are determined so that the calculated RDFs reproduces the reference RDFs. The

method was applied to the solvation structure of typical example,H2O and more complicated

system, neat methanol and DMSO solutions. The results obtained by the present method were

compared with the reference solvation structures, which were calculated by molecular dynam-

ics.

In chapter 3, a new method to calculate 3D solvation structure from a first principle was

proposed. The method which can evaluate high-quality 3D solvation structure was derived by

introducing the information of angular part. The 3D solvation structures were compared with

those obtained by previous works and molecular simulation.

In chapter 4, the method which can apply to a large system was derived based on the method

proposed in chapter 3. The strategy in this method is so efficient that the solvation structure

around a large molecule can be evaluated with reasonable computational time and cost. The

solvation structure and the partial molar volumes of amino acids calculated by the present

method were compared with those obtained by 3D-RISM. This method was also applied to the

calculation of hydration structure around a protein called Fv fragment.

In chapter 5, the hydration structure for a Bacteriorhodopsin (bR) was evaluated with the

method described in chapter 4. The bound waters inside bR was calculated and compared with

those obtained by X-ray crystallography.

In part II, the development and application of RISM-SCF and the calculation of dielectric

continuum model were carried out. In chapter 6, the electronic structures of metal complexes

in aqueous phase were evaluated using dielectric continuum model. Because the electronic

structure has both of the localized and delocalized characters in aqueous phase, the multiref-

erence nature of wave function has to be included. The author employed the two-state model

proposed by Farazdelet al [51] and combined it with dielectric continuum model. The differ-
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ence of electronic structure in aqueous phase among these complexes was explained based on

molecular orbital theory.

The dielectric continuum model in chapter 6 worked well for the system. However, it is

much better if the solvation structure can be investigated at the same time. To fulfill the re-

quirement, in chapters 7, 8, and 9, RISM-SCF approach was employed.

In chapters 7 and 8, the modified charge assignments were introduced into RISM-SCF cycle

described in scheme 3. These methods were applied to metal complexes and a charge-transfer

complex in aqueous phase, which are the difficult examples to be calculated by the original

RISM-SCF.

In chapter 9, spatial electron density distribution (SEDD) was introduced into the RISM-

SCF strategy and proposed a new generation of RISM-SCF (RISM-SCF-SEDD). With the

present strategy, the instability of the charge fitting in the original RISM-SCF was removed.

RISM-SCF-SEDD was applied to small molecules,H2O, C2H5OH, andHLi. The usefulness

of the method was clearly shown by comparing the obtained partial charges and solvation

structures with those calculated by the original RISM-SCF.
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Part I

Theoretical approach to evaluate three
dimensional solvation structure
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Chapter 1

A new method to reconstruct 3D spatial
distribution function from radial distribution
function in solvation structure

1.1 Introduction

To understand most of the chemical reactions correctly, solvent effects should be consid-

ered in theoretical analysis. Various methods such as dielectric continuum model, molecular

dynamics (MD), and integral equation theory of liquids (IET) [1] have been proposed to in-

vestigate solvent effects. These methods are useful to calculate solvation energy. However, 3D

information on solvent coordination such as a spatial distribution function (SDF) has not been

studied thoroughly, except for limited pioneering works [2–10], despite 3D information being

very helpful to understand chemical reactions in solution phase by visualizing the solvation

feature [11].

One of those works was reported by Soperet al. [7–9]. They expanded the SDF as a function

of position vector and orientation of solvent using spherical harmonic functions, and optimized

the coefficients, which determine the shape of SDF, with the minimum noise formalism [9].

The equation for the coefficients was solved in an iterative manner. Satoet al. [3] presented the

“most plausible solvation structure” (MPSS) using the radial distribution functions (RDFs).

Simulation techniques such as MD method, three dimensional reference interaction model

(3D-RISM) [12,13], can evaluate SDF directly. However, both of the methods need long com-

putational time to calculate SDF. There are other IETs, such as MOZ theory [14–21], that can

analyze three-dimensional structure of solvation, though those results have the approximations
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inherent in IETs.

On the other hand, RDFs, which are the most frequently used in discussion, are easily eval-

uated with much shorter computational time. Thus, it is highly desired to develop the method

that easily provides SDF from RDFs.

In this communication, we newly propose an interesting method to reconstruct approximated

SDFs of solvent site from RDFs, which are calculated by any solvation theory, by employing

the spherical harmonic expansion around each solute site. This expansion leads to simple linear

equation and we can obtain the coefficients determining the shape of approximated SDFs by

solving the equation. The efficiency of this method is clearly shown here by applying this

method to the coordination of solvent water around a water molecule.

1.2 Method and computational details

Method

We begin with SDFs of solvent sites around a solute molecule,ns(r),

ρs(r) = ρns(r), (1.1)

whereρ is the number density of solvent andr is the position vector in 3D space. The RDF

between solute siteη and solvent sites is related to SDFs by eq. 1.2;

gη,s(R) =
1

4πR2

∫
ns(x + Qη)δ(|x| − R)dx, (1.2)

whereQη is the position vector of theη site andR represents the distance between theη site

and thes site.

The SDF of solvents site is well approximated by basis functions including real solid har-

monicsSlm of which center is located on individual solute siteη,

nη
s(r) =

[
N∑
i

fη,s
i (|r − Qη|)

∑
l,m

Cη,s,i
l,m Sl,m

(
r − Qη

|r − Qη|

)]
+ fη,s

f (|r − Qη|), (1.3)

where{Cη,s,i
l,m } are coefficients,fη,s

i andfη,s
f are basis functions in radial part up toN. After
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substitution of eq. 1.3 into eq. 1.2 and integration over the angular part, we get

gη,s(R) =
N∑
i

fη,s
i (R)Cη,s,i

0,0 + fη,s
f (R), (1.4)

where{Cη,s,i
0,0 } are fixed as 1 [22]. The basis functionsfη,s

i (R) andfη,s
f (R) in eq. 1.4 are

determined to reproducegη,s(R). fη,s
i (R) andfη,s

f (R) are used to represent solvation shell and

bulk solvent region, respectively. The functionfη,s
f (R) converges to 1 inR → ∞. Hereafter

we call the RDF calculated by solvation theory as reference RDF (RRDF). If we can expand

RRDFs exactly byfη,s
i (R) andfη,s

f (R), RRDFs are reproduced correctly by integrating over

the angular part ofnη
s(r) in eq. 1.3 around soluteη site.

It is noted that in each SDF for solvents site, there are expanded SDFs to the number of

solute siteNa. The coefficients{Cη,s,i
l,m } in eq. 1.3 are determined so that the difference between

all these SDFs centered on different solute site becomes the smallest; when a sufficiently large

number of real solid harmonics and basis functions are employed, all of the SDFs become

almost unique. Here, we define the error functionΓs as follows:

Γs =
1

2

Np∑
k

Na∑
η 6=γ

(nη
s(rk) − nγ

s (rk))
2, (1.5)

whereNp is the number of the grid points which are prepared around the solute. As the number

of basis functions in eq. 1.3 increases,Γs decreases. By minimizing eq. 1.5, we can obtain the

equation that determines the coefficients{Cη,s,i
l,m }:

C = −A−1B, (1.6)

whereC is the vector whose component isCη,s,i
l,m and the components ofA andB are given by

eq. 1.7a and 1.7b;

Aγ,s,i,l,m
η,j,l′,m′ =(Naδη,γ−1)

NP∑
k=1

fη,s
i (|rk−Qη|)fγ,s

j (|rk−Qγ|)

× Sl,m

(
rk−Qη

|rk−Qη|

)
Sl′,m′

(
rk−Qγ

|rk−Qγ|

)
, (1.7a)

Bη,s,i,l,m=

NP∑
k=1

fη,s
i (|rk − Qη|)Sl,m

(
rk − Qη

|rk − Qη|

)
×

∑
γ

(Naδη,γ − 1)fγ,s
f (|rk − Qγ|). (1.7b)

18



By solving this linear equation, we can obtain the coefficients without any iterative calculation.

In this regard, the present method provides approximated SDFs very easily.

Because we cannot use infinite number of basis functions in practice, the quality ofnη
s(r)s

is not uniform in all space; in other words,nη
s(r) is given in high accuracy wherer is close

to solute siteη, but it gets worse whenr is distant fromη site. To obtain well-balanced SDF

ns(r) from SDFs in eq. 1.3, we used arithmetic average ofnη
s(r),

ns(r) =
Na∑
α

nα
s (r)/Na. (1.8)

The computational procedure is summarized as follows: (1) The first step is to fitfη,s
i/f (R) to

RRDFs, (2) the second step is to evaluate eqs. 1.7a and 1.7b and to solve eq. 1.6, and (3) the

third is to take averagenη
s(r) with eq. 1.8.

1.2.1 Computational details

We employed the RRDFs calculated by the MD method reported by Jorgensenet al. [23].

Also, we evaluated here RRDFs with the extended RISM (XRISM) [24], where the simple

point charge (SPC)-like water model [25] was employed. The standard modification for LJ

parameters was made in the hydrogen site. The hypernetted chain (HNC)-like closure was

used in solving XRISM equation. All calculations were carried out at the temperature 298.15

K and the number density 0.033426 molecule/Å3. Hereafter, we call the RRDFs of MD and

XRISM as RRDFs(MD) and RRDFs(XRISM), respectively.

We used gaussian functions forfη,s
i (R) and the following function of eq. 1.9 forfη,s

f (R),

fη,s
f (R) =

1

exp(−αη,s(R − βη,s)) + 1
, (1.9)

to approximate RRDFs in the least square fitting technique. In this calculation, we employed

the real solid harmonics up tol = 10.

1.3 Results and discussion

The RRDFs(XRISM) and RRDFs(MD) of oxygen-oxygen and hydrogen-oxygen are shown

in Fig. 1.1(a) as linesII andIV and Fig. 1.1(b) as linesII andIV , respectively. The RDFs of
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Figure 1.1:Fitted RDFs and RRDFs; (a) oxygen-oxygen and (b) hydrogen-oxygen. Solid linesI , II ,
III , andIV represent fitted RDF(XRISM), RRDF(XRISM), fitted RDF(MD), and RRDF(MD), respec-
tively. Dashed lines represent basis functions used for the fit of RRDF(XRISM).

the XRISM (I ) and the MD (III ) methods were constructed by the fitted basis functions, as

shown in Fig. 1.1(a) and Fig. 1.1(b), in comparison withII andIV . We found that threefη,s
i

functions and onefη,s
f function are enough to reproduce well RRDFs (II andIV ). However,

we cannot reproduce the second peak (b in Fig. 1.1(a) and 1.1(b)) properly, when using only

two fη,s
i functions and onefη,s

f function. One can see thatI andIII well reproduceII andIV ,

respectively. The basis setsc andemainly used to reproduce the peaksa andb in RRDFs. The

second basis setd seems to correspond to the distribution of the “interstitial water molecules”,

which is suggested to be aroundR = 3.5Å [5].

The resultant solvent coordinations in 3D,nO(r) andnH(r), are used to calculate the charge

density by the following equation,

ρq(r) = ρqOnO(r) + 2ρqHnH(r), (1.10)

whereqO andqH are the charges of the oxygen and the hydrogen of solvent water, respectively.

The charge density in the plane including all the atoms (XZ-plane) is shown in Fig. 1.2(a) and

that in the bisector plane of the HOH angle (YZ-plane) is shown in Fig. 1.2(b). Because these

density maps haveC2v symmetry, we divided them into two regions and show only a half of

them in these figures. The right hand side is for the MD method and the left hand side for the

XRISM. The negative density (solid line) representsnO(r) and the positive density (dashed
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Figure 1.2:Charge distribution (|e|/Å3); (a) in the plane including the oxygen and two hydrogens and
(b) in the bisector plane of HOH angle. Solid line represents negative part (oxygen), and dashed line is
for the positive part (hydrogen). The charge distributions constructed by MD and XRISM are shown in
the region (X > 0) and the region (X < 0), respectively.

line) representsnH(r). In Fig. 1.2(a), one can see the negative charge distribution around the

hydrogen of the central water (hereafter, we call it “solute water”). When RRDFs(XRISM)

were employed, the maximum of the distribution is located at (X = −2.5Å, Z = 1.6Å) and

the distance between the maximum and the hydrogen of “solute water” is evaluated to be 2.0

Å. When RRDFs(MD) were employed, the maximum is at (X = 2.4Å, Z = 1.4Å) and the

distance is 1.8̊A. Thus, these distributions are attributed to the first peak in Fig. 1.1(b). These

negative charge distributions arise from the oxygen that forms hydrogen bond with “solute

water”. Positive charge distribution and negative one are at (X = 0.0, Z = −2.0Å) and

(X = 0.0, Z = −3.1Å) when RRDFs(XRISM) are employed and at (X = 0.0, Z = −1.8Å)

and (X = 0.0, Z = −2.8Å) when RRDFs(MD) are employed. These distributions are at-

tributed to different type of hydrogen bonding solvent, as will be discussed below. Fig. 1.2(b)

shows charge distribution on the bisector plane of HOH. The positive distribution and neg-

ative one indicate that solvent water molecules are present over the average at the region of

Z < 0. The angleθ (defined in the right-upper box) of O distribution is evaluated to be
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about 102 degree when RRDFs(XRISM) are employed and 124 degree when RRDFs(MD)

are employed, respectively. The latter value agrees well with previously reported value (about

130 degree) [10, 14]. The SDF of solvent oxygen site reconstructed by RRDFs(MD) present

the θ value close to 125.3 (=cos−1(− 1√
3
)) degree which is the exact value when the oxygen

takes perfect tetrahedral network. However, theθ value calculated with RRDFs(XRISM) is

somewhat smaller than that of 125.3 degree. This is because the first peak of oxygen shifts

to outer region and the first peak of hydrogen shifts to inner region in RRDF(XRISM). We

can conclude that this smallθ value is attributed not to the present reconstruction method

but to RRDFs(XRISM). As shown in Fig. 1.2(a) and Fig. 1.2(b), broad distribution is ob-

served around(X,Y, Z) = (0.0, 0.0,−1.9), (0.0, 0.0,−3.0) when RRDFs(XRISM) were em-

ployed and around(X,Y, Z) = (0.0, 0.0,−1.8), (0.0, 0.0,−2.8) when RRDFs(MD) were em-

ployed. If water coordination took a simple tetrahedron structure (“standard coordination”),

there should be no distribution there and two separated distribution could be found at about

θ = ±125. These broad distributions indicate a great deal of variation of solvent water from

“standard coordination”. This continuous distribution of solvent water was also reported by

Soperet al [8].

(a) (b)

Figure 1.3:Three dimensional SDF map of the oxygen in solvent water using the real solid harmon-
ics up to l = 10; (a) constructed from RRDF(XRISM) and (b) constructed from RRDF(MD). The
isodensity surface fornO(r) = 1.8 is shown. This figure was drawn with the help of MOLEKEL
package [26].

The three dimensional SDF ofno(r) > 1.80 reconstructed by RRDFs (XRISM) and RRDFs
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(MD) are illustrated in Fig. 1.3(a) and Fig. 1.3(b), respectively. Both SDFs look very similar

to each other. All of the lobes correspond to the distribution of the solvent water that forms

hydrogen bond with “solute water”, as discussed above. This character of the oxygen distri-

bution is essentially the same as those reported by Svishchevet al. [10] and Soperet al [8].

These results indicate that RRDFs (XRISM) as well as RRDFs (MD) are useful to construct

SDFs.

Figure 1.4: The three dimensional SDF map of the oxygen in solvent water constructed by
RRDF(XRISM) using the real solid harmonics up to 2. The isodensity surface and the package used
are the same as in Fig. 1.3.

In order to check how much the SDFs depend on real solid harmonic expansion, we evalu-

ated the SDF of solvent oxygen site from RRDF(XRISM) using the real solid harmonics up to

l = 2. The reconstructed 3D SDFno(r) is shown as an example in Fig. 1.4. Although edge

of the lobe is ambiguous because of the insufficient azimuthal accuracy, the shape and the

position of the lobes resemble well those of Fig. 1.3 calculated up tol = 10. The XRISM cal-

culation of water followed by reconstruction of SDF withl = 2 is performed in a few minutes

in a personal computer [27]. Therefore, the present method to reconstruct SDFs from RDFs is

very powerful for investigation of solvation structures.

1.4 Conclusion

A new method to reconstruct SDFs from RDFs is presented here. This method was suc-

cessfully applied to liquid structure of water. In this method, the different expansion from that
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by Soperet al. leads to the linearized equation with which we can easily obtain approximated

SDFs. Our method presents reliable results using a small number of real solid harmonics. This

means that the present method can be easily applied to large molecular system.

RISM-SCF can evaluate the solvent structure such as RDFs even for chemical reactions

in reasonable computational time [28, 29]. The combination of the present method with the

RISM-SCF is one of the powerful methods to evaluate 3D picture of solvation structure.

We will compare this approximated SDFs with SDFs that are directly calculated by MD

method in forthcoming full article.
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Chapter 2

New evaluation of reconstructed spatial
distribution function from radial distribution
functions

2.1 Introduction

Local solvation structure such as hydrogen bonding has great influence on the stabilities of

compounds and their electronic structures [1]. To investigate such solvation structures, three-

dimensional (3D) solvation structure is very useful.

In this regard, 3D solvation structure has been studied by theoretical methods. For instance,

3D structures of pure solvent [2,3] and binary solvent [4] were calculated directly with molec-

ular dynamics method (MD). Also, the integral equation theory (IET) [5], such as molecular

Ornstein-Zernike (MOZ) [6, 7] and 3D reference interaction site model (3D-RISM) [8–10],

were proposed to provide the 3D structures.

There is another approach to obtain 3D solvation structure [11–15]. The strategy is to recon-

struct 3D solvation structure from a set of one-dimensional (1D) solvation structures such as

radial distribution functions (RDFs). Because the 1D solvation structure that is averaged over

molecular orientations can be easily presented experimentally and theoretically, the method to

reconstruct 3D solvation structure from 1D data is very powerful to analyze solvation struc-

ture. Actually, Soperet al. expanded the angular pair-correlation functions with spherical

harmonics and determined the coefficients with the maximum-entropy method [11–13]. Sato

et al. proposed most plausible solvation structure (MPSS) method [14], in which they deter-

mined the MPSS from a set of RDFs and also represented thermal fluctuation around MPSS
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with Gaussian functions. Recently, we have proposed a new method to obtain reconstructed

spatial distribution function (RC-SDF) from RDFs [15]. In the method, we expanded spatial

distribution function (SDF) using real solid harmonics and Gaussian functions on each solute

site. This method was successfully applied to water, in which clear picture of the 3D solvation

structure was presented. In the previous work, a few Gaussian functions were employed to

represent the radial part so as to reproduce the reference RDFs of water. This strategy is very

useful when limited number of Gaussian functions are employed; for example, the RDF of

water was reproduced well, as reported. However we need to increase the number of Gaussian

functions systematically in order to improve the quality of RC-SDF when the solvation struc-

ture is not simple. In our previous method [15], the computational time becomes very long as

a number of Gaussian functions increases.

To overcome this weakness, we refined our previous method to adopt a new type of basis

sets. We applied the new method to analyze the liquid structures of methanol and DMSO.

We selected these solvents as examples, because it is said that the former solvation structure is

well-defined and the latter one is broad. The results presented here are discussed in comparison

with SDF directly calculated by the MD method.

2.2 Method

SDF of solvent sites, ns(r), can be expanded at each solute siteη by using the real solid

harmonics{Ynm(θ, φ)}, as follows,

ns(r)|η =
∞∑

n=0

n∑
m=−n

Nη,s
nm(|r − Qη|)Ynm(θ, φ), (2.1)

whereNη,s
nm(|r − Qη|) is the radial function around theη site. This function can be expanded

with one-dimensional functions{fη,s
i } andfη,s,

Nη,s
nm(|r − Qη|) '

N∑
i

Cη,s
i,n,mfη,s

i (|r − Qη|)(1 − δn0δm0) +
√

4πfη,s(|r − Qη|)δn0δm0 (2.2)

where{Cη,s
i,n,m} are the coefficients to be determined,{fη,s

i } are spatially well localized func-

tions which reproduce anisotropic solvent structure (n,m 6= 0), andfη,s is the function which
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represents isotropic one (n,m = 0). Insertion of eq. 2.2 into eq. 2.1 gives the following equa-

tion,

ns(r)|η =
N∑
i

fη,s
i (|r − Qη|)

∞∑
n=1

n∑
m=−n

Cη,s
i,n,mYnm(θ, φ) + fη,s(|r − Qη|). (2.3)

These coefficients{Cη,s
i,n,m} are determined under the following conditions. By integrating

angular part ofns(r)|η around theη site, the RDF must be reproduced (condition 1). The sets

of {ns(r)|η} at each solute site must be consistent with each other in 3D space (condition 2).

ns(r)|η must be positive in 3D space (condition 3).

