RBAFZWERY KT b %
Al

KURENAI

Kyoto University Research Information Repository

Development of solvation theories focused on solvation

Title structure and electronic structure( Dissertation_[1 [ )
Author(s) | Yokogawa, Daisuke
Citation Kyoto University (0 O 0O 0)
Issue Date | 2008-09-24
URL http://dx.doi.org/10.14989/doctor.k14167
Right
Type Thesis or Dissertation

Textversion

author

Kyoto University




Development of solvation theories focused on
solvation structure and electronic structure

Daisuke Yokogawa

2008



Preface

The reaction in solvent is common in our life. An infinite number of biochemical reactions
in our body, for example, proceed in aqueous phase. From the industrial aspect, many materials
are produced by reactions using various type of organic solvents. Although our society and
our body make use of a huge number of reactions in solvent everyday, the reaction, where
mechanism is fully elucidated by solvation theories, is very limited.

A theoretical approach to clarify the reactions in solvent was started from the end of 19th
century. The most difficult but most interesting point in the development of the solvation
theories is how to treat the infinite number of variables in solvent system. Many solvent models
have been proposed to tackle the difficulty. In the field of solvation chemistry, by using one
of the models or by combining some of the models, the reaction in solvent has been discussed
mainly based on solvation structure and the reaction field produced by solvent molecules.

Recently, a theoretical approach to study reactions in solvent from a different point of view
has been also proceeded. Thanks to the improvement of the computational system, the quan-
tum chemical calculation with solvation effect is becoming possible. In this field, the reaction
energies and the geometries of solute molecules are the main targets to be elucidated.

The theoretical study of the reaction in solvent is now active area, where the two fields of
solvation chemistry and quantum chemistry are overlapping. With computational chemistry
softwares, various type of the reactions in solvent have been studied. However the theoretical
approaches in this area seems to be biased toward one field. In most of quantum chemical
calculation with solvation effect, for example, the discussion is mainly focused on the elec-

tronic structure and solvation energies. To make clear the functions of solvent molecules, the



microscopic character of the solvent, such as solvation structure, must be elucidated.

In this thesis, the solvation theories focused on both of electronic structure of a solute
molecule and solvation structure were developed. With these theories, the reaction in sol-
vent can be discussed at molecular level. The author carried out this study in the hope that the
theories developed here will enlarge the overlapping area between the solvation chemistry and
quantum chemistry and will work well to elucidate the mechanism of the reactions in solvent.

The studies presented in this thesis were carried out at Department of Molecular Engineer-
ing, Graduate School of Engineering, Kyoto University from 2003 to 2008. The author would
like to express his deepest appreciation to Professor Shigeyoshi Sakaki for his helpful discus-
sions, useful suggestions, and encouragement. Various comments based on theoretical chem-
istry and physical chemistry were invaluable for this study. The author wishes to express his
sincere gratitude to Associate Professor Hirofumi Sato for valuable suggestions, fruitful dis-
cussions and strict but heartwarming advices. The development of theories in this thesis could
not be possible without his full cooperation. The author also expresses gratitude to Assistant
Professor Yoshihide Nakao for his technical advice and valuable comments.

The author is also grateful to Dr. Atsushi Ikeda and Mr. Yu-ya Ohnishi. Scientific talks with
them on various occasions were very enjoyable and fruitful. Acknowledgment is also made to
all members of the research group of Prof. Shigeyoshi Sakaki. The discussion with them were
exciting and generated his motivation of this study.
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General Introduction

Solvent molecules play a leading part of reaction in solvent. The electric field produced by

solvent has great influence to the reactivity of many reactions and the absorption and emis-
sion spectra. In some case, the solvent molecule itself works as a key substrate for chemical
reactions and biochemical reactions. With the recent developing theoretical methods and com-

putational systems, these systems are becoming the target of theoretical study.

Scheme 1

The system of the reaction in solvent consists of infinite number of molecules. To charac-
terize such complicated system, what kind of properties should be considered? Because bond
breaking and bond forming are included in most of the reactions, electronic strictiréne
solute system is of course indispensable (scheme 1). Around the solute system, the solvent
molecules move vigorously at room temperature. By averaging the coordinates of the solvent
molecules around the solute molecule for a long time, a specific structure, such as hydrogen
bonding, is found. Because such a specific structure plays an important role to activate or
deactivate the reaction, the solvation structune is also important property to describe this

system (scheme 1).