The integration ofns(r)|η around theη site leads to the following equation,

1

4π

∫ 2π

0

dφ

∫ π

0

sin θdθns(r)|η

=
N∑
i

fη,s
i (|r − Qη|)

∞∑
n=1

m=n∑
m=−n

Cη,s
i,n,m

4π

∫ 2π

0

dφ

∫ π

0

sin θdθYn,m(θ, φ) + fη,s(|r − Qη|)

= fη,s(|r − Qη|), (2.4)

where we used the orthogonality condition of real solid harmonics. Iffη,s is the RDF between

the solvents site and the soluteη site, (fη,s(|r−Qη|) ≡ gη,s(|r−Qη|)), condition 1 is satisfied.

To satisfycondition 2, we determined the coefficients so as to minimize the followingΓ
′

value [15],

Γ′ =
1

2

Np∑
k

Na∑
η 6=γ

(ns(rk)|η − ns(rk)|γ)2, (2.5)

whereNp is the number of grid point around solute site andNa is the number of solute sites.

To keepns(r) positive, we adopted the following strategy. In the calculation of real solid

harmonics, we divided a sphere into small regions∆k(k = 1 ∼ M) using a reduced grid

system [16] (Fig. 2.1) and approximated the real solid harmonics by eq. 2.6,

Yn,m(θ, φ) '
∑

k

Uk,n,mδk(θ, φ) , (2.6)

where the functionδk(θ, φ) is defined as,

δk(θ, φ) =

{
1 when (θ, φ) ∈ ∆k

0 when (θ, φ) 6∈ ∆k .
(2.7)
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∆1

∆2

∆3

Figure 2.1:Reduced grid sphere in the case of M=254. Note we used M=12302 in the present work.

{Uk,n,m} are the matrix elements which can be calculated using real solid harmonics. In this

work, we used the reduced grid system (M=12302). Insertion of eq. 2.6 into eq. 2.1 leads to

the following eq. 2.8 for a givenrj = (rj, θj, φj),

ns(rj)|η '
M∑
k

Sη,s
j,k δk(θj, φj) , (2.8)

whereSη,s
j,k is defined by eq. 2.9,

Sη,s
j,k =

N∑
i

fη,s
i (|rj − Qη|)

∞∑
n=1

n∑
m=−n

Cη,s
i,n,mUk,n,m +

√
4πUk,0,0f

η,s(|rj − Qη|) . (2.9)

To satisfycondition 3, we employedΓ defined by eq. 2.10 instead ofΓ
′
(eq. 2.5);

Γ =
1

2

Np∑
k

Na∑
η 6=γ

(ns(rk)|η − ns(rk)|γ)2 + 2
∑
j,k,η

φ(Sη,s
j,k ), (2.10)

whereφ is penalty function. The value of the penalty function is0 whenSη,s
j,k is positive but

monotonically increases as the value of|Sη,s
j,k | increases. IfSη,s

j,k is positive all over the space,

eq. 2.10 reduces to eq. 2.5. We will discuss the penalty function in detail below. By minimizing

Γ, we reach eq. 2.11, with which we can obtain the coefficients{Cη,s
i,n,m},

∑
β,j,n′,m′

A α,i,n,m
(s)β,j,n′,m′C

β,s
j,n′,m′ = −Bα,i,n,m

(s) −
∑
j,k

∂φ(Sα,s
j,k )

∂Sα,s
j,k

fα,s
i (|rj − Qα|)Uk,n,m, (2.11)
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whereA α,i,n,m
(s)β,j,n′,m′ andBα,i,n,m

(s) are represented by eqs. 2.12 and 2.13, respectively [17],

A α,i,n,m
(s)β,j,n′,m′ = (Naδα,β − 1)

Np∑
k

fα,s
i (|rk − Qα|)fβ,s

j (|rk − Qβ|)

×Ynm(θk, φk)Yn′m′(θk, φk) (2.12)

Bα,i,n,m
(s) =

Np∑
k=1

fα,s
i (|rk − Qα|)Ynm(θk, φk)

×
Na∑
γ

(Naδα,γ − 1)fγ,s(|rk − Qγ|). (2.13)

In our previous work,condition III was not considered because a set of{ns(r)|η} was positive

almost all over the space, and the equation to be solved was linear.Condition III becomes

important as the number of the functions{fη,s
i } increases. Because ofcondition III , eq. 2.11

is not a linear equation here. Thus, we solved it iteratively. The initial guess is calculated by

solving a linear equation (eq. 2.6 in ref [15]) because the results provided correct shape of SDF

as shown in our previous work.

The sets of{ns(r)|η} are different from each other atr. To obtain final RC-SDFns(r) from

these values, we used the following equation with proper weight,wα(r),

ns(r) =
Na∑
α

wα(r)ns(r)|α (2.14)

Na∑
α

wα(r) = 1 . (2.15)

The simple weight,wα(r) = 1/Na, was used through our study. Because the quality of

{ns(r)|η} far from the origin atom,η becomes worse, better weight function will improve

results. This procedure is summarized in Scheme 2.1.
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Calculation of coefficients {C      } using eq. 2.11
η,s 
i,n,m 

(Condition II and Condition III) 

Yes 

RC-SDF 

Is the difference between {C      } and {C      }0  

sufficiently small?  

η,s 
i,n,m 

η,s 
i,n,m 

Calculation of {S    } using eq. 2.9i,k 

η,s 

Calculation of initial coefficients {C      }0  

without condition III 

η,s 
i,n,m 

Determination of  f 
η,s

 and  fi

η,s 

(Condition I) 

Preparation of RDFs 

{C      }      

        {C      }0

η,s
i,n,m

η,s
i,n,m

No

Eq. 2.14

Scheme 2.1
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2.3 Computational details

In the present method, any kind of functions can be used for{fη,s
i } in eq. 2.2. In this article,

we used roof functions for{fη,s
i },

fη,s
i (r) =



0 for 0 ≤ r ≤ ri−1
r − ri−1

ri − ri−1

for ri−1 ≤ r ≤ ri

ri+1 − r

ri+1 − ri

for ri ≤ r ≤ ri+1

0 for ri+1 ≤ r .

(2.16)

The following function was used as the penalty function in eq. 2.10.

φ(S) =

{
αS4 (S ≤ 0)
0 (S ≥ 0) .

(2.17)

The α value can be determined arbitrary; in this work, we usedα = 15.0. Althoughns(r)

becomes negative with thisα in several regions, the negative value is small enough to neglect

it (minimum value is -0.11 in this work).

In the calculation of the MD simulation, we use simple rigid potential model for methanol

and DMSO with the intermolecular pair-potential. All Lennard-Jones parameters and the frac-

tional charges used for methanol and DMSO are listed in Table 2.1.

Table 2.1:Intermolecular potential parameters

ε/kcal mol−1 σ/Å charge
Methanola Oxygen 0.170 3.07 -0.700

Hydrogen 0.000 0.00 0.435
Methyl group 0.207 3.775 0.265

DMSOb Sulfur 0.23838 3.40 0.139
Oxygen 0.07152 2.80 -0.459
Methyl group 0.29397 3.80 0.160

Molecular geometry: (Methanol)rOH = 0.945Å, rCO = 1.430Å, ∠COH = 108.5 .̊
(DMSO)c rOS = 1.53Å, rSC = 1.80Å, ∠OSC = 106.75 ,̊ ∠CSC = 97.40 .̊

a OPLS model [18,19].b Reference [20].c crystallographic data [21]

MD simulations were carried out within the NVT ensemble atT = 298.15 K under 1 atm. In

this simulation, the cubic periodic box was filled with 256 molecules. The simulation software

used was MOLDY [22]. Temperature was controlled with Nosé-Hoover thermostat [23,24].
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All of 3D figures are drawn with the help of MOLEKEL [25].

2.4 Results and discussion

First, we performed MD calculations of methanol and DMSO to obtain their RDFs. Then,

we evaluated RC-SDFs from the RDFs. For the purpose of comparison, we also calculated the

SDF from the MD trajectory directly (SDF(MD)).

2.4.1 Methanol
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Figure 2.2:Reference RDFs of methanol calculated by MD.

The reference RDFs calculated directly by the MD method are shown in Fig. 2.2. The RDFs

between oxygen and oxygen, oxygen and hydrogen, and hydrogen and hydrogen display sharp

peaks, while the RDFs between oxygen and methyl group, hydrogen and methyl group, and

methyl group and methyl group exhibit broad peaks.

The SDF(MD) and the RC-SDF of oxygen site, hydrogen site, and methyl site are shown in

Figs. 2.3 and 2.4, respectively. In SDF(MD), the distribution of oxygen (O) lies nearer to solute

hydrogen site than the distribution of hydrogen (H) and lies more separately from oxygen site

than the distribution of hydrogen (H). These distributions of SDF(MD) are well reproduced by

RC-SDF, as shown in Fig. 2.4. The distribution of methyl group is mainly observed around

oxygen and hydrogen sites but it is more delocalized. Both SDF(MD) and RC-SDF present

essentially the same distribution of methyl group, while the distribution of RC-SDF is some-
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(a) (b) (c) 

O 

H 

Me 

Figure 2.3:Three dimensional SDFs(MD) map of oxygen (a), of hydrogen (b), and of methyl group
(c) in methanol. The isosurfaces of SDFs are drawn atn(r)= 3.0.

(a) (b) (c) 

Figure 2.4:Three dimensional RC-SDFs map of oxygen (a), of hydrogen (b), and of methyl group (c)
in methanol. The isosurfaces are the same as in the Fig. 2.3.
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what more localized around solute oxygen site than that of SDF(MD) (compare Fig. 2.3(c)

with Fig. 2.4(c)). As shown by these examples, RC-SDF can produce well the distributions of

SDF(MD) except for moderately delocalized distribution of methyl group.

(a) (b) (c) 

Figure 2.5:Difference maps between RC-SDF and SDF(MD) of oxygen (a), of hydrogen (b), and of
methyl group (c) in methanol. The region where the difference (ns(r) of RC-SDF -ns(r) of SDF(MD))
is larger than 5.0 is drown with mesh and the region where the difference is less than -5.0 is drown with
solid surface.
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Figure 2.6:Two dimensional map of charge density; (a) The contour of SDF(MD). The interval of
contour is 0.010 for positive value and 0.015 for negative value. The region where negative value is less
than -0.210 is shaded. (b) The contour of RC-SDF. The interval is the same as in (a).

To make the difference between RC-SDFs and SDFs(MD) clearer, the difference maps

(ns(r) of RC-SDF -ns(r) of SDF(MD)) are shown in Fig. 2.5. As mentioned above, RC-

SDFs present almost same distribution with SDFs(MD).

To analyze the peak positions of these distributions, we show contour maps of charge density

calculated byns(r) of SDF(MD) and RC-SDF in Fig. 2.6(a) and 2.6(b). The charge density is
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represented by eq. 2.18,

ρq(r) = ρ
Na∑
γ

qγnγ(r) , (2.18)

whereρ is the number density of solvent andqγ is the charge of solventγ site. In the case

of methanol, the negative distribution (solid line) mainly comes from the distribution (O) and

the positive one (dashed line) comes from the distributions of hydrogen and methyl group.

Because these distributions have little overlap between each other, the positive and negative

regions can be recognized as the distributions of hydrogen/methyl group and oxygen group,

respectively. By using this charge density maps, three different information can be compiled to

one figure. In Fig. 2.6(a), negative distribution is observed about X=-2.34 and Y=-0.75Å (N1)

and positive distribution (P1) is outside this negative area. Another positive distribution is

observed about X=0.69 and Y=2.08 (Å) (P2) and negative one (N2) is outside of this negative

area. The considerably localized distributionsN1 andP2 and their very high peaks indicate

that oxygen and hydrogen atoms of solvent form strong bonding interaction with hydrogen and

oxygen of solute, respectively. On the other hand, the distributionsN2 andP1 are very broad.

In the case of RC-SDF, the distributionsN1 andP2 are more localized than the distribution

P1 andN2, as observed in the case of SDF(MD) (see Figs. 2.6(a) and 2.6(b)). Although the

peaks of these distributions are smaller than those of SDF(MD), the peak of RC-SDF are at

almost the same position as those of SDF(MD).

To investigate how much the RC-SDFs depend on the order of real solid harmonics used in

eq. 2.3, we calculated the distributions of solvent oxygen with real solid harmonics up to order

n = 2, n = 6, andn = 10, as shown in Fig. 2.7(a), 2.7(b) and 2.7(c), respectively. [26] In Fig.

2.7(d), SDF(MD) of oxygen is also shown. In Fig. 2.7(a), broad distribution is observed around

solute. Asn increases, this broad distribution separates into two distributions (Fig. 2.7(b))

concomitantly with increase of the height and the distribution approaches the SDF(MD). The

difference maps of RC-SDFs betweenn = 2 andn = 10 and betweenn = 6 andn = 10

are shown on Fig. 2.8. Although the difference in shape of RC-SDF betweenn = 2 and RC-

SDF n = 6 is considerably large (Fig. 2.8(a)), the difference betweenn = 6 andn = 10
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Figure 2.7:Two dimensional RC-SDF map of oxygen in methanol with different angular momentum.
The interval of contour value is 2. (a)n = 2, (b) n = 6, (c) n = 10, and (d) the result obtained by MD.
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becomes very small, as shown in Fig. 2.8(b). This result indicates that the increase in the order

n improve the shape of SDF.

(a) (b) 

Figure 2.8:Difference maps of RC-SDF (oxygen) between n=2 and n=10 (a) and n=6 and n=10 (b).
The region where the difference is larger than 5.0 is shown.

The computational time of these calculations is very short [27]; for instance, the calculation

of RC-SDF with real solid harmonics (n = 10) takes about 5 minutes for the distribution of

oxygen, about 8 minutes for that of hydrogen, and about 4 minutes for that of methyl group.

Although the basis functions and grid size are different from those employed in our previous

work [15], the computational time considerably decreases by using roof functions and discrete

real solid harmonics [28].

2.4.2 DMSO
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Figure 2.9:Reference RDFs of DMSO calculated by the MD method.

40



In the case of DMSO, several broad peaks are observed in the reference RDFs (Fig. 2.9),

unlike methanol in which the reference RDFs exhibit sharp peaks attributed to hydrogen bond-

ing. These RDFs clearly indicate that the solvation structure becomes more complexed than

that of methanol.
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Figure 2.10:Three dimensional SDFs(MD) map of sulfur (a), of oxygen (b), and of methyl group (c).
The isosurfaces of SDFs are drawn atn(r)= 2.0 for (a) and (b), and 2.9 for (c).
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Figure 2.11:Three dimensional RC-SDFs(MD) map of sulfur (a), of oxygen (b), and of methyl group
(c). The isosurfaces are the same as in the Fig. 2.10.

The SDFs(MD) and RC-SDFs are shown in Fig. 2.10 and 2.11. The solvation structure by

SDFs(MD) (Fig. 2.10) is similar to that of DMSO-water mixture reported by Vishnyakovet

al [4]. SDF(MD) of sulfur displays broad distribution near solute methyl group (D1) and very
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broad distribution distant from solute (D2) (see Fig. 2.10(a)). These distributions can be re-

produced well by RC-SDF, as shown in Fig. 2.11(a). SDF(MD) of oxygen, on the other hand,

presents relatively localized distribution around solute methyl group (D3) and broad distribu-

tion (D4) distant from solute oxygen site. The relatively localized distribution is attributed to

moderately strong electrostatic interaction between oxygen and methyl group. RC-SDF can

reproduce well this localized distribution (D3). However, the broad distribution (D4) of oxy-

gen is moderately different between SDF(MD) and RC-SDF. The broad distribution of solvent

methyl group is presented around solute by SDF(MD), as shown in Fig. 2.10(c). RC-SDF can

present well this broad one as shown in Fig. 2.11(c).

(a) (b) (c) 

Figure 2.12:Difference maps between RC-SDF and SDF(MD) of sulfur (a), of oxygen (b), and of
methyl group (c) in DMSO. The region where the difference (ns(r) of RC-SDF -ns(r) of SDF(MD))
is larger than 2.5 is drown with mesh and the region where the difference is less than -2.5 is drown with
solid surface.

The difference map (ns(r) of RC-SDF -ns(r) of SDF(MD)) are shown in Fig. 2.12. Al-

though broad distributions can not be reproduced by RC-SDF, the important distributions,

such as one between solute oxygen and solute methyl groups, are reproduced very well, as

mentioned above.
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2.5 Conclusions

In our previous work [15], we proposed a new method to calculate RC-SDF from RDFs.

In this work, we successfully refined the method by using roof functions and discrete real

solid harmonics. Here, RC-SDF is computed under the three conditions described below. By

integratingns(r)|η around the solute site, the RDF must be reproduced (condition 1). The sets

of {ns(r)|η} at each solute site must be consistent with each other in 3D space around solute

(condition 2). ns(r)|η must be positive in 3D space (condition 3). Although the equation

to be solved is not linear because ofcondition 3, RC-SDF can be obtained iteratively with

reasonable computational time. The obtained RC-SDF can produce not only well-defined 3D

solvation structure of methanol but also diffuse one of DMSO.

This method can present RC-SDF from any kind of RDFs with reasonable computational

cost. In other words, this method can be combined with methods which present RDFs, such

as neutron scattering and RISM-SCF [29, 30]. Combination of these methods provides much

clearer understanding of solvation event than the usual RDFs.
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Chapter 3

An integral equation theory for 3D solvation
structure: A new procedure free from 3D Fourier
transform.

3.1 Introduction

Solvation has been studied in full detail by experiment and theory because of its great impor-

tance in chemistry. In theoretical studies, integral equation theory (IET) for liquids is expected

to be a powerful tool for evaluation of micro properties related to solvation structure and ther-

modynamic properties.

One of the most important and popular IET is RISM [1]. This method, as modified by

Hirata et. al. (XRISM), has been applied to many molecular liquid systems [2,3]. Because of

the simplicity of the equation and various range of its applicability, RISM has been combined

with other theoretical methods such as quantum method (RISM-SCF) [4,5], Monte Carlo [6],

and solvation structure analysis [7–9].

Three-dimensional Ornstein-Zernike (3D-OZ) [10], 3D-RISM [11,12] and MSOZ [13] can

directly evaluate 3D solvation structure around a solute molecule. Although these methods can

provide more accurate local solvation structure than RISM, expensive 3D Fourier transforms

are necessary in the calculation. Ten-no et. al. proposed another IET named partial wave (PW)

equation theory, which also presents 3D information [14–16]. Recently, Sumi et. al. evaluated

molecular orientation using density functional theory (DFT) [17].

In this work, we propose a new procedure to evaluate 3D-correlation functions with real

solid harmonics around solute site. Since our procedure employs radial and angular grid struc-
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tures instead of a 3D grid, expensive 3D Fourier transforms can be avoided in the calculation

of 3D convolution by employing spherical Bessel transforms. In this procedure, a new clo-

sure equation based on 3D-HNC closure and fussy cell method proposed by Becke [18] are

employed. By decomposition of the 3D correlation function, the site-site interaction between

solute and solvent can be evaluated more easily. Such information is useful for clearer un-

derstanding of solvation. We have applied this procedure to a typical benchmark system,

non-charged/charged HCl model in the present letter. The detail of our procedure is given in

Sec. 3.2. Special techniques necessary for employing the procedure are described in Sec. 3.3.

The results and conclusions are presented in Secs. 3.4 and 3.5, respectively.

3.2 Method

3.2.1 Ornstein-Zernike type equation

In the 3D-RISM integral equation for a solute-solvent system, total and direct correlation

functions in 3D space,Hγ andCγ, are written as follows [10–12];

Hγ(r) =
∑

δ

Cδ ∗ (ωδγ + ρhδγ)(r), (3.1)

whereωδγ is the intra-molecular correlation function between solvent molecule sites,δ andγ,

ρ is the number density of solvent molecules, and∗ denotes convolution in direct space.{hδγ}

are the radial site-site correlation functions of bulk solvent and these are usually evaluated with

the XRISM theory.

To consider 3D site-site interaction explicitly, we divide the three dimensional correlation

functions into the components assigned to each solute site. This division is performed by the

following function, in which modified Voronoi cells are employed,

∑
α

wα(r) = 1. (3.2)

This function, proposed by Becke [18], is commonly used for the calculation based on DFT in

many ab initio quantum chemistry packages.
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The direct correlation function,Cδ, is formally divided into the components around the

solute site,α, by the function,

Cδ(r) =
∑

α

wα(r)Cδ(r)

=
∑

α

c
(α)
δ (r), (3.3)

where superscriptα is used to show thatc(α)
αδ (r) is a partial component of direct correlation

function. It is convenient to define an auxiliary function,c
(α)
αδ (r), in which the position vectors

are referred to the atomic sites;

c
(α)
αδ (r) ≡ c

(α)
δ (r + Rα), ∀α. (3.4)

whereRα is the position vector pointing to solute siteα. The auxiliary function,c(α)
αδ (r), can

be expanded with real-solid harmonics around solute site,α, as follows:

c
(α)
αδ (r) =

∑
l′m′

c
(α)
αδ,l′m′(rα)Sl′m′(r̂α). (3.5)

By substituting Eq. 3.3 into Eq. 3.1 and using the notation in Eq. 3.4, the total correlation

function is represented with the auxiliary functionc
(α)
αδ (r):

Hγ(r) =
∑
αδ

c
(α)
αδ ∗ (ωδγ + ρhδγ)(r). (3.6)

Equation 3.6 can be represented by the solute-site centered components,{h(α)
αγ,l′m′}, and real-

solid harmonics,{Sl′m′}, by using Eq. 3.5, as follows:

Hγ(r) =
∑
αδ

∑
l′m′

[
c
(α)
αδ,l′m′ ∗ (ωδγ + ρhδγ)

]
(rα)Sl′m′(r̂α)

≡
∑

α

∑
l′m′

h
(α)
αγ,l′m′(rα)Sl′m′(r̂α). (3.7)

The auxiliary total correlation function,Hηγ(r), is defined as follows:

Hηγ(r) ≡ Hγ(r + Rη),∀η. (3.8)

The auxiliary function can also be expanded with real solid harmonics:

Hηγ(r) =
∑
l′m′

hηγ,l′m′(rη)Sl′m′(r̂η). (3.9)
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By following Talman’s strategy [19], the components,{h(α)
αγ,l′m′}, on each solute center can be

connected with{hηγ,l′m′}, as follows:

hηγ,l′m′(rη) =
∑

α

∑
lm

[
ωlm,l′m′(Rηα) ∗ h

(α)
αγ,lm

]
(rη), (3.10)

where a new intra-molecular correlation functionωlm,l′m′(Rηα) is defined in thek-space, as

follows:

ωlm,l′m′(k,R) = (−1)lil
′+l

∫
eik·RSlm(k̂)Sl′m′(k̂)dΩk. (3.11)

By substituting the components,{h(α)
αγ,l′m′}, defined in Eq. 3.7 into Eq. 3.10, OZ-type equa-

tion is obtained as follows:

hηγ,l′m′(rη) =
∑
lm

∑
αβ

[
ωlm,l′m′(Rηα) ∗ c

(α)
αβ,lm ∗ (ωβγ + ρhβγ)

]
(rη). (3.12)

This equation is reduced to the RISM equation by taking a spherical limit (l′ = 0, m′ = 0) of

Eq. 3.12.

From the standpoint of 3D-RISM, the present procedure can be regarded as a 1D represen-

tation of 3D-RISM. On the other hand, Eq. 3.12 can also be derived from the partial Ornstein-

Zernike (POZ) scheme. If one of the molecular orientation of Eq. 3.5 in Ref. [16] is spherically

averaged and angular momentum indices are applied for another molecular orientation, POZ

reduces to Eq. 3.12. In this sense, we can say that the present method implements POZ with

angular functions in 2D (spherical Harmonics) for the first time.

3.2.2 Closure relation

In the present work, we start with the following 3D HNC closure [10–12]:

Cδ(r) = exp(−βuδ(r) + τδ(r)) − τδ(r) − 1, (3.13)

whereβ = 1/kT , the τ bond is defined asτδ = Hδ − Cδ anduδ(r) is the 3D interaction

potential between the solvent siteδ and the solute.
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The auxiliary direct correlation function,Cαδ(r), is expanded around solute siteα using

real-solid harmonics as follows:

Cαδ(r) ≡ Cδ(r + Rα)

=
∑
lm

cαδ,lm(rα)Slm(r̂α). (3.14)

By using Eqs. 3.8, 3.9, and 3.14, theτ bond can also be expanded aroundα,

ταδ(r) =
∑
lm

(hαδ,lm(rα) − cαδ,lm(rα))Slm(r̂α). (3.15)

To solve Eq. 3.12, the equation which connects{hαδ,lm(rα)} with both components of direct

correlation functions{cαδ,lm(rα)} and the partial direct correlation functions{c(α)
αδ,lm(rα)} are

necessary. Here,cαδ,lm(rα) can be obtained from the following closure relation;

cαδ,l′m′(rα) =

∫
Cαδ(r)Sl′m′(r̂α)dΩrα

=

∫
[exp(−βuδ(r) + ταδ(r)) − ταδ(r) − 1] Sl′m′(r̂α)dΩrα . (3.16)

By employing the functionwα and Eq. 3.3, partial direct correlation functionc
(α)
αδ,lm(rα) can be

obtained from theτ bond, like the case of Eq. 3.16.

c
(α)
αδ,l′m′(rα) =

∫
wα(r)Cαδ(r)Sl′m′(r̂α)dΩrα

=

∫
wα(r) [exp(−βuδ(r) + ταδ(r)) − ταδ(r) − 1] Sl′m′(r̂α)dΩrα .

(3.17)

For simple liquids,c(α)
αγ,lm(rα) is equal tocαγ,lm(rα).

The procedure to solve these equations is summarized in Scheme 3.1.

3.3 Computational details

One-dimensional functions, such ashηγ,l′m′ andcαγ,l′m′, are defined on logarithmic grids.

The integral of Eqs. 3.16 and 3.17 around the solute site is calculated using Gauss-Legendre

quadrature. Spherical Bessel transformations ofhηγ,lm andcαβ,lm are performed using Tal-

man’s algorithm [20]. Since this grid system divides 3D space into the radial and angular
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parts, the choice of the grid size is more flexible than the cubic lattice. When the cubic lattice

is employed for 3D FFT, the number of grids must be8N . In our method, the number of the

radial grid is2N and that of the angular grid can be changed depending on required accuracy.

Thus, it is easy for our method to reduce the computational memory.

To apply our method to a charged solute, Ng’s method [21] is employed. The 3D interaction

potential in Eq. 3.13 is written as follows:

uγ(r) =
∑

α

[
uLJ

αγ(r − Rα) + uEl
αγ(r − Rα)

]
, (3.18)

whereuLJ
αγ anduEl

αγ are Lennard-Jones part and electrostatic part, respectively. By using multi-

pole expansion, the electrostatic potential is written as follows:

uEl
αγ(r − Rα) = qv

γ

∑
lm

√
4π

2l + 1

Slm(θα, φα)

|r − Rα|l+1
Mu

α,lm, (3.19)

whereθα andφα are determined around the solute siteα, qv
γ is the charge of the solvent site,

γ, and the multipole momentMu
α,lm is written with the electron densityρα of the solute siteα,

Mu
α,lm =

√
4π

∫
|r′ − Rα|lρα(r

′
)Slm(θ

′

α, φ
′

α)dr
′
. (3.20)

To employ Ng’s method (Eq. (3.5) in Ref. [21]), the long range part of the electrostatic potential

and the short range part of the partial direct correlation functionc
(α)
αγ,lm are written by Eqs. 3.21

and 3.22, respectively:

uEl,long
αγ (|r − Rα|) =

qv
γM

u
α,00erf(|r − Rα|)
|r − Rα|

(3.21)

c
(α),short
αγ,lm (rα) = c

(α)
αγ,lm(rα) + βuEl,long

αγ (rα)δl0δm0. (3.22)

In this work, we use point chargequ
α for the solute siteα and the following multipole mo-

ments:

Mu
α,lm =

{
qu
α l,m = 0
0 l,m 6= 0.

(3.23)

By replacingMu
α,lm in Eq. 3.19 by Eq. 3.23, simple electrostatic potential is obtained as fol-

lows:

uEl
αγ(r − Rα) =

qv
γq

u
α

|r − Rα|
. (3.24)
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Table 3.1: Lennard-Jones interaction parameters

ε/kcal mol−1 σ/Å
HCl a Chloride 0.5138 3.353

(charged/non-charged) Hydrogen 0.0397 0.400

a Reference [3]

Becke’s weight function can be formulated in terms of the following definitions:

wα(r) =
PA(r)∑
B PB(r)

(3.25)

PA(r) = ΠB6=A0.5
[
1 − ν(k)(rA, rB)

]
(3.26)

ν(l)(rA, rB) = ν(l−1)(rA, rB)
(
1.5 − 0.5

(
ν(l−1)(rA, rB)

)2
)

(3.27)

ν(0)(rA, rB) = µ(rA, rB) + aAB

(
1 − (µ(rA, rB))2) (3.28)

µ(rA, rB) = (rA − rB)/RAB (3.29)

rA = |r − RA|, rB = |r − RB|, RAB = |RA − RB| (3.30)

aAB =
1 − χ2

AB

4χAB

(|aAB ≤ 0.5|) (3.31)

χAB = σA/σB. (3.32)

In this work,k is fixed to 4 andσA (σB) is the Lennard-Jones parameter of atom A (B).

We calculate the radial distribution functions (RDFs),gαγ = hαγ,00 + 1 of charged/non-

charged HCl model. The bond length used in this model is 1.3Å. Calculations are carried out

at 210 K and the molecular number density ofρ = 0.0180Å−3. The atomic partial charges

used for the charged model are -0.2e for chloride and +0.2e for hydrogen. The Lennard-

Jones interaction parameters are summarized in Table 3.1. The angular momentum of real

solid harmonics up to 5, and 512 and 800 grids for radial and angular parts, respectively, are

used.

3.4 Results and discussion

The results of non-charged/charged HCl model are shown in Figs. 3.1 and 3.2, respectively.

Cl-Cl RDFs of RISM, POZ, and the present procedure in the non-charged model are in fair
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Figure 3.1: Site-site correlation functions, (a) Cl(solute)-Cl(solvent), (b) H(solute)-Cl(solvent), (c)
H(solute)-H(solvent), of non-charged HCl model. Solid, dotted, and dashed lines show the results of
the present procedure, XRISM, and POZ [15], respectively. Circles denote the Monte Carlo results of
Hirata et. al. [3].
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Figure 3.2: Site-site correlation functions, (a) Cl(solute)-Cl(solvent), (b) H(solute)-Cl(solvent), (c)
H(solute)-H(solvent), of charged HCl model. See Fig. 3.1 for notations.
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agreement with the simulation (Fig. 3.1(a)). The present method can predict the Cl-Cl solva-

tion structure better than POZ for the charged model (Fig. 3.2(a)).

In the present HCl model, the hydrogen site is embedded in the Cl site, as shown in the

upper-right corner of Fig. 3.1. For preparing correct H-Cl and H-H RDFs, it is necessary for

IET to include intra-molecular interaction in the HCl molecule. The RDF of H-Cl obtained

by RISM exhibits an artificial peak at r=1.9Å in charged HCl (Fig. 3.2(b)). When positive

hydrogen approaches negative chloride, the hydrogen site cannot come so close to chloride

because of Cl-Cl repulsion [13, 15]. The artificial peak shows that RISM cannot evaluate

correct intra-molecular interactions. On the other hand, the correct profile of RDF is computed

by the present procedure, because it can correctly evaluate H-Cl intra-molecular interaction.

The H-H RDF of the non-charged model obtained by the present procedure can predict very

low probability of finding hydrogens within 1̊A, which agrees well with the results of POZ

and the simulation. In the charged model, the first peak calculated by the present procedure is

almost identical to that of the simulation, though the amplitude is somewhat underestimated.

-9.0 -6.0 -3.0 0.0 3.0 6.0 9.0 
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Y
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1.0 H Cl 

Figure 3.3:3D solvation structure,GH(r), of the charged HCl model. Solute chloride and hydrogen
nuclei are positioned at (0.0, 0.0) and (-1.3,0.0), respectively.
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The present procedure can also evaluate the 3D solvation structure,Gα(r) = Hα(r) + 1.

The hydrogen distribution,GH(r), for charged HCl model is shown in Fig. 3.3. There is high

distribution around the Cl site (X = 1.1Å ∼ 2.3Å, Y = −1.5Å ∼ 1.5Å) because of the strong

electrostatic interaction between solvent hydrogen and solute chloride. On the opposite side

(X = −4.7Å, Y = 0.0Å), there is a broad distribution. This distribution is derived from the

hydrogen which is bonded with the chloride aggregating around solute hydrogen. The 3D map

is in fair agreement with the previous results [13,15].

3.5 Conclusion

We have proposed a new procedure to evaluate 3D solvation structure based on integral

equation theory. By employing the expansion of real-solid harmonics, the present procedure

does not need expensive Fourier transformations. In the derivation of 3D-HNC like closure, the

fussy cell method proposed by Becke is employed. This facilitates the calculation and much

clearer understanding of site-site interaction. The present procedure can provide quantitatively

accurate radial distribution functions. Some of the RDFs obtained by the present method are

in better agreement with those of simulation than those of previous IETs.

In the closure defined in Eqs. (16) and (17), electrostatic potential is represented in 3D

coordinate. This will allow us easier use of the electrostatic potential calculated by quantum

chemistry.
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Chapter 4

A highly parallelizable solvation structure theory
based on Three-Dimensional Reference Interaction
Site Model: Application to biomolecules.

4.1 Introduction

Most of the biochemical reactions proceed in aqueous phase. The waters locate inside and

around a protein. Almost all of the proteins can proceed the reaction only in this environment.

For example, Bacteriorodopsin, which is a light-driven proton pump, prepare the hydrogen

bonding network between hydrated waters and residues inside. Protons are considered to be

transfered across the membrane through the network [1, 2]. To clear the functions of these

waters, the information for the distribution of them is indispensable.

The experimental study to obtain the hydration structure has been performed using several

powerful experimental techniques, such as X-ray diffraction at low temperature and the scat-

tering with very high-power neutron source. Thanks to these studies, the high resolution data,

which is accurate enough to discuss the hydration structure around protein, has become avail-

able. However, such solvation information is still very limited. Furthermore, almost all of

them are in crystal, which is believed to be essentially different from aqueous environment.

Theoretical approach to evaluate the hydration structure has been also performed. The most

popular treatment may be molecular simulation. Although the method was applied to some

solvation systems, to obtain the hydration structure inside and around protein with high-quality,

very long simulation is necessary. Recently a theoretical determination of hydration structure

around protein has been done by Imai et al. based on statistical mechanics [3]. They employed

61



3D reference interaction site model (3D-RISM) [4,5] for hen egg-white lysozyme and showed

that 3D-RISM is capable of computing the solvation structure not only around protein but also

inside appropriately. Yoshida et al. showed that 3D-RISM can also correctly reproduce the

selective ion binding with human lysozyme [6].

In 3D-RISM calculation, the hydration structure is evaluated on 3D lattice grids. The size

of the protein which can be calculated is determined by the number of grid points and the

resolution of the data. In principle, it would be possible to compute high-quality hydration

structure around large size of the proteins whatever you want by increasing the number of grid

size. However, high computational cost and very long calculation are required to obtain such

results.

In this work, a new approach based on 3D-RISM, Fragment 3D-RISM, was developed, in

which 3D solvation structure is reconstructed from the solvation structures evaluated around

each solute site. Since these calculations are performed with a combination of logarithmic

grid and real solid harmonics, the number of grid points in the present scheme can be adjusted

more flexibly compared to 3D lattice grid employed in the conventional 3D-RISM. Moreover,

because the algorithm of the present method readily achieves high parallel performance, the

computational time can be reduced dramatically. The total solvation structure is reconstructed

with the calculated fragment results.

The organization of this paper is as follows. In Sec. 4.2 and 4.3, the formalism of the

present method and the computational details are presented, respectively. In Sec. 4.4, the

following three topics are described. First, the parallel performance of the present method is

checked. Second, the calculated results in this work are compared with those evaluated by the

conventional 3D-RISM in terms of hydration structure and partial molar volume. Finally, the

hydration structure around a protein called Fv fragment is evaluated. The computed results are

compared with the high-quality results obtained by X-ray crystallography.
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4.2 Method

4.2.1 Ornstein-Zernike type equation

3D-RISM equation is written by,

Hα(r) =
∑

β

Cβ ∗
[
ωV

βα + ρhV
βα

]
(r), (4.1)

whereHα andCα are 3D total and direct correlation functions,ωV is the intramolecular cor-

relation function of solvent, andhV is the total correlation function of solvent. In the present

theory,Hα andCα are expressed as the sum of reference and residual correlation functions, as

follows:

Hα(r) = Href
α (r) + ∆Hα(r), (4.2)

Cα(r) = Cref
α (r) + ∆Cα(r). (4.3)

The reference correlation functions,Href
α andCref

α are defined with 1D correlation functions

by

Href
α (r) ≡

∑
βγ

cβγ ∗
[
ωV

γα + ρhV
γα

]
(rβ), (4.4)

Cref
α (r) ≡

∑
β

cβα(rβ), (4.5)

whererβ = |r − Rβ| andRβ is the position of the solute atomic siteβ. Inserting eqs. 4.2,

4.3, 4.4, and 4.5 into eq. 4.1 leads to the Ornstein-Zernike (OZ) type equation for the residual

correlation functions,

∆Hα(r) =
∑

β

∆Cβ ∗
[
ωV

βα + ρhV
βα

]
(r). (4.6)

The residual functions,∆Hα and ∆Cα are divided into the components on each solute

atomic site,

∆Hα(r) =
∑

β

wβ(r)∆H(β)
α (rβ), (4.7)

∆Cα(r) =
∑

β

wβ(r)∆C(β)
α (rβ), (4.8)
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wherewβ(r) is the weight function for solute atomic siteβ at the positionr. In this work,

∆H
(β)
α and∆C

(β)
α are expanded with real solid harmonicsSlm around atom centerβ, as fol-

lows:

∆H(β)
α (rβ) =

∑
lm

∆H
(β)
lm,α(rβ)Slm(r̂β), (4.9)

∆C(β)
α (rβ) =

∑
lm

∆C
(β)
lm,α(rβ)Slm(r̂β), (4.10)

wherer̂β is a unit vector with its origin. The component of residual total correlation function

is approximated by the following equation,

∆H
(β)
lm,α(rβ) '

∑
δ

∆C
(β)
lm,δ ∗

[
ωV

δα + ρhV
δα

]
(rβ). (4.11)

4.2.2 Closure

In 1D-RISM and 3D-RISM framework, there are many closure equations. Kovalenko and

Hirata proposed the following closure (KH closure) for 3D-RISM [7],

Hα(r) =

{
exp(χα(r)) − 1 for χα(r) ≤ 0

χα(r) for χα(r) > 0

χα(r) = −βuα(r) + Hα(r) − Cα(r), (4.12)

whereβ = 1/kBT , kB is Boltzmann’s factor, anduα(r) is the intermolecular potential function

between solute and the solvent siteα. To solve eqs. 4.9, 4.10, and 4.11, we elaborated the

following KH type closure,

∆H(γ)
α (rγ) =

{
exp(χ

(γ)
α (rγ)) − 1 − Href

α (rγ) for χ
(γ)
α (rγ) ≤ 0

χ
(γ)
α (rγ) − Href

α (rγ) for χ
(γ)
α (rγ) > 0

χ(γ)
α (rγ) =−βuα(rγ) + {Href

α (rγ) + ∆H(γ)
α (rγ)} − {Cref

α (rγ) + ∆C(γ)
α (rγ)}, (4.13)

whereuα(rγ) is the intermolecular potential function between solute and the solvent siteα

around solute siteβ. The difference betweenuα(r) in eq. 4.12 anduα(rγ) in eq. 4.13 is only

the origins of the vectorsr andrγ.