The electronic structuré and solvation structurg(r) are often considered as independent
functions. However, it is not true. The structufeendg(r) produce the electrostatic potential
V[¥] andV[g] around them. Both oF [¥] andV[g] lead to the change of the structuigs)
andV¥, respectively (see scheme 1). Therefore, the structugasdg(r) are coupled with each
other through this potentia/.

The reaction in solvent is very complicated system, where solvent system and solute system
affect each other. To study the reaction in theoretical manner, how to evaluate the stnlictures

andg(r), as well as the electrostatic potentialplays key roles.

1 Electrostatic potential

A molecule consists of the positively charged nuclei and negatively charged electrons. These
particles produce the electrostatic potential around the molecule. In this section, the author
describes how to define the electrostatic poteitias a functional of electronic structude

and solvation structure(r).

1.1 V as afunctional of

When wave function? is obtained for solute system, the electrostatic potetial exactly

calculated by,

V(r) = / P G (1)

r—r|
This is one of the fundamental property in quantum chemical calculation. By expawding
with atomic orbitals, eq. 1 can be calculated easily [1].
In the classical limit, atomic charggeis widely employed instead of. The electrostatic

potential is replaced by,

V=3 @

v — ;|
whereN, is the number of atoms and is the position of the atom. In most case, the atomic
charge can be determined so that the potential calculated by eq. 2 reprétu¢evaluated

by eq. 1.



1.2 V as afunctional ofg(r)

The electrostatic potentidl generated by solvent molecules is calculated from solvation
structure. One of the most difficult points in the calculation is how to treat the solvent system,
which has infinite number of variables. To overcome (or avoid) the difficulty, many useful the-
ories such asolecular simulationintegral equation theoryanddielectric continuum model

have been proposed (Fig. 1).
(a)

Figure 1:Examples of solvation theories; (a) Dielectric continuum model, (b) Integral equation theo-
ries, and (c) molecular simulation.

The most simple method is dielectric continuum model. In this model, the coordinates
of all of the solvent molecules are completely averaged (or ignored) and solute molecule is
immersed into a cavity embedded in the continuum (Fig. 1(a)). Because the solvent system is
characterized solely by a dielectric constarthe equation to be solved becomes very simple.
When a solute molecule is put into a spherical cavity with radiube electrostatic potential

is expressed with,

(I+1)(e—1) 7 A

Z e(l+1) —I—la%“ ZMlmQ 3)
=

where(2 is Euler angle and/,,, is the multipole moment of the solute molecule. The important
low-order terms were proposed by Bornh= 0) [2], Onsager [ = 1) [3], and Abrahamet
al.(l = 2) [4]. This strategy is very simple and the microscopic properties such as solvation
structure cannot be obtained.

In molecular simulation, solvent molecules are treated explicitly (Fig. 1(c)). The coordinate

sets of the molecule(sv1 ,r;), cee rg\’}) at thei-th step are produced by the Metropolis method

3



or equation of motion [5], wher#/ is the number of particles in this system. The electrostatic

potential produced by the solvent molecules is evaluated by,

N M

ZZ (4)

i=1 j=1 ]r - I'
whereg; is the atomic charge of theth particle andV is the number of the steps calculated
in this simulation. If N and M were infinitely large, exact potential could be obtained in
principle. However, the calculation in reality is restricted with the finite numberg (f0° ~
10%) and M (10% ~ 10%).
In integral equation theories for liquids (IETs), the coordinate of each solvent molecule is
not calculated explicitly. Instead of the coordinate (sé?, rgi), e 71«;9), the following pair

distribution is employed well [6-12],

> 2N — L U(r1,r2,,an)
> DA dqgs---dgqye FBT 7 (5)
N=0 ’

whereZ is the grand partition functiork is Boltzmann’s constant/ is the intermolecular

P (ry,12) =

[1] —

interaction between molecules, aads the activity. When a solute molecule is fixed at the
origin and the solvent system is homogeneous, the solvation structure around solute molecule
g(r) is obtained byy(r) = p®(r)/pup,, Wherer is the vector from the origin to the solvent

site andp, (p,) is the number density of the solute molecules (solvent molecules). With the

solvation structurg(r), the electrostatic potential is evaluated by the following equation,

—va/ Uy ©)
whereM’ is the number of atoms in a solvent molecule gnas the atomic charge of these
atoms.

The information of the coordinate se'fgi),rgi), e ,r%}) used in molecular simulation is
unnecessarily detailed for many purposes. On the other hand, the coordinates are completely
averaged in dielectric continuum model. By introducirig), the variables in eq. 6 are dramat-
ically reduced compared to those in eq. 4. Moreoyér) is informative enough to analyze the
solvation structure at molecular level. The preparatiog(of is the crucial task to compute

V'[g] accurately.



2 Solvation structure, g

Solvation structurg(r) is one of the most important properties for the system because it
connects directly to the electrostatic potentiaias shown in eq. 6.

Radial distribution function 3D distribution function

Scheme 2

What does the solvation structure look like? The structure of solid state is very clear. All of
the molecules take the almost fixed coordinates and the structure is completely ordered. On the
other hand, in gas phase, the molecules move randomly and the structure around a molecule is
completely uniform all over the space. The solvent structure is between them; not completely
ordered and not completely uniform.

When the probability of finding two particles at a distance is observed, the 1D solvation
structure called radial distribution function (RDF) is evaluated (scheme 2). RDF has been
employed to characterize solvation structures for a long time. By neutron scattering and X-ray
diffraction, RDFs of liquid systems were obtained by performing Fourier transformation of
the static structural factors [13—-17]. They can also be obtained by theoretical methods such
as molecular simulation [5] and IETs [6]. In the case of Reference Interaction Site Model
(RISM) [11, 18], which is one of the most popular IETs, the RDF between sitasd 3, g.s,

is calculated by the following equations,

9ap(r) = hap(r) +1, (7)

hap(r) = D Was * Coy % wyp(r) + Y was * Cay % pohyp(r), (8)
&y oy

oalr) = exp |~ tan(r) + haal0) = cuo(r)] )
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where * denotes the spacial convolution integealz(r) is the potential between site and
site 5, andc,z(r) is the direct correlation functionw,s(r) is the intramolecular correlation
function, which defines the molecular geometry.

RDFs have been well employed to discuss the solvation structure. However, it becomes
very difficult to imagine the solvation structure only from RDFs as the number of atoms in a
molecule increases. Even in the case of water, the assignment of some peaks in the RDF is
very difficult only with the 1D data. This is because the information about the angular part is
completely integrated out in RDF.

The computational methods which can directly evaluate 3D solvation structure have also
been developed. The solvation structure of liquid water, for example, was discussed in detail
with molecular simulation approach [19-21]. In the case of IET, three-dimensional RISM (3D-
RISM) [8, 22] has been applied to much larger and more complicated solvation systems than
those evaluated by molecular simulation, such as hydration structure around a protein. The

solvation structure of the site around a solute moleculg, (r) is evaluated with the following

equations,
ga(r) = Hy(r)+1 (10)
Ha<r) = Z C,@ * Wﬂa(r) + Z Cﬁ * phﬁa(r) (11)
B B
Gu(r) = exp {—kBLTua(r) b Ho(r) — C’a(r)] , (12)

whereu,(r) is the potential function between siteand the solute molecule. This method has
been applied to the solvation structures of not only the small systems [23] but also the hydration
structure around a protein [24—-26]. Although the 3D solvation structure calculated by 3D-
RISM or molecular simulation is much more informative than the RDF, high computational

cost and long computational time are required to obtain accurate solvation structure.



3 Electronic structure, U

The wave functionV with solvation effect is determined by the following equation,
[ﬁowf] 0) = B|0), (13)

where " is the Hamiltonian of a solute molecule in isolated state #nis the electrostatic
interaction operator [27—30]. As shown in scheme 1, the wave fundtiaffects solvation
structureg(r) throughV[¥] and theg(r) affects the wave functiod throughV'[g(r)]. The
operatorY is introduced to incorporate the interaction.

Eq. 13 can be derived from the variation condition on free energy of the system [31, 32].