The procedure of the present method is summarized as follows. The reference correlation

functions,Href
α andCref

α , are calculated by eqs. 4.4 and 4.5 with the correlation functions ob-

tained by 1D-RISM [8–10] (step 1). The residual correlation functions∆H
(β)
α (rγ), ∆C

(β)
α (rγ)
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are calculated on solute siteβ with eqs. 4.9, 4.10, 4.11, and 4.13 (step 2). After the step, the

solvation structure for the solvent siteα (Hα(r) + 1) is evaluated by eqs. 4.2, 4.4, and 4.7

(step 3). In this algorithm,step 2, which is most time demanding, is highly parallelized be-

cause the calculation of the residual correlation functions on each solute site(β) can be treated

independently.

4.3 Computational details

The grid set employed in this work is logarithmic grid [11] for radial part and the Lebedev

grid [12] for angular part. With the grid set, the convolution in eq. 11 is performed by spherical

Bessel transformation [11]. For the weight functionwβ(r), Becke’s function was employed

[13]. The calculation of the present method is parallelized with MPICH2 [14].

The geometries of the proteins were taken from PDB data and those of amino acids from

Klotho (Biochemical Compounds Declarative Database) [15]. The potential functions for

the amino acids and the proteins are united-atom OPLS parameters [16]. For solvent water

molecule, SPC-like model was employed [17] with a correction concerning the Lennard-Jones

parameters of the hydrogen sites (σ=1.0Å, ε=0.056 kcal/mol). To visualize 3D solvation struc-

ture, VMD software was used [18].

4.4 Results and discussion

4.4.1 Computational Performance of parallelization

The computational performance of the parallelization was evaluated with a speed up ratio.

The benchmark calculation was performed using a small protein, Chignolin [19].

Speed up ratioS(N) usingN processors is defined as,

S(N) =
Execution time with 1 processor

Execution time with N processors
. (4.14)

If a program is completely parallelized,S(N) = N (dashed line in Fig. 1), corresponding to

linear speed-up. Although the evaluated speed-up ratioS(N) is somewhat smaller thanN

(filled circle in Fig. 1), the present method showed good performance. Since the execution
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Figure 4.1:Speed up ratio as a function of the number of used processors (N ).

time for the calculation is a sum of the times forstep 1andstep 2, the ratio ofstep 2S2(N) is

also separately shown in Fig. 4.1, showing the degradation of the computational performance

mainly comes from thestep 1.

In step 1, the 1D correlation functions for all solute sites and solvent sites are evaluated at

the same time. These functions between solute sites are mixed through the spherical convolu-

tion integral in RISM equation. Because transfer of very large data among each processor is

required, the performance of this step is degraded. On the other hand,step 2does not include

the convolution integral between the solute sites, allowing to calculate the functions indepen-

dently. Note thatstep 2is dominative in the total time and the contributions fromsteps 1and

3 are significantly small. As a consequence, virtually linear speed-up is achieved.

4.4.2 Comparison of the present method with 3D-RISM

The present method can be considered as the approximation of 3D-RISM. To evaluate the

accuracy of this scheme, comparison between the present method and the conventional 3D-

RISM was performed on hydration structure and partial molar volume (PMV).

The hydration structures around tryptophan in zwitterionic form evaluated by the present

method and 3D-RISM are shown in Fig. 4.2. Because tryptophan is a molecule including

both of hydrophobic group (benzene ring) and hydrophilic groups (NH+
3 , CO−

2 , andNH in
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(a) (b)

(c) (d)

Figure 4.2:3D hydration structures of oxygen site (pink) and hydrogen site (blue) around tryptophan
calculated by the present method (a) and (c) and by 3D-RISM (b) and (d). The isodensity surface of the
solvation structure is 3.5 for (a) and (b) and 4.5 for (c) and (d).

pyrrole), it is a good example for the comparison. When the threshold of the isodensity is 3.5

(Figs. 4.2(a) and 4.2(b)), the broad distributions of water hydrogen (blue region) and of water

oxygen (pink region) can be seen around hydrophilic groups. The shape of the distributions

evaluated by the present method (Fig. 4.2(a)) showed good agreement with that obtained by

3D-RISM (Fig. 4.2(b)). By increasing the threshold, strongly binding hydration waters can

be drawn selectively. In Figs. 4.2(c) and 4.2(d), the hydration structures with the threshold of

4.5 are shown. Strongly binding water oxygen and water hydrogen can be seen only around

NH+
3 andCO−

2 , respectively. Therefore, it is concluded that the present method reproduced

the distribution of hydration structure evaluated by the original 3D-RISM.

PMV of the solute molecule in molecular solvent,V̄ 0
u , is expressed in terms of the 3D solute-

solvent direct correlation functions by the relation [20,21]

V̄ 0
u = kBTχ0

T

(
1 − ρ

∑
β

∫
Cβ(r)drβ

)
, (4.15)

whereχ0
T is the isothermal compressibility of the pure solvent. By inserting eq. 4.3 into eq.
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4.15,V̄ 0
u is expressed with a sum of reference part and residual part, as follows:

V̄ 0
u = kBTχ0

T

(
1 − ρ

∑
αβ

∫
cαβ(rγ)drγ

)
− kBTχ0

T ρ
∑

γ

∫
∆Cγ(rγ)drγ

= V̄ ref
u + ∆V̄u. (4.16)
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Figure 4.3:PMVs of 20 amino acids calculated by 1D-RISM, the present method, and 3D-RISM in
comparison with the corresponding experimental data [22–25].

In Fig. 4.3, the PMVs of 20 amino acids in zwitterionic form calculated by 1D-RISM, the

present method, and 3D-RISM are plotted in comparison with the corresponding experimental

data [22–25]. If a theoretical value reproduces the experimental one exactly, the data is plotted

on the solid line. As shown previously [21], the PMV calculated by 1D-RISM is much smaller

than experimental data. On the other hand, the present method considerably improves the

agreement with the experimental values. The accuracy is almost the same as that of 3D-RISM.

In both of the present method and 3D-RISM, 1D-RISM strategy is used for the description of

the solvent-solvent correlations. This may be the reason of the same accuracy of the two 3D

type methods.

4.4.3 Hydration structure around a protein

The present method was applied to a protein called Fv fragment, which is a part of an

anti-dansyl antibody. The protein was thoroughly studied with X-ray crystallography at low
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temperature and high-quality crystal structures were obtained in different conditions [26, 27].

Because the hydration structures around them were also discussed in their works, it is a good

system to evaluate the difference between calculated and experimentally observed results. In

this work, the hydration structures around only the Fv fragment (unliganded state) [26] and

around the Fv fragment which binds withε-dansyl-L-lysine (DNS-lys) (complex state) [27]

were evaluated. The geometries for the unliganded state and the complex state were taken

from PDB data (PDBID: 2dlf.pdb and 1wz1.pdb). All the water molecules were removed

from the data before the computation.

(a) (b) (c)

Figure 4.4: 3D hydration structures of oxygen site (green area). The isodensity surfaces of these
structures are 2.5 (a) and 4.0 (b), respectively. For the sake of viewability, all of the residues are shown
with black spheres.

The hydration structures of water oxygenG(r) around the unliganded state with different

threshold of isodensity surfaces are shown in Fig. 4.4 together with the hydration waters deter-

mined by X-ray crystallography. When the threshold is 2.5 (Fig. 4.4(a)), the broad hydration

structure is observed. The broadening of the distribution reflects the fluctuation of solvent

waters at room temperature. The hydration structure with the threshold 4.0 is considerably

localized (Fig. 4.4(b)). The distribution shows the area where waters bind strongly with the

protein, corresponding to peaks inG(r). These positions are in reasonable agreement with the

experimental data, which is obtained at low temperature (Fig. 4.4(c)).

The Fv fragment has a binding pocket with DNS-lys and the structure around the site is

greatly different between the unliganded state and complex state. In Fig. 4.5, the calculated

hydration structures around the binding site for these states are shown together with the ex-
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(a) (b)

HIS98

TYR99

TYR96

TYR102

HIS98

TYR99

TYR96

TYR102

DNS-lys

Figure 4.5:The hydration structure of oxygen site (green area) around the binding pocket of DNS-lys
for the unliganded state (a) and complex state (b). The isodensity surface is 3.5. The residues except
HIS98, TYR96, TYR99, and TYR102 are shown with black spheres. The red, blue, and cyan spheres
corresponds to oxygen atom, nitrogen atom, and carbon atom, respectively. The waters determined by
X-ray crystallography are shown with white spheres.

perimentaly determined waters (white spheres). In the unliganded state, the binding pocket is

surrounded by TYR96, HIS98, TYR99, and TYR102. Around the residues, there are many

waters observed experimentally and the positions of them were correctly reproduced by the

present method ( green mesh area in Fig. 4.5(a)). In the case of the complex state, these

residues flip away and the pocket is opened. Along the flip, the hydrophilic groups such as

N and O are pushed away and the hydrophobic groups such as benzene rings of TYR96 and

TYR99 appear. The distribution of waters can be seen around the binding pocket and there is

a hydrophobic space where DNS-lys binds (dotted circle in Fig. 4.5(b)), which is consistent

with the previous work [27].

In Fig. 4.6, the bottom of the binding pocket in the complex state is focused to see water

oxygen (green) and water hydrogen (white). The positively charged water hydrogen sites are

around N and O site of DNS-lys and TYR102, respectively, and the negatively charged water

oxygen site is around H site of TYR102, which shows the three hydrogen bondings between

DNS-lys and TYR102 (dotted line in Fig. 4.6). These distributions correspond to the water

experimentally observed by X-ray diffraction technique at low temperature [27].
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DNS-lys

ALA101

TYR102

Figure 4.6:The hydration structure of oxygen site (green area) and hydrogen site (white area) in the
pocket of DNS-lys, where the isodensity is 3.0. The residues except ALA 101 and TYR102 are shown
with black spheres.

4.5 Conclusion

In this article, a new approach, Fragment 3D-RISM, was proposed. The solvation structure

is calculated with three steps, the calculation of the reference correlation functions (step 1),

the residual correlation functions (step 2), and the building up of solvation structure from

the results obtained by the previous steps (step 3). Because the most time demanding step

(step 2) is highly parallelized, the computational time can be reduced dramatically. Although

the present method is regarded as an approximation of 3D-RISM, the hydration structure of

tryptophan and PMV of amino acids were almost the same as those evaluated by the original

3D-RISM.

The method was applied to the hydration structure around the binding pocket between Fv

fragment and DNS-lys. By drawing the 3D solvation structure with small and large thresholds

of isodensity, the fluctuation of waters and tightly binding waters can be investigated. The

calculated hydration structure was good agreement with the experimentally observed results.

By evaluating not only water oxygen site but also water hydrogen site, which is difficult to
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be determined by X-ray crystallography, the direction of the hydrogen bonding was clearly

shown.
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Chapter 5

The position of water molecules in
Bacteriorhodopsin: A fragment
Three-Dimensional Reference Interaction Site
Model study

5.1 Introduction

The information of hydration structure is very fundamental in biosystem [1]. Hydrogen

bondings between waters and protein affect protein structure and activity of enzyme. The

information is also very useful in drag design since the position of waters in the vicinity of the

activity site has great influence on the stabilization of the drug-protein interaction [2,3] .

The waters in biosystem can be classified into “surface” or “bound”, according to whether

they are surrounded by other water molecules or protein [4]. Some proteins contain the bound

water molecules inside, which sometimes play an essential role on their functional features.

For example, it is well known that hydrogen bonded water molecules play a key role in Bacte-

riorhodopsin (bR), which is a light-driven proton pump inHalobacterium salinarum. To reveal

the mechanism of the pump, a huge number of approaches including X-ray crystallography [5],

resonance Raman [6] and Fourier transform infrared spectroscopy [7] have been performed.

These experimental approaches have elucidated that the hydrogen-bonding networks of these

water molecules providing the proton pathway in the pump [7]. Theoretical approaches to

study the mechanism have been also performed [8–14]. In most of the studies, the mechanism

of bR function was focused and the initial positions of bound waters inside protein were taken
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from experimental data.

The theoretical prediction of the water distribution is still very limited. It is extremely diffi-

cult task for the molecular simulation such as molecular dynamics to compute the distribution

because it is necessary to sample the interaction between the protein and water molecules on

the extensive free energy hypersurface. It has been shown that an integral equation theory for

molecular liquids, three-dimensional reference interaction site model (3D-RISM) [15, 16], is

a powerful tool to study the distribution of bound and surface waters and numerous applica-

tions have been carried out [17–21]. We have recently developed a new approach based on

3D-RISM, in which the equations are elaborated so that the high parallel performance can be

achieved (fragment 3D-RISM) [22]. Similar to the original 3D-RISM, our method evaluates

the 3D solvation structure but the required computational time can be compressed. Although

the present theory is regarded as an approximation of 3D-RISM, the obtained distribution func-

tion is virtually the same as that by the original method [22]. Furthermore, the new theory is

practically free from the grid size since the distribution functions are computed by the expan-

sion around the individual solute site. Actually the functions are described in higher-resolution

than the original one.

In the present work, we applied the fragment 3D-RISM to computations of the waters’ posi-

tion in bR and compared with those obtained by X-ray crystallography as well as by previous

simulations. After brief description of the method, details of the calculation are explained in

section 5.3. The bound waters are discussed in section 5.4.

5.2 Method

3D correlation functions of a solvent siteα, Hα andCα are expressed with reference and

residual correlation functions, as follows:

Hα(r) = Href
α (r) + ∆Hα(r), (5.1)

Cα(r) = Cref
α (r) + ∆Cα(r). (5.2)

76



For the reference correlation functions,Href
α andCref

α , 1D correlation functions are employed

[22]. The residual functions,∆H and∆C, are 3D functions and divided into the components

localized on each atomic site of solute,

∆Hα(r) =
∑

β

wβ(r)∆H(β)
α (rβ), (5.3)

∆Cα(r) =
∑

β

wβ(r)∆C(β)
α (rβ), (5.4)

wherewβ(r) is the weight function for solute atomic siteβ at the positionr. In this work,

∆H
(β)
α and∆C

(β)
α are expanded with real solid harmonicsSlm, as follows:

∆H(β)
α (rβ) =

∑
lm

∆H
(β)
lm,α(rβ)Slm(r̂β), (5.5)

∆C(β)
α (rβ) =

∑
lm

∆C
(β)
lm,α(rβ)Slm(r̂β), (5.6)

wherer̂β is a unit vector with its origin at atomβ. The component of residual total correlation

function can be approximated by the following equation in analogy with the original RISM

theory,

∆H
(β)
lm,α(rβ) '

∑
δ

∆C
(β)
lm,δ ∗

[
ωV

δα + ρhV
δα

]
(rβ). (5.7)

To solve Eqs. 5.5, 5.6 and 5.7, we elaborated the following Kovalenko-Hirata (KH) type

closure [23],

∆H(γ)
α (rγ) =

{
exp(χ

(γ)
α (rγ)) − 1 − Href

α (rγ) for χ
(γ)
α (rγ) ≤ 0

χ
(γ)
α (rγ) − Href

α (rγ) for χ
(γ)
α (rγ) > 0

χ(γ)
α (rγ) = −uα(rγ)/kBT

+
{
Href

α (rγ) + ∆H(γ)
α (rγ)

}
−

{
Cref

α (rγ) + ∆C(γ)
α (rγ)

}
, (5.8)

wherekB is Boltzmann’s factor.uα(rγ) is the intermolecular potential function between solute

and the solvent siteα, which is evaluated on the grid points around solute siteγ.

Hypernetted chain (HNC) closure is another popular equation used in integral equation the-

ories for liquids. Site-site correlation functions, such as radial distribution functions, can be

evaluated well by HNC closure. KH closure sometimes greatly underestimates the site-site

77



correlation functions, but the process of the numerical solution is much stabler than that of

HNC closure.

The flow chart of the present method is shown in Scheme 5.1.

I. Calculation of 1D correlation functions of neat 

    solvent by RISM/KH 

II. Calculation of reference correlation functions

H   (r)
 ref
α C   (r)

 ref
α

III. Calculation of residual correlation functions

Eqs. 5.5, 5.6, 5.7, and 5.8

IV. Calculation of 3D solvation structure

Eqs. 5.1 and 5.3

Scheme 5.1

5.3 Computational details

The reference correlation functions were calculated by 1D RISM/KH procedure [24, 25].

Using the converged 1D direct correlation function, the reference correlation functionsHref
α

and Cref
α were evaluated. The residual correlation functions were then calculated by Eqs.

5.5, 5.6 and 5.7, coupled with Eq. 5.8. In this approach, the calculation was performed on

logarithmic grid for radial part and the Lebedev grid [26] for angular part. With the grid set,

the convolution integral in Eq. 5.7 can be calculated by spherical Bessel transformation [27].

To reduce the computational cost per one CPU, calculation was parallelized with MPICH2

[28]. The solvation structure was evaluated with Eqs. (1) and (3) from the obtained residual

correlation functions. For visualization of 3D solvation structure, VMD software [29] was

used.
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5.4 Results and Discussion

The geometry of bR was taken from the PDB data (PDBID: 1c3w) [5] and OPLS parame-

ters [30] were employed. All the water molecules inside the protein in PDB data were removed

before the computation. SPC-like model of water was employed [31] with a correction con-

cerning the Lennard-Jones parameters of the hydrogen sites (σ=1.0Å, ε=0.056 kcal mol−1). bR

is a large molecule and the number of the solute sites is 2221 for the parameter set. However,

the required memory size of the present method was about only 850 MB per one CPU, mean-

ing the allowance to perform the computation even with PC cluster. It is noted bR is in the cell

membranes in reality, but they are ignored in the the present computation. We believe that the

surrounding water or membranes have no effect on the water moleculesinsidethe protein.

Retinal

A

B

LYS216

Figure 5.1: 3D distribution of waters inside bR. The green (white) regions correspond to the
area where the distribution function of water oxygen (hydrogen) site is larger than 3.2. The
bound waters detemined by X-ray crystallography are represented by red spheres.

bR contains all-transretinal, which binds covalently to Lys216 through a protonated Schiff
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base linkage. The distribution of waters around retinal calculated by the present method and

the water molecules obtained by X-ray diffraction data [5] are shown in Fig. 5.1. Except for

Lys216 and retinal, bR is represented by ribbon for the sake of viewability. The scattered green

(white) areas shown in the figure indicate where the distribution function of water oxygen (hy-

drogen) site is greater than the threshold value, 3.2. The bound waters determined by X-ray

crystallography are represented by red spheres. Several positions of the comparatively-large

area coincide with the experimental data, suggesting that the water distribution is correctly re-

produced by the present method. The distribution of waters are not continuous and intermitted

by residues. In the case of aquaporins, the bound waters are continuously distributed through

out the channel [32]. This may be the large difference between a pump and a channel.

Wa

Wc

Wb

Wd

O

O

H

O
H

O

O

O

H
O

H
H

H

Wa

Wc

Wb

ASP212

ASP85

N

H

Schiff base

HH

N

ARG82

(a) (b)

(c) (d)

Schiff base

ASP212 ASP85

ARG82

Figure 5.2: 3D solvation structure of water oxygen (green) and hydrogen (white) inA. The
positions of bound waters determined by X-ray crystallography are shown with dashed line.
The white surface show the areas where the distribution of water hydrogen is larger than 2.2
(a), 3.2 (b), and 4.2 (c). In these panels, distribution of water oxygen larger than 3.2 is shown.
In panel (c), possible hydrogen bondings are depicted with dashed line. Schematic drawing of
this area is shown in (d).

80



Let us look at closely the regionsA and B, which are enclosed with dashed lines. Fig.

5.2 focuses the water distribution in regionA, around Schiff base. The scattered green areas

shown in the figure indicate where the distribution function of water oxygen site is greater than

the threshold value, 3.2. To display the strength of hydrogen bondings clearly, distributions of

water hydrogen greater than 2.2, 3.2, and 4.2 are respectively shown in Figs. 5.2(a), 5.2(b), and

5.2(c). The positions of bound waters obtained by X-ray diffraction are also shown with dashed

line, Wa, Wb andWc [5]. Conspicuous localized distributions of oxygen and hydrogen are

found surrounded by LYS216, ASP85 and ASP212, which coincides with the result obtained

by X-ray crystallography. Shibata et al. proposed that watersWa andWb strongly bind with

oxygen site of ASP85, and waterWc strongly binds with ASP212 from the FTIR studies

[33, 34]. These strong hydrogen bondings are found in Fig. 5.2(c). The broad distributions in

Figs. 5.2(a) and 5.2(b) indicate the fluctuation of waters because the present calculation was

performed at the condition of room temperature. The schematic picture of the bound waters

drawn from these figures is illustrated in Fig. 5.2(d). The thick and thin dotted lines show

the strong and weak hydrogen bondings, respectively, which is in good agreement with the

network reported by Shibata et al. In the neighborhood of ARG82, the distribution of oxygen

site is found (Wd) but no hydrogen site can be seen, at least, with the threshold, 4.2. This

means the waterWd is captured by the residue but its orientation is relatively free compared

to aforementioned water molecules,Wa, Wb, andWc.

Fig. 5.3(a) shows the distributions of water oxygen (green) and water hydrogen (white) sites

in regionB, upside the retinal. There are two main diffuse solvation structures (distributionsI

andII ). By X-ray crystallography,We andWf are detected inI andII , respectively.We in

the distributionI links ALA215 (in helix G) and TRP182. Schulten et al. reported another wa-

ter molecule in the vicinity ofWe (see Fig. 1 in their work [11]), although no water molecule

is reported in the X-ray crystallography except forWe [5]. Fig. 5.3(a) shows that there are

interaction between water and THR178 (thick dotted line), which may correspond to the water

reported by Schulten et al. [11]. Another main distribution (II ) is continued from LYS216

to ASP96 and THR46 in the vicinity of the helix G backbone, which is distorted from stan-
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Figure 5.3: (a) 3D solvation structure of water oxygen (green) and hydrogen (white) inB.
Distributions of water oxygen and water hydrogen larger than 2.5 are shown. (b) Schematic
drawing of bound waters proposed from panel (a).

dardα-helical conformation [5]. The waterWf binds with the carbonyl group of LYS216.

Humphrey et al. proposed other two bound waters in this area [10]. The broad green and

white distributions correspond to these waters. The hydrogen bonded waters are shown in Fig.

5.3(b).

Both of I andII make hydrogen bonding network from the Retinal to ASP96 and to THR46,

which is consistent with the previous works’ conclusions [5,10,11,14].

5.5 Concluding Remarks

Fragment 3D-RISM was applied to the calculation of the distribution of bound waters in

Bacteriorhodopsin. The computed distributions show good agreement with those by X-ray

diffraction experiment. The method is highly parallelizable and can sufficiently reduce the

required computational cost and time while adequate distribution of water molecules are ob-

tained.

In the neighborhood of the Schiff base, several water molecules captured by residues were

found. ASP85 and ASP212 obviously accept hydrogen bonding from neighbor waters because
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the direction of oxygen-hydrogen bond in water can be discriminated from the distribution. On

the other hand, the water near ARG82 is also captured by the residue but rather freely oriented.

Near the G-helix backbone to ASP96, two largely continuous distributions were seen. They

are consistent with the bound water molecules reported in molecular simulation study.

The fragment 3D-RISM method is highly efficient with capability to predict the solvation

structure concerning sufficiently large bio-molecules.
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Part II

Quantum chemical calculation with
solvation effect
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Chapter 6

Localization or delocalization in electronic
structure of Creutz-Taube-type complexes in
aqueous solution

6.1 Introduction

Mixed-valence complexes containing several metal centers with different oxidation state

have received intense theoretical and experimental interests because of their flexible electronic

structures and potential ability of molecular electronics [1]. Their electronic structures are

explained in terms of a superposition of two localized electronic structures. Robin and Day

classified mixed-valence complexes into three classes, namely classes I, II, and III, consid-

ering the strength of metal-metal interaction which determines the magnitude of mixing of

the two localized electronic structures. In class I, the metal-metal interaction is negligibly

weak and the distribution of ‘excess electron’ or ‘hole’ is completely localized upon one of

the metal centers. In class III, the interaction is strong enough and the distribution is fully

delocalized. The interaction in class II is intermediate between them. This classification of the

mixed-valence complexes is discussed in many theoretical calculations and such experimen-

tal measurements as intervalence charge transfer spectra (IVCT) [1–4]. Both experimental

and theoretical works for mixed-valence complexes were summarized in detail by Demadiset

al. [5] Recently, Reimerset al. discussed electronic structure and some physical properties

using reorganization energy [6].

Creutz-Taube complex,[(NH3)5Ru − pyrazine − Ru(NH3)5]
5+ (1 in Fig. 6.1) [7,8], is one

of the typical mixed-valence complexes. There has been heated controversy over how much
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Figure 6.1:Geometries of[(NH3)5Ru − pyrazine − Ru(NH3)5]5+ (1), [(NH3)5Os − pyrazine −
Os(NH3)5]5+ (2), [(NH3)5Ru(4, 4′ − bipyridine)Ru(NH3)5]5+ (3), and [(NH3)5Os(4, 4′ −
bipyridine)Os(NH3)5]5+ (4) used in this work. (unit;̊A)

localized its electronic structure is. In this regard, many experimental and theoretical works

have been performed so far to understand the electronic structure. For instance, the electronic

structure was investigated by Stark effect [9], near-IR-vis spectra [10], and IVCT spectra. [2]

Creutz discussed the relationship between the physical properties of these complexes and the

mechanisms of electron transfer processes in her recent review ofd6 − d5 iron, ruthenium and

osmium complexes, and showed that Creutz-Taube complex is delocalized while the larger

bipyridine-bridged complex is localized in aqueous solution [8]. Density functional theory

(DFT) [1, 11–13], MP2 [13], and complete active space SCF (CASSCF) calculations [14]

were performed as well. All these studies indicated that the electronic structure is delocalized

in this complex due to its strong metal-metal interaction; in other words, this complex belongs

to class III.

On the other hand, the electronic structure of 4, 4′-bipyridine-bridged dinuclear Ru complex,

[(NH3)5Ru(4, 4′ − bipyridine)Ru(NH3)5]
5+ (3 in Fig. 6.1), was reported to be quite different

from that of1. Stark effect [9] and IVCT spectra [3, 4] indicated that the metal-metal inter-

action of3 is weak and the electronic structure is substantially localized. Ferretiet al. [15]

explained this electronic structure and visible spectra by using a four-site vibronic model.

Marcus-Hush theory was also applied to evaluate the IVCT spectra of3 [16–19]. Besides these
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studies, only a few computational studies of3 have been reported to our knowledge, in which

DFT [1], CNDO/S [14], and CI methods [20] have been used. In these previous studies, solva-

tion effects were not taken into consideration except for one pioneering work [20], in which the

continuum model was employed to incorporate solvent effect. In reality, however, solvation

effects should be taken into consideration because the localized electronic structure is signif-

icantly stabilized by polar solvent. Another important issue is to consider its multi-reference

nature in the electronic structure, which is closely related to mixing of localized wavefunc-

tions. Standard methods such as CASSCF might not be applicable to these mixed-valence

complexes in reasonable computing time because of their large sizes; see3 for example.

In the present article, we theoretically investigated1, 3, pyrazine-bridged dinuclear Os com-

plex, [(NH3)5Os− pyrazine−Os(NH3)5]
5+(2 in Fig. 6.1), and 4, 4’-bipyridine-bridged dinu-

clear Os complex,[(NH3)5Os(4, 4′−bipyridine)Os(NH3)5]
5+ (4 in Fig. 6.1). The complexes,

2 and4, are not known experimentally to our knowledge. In fact, to understand the true na-

ture of the mixed-valence complexes, the consideration of vibration coupling and time scale

of solvation is indispensable, as reviewed recently. However, it is also important to evaluate

theoretically the electronic structure of real molecules of mixed-valence complexes without

modeling and static solvation effect. In this work, we evaluated some factors which deter-

mine the localization/delocalization of the ions without modeling and tried to relate them with

fundamental parameters such as overlap and energy gap. Though our study does not incor-

porate vibration-coupling and solvation time scale [5], we believe the knowledge of relation

between fundamental parameters and localization/delocalization nature is also worthwhile to

understand these mixed-valence complexes.

6.2 Method and Computations

6.2.1 Method

As described above, the metal-metal coupling in1 is considered very strong and that of

3 is considered very weak. The DFT method can be applied to the complexes with strong

metal-metal interaction but seems to be difficult to apply to the mixed-valence complexes
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with weak metal-metal interaction because the DFT method tends to overestimate delocalized

character [13]. CASSCF and CASPT2 methods are believed to be most reliable for this type of

compound. However, it is noted also that the mixed-valence complexes are too large to apply

the CASSCF method.

In the present work, we employed a method proposed by Farazdelet al. [21] to treat the

multi-reference nature of the wave function. The first step of this method is to calculate two

wave functions,ΨA andΨB, by the UHF method with the same geometry, where symmetry-

broken UHF orbitals are employed [22](a),(b). In ΨA, the excess electron is localized on one

metal center, while inΨB it is localized on the other metal center. TheseΨA andΨB corre-

spond to the non-orthogonal ‘diabatic states’ [23]. The second step is to construct ‘adiabatic’

wave functions,ΨE+ andΨE−, from ΨA andΨB, as follows;

ΨE+/− = CAΨA + CBΨB. (6.1)

Coefficients and the energiesE+/− of the adiabatic states can be obtained by solving the fol-

lowing secular equation;∣∣∣∣ HAA − E HAB − ESAB

HAB − ESAB HBB − E

∣∣∣∣ = 0, (6.2)

whereHAA = 〈ΨA|H|ΨA〉, HBB = 〈ΨB|H|ΨB〉, HAB = 〈ΨA|H|ΨB〉, andSAB = 〈ΨA|ΨB〉.

The solvation effects were evaluated by considering the interaction of the point charge and

the dipole moment of solute with reaction field, in which the solute was placed in a spherical

cavity immersed in a continuous medium with a dielectric constantε. In this situation, the

solvation free energy change∆G is given by eq. 6.3,

∆G = −ε − 1

2ε

q2

a
− ε − 1

2ε + 1

µ2

a3 , (6.3)

whereq is total charge,µ is dipole moment, anda is a radius of the spherical cavity which is

determined by the method of Wonget al. [24]. The ε value is taken to be 78.39 throughout

the present study to represent aqueous environment. Because the complexes examined possess

positive charges, the dipole moment was evaluated with the procedure of Wonget al. They

divided dipole moment of charged molecule into two parts,µe andµN , which correspond to
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the dipole moment of electrons and that of nuclear charges, respectively. Total dipole moment

of the moleculeµ is represented by eq. 6.4,

µ =
µe(Q + ne)

ne

+ µN , (6.4)

whereQ andne are the total charge and the number of electrons, respectively. In the calculation

of µe, we used density matrix of the total wave function,

PC
µν = C2

APA
µν + C2

BPB
µν + 2CACB det(U) det(V†)Pµν , (6.5)

wherePµν is “generalized” density matrix,U andV are unitary matrices of the corresponding

transformation [25], all of which are defined according to Farazdelet al [21]. PA
µν andPB

µν are

usual density matrices of A and B states, respectively.µe was calculated from the partial charge

on all the atoms, which is determined so as to reproduce the electrostatic potential evaluated

with wavefunctions at each grid point around the solute molecule.

6.2.2 Computational Details

To calculate ‘adiabatic’ states, we used GAMESS program package [26] with several mod-

ifications by us. In all the calculations, core electrons of Ru (up to 3d) and Os (up to 4f) were

replaced with effective core potentials (ECPs), where (341/321/31) set was used for valence

electrons of Ru and (341/321/21) set was used for those of Os [27]. For C, N, and O, the

6-31G(d) sets were employed and for H the 6-31G set was employed. To check the reliabil-

ity of this basis set system, electron-transfer matrix element was evaluated with larger basis

sets, in which all electron basis sets, [84333/843/75/1] [28] augmented with an f-function (α=

1.235) [29], 6-311G(d), and 6-31G were used for Ru, N, C, and H, respectively. These two

different basis set systems presented almost the same value of the electron-transfer matrix ele-

ments [21,30]. Thus, the smaller basis set system was employed throughout the present study.

In 1, theRu − NH3 andRu − pyrazine bond distances were taken from the X-ray crystal

structure [2], while geometries ofNH3 and pyrazine were optimized by the DFT(B3LYP) [31]

method since structural data are not available for these moieties. In the geometry optimization,

we used Gaussian 98 program [32]. In2, 3, and4, metal−N(ammonia), metal−N(pyrazine),
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andmetal − N(4, 4′ − bipyridine) distances were taken to be the same as those of1 because

there is no experimental data and our purpose is to compare them in the same situation.

H3N Ru Ru NH3

bridge

H3N

H3N

NH3

NH3

NH3

NH3

H3N

H3N

∆r

Scheme 6.1

The energy curves were calculated as function of the displacement (∆r) of the bridging

ligand from the midpoint of the two metal centers (see Scheme 6.1 for∆r). Along the lines of

their procedure, we calculated the diabatic potential energy surface, assuming that themetal−

NH3 distance did not change along the antisymmetric stretching motion of the bridging ligand.

These assumption is reasonable because the displacements ofmetal − NH3 groups have little

influence to the potential energy surface [33]. In3, the dihedral angle in 4, 4’-bipyridine was

fixed to be 40 degree, which was optimized by changing the dihedral angle with an interval of

10 degree. This angle is the same as that reported previously [1]. The effect of dihedral angle

on electronic structures will be discussed below.

6.3 Results and Discussion

6.3.1 Potential Energy Curve of Diabatic States

As shown in Fig. 6.2, two symmetry-broken wave functionsΨA andΨB are calculated with

the UHF method along the reaction coordinate∆r. These two states are degenerate at the sym-

metrical structure,∆r=0. As shown in Fig. 6.2, SOMOs of these states are almost localized

on each metal center. Here,ΨA represents the state in which SOMO is almost localized on the

metal of the left hand side, andΨB represents the other state. These are ‘diabatic’ states.

The ‘adiabatic’ states of ground and excited states are calculated in gas phase by using

eq. 6.2, as shown in Fig. 6.3. In all these complexes, the adiabatic state exhibits a single
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Figure 6.2: Energy curves and SOMOs of two symmetry-broken wave functions,ΨA andΨB; (a)
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[(NH3)5Ru(4, 4′−bipyridine)Ru(NH3)5]5+ (3), and (d)[(NH3)5Os(4, 4′−bipyridine)Os(NH3)5]5+

(4).
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minimum at the symmetrical structure (∆r=0), indicating that the electronic structures of all

these complexes are delocalized in gas phase. In Fig. 6.3, we can see the energy splitting

between two adiabatic state increases in the order3 < 4 < 1 < 2. According to the ‘two-state’

model, the strength of the mixing depends on the difference in energies (∆H = HBB − HAA)

and overlap integral (SAB) between two ‘diabatic’ states: the larger the overlap is and the

smaller the difference in energy is, the mixing becomes large. At the seam of crossing between

two states, electron transfer matrix,V , is discussed in terms of overlapSAB between two states.

The value,V , is calculated by eq. 6.6 using the important parameters,SAB, HAB, HAA, and

HBB in eq. 6.2;

V = (1 − S2
AB)−1 [HAB − SAB(HAA + HBB)/2] (6.6)

Actually, V linearly depends onSAB, as shown in Fig. 6.4. Thus, it is worthwhile to clar-
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Figure 6.4:Correlation (◦) between electron transfer matrix,V , andSAB and correlation (•) between
skk andSAB. Dotted lines are determined by least-square method.

ify what is the origin of the difference inSAB, or the strength of the state-mixing in these

complexes examined. In the present ‘two-state’ model,SAB is defined, as follows [21]:

SAB = 〈ΨA|ΨB〉 = (detU)(detV†)
N∏

i=1

sii , (6.7)
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whereU andV are unitary matrices of the corresponding transformation. Notations used

here, except forsii, are the same as those in reference.sii represents the overlap between

corresponding orbitals,̂ai andb̂i, belonging to each diabatic states.

sii = 〈b̂i|âi〉 . (6.8)

We found that allsii is almost 1.0 except for one overlap term,skk, between two specific

orbitals. Consequently,SAB mainly depends on this overlap, as shown in Fig. 6.4.

SAB ∝ skk = 〈b̂k|âk〉 . (6.9)

These key orbitalŝak andb̂k are the corresponding orbitals that are almost same with canonical

β-spin HOMO orbitals in1 ∼ 4. The similar relation was previously reported by Kogaet

al [34]. Thesêak and b̂k orbitals are mirror image to each other; one of them is localized on

Ru1/Os1 site and the other is on Ru2/Os2 site. In these orbitals, thedπ orbital expands to the

bridge part, as illustrated in Fig. 6.5. Apparently, the overlap integral betweenâk and b̂k in

1 and2 is much larger than in3 and4; in the latter complexes, these orbitals are completely

separated and localized on each metal center.

Theskk term is further divided into six parts, as follows [34].

skk =

b,m,o∑
I

b,m,o∑
J

sIJ
kk =

b,m,o∑
I

sII
kk + 2

b,m,o∑
I<J

sIJ

= sb−b
kk + sm−m

kk + so−o
kk + sb−m

kk + sb−o
kk + sm−o

kk , (6.10)

where “b”, “m”, and “o” stand for bridge ligand, metal center, and remaining part, respectively.

In all complexes, “m-m”, “b-m”, and “b-b” pairs provide dominant contributions toskk, as

shown in Fig. 6.6.

The overlapsm−m
kk depends on the metal-metal distance; the longer the distance is, the less

the overlap is. In3 and4, the distance is about twice as long as that of1 and2. The longer

metal-metal distance in3 and 4 leads to the significantly smallersm−m
kk than that of1 and

2. The overlapsb−m
kk between the metal part and the bridge part is mainly determined by the

overlap between the metaldπ orbital in b̂k (âk) and theπ andπ∗ orbitals of bridging ligand in
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Figure 6.5: Corresponding orbitalŝak and b̂k, which are almost the same as the canonicalβ-spin
HOMO orbitals; (a)[(NH3)5Ru − pyrazine − Ru(NH3)5]5+ (1), (b) [(NH3)5Os − pyrazine −
Os(NH3)5]5+ (2), (c) [(NH3)5Ru(4, 4′ − bipyridine)Ru(NH3)5]5+ (3), and (d)[(NH3)5Os(4, 4′ −
bipyridine)Os(NH3)5]5+ (4).
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bipyridine)Ru(NH3)5]5+ (3), and [(NH3)5Os(4, 4′ − bipyridine)Os(NH3)5]5+ (4). a) b, m, and o
represent bridge part, metal center, and the other part.

âk (b̂k). Since thedπ orbital of Os more spatially expands than that of Ru [35], the overlaps

between the Osdπ orbital and theπ∗ orbital on bridge ligand of2 and4 are larger than those

of 1 and3. The overlap between 4, 4’-bipyridineπ∗ orbital of b̂k (âk) and metaldπ orbital of

âk (b̂k) in 3 and4 is much smaller than the overlap between pyrazineπ∗ and metaldπ orbitals

in 1 and2, as easily seen in Figures 5c and 5d. Therefore the order ofsb−m
kk is 3< 4 < 1 < 2.

Interestingly, a remarkable difference insb−b
kk is observed among these complexes, whereas

the shapes of the orbitals are very similar to each other. It is likely that because the Osdπ

orbital is closer in energy to the pyrazineπ∗ orbital than the Rudπ orbital, theπ∗ orbital more

contributes to ‘diabatic’ state in the Os complex than in the Ru complex [36]. The contribution

of π∗ orbital to âk andb̂k was evaluated by the following equation;

φ = Cπφπ + Cπ∗φπ∗ , (6.11)

whereφ is the contribution of the bridge moiety to the corresponding orbitalâk (b̂k). Theφπ

andφπ∗ are canonical orbitals of 4, 4’-bipyridine calculated by the HF method.C2
π∗ of 3 and

4 are 0.006 and 0.018, respectively. This difference leads to the difference insb−b
kk between3
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and4. In 1 and2, âk andb̂k orbitals exhibit amplitude to some extent on the bridge group, as

shown in Figs. 6.5a and 6.5b, which leads to the largersb−b
kk value of2 than that of1.