The total free energy is written by
G = <\Ij‘[:[0‘\11> + Enuc + Gsol [V[\I’], ap,ag, - 7aM] ) (14)

whereL ... is the nuclear repulsion energy,,, is the solvation free energy evaluated under the
electrostatic potentid/'['] and some variables; (i = 1, - - - M) characterizing solvents (ex.
h andc in RISM). The trial function to be minimized with the constrains to the orthonormality

of the wave function is defined, as follows;
L =G+ E{(VY|¥) —1). (15)

Variations with respect to the functions yield

0 = Z (65;’1) da; + 2 <5x11 'FIO + <8§;°1> (a‘a/\[lrm) — E‘ \11> : (16)

Becaus&’, is minimum with respect tda;} in this scheme, the first term of eq. 16 is O.

Therefore, the optimal wave function is calculated by the following equation,

E ) = {ﬁo + (ag‘j‘“) (agf]ﬂ ) (17)

If the second term in brackets on the right-hand side is replacedi,igq. 17 is equal to eq.

13.

Hybrid approaches have been developed by combining with many solvation theories. In

quantum mechanical/molecular mechanical (QM/MM) approach, small systems, such as the
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excitation reaction oH,CO [33], glycine [34], andSy2 reaction [35] in aqueous phase were
investigated precisely. In dielectric continuum approach, Polarizable Continuum Model (PCM)
[36—40] has been applied to various physicochemical systems, such as diazine in polar sol-
vent [41], 5-fluorouracil and uracil in acetonitrile and water [42], and solvatochromism of
betaine-30 [43]. Although these methods have been widely used, they have some weakpoints;
the former method requires much computational cost and time, and the latter method cannot

evaluate the solvation structure.

+0.3 +0.3

0.4 S
¥ +0.3

V[¥]
@ Point charge assignment
g
VId]
(3 QM calculation (2 RISM calculation
Scheme 3

The hybrid QM calculation with RISM (RISM-SCF) [28, 32, 44, 45] is one of the powerful
method to overcome the weakpoints in the QM/MM approach and dielectric continuum model.
In the procedure of RISM-SCF, the cycle in scheme 3 is tak€npoint charges on atoms
are evaluated after QM calculatio® RISM calculation is performed with the electrostatic
potentialsV'[¥], and 3 QM calculation is carried out with the electrostatic potentiay]
produced by the RDFs. This cycle is repeated until self-consistent structures beiveseh
g(r) are obtained. With this strategy, not only the solvation energies but also 1D solvation
structure, RDF can be evaluated. Moreover, the calculation of electrostatic potéfgjal
with RDFs is so simple that the computational cost and time are much smaller than those
of QM/MM approach. RISM-SCF has been applied to many systems in solution, such as

Sn2 type reaction [46, 47], electron transfer reaction [48], proton transfer reaction [49], and



charging process of organic compounds [50].

4 Problems in the calculation of solvation structure and elec-
tronic structure

Effective solvation theories have been proposed and applied to many systems to investigate
solvation structure and electronic structure with solvation effect theoretically. However, there
are still some problems to be solved.

In the analysis of solvation structures, 1D solvation structure (ex. RDF) and 3D solvation
structure have been investigated. RDFs have important information about solvation structure
and have been widely employed in experimental and theoretical studies. However, because the
information of angular part is completely integrated out, it is difficult to image the orientation
of solvent molecules from only RDFs as the number of atoms in a molecule increases. 3D
solvation structure is more convenient information in this analysis than RDF, but the required
computational cost and time are huge even with the recent computer system. To obtain the
informative 3D solvation structure with reasonable cost and time, new methods are required.

In the calculation of electronic structure, RISM-SCF is very powerful tool which can calcu-
late not only the electronic structudebut also the solvation structugér). The computational
cost of RISM-SCF is much smaller than that of QM/MM approach. Moreover, the method can
obtain the solvation structure, which cannot be calculated with the dielectric continuum model.
This method is becoming a powerful tool to study the reaction in solvent theoretically. How-
ever, it has been showed that the calculation of RISM-SCF for complex solute molecules such
as metal complexes doesn’t converge. To enlarge the applicability of RISM-SCF, different

strategies should be developed.

5 Survey of the present thesis

In this study, the author developed the solvation theories focused on both of the solvation

structure and electronic structure to overcome the problems. This thesis consists of two parts.



In part I, two theoretical approaches to obtain 3D solvation structure were proposed. In
chapters 1 and 2, the method to reconstruct the 3D solvation structure from RDFs was devel-
oped. The 3D solvation structure is expanded with real solid harmonics and the expansion
coefficients are determined so that the calculated RDFs reproduces the reference RDFs. The
method was applied to the solvation structure of typical exanip®, and more complicated
system, neat methanol and DMSO solutions. The results obtained by the present method were
compared with the reference solvation structures, which were calculated by molecular dynam-
iCS.

In chapter 3, a new method to calculate 3D solvation structure from a first principle was
proposed. The method which can evaluate high-quality 3D solvation structure was derived by
introducing the information of angular part. The 3D solvation structures were compared with
those obtained by previous works and molecular simulation.

In chapter 4, the method which can apply to a large system was derived based on the method
proposed in chapter 3. The strategy in this method is so efficient that the solvation structure
around a large molecule can be evaluated with reasonable computational time and cost. The
solvation structure and the partial molar volumes of amino acids calculated by the present
method were compared with those obtained by 3D-RISM. This method was also applied to the
calculation of hydration structure around a protein called Fv fragment.

In chapter 5, the hydration structure for a Bacteriorhodopsin (bR) was evaluated with the
method described in chapter 4. The bound waters inside bR was calculated and compared with

those obtained by X-ray crystallography.

In part Il, the development and application of RISM-SCF and the calculation of dielectric
continuum model were carried out. In chapter 6, the electronic structures of metal complexes
in aqueous phase were evaluated using dielectric continuum model. Because the electronic
structure has both of the localized and delocalized characters in aqueous phase, the multiref-
erence nature of wave function has to be included. The author employed the two-state model

proposed by Farazdet al[51] and combined it with dielectric continuum model. The differ-

10



ence of electronic structure in aqueous phase among these complexes was explained based on
molecular orbital theory.

The dielectric continuum model in chapter 6 worked well for the system. However, it is
much better if the solvation structure can be investigated at the same time. To fulfill the re-
quirement, in chapters 7, 8, and 9, RISM-SCF approach was employed.

In chapters 7 and 8, the modified charge assignments were introduced into RISM-SCF cycle
described in scheme 3. These methods were applied to metal complexes and a charge-transfer
complex in agueous phase, which are the difficult examples to be calculated by the original
RISM-SCF.

In chapter 9, spatial electron density distribution (SEDD) was introduced into the RISM-
SCF strategy and proposed a new generation of RISM-SCF (RISM-SCF-SEDD). With the
present strategy, the instability of the charge fitting in the original RISM-SCF was removed.
RISM-SCF-SEDD was applied to small moleculds©O, CoH;OH, andHLi. The usefulness
of the method was clearly shown by comparing the obtained partial charges and solvation

structures with those calculated by the original RISM-SCF.
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Chapter 1

A new method to reconstruct 3D spatial
distribution function from radial distribution
function in solvation structure

1.1 Introduction

To understand most of the chemical reactions correctly, solvent effects should be consid-
ered in theoretical analysis. Various methods such as dielectric continuum model, molecular
dynamics (MD), and integral equation theory of liquids (IET) [1] have been proposed to in-
vestigate solvent effects. These methods are useful to calculate solvation energy. However, 3D
information on solvent coordination such as a spatial distribution function (SDF) has not been
studied thoroughly, except for limited pioneering works [2—10], despite 3D information being
very helpful to understand chemical reactions in solution phase by visualizing the solvation
feature [11].

One of those works was reported by Sogeal. [7-9]. They expanded the SDF as a function
of position vector and orientation of solvent using spherical harmonic functions, and optimized
the coefficients, which determine the shape of SDF, with the minimum noise formalism [9].
The equation for the coefficients was solved in an iterative mannerefatq3] presented the
“most plausible solvation structure” (MPSS) using the radial distribution functions (RDFs).
Simulation techniques such as MD method, three dimensional reference interaction model
(3D-RISM) [12,13], can evaluate SDF directly. However, both of the methods need long com-
putational time to calculate SDF. There are other IETs, such as MOZ theory [14-21], that can

analyze three-dimensional structure of solvation, though those results have the approximations
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inherent in IETS.