Summarizing the above discussion, thesm−m
kk , sb−m

kk , andsb−b
kk (∝ SAB) increase in the order

Ru < Os and in the order3 and4 < 1 and2. Thus, the energy splitting between two diabatic

states increase in the order3 < 4 < 1 < 2. These differences in overlapSAB is one of key fac-

tors for localized vs delocalized electronic structure in aqueous solution, as will be discussed

in the next section.

In Aqueous Solution
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Figure 6.7: Free energy curves of1, 2, 3, and 4 in aqueous solution;¦ [(NH3)5Ru −
pyrazine − Ru(NH3)5]5+ (1), • [(NH3)5Os − pyrazine − Os(NH3)5]5+ (2), ¤ [(NH3)5Ru(4, 4′ −
bipyridine)Ru(NH3)5]5+ (3), and4 [(NH3)5Os(4, 4′ − bipyridine)Os(NH3)5]5+ (4).

Free energy curves (FEC) in aqueous solution are shown in Fig. 6.7. In1 and 2, FEC

possesses a single minimum at the symmetric geometry (∆r=0), as is the case for gas phase.

The FEC of3 has two minima at∆r = ±0.08Å, showing that the electronic structure of3

is localized in aqueous solution. The key to understand the difference in3 from the others is

dipole moment, which is computed by eq. 6.4. Dipole moment is zero at the point of∆r = 0

in all the complexes due to the symmetry of the total wavefunction. It increases with increase

in ∆r. Apparently the dipole moment changes much larger in3 than in the others, as shown
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(1), • [(NH3)5Os−pyrazine−Os(NH3)5]5+ (2), ¤ [(NH3)5Ru(4, 4′−bipyridine)Ru(NH3)5]5+ (3),
and4 [(NH3)5Os(4, 4′ − bipyridine)Os(NH3)5]5+ (4).

in Fig. 6.8. In4, FEC is influenced by the dihedral angle (δ) between two pyridyl rings. When

δ is 40 ,̊ its electronic structure is delocalized, as shown in Fig. 6.9. However, it becomes

localized whenδ is 80 .̊ Because the energy difference between the minima atδ =40 ånd

δ =80 ,̊ the electronic structure of4 is between localized and delocalized one (Class II). The

effect of the dihedral angle will be discussed below in more detail.

Ohet al. studied how much dipole moment of di-ruthenium complexes changes upon going

to excited state from ground state in water using electronic absorption (Stark effect) spec-

troscopy [9]. They reported that the change is about 0 (D) for1 and 29 (D) for3. As clearly

shown in Figure 7, the electronic structure of1 is delocalized at ground state in aqueous so-

lution. In the electronic absorption, the transition should be from the delocalized electronic

structure at ground state to the delocalized structure at excited state. On the other hand, the

electronic structure of3 is localized at the equilibrium geometry at ground state in aqueous

solution (∆r = 0.08Å). The dipole moment was evaluated to be -17 (D) and 20 (D) at the

ground and excited states, respectively. The calculated change of dipole moment is about 37

(D). These computational results of dipole moment change are consistent with the experimen-

tal data.
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Change of dipole moment is induced by the mixing ratio of two diabatic states (see eq.

6.5) whose dipole-moment direction is opposite to each other, as illustrated in Fig. 6.8. In the

present two-state model, the mixing ratioR depends onHAB, ∆H, andSAB, as represented

by eq. 6.12,

R =
CB − CA

CB + CA

=

√
1 + SAB

1 − SAB

tan θ , (6.12)

whereθ is given by solving eq. 6.2,

θ =
1

2
tan−1

{√
1 − S2

AB

2

∆H

HAB − SAB

(
HAA+HBB

2

)}
. (6.13)

When∆r = 0, two diabatic states are in the same energy (∆H = 0), which leads toR = 0;

this means that two states mix in the same ratio (CA = CB). In this case, dipole moment is

0. At ∆r 6= 0, on the other hand, the mixing ratio is not equivalent and the dipole moment

is induced. AsR increases, the localization of adiabatic wave function increases. Fig. 6.10

shows change ofR as a function of∆r. In ∆r > 0 the sign of R is positive for1 and2 and

negative for3 and4. This sign shows which of the stateΨA andΨB is dominant in∆r > 0.

In 1 and2, ΨB is dominant in the adiabatic states, as shown in Figs. 6.2(a) and 6.2(b). On

the other hand,ΨA is dominant in the adiabatic states of3 and4. One can see that R of3

changes much larger than those of the others, which means the contribution of one diabatic
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state considerably increases with increase in∆r; in other words, the adiabatic wavefunction

tends to localize on one center in3 to a more extent than in the others.

Becausetan andtan−1 are monotonous functions andSAB is very small, the mixing ratio

R can be compared with each other using following quantityR′;

R′ =
∆H

HAB − SAB

(
HAA+HBB

2

) . (6.14)

The largerR′ is, the more localized the electronic structure is. As represented by eq. 6.13,

the mixing ratio is determined by subtle balance among several parameters such asSAB, HAB

etc. It should be emphasized that the solvation energy, which is mainly determined by the

dipole moment of the complex, increases enough to stabilize the localized electronic structure

when the two coefficients,CA, CB, are remarkably different. In3, R′ is much larger than

in the others, because∆H is the largest andSAB is the smallest, as discussed above. This

leads to the much larger dipole moment in3 than in the others, which further leads to the

larger stabilization energy by polar solvent. Thus, the electronic structure of3 is localized in

aqueous solution.
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6.3.2 FEC along Rotation of the Bridge Group

In 3 and4, two pyridyl rings can rotate around C-N and/or N-N bond axis. The increase in

the dihedral angle (δ) decreases the overlap betweenpπ orbital of C4 andC ′
4, which further

changes the energy levels ofπ andπ∗ orbitals of the bridge group, and therefore, the electronic

structure of these complexes is influenced by this rotation. It is interesting to investigate how

much the localization/delocalization of the electronic structure depends on the rotation.

FEC of4 were evaluated atδ = 40 ,̊ 70 ,̊ and 80 ,̊ as shown in Fig. 6.9. Although the elec-

tronic structure of4 is delocalized atδ = 40 ,̊ as was discussed above, it is sufficiently localized

at 80 .̊ As previously mentioned, the dipole moment, which has great influence on the local-

ization in aqueous solution, is mainly determined by the parameterR′ (eq. 6.14). Because the

change of the dihedral angle between two pyridyl planes has little influence on thedπ − π∗ in-

teraction,∆H is almost constant. From eq. 6.14, we can say that the difference in FEC among

δ = 40 ,̊ 70 ,̊ and 80˚ is mainly governed by the overlapSAB andHAB. BecauseHAB is almost

proportional toSAB, SAB is the main factor that determines the localization/delocalization of

these complexes.SAB decreases with an increase in the dihedral angle; for instanceSAB is

0.044 at δ =40˚ (∆r = 0) but significantly decreases to 0.01 atδ = 80 (̊∆r = 0). This small

SAB at δ = 80˚ induces the large dipole moment at∆r 6= 0, which leads to the localized

electronic structure at this angle [37] .

6.4 Conclusions

We have theoretically studied the electronic structures of Creutz-Taube complex and its

analogues. They have been attracting great deal of interests in understanding its electronic

structure, namely, localization or delocalization. There are two important requirements to un-

derstand the electronic structure of the system. One is multi-configurational description in the

wave functions, which is caused by a inherent character of mixed-valence metal complex, and

the other is solvation effect, which is not negligible. In the present study, we have theoretically

investigated these complexes by consideration of “two-state model” based on ab initio molec-

ular orbital theory and dielectric continuum model, and related the localization/delocalization
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of the electronic structure with fundamental parameters, such as overlap and energy gaps. Al-

though the calculation is not sufficient for the understanding of the true nature of the ions, our

work showed the important factors which determine the localization/delocalization.

It is found that all of the electronic structure of the examined complexes would be delo-

calized in gas phase, but the electronic structure of3 with a long bridge, [(NH3)5Ru(4, 4’-

bipyridine)Ru(NH3)5]5+, shows localized electronic structure in aqueous environment. In4,

the electronic structure changes as the dihedral angle becomes large. The localized electronic

structures of the complexes are interpreted in terms that the magnitude of the mixing of two

diabatic states is small; because of large∆H and smallSAB, the mixing ratioR is much larger.

Thus, one of two states becomes dominant enough and the dipole moment of the complex sig-

nificantly increases, which leads to large solvation effects. In the other two complexes,1 and

2, π andπ∗ orbitals in pyrazine and bipyridine interact well with dπ orbital of metal center.

As a result, overlapSAB becomes sufficiently large to induce the electron delocalization. In4,

we wish to propose the possibility that the electronic structure can be designed by introducing

some substituents atC3 andC
′
3 positions of 4, 4’-bipyridine; such substituents increases the

dihedral angle between two pyridyl plane to decreaseSAB.
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[34] N. Koga, K. Sameshima, and K. Morokuma, J. Phys. Chem.97, 13117 (1993).

[35] S. Fraga, K. Saxena, and J. Karwowski,Handbook of atomic data, edited by B. Pullman

(Elsevier, Amsterdam ; New York, 1976).

[36] To compare the orbital energy of Os with that of Ru, we calculated[M(NH3)5]
2+ (M=Ru

or Os) with the HF method. The orbital energies ofdπ orbital are -0.6908 eV for Ru and

-0.6231 eV for Os, respectively.
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[37] This decrease arises from the decrease inSb−b
kk , as shown in Fig. 6.6.
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Chapter 7

Electronic structure and solvation structure of
[Ru(CN)6]

4−/3− in aqueous solution: A RISM-SCF
study

7.1 Introduction

The study of metal complexes in solution phase captures the researcher’s interests and their

structural properties have been extensively reporeted including experimental and theoretical

approaches. In particular, much attention has been payed to the bimetallic cyanide-bridged

complexes from the view point of electron transfer chemistry. They are widely used as an

intramolecular (inner-sphere) electron transfer system. For instance, the transfer rates have

been experimentally determined on [(NH3)5RuNCRu(CN)5]− complex from femtosecond-

spectroscopic investigations, and details of the process as well as the solvation dynamics have

been revealed [1]. Numerous structural studies including X-ray diffraction have been also

reported so far.

On the other hand, studies on the element of these complexes, i.e. fundamental six-coordinated

complexes are rather limited, especially for ruthenium complex [2–4], It is also surprising

that theoretical studies are further limited [5–7]. Since it is very perceivable that the elec-

tronic structure of the molecule is significantly changed in solution phase, main interests of

the current issues are the electronic structure of the complex and solvation structure around

it. It should be noted, however, the electronic and solvation structures are strongly coupled in

general. A simultaneous approach both from solvation chemistry and quantum chemistry is

required to study the present system theoretically.
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RISM-SCF theory, that combines the statistical-mechanics of molecular liquids [8, 9] with

ab intio molecular orbital theory [10–12], is a promising tool to tackle the present subject.

In the theory, electronic structure of a solute molecule in solution and solvent distribution

around the solute molecule are solved in a self-consistent manner. The methods have been

widely applied to a variety of solute-solvent system including transition metal complex [13].

In the present article, we report a theoretical study for the electronic and solvation structure of

[Ru(CN)6]4− and [Ru(CN)6]3− in aqueous solution based on the RISM-SCF theory. A serious

problem in dealing with these systems is the assignment of effective charges that are necessary

to carry out RISM calculation. Because of the specially high symmetry of the system, the con-

ventional RISM-SCF procedure can not attain the simultaneous solution of the equation. By

implementing an efficient technique, we obtain the electronic structure and solvation structure

in a self-consistent manner for the first time.

The organization of this article is as follows. After describing the computational detailes,

electronic and solvation structures of [Ru(CN)6]4− and [Ru(CN)6]3− are discussed.

7.2 Computational Details

RISM-SCF theory combines two major theoretical elements, theab initio molecular orbital

(MO) theory and the RISM integral equation method. In the theory, the solvation effect on the

electronic structure of a solute is taken into account in a self-consistent manner, and simul-

taneous equations for the solute electronic structure and solute-solvent correlation functions

are solved by use of the variational principle for the solvation free energy of the system. We

recommend referring to the reviews and previous studies [14,15].

In the RISM-SCF method, the electrostatic potential (ESP) charges, which are determined

so as to reproduce the electrostatic potential around a solute molecule, is usually adopted since

this set of charges is considered to be suitable to describe the electrostatic interaction between

solute and solvent molecules. However, it is widely known that the assignment of ESP charge

becomes often difficult because of the ill-posed nature of ESP fitting procedure. This difficulty

gets more strained when buried atom exists in the system. In the present case not only the
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Table 7.1: Lennard-Jones parameters
atom σ/Å ε / kcal mol−1 q/|e|
Ru 4.68 0.036 a —
C 3.65 0.150 a —
N 3.20 0.170 a —

water
O 3.17 0.155 -0.82
H 1.00 0.056 0.41
a determined by RISM-SCF method.
See Table 7.2.

ruthenium but also carbon atoms are buried and the charge assignment of these atoms are not

easy. To overcome this problem, we incorporate the modified charge assignment procedure

proposed by Morita et al. [16] into the RISM-SCF computation. The procedure offers a robust

definition of the ESP charges.

The MO calculations were performed at the spin-restricted Hartree-Fock (HF) level of the-

ory by using the Dunning-Huzinaga double-zeta basis sets [17] withd-polarization function

on carbon (α=0.75) and nitrogen (α=0.80). The standard effective core potential and basis

set parameters suggested by Stevens et al., in which 28 inner-shell electrons are replaced with

the core potentials, were used for Ru [18]. The density functional theory (DFT) computations

were also carried out with the hybridized HF/ Becke/ LYP using VWN formula 5 (B3LYP)

for [Ru(CN)6]3−, in which we found very similar tendency to the HF-level computations. The

point group of the complex was taken as the octahedral symmetry (Oh), and the geometry was

fixed through the study at the X-ray structure [2–4];R(Ru-C)=2.023̊A andR(C-N)=1.157̊A.

The electronic structure was solved under the assumption of same symmetry for [Ru(CN)6]4−,

while D4h was employed for [Ru(CN)6]3− to deal with the Jahn-Tellar effect.

The grid points to evaluate ESP were distributed around the centers of all the composing

atoms based on 194 Lebedev polyhedrons [19] with six equally spaced layers from 10 to 30

Bohr for each directions. Total numbers of grid points were 1836.ε [16] was1.0 × 10−1 and

1.0 × 10−4 for Ru(III) and Ru(II) complexes, respectively. The constraint for the total charge

was employed to define the ESP charges.
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Table 7.2: Effective atomic charges and contributions to the solvation free energy

atom
effective chargesa /|e|

∆µ /kcal mol−1
Mulliken ESP

Ru -0.0738 (-0.0738) 0.3353 (0.3353) 35.46
C(ax) -0.0440 (-0.0443) 0.1628 (0.1628) 26.41

[Ru(CN)6]3− C(eq) -0.0794 (-0.0794) 0.1638 (0.1638) 26.54
N(ax) -0.4353 (-0.4347) -0.7211 (-0.7211) -93.76
N(eq) -0.4125 (-0.4126) -0.7185 (-0.7185) -93.26

total free energy -366.13
Ru -0.4356 (-0.5147) 0.5677 (0.3188) 80.56
C(ax) 0.0626 (-0.0409) 0.2998 (0.1269) 58.61

[Ru(CN)6]4− C(eq) 0.0626 (-0.0409) 0.2998 (0.1269) 58.61
N(ax) -0.6567 (-0.5400) -1.0611 (-0.8467) -188.50
N(eq) -0.6567 (-0.5400) -1.0611 (-0.8467) -188.50

total free energy -698.74
a Values in parenthesis are in gas phase.

RISM equation were solved with the hyper-netted-chain (HNC) approximation. SPC-like

water model [20] was employed to describe solvent water. The Lennard-Jones parameter of

carbon and nitrogen were the OPLS parameter set [21], and that of ruthenium was the same

as our previous study [13]. These are summirised in Table 7.1. The density of water (ρ) was

assumed to be 1.0g/cm3 at a temperature (T ) of 298.15K.

All the computations were carried out with our modified version of GAMESS program

packages.

7.3 Results and Discussion

7.3.1 The Electronic Structure

The effective charges computed by Mulliken population analysis and by the ESP procedure

are shown in Table 7.2 together with the solvation free energy (∆µ).

In all the cases, the charges of nitrogen atoms are negative and greater in absolute values

than those of the buried atoms. This trend is similar in the two population analyses, although

the effective charges derived from them are slightly different. The difference comes from

the fact that each method reflects different characteristics of the electronic structure. The

113



Mulliken analysis represents the distribution of electron density in the solute, while the ESP

is determined so as to reproduce the electrostatic potential around the solute. In other words,

it is related to how the electronic distribution is seen from solvent molecules. For the results

of ESP charges, it can be said the electronic character of the two complexes are similar in

the gas phase: the effective charges on the ruthenium and carbon atoms are positive (ca. 0.3

and 0.1, respectively), whereas the charge on nitrogen atoms is notably negative (-0.7 to -0.8).

The change of charges on the central ruthenium upon the reduction is not so large, and excess

electron is de-localized over the whole complex.

The situation is changed in the solution phase. The solvation considerably affects the elec-

tronic structure of [Ru(CN)6]4− and the effective charges are significantly altered from the

gas phase ones. On the contrary, the electronic structure of [Ru(CN)6]3− is undisturbed and

the charges are virtually the same. The quadrupole moments(Qxx, Qyy, Qzz) of this complex

are(2.065, 2.065,−4.131) and(2.092, 2.092,−4.184) in the gas and aqueous solution phase,

respectively. This electronic structure change is closely related to the hydration structure of

these complexes as we will discussed later. In [Ru(CN)6]3−, the axial and equatorial nitrogen

and carbon atoms are considered to be different each other in nature because of the Jahn-Tellar

effect. But the effective charges of them are almost identical and any further difference is not

seen.

How does the solvation affect the orbital energies of these complexes? Figure 7.1 illus-

trates the change of orbital energies near the frontier orbitals by the solvation. The horizontal

axis of the graph is the orbital energy in gas phase, while the vertical axis represents that in

aqueous solution. The mark denoted by the symmetry groupt2g is degenerated three orbitals

in [Ru(CN)6]4− complex corresponding todxy, dyz anddxz of the ruthenium 4d orbitals. The

electronic structure of [Ru(CN)6]3− is computed withD4h symmetry so as to allow the splitting

of these orbitals into two degenerated (eg) and one singly occupied (b2g) orbitals. The orbital

energies in both phases (including some virtual orbitals) show very good correlation in each

complex. This means that the orbital energies becomes negatively greater in aqueous solution

but the solvation just shifts all the energies equivalently. Presumably, this happens because of
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Figure 7.1:Selected orbital energies in the gas phase and in aqueous solution. The occupied orbitals
are labeled with their degeneracy (the number in parenthesis).

the specially high symmetry of the present system. It is noted that the total energy represented

by the total hamiltonian is not invariant upon transferring from the gas to aqueous solution

since the system we are considering is dissipative one. The deepening of orbital energies does

not seem to matter much.

∆µ can be decomposed and assigned to contribution from each atom (α) composing the

solute molecule, because∆µ is formally expressed as a sum of the site-site contributions.

∆µ =
∑

α

∆µα, (7.1)

and

∆µα = −ρkBT
∑

s

∫
dr

(
cαs(r) −

1

2
h2

αs(r) +
1

2
hαs(r)cαs(r)

)
, (7.2)

wheres indicates atoms in solvent molecules, and the functionshαs and cαs are total and

direct correlation functions, respectively.hαs is essentially equivalent to the pair correlation

function (PCF). Note that∆µα is not the same as the solvation free energy of an isolated

atomα in the solvent. The correlation function used to evaluate∆µα depends on all other

atoms in the solute. As listed in the table, the greatest contribution to the solvation free energy
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comes from nitrogens. This is quite a contrast to the hexaammine complex [13], in which

the contribution from the embedded ruthenium is dominant. Presumably, the excess electron

weakens the effect from the ruthenium and direct electrostatic interaction between nitrogen

and solvent plays central role in the solvation process.

7.3.2 The Solvation Structure

0 . 00 . 51 . 01 . 52 . 0

0 . 0 2 . 0 4 . 0 6 . 0 8 . 0 1 0 . 0[ R u ( C N ) 6 ] 3 �[ R u ( C N ) 6 ] 4 �PC F( R u �O)
R / Å

Figure 7.2:PCF between the ruthenium and oxygen atom of solvent water.

A big advantages of the present method is to provide the information of solvation structure

in atomic level. Figure 7.2 is PCF between the central ruthenium and oxygen atom of sol-

vent water. In the present model, direct contact of ruthenium and oxygen atoms should appear

around(σRu + σO)/2 = 3.9Å. A small shoulder found around3.5Å in [Ru(CN)6]4− corre-

sponds to the sovlation structure of this contact. The conspicuous peaks aroundR = 5Å in

the both complexes are attributed to the oxygen atom circling around the solute molecule. If

the oxygen approaches to the complex along C–N axis, the peak position must be longer. For

this results, the oxygen is considered to approach to nitrogen atoms perpendicular to the C–N

axis. Since the ligand cyano group in these complexes is linear, there is a space for solvent

molecule to enter the area between the ligands. Consequently, it is considered that attractive
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interaction in [Ru(CN)6]4− is strong enough to make a direct contact between the metal and

solvent. However, it must be reminded that counter cations are not included in the present

computations. In reality, the central metal may attract the cations and solvent molecules tend

to be excluded from the nearest neighbour of the metal.

0 . 01 . 02 . 03 . 04 . 05 . 06 . 07 . 0

0 . 0 2 . 0 4 . 0 6 . 0 8 . 0 1 0 . 0
PC F(C a x/ N a x�H)

R / Å
N a x � H

C a x � H R u – C N OH OH1 . 8 Å2 . 3 Å 2 . 8 Å
Figure 7.3: PCF between cyano group and hydrogen atom of solvent water. Solid lines are
[Ru(CN)6]3− and dashed lines represent [Ru(CN)6]4− .

Figures 7.3 and 7.4 are PCF around the cyano group. First thing one notices in these figures

is the peak around 2.0̊A in the N–H PCF. This can be obviously assigned to the hydrogen

bonding of solvated water molecule. The distinct peak around 3.0Å in the N–O PCF is another

evidence of this hydrogen bonding. As mentioned above, the bonding is not co-linear along

the C–N axis if we consider the peak positions. In the C–O PCF, the position of the first peak

is found around 3.5̊A. It is geometrically impossible to arrange C, N and O atoms in a straight

line, since the peak positions of C–O and N–O are too close. A possible solvent location that is

consistent with these peak positions is shown in the figure. It is noted, however, that the peak in

C–O PCF is rather broad and a small shoulder is seen around 4.0Å. This length is sufficient to

align three atoms in a straight line. In summary, there is a strong hydrogen bonding between the

nitrogen and hydrogen atoms, but solvent molecules can be placed with wide range of angles

in a continuous fashion. Two O–H moieties depicted in the figure correspond to the limits of
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these distribution. Similar to the discussion in the effective charges, axial and equatorial atoms

are virtually the same and their PCFs are indistinguishable.

0 . 00 . 51 . 01 . 52 . 02 . 53 . 0

0 . 0 2 . 0 4 . 0 6 . 0 8 . 0 1 0 . 0
PC F(C a x/ N a x–O)

R / Å

N a x – O C a x – O R u – C N OH OH3 . 9 Å 2 . 8 Å3 . 0 Å3 . 4 Å

Figure 7.4:PCF between cyano group and oxygen atom of solvent water. See the caption in Fig 7.3.

It is noted that all the peak positions in PCF of [Ru(CN)6]3− and those in [Ru(CN)6]4− is

very close to each other and only the peak height is slightly greater in [Ru(CN)6]4− than that

in [Ru(CN)6]3−. This implies that the solvation structure around these complexes are similar.

7.4 Conclusions

Solvation and electronic structure for the two metal complexes, [Ru(CN)6]3− and [Ru(CN)6]4−

in aqueous solution, are studied by means of the ab initio RISM-SCF method.

The electronic structure of these complexes in gas phase are similar from the view point

of ESP fitting charge. The electrons tend to show partiality to nitrogen atoms and the buried

atoms (ruthenium and carbon) are positively charged. The solvation effect differentiates the

electronic structure of them. [Ru(CN)6]3− is insensitive to the effect and the partial charges

assigned on each atom are not changed, whereas the electronic structure of [Ru(CN)6]4− is

significantly polarized by the solvation.

For the results of peak positions of PCF around the two complexes, we can conclude that the
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solvation structure is not greatly changed from the oxidation states of the complex although

the peak heights, i.e. solvation strength are slightly different each other.
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Chapter 8

Alternative couplings of solute–solvent interaction
in RISM-SCF method

8.1 Introduction

Electronic structure is considerably affected by solute–solvent interaction. In many cases,

the electrostatic interaction is the dominative one that governs the electronic structure of the

molecules as well as the solvation structure. Numerous representations have been proposed to

describe this Coulombic interaction. For example it is replaced with the interaction between

the electronic density of the solute and the surrounding media within the framework of dielec-

tric continuum models such as polarisable continuum model (PCM) [1, 2]. In the reference

interaction site model-self-consistent field (RISM-SCF) theory, the electrostatic potential of

the reaction field at solute atomα produced by the surrounding molecules is expressed as the

consequence of the statistically averaged charge distribution.

Vα = (V)α = ρ
∑

s

∫
qs

r
gαs(r)dr, (8.1)

whereqs is the partial charge on the sites in solvent,ρ is the bulk density of solvent, and

gαs(r) is the pair correlation function (PCF) betweenα ands. The interaction energy (Eint) is

described as the product of the partial charge assigned on the site in solute (q
(e)
α ) and(V).

Eint = Vt · q(e) =
∑

α

Vαq(e)
α . (8.2)

In the original version of RISM-SCF, a set of partial charges is determined so as to reproduce

the electrostatic potential (ESP) around the solute with the least square fitting procedure, which
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is used for the charge (q(e)) in Eq.(8.2). This is presumably the most reliable choice of the

partial charge in the present purpose and RISM-SCF have been successfully applied to broad

range of chemical phenomena [3–7]. However, it is known that ESP charge set sometimes

shows ill behaviours such as multiple-valued nature.

In the present work, other types of the interaction are examined as an alternative to the

description of the solute–solvent interaction.

8.2 Method

In the conventional RISM-SCF procedure, ESP charge (q
(e)
ESP) set is used to represent the

solute electronic structure. Since the least square fitting is analytically employed the charge

set attributed to the electron is described as the following closed-form equation,

q
(e)
ESP = −tr

(
a−1PB

)
− −1ttr (a−1PB) − Ne

1ta−11
a−11, (8.3)

whereP is ‘density matrix’,B anda are defined by

(B)µ,ν,i =

grid points∑
k=1

1

|ri − rk|

∫
χ∗

µ(r′)χν(r
′)

|rk − r′|
dr′, (8.4)

(a)ij =

grid points∑
k=1

1

|ri − rk||rj − rk|
. (8.5)

Ne is the total numbers of electrons. For the meanings of other notations, we recommend

referring to the original paper [5, 6]. The solvated Fock matrix element of the conventional

RISM-SCF method

Fsolv = Fgas − Vt ·
[
a−1B − a−11

1ta−11

(
1ta−1B − S

)]
, (8.6)

is derived using this definition of charge set (Method A).

The simplest procedure to derive the charge set is undoubtedly Mulliken population analysis

(MPA), in which the charge on atomα is given by,(
q

(e)
MPA

)
α

= −
∑
µ∈α

(PS)µµ , (8.7)
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whereS is overlap matrix. The relationship between these two charge sets is discussed in the

Appendix. In the spirit of the conventional RISM-SCF procedure, the solvated Fock operator

(F solv
µν ) can be defined as follows (Method B).

Fsolv = Fgas − X, (8.8)

where the matrix element related to atomsα andβ is given by,

Xµν =
1

2
(Vα + Vβ)Sµν , µ ∈ α andν ∈ β. (8.9)

As stated above, two representations of the wave function are used in the RISM-SCF theory,

q
(e)
ESP and q

(e)
MPA. They are obtained from the electronic structure calculation and used for

solving RISM equation. Eqs. 8.6 and 8.8 are describing the interaction part of the electronic

hamiltonian and related to these charges, respectively. Now, ‘dual’ type procedure may be

possible to be considered (Method C). The Fock operator defined in Eq. (8.6) is used for

the electronic structure computations, whilst the Mulliken charge set derived from this Fock

operator is used for the RISM computations. The resultant PCF is used for the construction

of Eq. 8.6. It is noted that the quantity in the square brackets of Eq. 8.6 can be computed

only with the information of the basis functions and the grid points{rk}, which expresses the

spatial property around the solute molecule.

The reason to choose this combination is as follows; The electrostatic interaction computed

with Eq. 8.8 is generally stronger than the ESP case, Eq. 8.6. This is becauseB virtually

reflects the extension of electronic clouds of the solute molecule through the grid points, thus

the solute–solvent interaction can be treated in a reliable manner. Meanwhile, the absolute

values ofq(e)
ESP is slightly greater thanq(e)

MPA in many molecular systems, meaning the polar-

ization of a molecule is somewhat emphasized when usingq
(e)
ESP. Since the charge set directly

governs RISM computations, solvation structure depends on the choice of the charge set. The

present choice of combination is very pragmatic but effective way to compute the solvation

effect. Such discordance in the description of the interaction is often seen in the framework of

QM/MM and causes no problems in our experiences.
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Table 8.1: Several properties of water molecule in aqueous solution
Method gas A B C

Mulliken charge (qO) / |e| -0.68 -0.82 -1.20 -0.78
dipole moment / Debye 2.24 2.84 2.71 2.67
∆µ / kcal mol−1 — -8.66 -17.05 -5.07
Ereorg / kcal mol−1 0.00a 3.36 10.42 1.74
Eint / au — -0.42943 -0.52387 -0.33787
orbital energy (a1) ε1/au -20.5565 -20.5861 -20.5784 -20.5803

(a1) ε2/au -1.3463 -1.3746 -1.3857 -1.3694
(b1) ε3/au -0.7109 -0.7403 -0.7455 -0.7348
(a1) ε4/au -0.5758 -0.6185 -0.6128 -0.6093
(b2) ε5/au -0.5029 -0.5371 -0.5412 -0.5302

a Total energy is -76.04635 au in gas phase.

In the following section, these three procedures are compared from the view point of physi-

cal properties and the convergency.

8.3 Results and Discussion

8.3.1 Benchmark computations on water in aqueous solution

We have applied three types of RISM-SCF method to water molecule in aqueous solution.

Hartree-Fock method with DZP basis sets [8] was employed for the electronic structure com-

putations and SPC-like parameters [9] were adopted in the the RISM part. The experimental

geometry (ROH=0.9575̊A and∠HOH=104.51◦) is used. All calculations were carried out at

the temperature 298 K and the solvent density 0.03334 molecule/Å
3
.

The representative physical properties are summarised in Table 8.1. Mulliken charge as-

signed on the oxygen and the dipole moment show that the electronic structure of the water

molecule in aqueous solution is polarised in all the cases compared with the molecule in the gas

phase. The interaction between the solute and solvent in Method B is the strongest, while that

in C is the weakest. The conventional procedure (Method A) is intermediate between them.

The excess chemical potential (∆µ) becomes negatively greater while the reorganisation or

polarisation energy (Ereorg) becomes positively greater, as the interaction is strengthened. The

interaction regularly makes the orbital energies deeper except forε4 of method A. At this mo-
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ment we do not have any clear explanation of the nonstandard depth of the orbital.

0 . 00 . 51 . 01 . 52 . 02 . 53 . 03 . 5

0 1 2 3 4 5 6 7 8

M e t h o d AM e t h o d BM e t h o d CPC F
R / Å

O � OO � H

Figure 8.1: PCF around water molecule in aqueous solution computed by three different meth-
ods.

The pair correlation function (PCF) computed by the three methods are plotted in Fig. 8.1.

The positions of the first peaks in O–H and O–O look very similar, but their heights are slightly

different each other. The hydration number is one of the measures to judge the reliability

of PCFs. By integrating the O–H PCF up to the first minimum, we obtained 1.90 (Method

A), 1.86 (Method B) and 1.55 (Method C) respectively. All these values are less than two,

which is good accordance with estimation in a molecular simulation studies (1.6–1.9) [10,11].

The heights and hydration number show that the interaction computed by Method C is the

smallest among the three, which is consists with the properties discussed above. Fig. 8.2

illustrates the convergence profile of the computations of the three methods. Exactly the same

algorithm were used for computing the RISM-SCF. The convergence is judged by the root-

mean-square-deviation of the electrostatic potentials in the successive iteration cycles. Because

of its moderate interaction, computation by Method C quickly converges to the threshold. On

the other hand, convergence rate of Method B is two time slower than Method C.

All these results clearly show that the interaction by Method C is weaker than the conven-

tional method, A, while that by B is stronger than A. In other words, the electronic structure
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Figure 8.2: Convergence behaviour of the three methods.

by Method B is the most greatly distorted with respect to the gas phase one. Another point

we would like to point out is that the solute-solvent interaction is well described by the linear

response regime of solvation in many cases. The convergence rate must be faster as weaker

the interaction.

8.3.2 A charge-transfer complex NH3-BH3

NH3-BH3 is known as a typical charge-transfer complex. The sum of Mulliken charges

in NH3 moiety in the gas phase is+0.26|e| at the optimized geometry, exhibiting its charge-

transfer character. According to our experience, the RISM-SCF computation diverges when

the conventional Method A is applied to this system in aqueous solution. The reason of this

behaviour originates from the effective charge assigned on the hydrogen attached to the boron

atom (HB). The value given by ESP procedure is largely negative (-0.2, for example) that

attracts hydrogen of liquid water. The height of the first peak in the HB–H PCF increases,

then the polarisation of B–HB bond is enhanced by the solvation, which again attracts water

hydrogen atoms. Because of this endless cycle, the convergence is not usually attained. The

situation is the same when using Method B due to its strong interaction.
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The convergence can be obtained only when using Method C since its interaction is the

most moderate. In the present work, Hartree-Fock method with DZP basis set is carried out.

Lennard-Jones parameters are taken from literatures (σB = 3.71Å, εB = 0.136 kcal mol−1

[12], σN = 3.42Å, εN = 0.170 kcal mol−1 [13], σHB = 2.00Å, εHB = 0.070 kcal mol−1 [14]).

The parameter for HN is set to the same as SPC-like water’s. Fig. 8.3 shows the PCFs around

the solute molecule. All peaks indicate that the description of the hydration is reasonably

obtained with this method. Because of the negative charge on the hydrogen atom attached to

the boron, HB–H PCF shows a well-marked peak around 1.5Å. At the same time, hydrogen

atom in solvent water is also attracted to the boron atom.

0 . 00 . 51 . 01 . 52 . 02 . 5

0 1 2 3 4 5 6 7 8
PC F

R / Å

B � O
B � H w H B � OH B � H w

Figure 8.3: PCF around NH3BH3. HW indicates the hydrogen of solvent water

The converged Mulliken charges on HB, B, N and HN are−0.107|e|, −0.160|e|, −0.526|e|

and0.336|e|, respectively. The corresponding charges in the gas phase are−0.157|e|, 0.208|e|,

−0.715|e| and0.326|e|, respectively. In aqueous solution, the charge-transfer is strongly en-

hanced and the sum of Mulliken charges in NH3 moiety is+0.48|e|, which is twice as large as

in the gas phase. It is of great interests that even the sign of the effective charge of the boron

atom inverts by flowing electrons from NH3 to BH3 moiety. The boron atom also attracts elec-

tron from the attached hydrogen atoms. These changes in the effective charges indicate that
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the electronic structure around the boron is significantly affected by the solvation.

8.4 Conclusions

In the present work, we proposed other type of electrostatic couplings between solute and

solvent molecules within the framework of RISM-SCF theory. It is found that the interaction

by Mulliken-type method is stronger than the conventional method based on ESP, while that

by dual-type method is much more moderate than the others. The dual-type method is very

pragmatic but effective way to compute the solvation effect.

Appendix

We consider the relationship between the two charge,q
(e)
ESP andq

(e)
MPA. Let us start with

considering the first term in Eq. 8.3.

−tr
(
a−1PB

)
= −

∑
β

∑
µν

a−1
αβBµν,αPνµ

= −
∑

β

∑
µν

a−1
αβ

∑
g

1

|rα − rg|
〈µ| 1

|rg − r|
|ν〉Pνµ, (8.10)

whereµ andν are atomic orbitals (basis set) belonging to atomsξ andη, respectively. Intro-

ducing Mulliken-type approximation on the matrix element,

〈µ| 1

|rg − r|
|ν〉 ∼ 1

2

(
1

|rξ − rg|
+

1

|rη − rg|

)
〈µ|ν〉, (8.11)

Eq. 8.10 is rewritten as follows,

−1

2

∑
α

∑
ξη

∑
µ∈ξ

∑
ν∈η

a−1
αβ (aαξ + aαη) 〈µ|ν〉Pνµ

= −1

2

∑
ξη

∑
µ∈ξ

∑
ν∈η

(δβξ + δβη) 〈µ|ν〉Pνµ =
∑
µ∈β

(PS)µµ ≡
(
q

(e)
MPA

)
β
. (8.12)

Note thata is symmetric matrix. Thus theq(e)
ESP is reduced toq(e)

MPA by applying Eq. 8.11 to

Eq. 8.10, since the second term in Eq. 8.3 disappears by using the same approximation.
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Chapter 9

New-generation of the reference interaction site
model self-consistent field method: Introduction of
spatial electron density distribution to the
solvation theory

9.1 Introduction

Quantum molecular orbital calculation (MO calculation) with solvation effect is a funda-

mental tool in the theoretical study of chemical physics in solution. Many solvation theories

have been proposed for investigation of chemical process in solvation phase.

In dielectric continuum model, such as polarizable continuum model (PCM) [1], solvent

molecules are replaced by macroscopic media with dielectric constant. The electronic struc-

ture is solved in vacuum cavity surrounded by the dielectric continuum. In quantum mechan-

ics/molecular mechanics simulations (QM/MM), the neighboring solvent molecules around a

solute molecule are treated explicitly. The electronic structure and solvation structure are cal-

culated by averaging over various solvent configurations. Although these methods have been

widely employed, the former oversimplifies microscopic characters of solvent and the latter

requires large computational cost for the generation of the solvent configurations. Reference

interaction site model self-consistent field (RISM-SCF) [2,3] is another method, in which sol-

vation structure is provided by an integral equation theories based on statistical mechanics of

molecular liquids (RISM) [4, 5]. RISM-SCF offers not only various macroscopic thermody-

namic quantities but also microscopic properties such as radial distribution functions (RDFs)
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with reasonable computational cost. RISM-SCF has been successfully applied to understand

the interplay between the electronic structure and solvation structure [6].

In the treatment of solvation effect, Coulomb interaction between solute and solvent molecules

is primarily important factor in most cases. A common representation for the interaction is the

sum of pairwise interactions between point charges assigned on each atom. The most popular

method to set the charges is the least-square fitting (LSF) procedure, in which the effective

charges are determined so that the electrostatic potential (ESP) derived from MO calculation

can be reproduced at a set of grid points. Although the LSF procedure, which is employed

for the original RISM-SCF [2], is very simple, several weak points have been pointed out so

far. For example, the atomic charges depend on the choice of the set of grid points. When

buried atoms exist in the molecule, the evaluation of the atomic charges are often ill-behaved.

Besides, the representation of point charges neglects spread of electron distribution.

To obtain more realistic Coulomb interaction, another strategy has been used in quantum

chemical study, especially in the field of density functional theory. In this strategy, the aux-

iliary basis sets (ABSs) on each atom are prepared to divide electron density into the com-

ponents assigned on each atom. Gill, Johnson, Pople, and Taylor proposed a procedure to

determine ABSs which reproduce the ESP provided by MO calculation (GJPT procedure) [7].

The great advantage of GJPT procedure is that it treats directly spatial electron density dis-

tribution (SEDD) and does not require the set of grid points; it is free from these artificial

parameters. As described later, GJPT procedure is very stable to determine the charges even if

a buried site is involved in the solute molecule.

In this paper, we propose the new-generation RISM-SCF, in which GJPT procedure is em-

ployed. The present method, RISM-SCF explicitly including SEDD (RISM-SCF-SEDD), is

much more robust in the connection between RISM and MO calculation than the original ver-

sion of RISM-SCF and significantly expands the versatility of the RISM-SCF family. In Sec.

9.2, the RISM-SCF-SEDD formalism and the relation between GJPT and LSF procedures are

presented. In Sec. 9.3, the computational details of this work are described. The results of

H2O, C2H5OH, and HLi evaluated by RISM-SCF-SEDD are shown in Sec. 9.4.
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9.2 Method

9.2.1 The formalism of RISM-SCF-SEDD

In GJPT procedure, model electron densityρ̃ is determined so that the ESP calculated by

MO calculation can be reproduced, under the constrain of conservation of total number of

electron. Gillet al. showed that̃ρ can be obtained by minimizing the following quantity:

Γ = −2π

∫ ∫
(ρ(r1) − ρ̃(r1)) |r1 − r2| (ρ(r2) − ρ̃(r2)) dr1dr2 + 2λ

[
Ne −

∫
ρ̃(r)dr

]
,(9.1)

whereNe is the number of electrons andρ is the electron density derived from MO calculation.

ρ̃(r) is represented by the set of ABSsfi(r) centered on each solute site,

ρ̃(r) =

NABS∑
i

difi(r), (9.2)

whereNABS is the number of ABSs [8]. The expansion coefficientsd in eq. 9.2 can be deter-

mined by the following equations,

d = X−1tr(PY) − λX−1Z, (9.3)

λ =
ZtX−1tr(PY) − Ne

ZtX−1Z
, (9.4)

using the density matrix{Pµν} (=
∑

i niCµiC
∗
νi) calculated from MO coefficients{Cµi} and

occupation numberni. The components of the matrixX, Y, andZ are defined, as follows:

Xij =

∫ ∫
fi(r1)|r1 − r2|fj(r2)dr1dr2, (9.5)

Yµν,i =

∫ ∫
φµ(r1)φν(r1)|r1 − r2|fi(r2)dr1dr2, (9.6)

Zi =

∫
fi(r)dr, (9.7)

whereφ is the basis function employed in MO calculation.

The effective electrostatic interaction betweenfi and solvent is then given by [2]

Vi = nV
∑

γ

qγ

∫ ∫
fi(r

′ − rα)

|r − r′|
hαγ(|r − rα|)drdr

′
(i ∈ α), (9.8)

wherehαγ is total correlation function between solute siteα and solvent siteγ. qγ is partial

charge of solvent siteγ, nV is the number density of solvent, andrα is the coordinate of solute
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siteα. By employing the standard procedure in RISM-SCF [2,3], the solvated Fock matrix is

given by,

Hsolv = Hgas − VX−1Y +
VX−1Z

ZtX−1Z

[
ZtX−1Y − S

]
, (9.9)

whereHgas is the Fock matrix in gas phase andS is overlap matrix.

9.2.2 The relationship between GJPT and LSF procedures

In this section we would like to make a brief comment on the relationship between GJPT

and LSF procedures. In the standard LSF procedure, atomic populationq is determined by the

following equation [2],

q = A−1tr(PB) − λA−11, (9.10)

λ =
1tA−1tr(PB) − Ne

1tA−11
. (9.11)

The components ofA andB are defined as follows:

Aαβ =
l∑

k=1

1

|rk − rα||rk − rβ|
(9.12)

Bµνα =
l∑

k=1

∫
φµ(r1)φν(r1)

|rk − rα||rk − r1|
dr1, (9.13)

whererk is the coordinates of grid point andrα is those of solute site.

Comparing eqs. 9.3 and 9.10, the stability of the charge-determination depends on the

character ofX−1 and A−1. In the case of LSF procedure,A is calculated from the grid

set around the solute molecule. Since grid pointrk is far from rα (or rβ) in most cases

(|rk − rM | À |rα/β − rM |), eq. 9.12 is,

Aαβ =
l∑
k

1

|(rk − rM) − (rα − rM)||(rk − rM) − (rβ − rM)|

∼
∑

k

1

|rk − rM |2
= Const. , (9.14)

whererM is arbitrary point in the molecule (ex. the center of mass). Thus all the components

of A tend to be very similar to each other and the behavior of inverse of such matrix sometimes
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becomes unstable. [9] On the other hand, the components of eq. 9.5 are much characterized

only by the center of ABSs,fi andfj. Therefore, the components ofX are very different from

each other andX−1 is robustly given compared toA−1 is. The advantage of GJPT procedure

relative to LSF procedure is mainly from this different character.

9.3 Computational details

In the present study, normal gaussian functions are employed for ABSs,

fi(r) = Ci exp(−αir
2), (9.15)

whereCi is an appropriate coefficient [10]. Eq. 9.8 is simplified, as follows;

Vi = ρ
∑

γ

qγCi

(
π

αi

) 3
2
∫ ∞

0

4πr2 erf(
√

αir)

r
hαγ(r)dr (i ∈ α) (9.16)

The exponents of the functionsαi and the number of ABSs are determined using the algorithm

employed in the GAUSSIAN 03 [8,11].

RISM and these expressions have been implemented by us in GAMESS [12]. A robust

solver for RISM calculation is also implemented (see Appendix). The integration of eqs. 9.5

and 9.6 are calculated using the Obara-Saika recursions [13,14]. All calculations are performed

with GAMESS [12] and Gaussian 03 [11].

9.4 Results and discussion

RISM-SCF-SEDD is applied toH2O, C2H5OH, and HLi in aqueous phase. The calculation

in this article is performed by restricted Hartree-Fock (RHF) with 6-31G* [15, 16] forH2O

andC2H5OH, and with 6-31G** [17] for HLi [18]. The Lennard-Jones (LJ) parameters are

summarized in Table 9.1. For comparison in the charge determination, two sets of grid points

are prepared for the LSF procedure in the original RISM-SCF. The grid points employed in

this work consist of radial part and angular part; the radial part is prepared from 5 to 50 Bohr

(set A) and from 10 to 50 Bohr (set B) and angular part is based on deltoidal icositetrahedron

(vertex 26).
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Table 9.1:Lennard-Jones interaction parameters

σ(Å) ε(kcal/mol)
H2O

a

O 3.166 0.155
H 1.000 0.056

C2H5OH
Cb 3.800 0.050
Hb 2.500 0.050
Ob 3.070 0.170

H(OH)a 1.000 0.056
HLi

Hc 2.00 0.070
Lid 2.126452 0.018279

a From Ref. [2],
b From Ref. [27],
c From Ref. [28],
d From Ref. [29]

9.4.1 H2O

H2O is one of the typical molecules studied by many chemists. In this section, electrostatic

structure (charge and dipole moment) and solvation structure calculated by RISM-SCF-SEDD

and the original RISM-SCF are presented.

Table 9.2: Charges and dipole moment forH2O derived from RISM-SCF-SEDD and the original
RISM-SCF withset Aandset B.

qS qA qB

O -0.974 -0.994 -0.993
H 0.487 0.497 0.496

dipole moment (D) 2.699 2.737 2.747

The charges evaluated by RISM-SCF-SEDD (qS) and the original RISM-SCF calculated

using theset A andset B grid (qA andqB, respectively) are shown in Table 9.2, where the

dipole moment calculated by these methods are also shown. In the case ofH2O, there is little

difference betweenqA andqB. Although absolute value ofqS is somewhat smaller thanqA/B,
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these are very similar to each other. The difference in the dipole moment is also very small.

By comparing with the experimental value of dipole moment (2.6 D), it is shown that RISM-

SCF-SEDD and the original RISM-SCF give reasonable evaluation in electrostatic structures.
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Figure 9.1:RDFs ofH2O derived form (a) RISM-SCF-SEDD and (b) the original RISM-SCF.

RDFs calculated by RISM-SCF-SEDD and those by the original RISM-SCF are shown in

Fig. 9.1. The sharp peak located around 1.9Å corresponds to hydrogen bond between H and

O. These methods correctly evaluate the height and the positions of these peaks.

9.4.2 C2H5OH

C2H5OH has buried sites,C1 of CH3 group andC2 of CH2 group, and the effective charges

of these atoms in gas phase have been studied in detail [19,20].

qS derived from RISM-SCF-SEDD andqA/B derived from the original RISM-SCF ofC1,

C2, andO are shown in Fig. 9.2. They are plotted along the each RISM-SCF cycle. The charge

at iteration cycle = 1 corresponds to that in gas phase.qA/B significantly depends on the choice

of grid sets even in gas phase.qB of C1 is almost zero butqA is negative. The difference in

charges derived from the grid set becomes large as iteration cycle increases. The change ofqA

from gas phase to aqueous phase is not so large. On the other hand,qB monotonously increases

or decreases and eventually diverges. Such divergence sometimes occurs in the calculation of

the original RISM-SCF when the buried sites exist in a solute molecule. In the case of RISM-
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Figure 9.2:The change ofqS , qA, andqB of C1, C2, and O along the RISM-SCF iteration cycle.

SCF-SEDD, the grid set is not needed and the convergedqS is similar to the convergedqA. The

stability ofqS and the independence of grid points show that RISM-SCF-SEDD is superior to

the original RISM-SCF when buried sites exist.
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Figure 9.3:RDFs ofC2H5OH derived form (a) RISM-SCF-SEDD and (b) the original RISM-SCF.

The RDFs calculated by RISM-SCF-SEDD and the original RISM-SCF are shown in Fig.

9.3. Those computed withqS and withqA look like very similar as in the case ofH2O, while

the peaks corresponding to hydrogen bonding (∼ 2.0Å) by RISM-SCF-SEDD is somewhat

lower than that by the original one.
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9.4.3 HLi

Table 9.3:Charges,qS , qA, andqN for H site of HLi molecule calculated in gas phase and in aqueous
phase.

qS qA qN

H in gas phase -0.756 -0.763 -0.730
H in aqueous phase -1.044 -1.384 -0.887

HLi is a very simple molecule but the polarization induced by solvent is very large. The

natural charges [21, 22] calculated with IEF-PCM [23] (qN ), qS, andqA are shown in Table

9.3. The corresponding gas values are also shown in Table 9.3. In gas phase, the values

calculated by all these methods are almost the same with each other. However the charge

deviation between H and Li inqA is much stronger than those inqS andqN in aqueous phase.
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Figure 9.4: RDFs of HLi derived form (a) RISM-SCF-SEDD and (b) the original RISM-SCF.
Schematic figures of solvation structure around Li and around H are shown.

RDFs provided by RISM-SCF-SEDD and the original RISM-SCF are shown in Figs. 9.4(a)

and (b). The schematic solvation structures are shown in the right-upper side of Fig. 9.4(a).

Sharp peaks located around 1.35 (peaka) and 2.09Å (peakb) in Fig. 9.4(a) correspond to

direct interactions, H-H and O-Li, respectively. They originate from the the strong Coulomb

interaction between H-H and O-Li. Compared to peaka and peakb, the peaks located around

2.35 (peakc) and 2.80Å (peakd) are broad, since they correspond to indirect interaction as
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shown in the schematic figure. Peakd is moderately broad compared to peakc. The difference

in these peaks shows that solvent H can move around a solute molecule more easily than the

solvent O can. The solvation structures by the original RISM-SCF are very different from

those by RISM-SCF-SEDD. For example, H-H (peake) and Li-O RDFs, which correspond to

direct interaction, are too high. In particular, peake looks like that obtained in solid state. This

is because the ESP derived fromqA is very strong.

In RISM-SCF procedure, ESP is expressed by point charges or ABSs that are determined so

as to reproduce the ESP directly computed from the electron density, i.e., molecular orbitals

(UMO). The accuracy of the fitted ESP (UFit) by the point charges or ABSs can be examined by

measuring the deviation from the original ESP,∆U = UFit −UMO. It should be noted that the

converged electron densities of RISM-SCF-SEDD and of the original RISM-SCF are slightly

different from each other. We thus defined the deviation,∆USEDD and∆UORG, respectively.
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Figure 9.5:The difference of the ESP evaluated by RISM-SCF-SEDD and by the original RISM-SCF
from that calculated by QM calculation along HLi bond; solid and dotted line correspond to∆USEDD

and∆UORG. Shaded area show the region where the distance from solute site is shorter than the LJ
parameter,σ/2.

In Fig. 9.5, the∆USEDD and∆UORG along the H-Li bond are shown.UFit reproducesUMO

very well in the case of RISM-SCF-SEDD. On the other hand,UFit by the original RISM-SCF

(qA) is considerably different from theUMO: ∆UORG is strongly positive, especially in the

region ofX < 0 and2.5 < X < 5.0 Å, while it is negative in the region close to the solute H

(2.0 < X < 2.5 Å). These discrepancies seem to be insensitive to the choice of the grid points
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and∆UORG does not change so much even the grid range is shifted to the shorter distance

(from 5 to 20 Bohr). This deviation in the fitted ESP is very crucial to determine the RDFs and

is related to unphysical peaks in the original RISM-SCF, such asedepicted in Fig. 9.4(b).

9.5 Conclusions

We developed the new-generation of RISM-SCF, RISM-SCF-SEDD. The main advantages

of the present method are that it includes explicitly spatial distribution of electron density

and that it is grid free and robust compared to the original RISM-SCF. In this article, the

independence of the grids and the origin of the stability of the calculation are discussed from

the definition of the matrices used in the charge-determination.

RISM-SCF-SEDD was applied toH2O, C2H5OH, and HLi in aqueous phase. The charges

derived from the method are very stable and reasonable both in the case ofH2O, which is

typical example, and in the case ofC2H5OH, which has buried sites. In the case of HLi,

the polarization in charges between H and Li is strongly enhanced in water. With RISM-SCF-

SEDD, the origin of the polarization was clearly discussed from the solvation structures, which

is difficult with the original RISM-SCF.

Appendix: A Robust solver for RISM

In RISM, the iterative calculation is needed. When the interaction between solute and sol-

vent is very large, the calculation is sometimes diverge, especially at early stage of the compu-

tation. To solve RISM in stable manner, a robust solver is developed in this work.

Hypernetted-chain (HNC) closure is given by,

hαβ(r) = exp(χαβ(r)) − 1, (A1)

χαβ(r) = − 1

kBT
uαβ(r) + hαβ(r) − cαβ(r) (A2)

wherecαβ(r) is the direct correlation function,hαβ(r) is total correlation function,kB is Boltz-

mann constant anduαβ(r) is the pair potential between sitesα andβ. (A1) is very unstable

whenχαβ(r) is large.
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With a parameterF , (A1) is rearranged by,

hαβ(r) = exp [F + (χαβ(r) − F )] − 1 = exp(F )

[∑
n=0

1

n!
(χαβ(r) − F )n

]
− 1. (A3)

When (χαβ(r) − F ) is small enough, we can truncate the expansion up ton = 1. A new

artificial ‘closure’ is then constructed, as follows;

hαβ(r) =

{
exp(F ) [1 + (χαβ(r) − F )] − 1 (χαβ(r) > F )
exp(χαβ(r)) − 1 (χαβ(r) ≤ F )

(A4)

WhenF = 0, (A4) corresponds to Kovalenko-Hirata type closure [24].

In general, the calculation of total correlation function,hαβ(r), by KH closure is more robust

than that by HNC closure is. To evaluate correlation functions in stable manner especially at

the beginning of the RISM iteration,F is gradually increased in a stepwise fashion. In each

F value, iterative calculation between RISM and (A4) is performed until the convergence is

achieved. WhenF becomes sufficiently large, the equation is switched from (A4) to the normal

HNC closure (A1). This solver is more robust than the previous one used in our original RISM-

SCF program.
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General Conclusion

In this thesis, the author developed the methods focused on three-dimensional (3D) solvation

structure and electronic structure. The achievements in this thesis are summarized, as follows.

In part I, the author proposed two theoretical methods; one is to reconstruct 3D solvation

structure from radial distribution functions (RDFs) and the other is to calculate 3D solvation

structure based on statistical mechanics. It was clearly shown that the 3D solvation structures

obtained by these method showed the valuable informations, such as the strength of the inter-

action between solute and solvent molecules and the fluctuation of solvent molecules around a

solute molecule.

In chapters 1 and 2, 3D solvation structure is reconstructed by RDFs. The 3D solvation

structure is expanded with real solid harmonicsSlm and the coefficients are determined so

that the RDFs calculated by the coefficients can reproduce the reference RDFs. The equations

of the present method are so simple that the 3D distribution are calculated with reasonable

computational cost. Moreover, the method can be used as a tool for the analysis in experimental

studies because it is possible to employ the RDFs obtained by experimental method as the

reference RDFs.

In chapter 3, the method to calculate directly 3D solvation structure was derived based on

statistical mechanics. The 3D solvation structure is expanded with real solid harmonics,Slm

as in chapters 1 and 2. The coefficients are determined from the equation derived based on

statistical mechanics. The present method can be considered as the expansion of Reference

Interaction Site Model (RISM) because the equation withl = 0 andm = 0 corresponds to

RISM equation. The 3D distribution evaluated here correctly reproduced the results obtained
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by molecular simulation.

In chapter 4, another method to calculate 3D distribution function directly was proposed.

Although the method derived in chapter 3 can calculate 3D distribution function accurately,

the computational cost for large systems such as hydration structures around a protein becomes

very high. By approximating the method in chapter 3 and using parallel computing technique,

the author succeeded the reduction of computational cost and time in the present method. The

present method was applied to a large protein called as Fv fragment. The evaluated hydration

structures reproduced the waters determined by X-ray crystallography very well.

In chapter 5, the method derived in chapter 4 was applied to Bacteriorhodopsin (bR), which

is a light-driven proton pump. The present method made it possible to calculate the 3D distri-

bution functions of water oxygen site and water hydrogen site with reasonable computational

cost. The hydrogen bonding network obtained by the present method correctly reproduced that

proposed in previous works.

In Part II, the quantum mechanical calculation with solvation effect was performed using

dielectric continuum model and RISM-SCF scheme.

In chapter 6, the electronic structure of Creutz-Taube complexes in aqueous phase was the-

oretically studied. There are two important requirements to understand the electronic structure

of these complexes. One is a multiconfigurational description in the wave functions between

localized state and delocalized state and the other is the solvation effect. In this work, two

state model based on ab initio molecular orbital theory and dielectric continuum model were

employed. The mechanism of the localization and delocalization of the wave function and the

solvation effect on the electronic structure were elucidated by the present method.

In chapter 7, the weakpoint of the original RISM-SCF was overcome by introducing the

modified charge assignment procedure proposed by Morita and Kato into RISM-SCF. This

method was applied to the electronic structure of[Ru(CN)6]
4−/3− in aqueous solution. In gas

phase, the electronic structures of these complexes are similar to each other from the point

of view of fitted point charges on each solute site. The nitrogen atoms tend to be negatively
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charged and the point charges of buried sites (ruthenium and carbon atoms) become positive.

However, the solvation effect considerably affects the electronic structure of[Ru(CN)6]
3−

compared to[Ru(CN)6]
4−. The electronic distribution between the buried sites and nitrogen

atoms is more polarized in[Ru(CN)6]
4− than in[Ru(CN)6]

3−.

In chapter 8, three algorithms of the charge assignment were examined. In addition to

the conventional method employed in the original RISM-SCF, Mulliken-type and dual-type

(Mulliken plus conventional) methods were proposed and applied to water. The interaction

between solute and solvent waters evaluated by Mulliken-type method was the strongest, while

that obtained by dual-type method was the smallest. With the dual-type method, the electronic

structure ofNH3BH3 in water, which cannot be obtained by the original RISM-SCF, was

successfully evaluated.

In chapter 9, the weakpoint of the original RISM-SCF was overcome by another strategy.

In the present method, the author introduced auxiliary basis sets (ABSs) to incorporate spatial

electron density distribution (SEDD) explicitly. By replacing the point charges employed in

the original RISM-SCF by the ABSs, the instability in the charge assignment was drastically

removed. In the case of a water molecule in aqueous phase, the new generation of RISM-

SCF (RISM-SCF-SEDD) obtained reasonable solvation structures and the electronic structure,

as the original RISM-SCF does. RISM-SCF-SEDD was also applied toC2H5OH andHLi,

which cannot be calculated well by the original method. The obtained charges and solvation

structures evaluated by the present method were reasonable.

A huge number of molecules make solvent system very complicated. However the com-

plexity itself is the origin of the variety of the reactions in solvent. To tackle the interesting

system, the author developed the methods to calculate 3D solvation structure (in Part I) and the

electronic structure with solvation effect (in Part II) in this thesis. The two approaches from

the point of view of solvent structure and the electronic structure of solute molecule make it

possible to elucidate the mechanism of reactions in solvent at the molecular level theoretically.
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