On the other hand, RDFs, which are the most frequently used in discussion, are easily eval-
uated with much shorter computational time. Thus, it is highly desired to develop the method
that easily provides SDF from RDFs.

In this communication, we newly propose an interesting method to reconstruct approximated
SDFs of solvent site from RDFs, which are calculated by any solvation theory, by employing
the spherical harmonic expansion around each solute site. This expansion leads to simple linear
equation and we can obtain the coefficients determining the shape of approximated SDFs by
solving the equation. The efficiency of this method is clearly shown here by applying this

method to the coordination of solvent water around a water molecule.

1.2 Method and computational details

Method

We begin with SDFs of solvent sitearound a solute molecule,(r),

ps(r) = pns(r), (1.1)

wherep is the number density of solvent amnds the position vector in 3D space. The RDF

between solute site and solvent site is related to SDFs by eq. 1.2;

1

9ns(R) = 47 R?

/ns(x + Q,)d(|x| — R)dx, (1.2)

whereQ), is the position vector of the site andR represents the distance betweenjisate
and thes site.
The SDF of solvens site is well approximated by basis functions including real solid har-

monics.sS;,, of which center is located on individual solute site

nl(r) = Zf“!r—Qn ZO”“ ( gg)

Where{Cﬁ;ji} are coefficientsf;”* and f{* are basis functions in radial part up kb After

+ /77 (e = Q) (1.3)
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substitution of eqg. 1.3 into eq. 1.2 and integration over the angular part, we get
N

Ga(R) =D [I(RCTS + f°(R), (1.4)

(2

Where{Ogjg’i} are fixed as 1 [22]. The basis functiofig”(R) and f{*(R) in eq. 1.4 are
determined to reprodugg .(R). f;"*(R) andf{*(R) are used to represent solvation shell and
bulk solvent region, respectively. The functigfr®(R) converges to 1 iR — co. Hereafter
we call the RDF calculated by solvation theory as reference RDF (RRDF). If we can expand
RRDFs exactly byf;"*(1) and f{*(R), RRDFs are reproduced correctly by integrating over
the angular part of?(r) in eq. 1.3 around solutesite.

It is noted that in each SDF for solvessite, there are expanded SDFs to the number of
solute siteV,. The coefficientsftO{f;fL’i} in eq. 1.3 are determined so that the difference between
all these SDFs centered on different solute site becomes the smallest; when a sufficiently large
number of real solid harmonics and basis functions are employed, all of the SDFs become

almost unique. Here, we define the error functiQras follows:

NP Na

L= 50> () — nl(m)” (1.5)

k. n#y

whereN,, is the number of the grid points which are prepared around the solute. As the number
of basis functions in eq. 1.3 increasEs,decreases. By minimizing eq. 1.5, we can obtain the

equation that determines the coeﬁicie{ﬂs’?;,j’i}:
C=-A"B, (1.6)

whereC is the vector whose componenlﬁ%;f;" and the components & andB are given by

eg. 1.7aand 1.7b;

Np
,8,8,0,m )8 )8
A =(NaGpy =1 (= Qul) £ (Im— Qs )
k=1

Rl
x Sl’m(lrk— Q) St Q) (1.7a)
Bn,s,i,l,mzi fﬁ,5(|rk -Q |>Sl m( gy — Qn)
k=1 Z e — Q)
XY (Nabysy — D (I — Q). (1.7b)

Y
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By solving this linear equation, we can obtain the coefficients without any iterative calculation.
In this regard, the present method provides approximated SDFs very easily.
Because we cannot use infinite number of basis functions in practice, the qualityrgé
is not uniform in all space; in other words}(r) is given in high accuracy wheneis close
to solute sitey, but it gets worse when is distant fromy site. To obtain well-balanced SDF

ns(r) from SDFs in eq. 1.3, we used arithmetic average’df),

na(r) = 302 (1)/N,. (18)

The computational procedure is summarized as follows: (1) The first step ig’j’ﬁ@&) to
RRDFs, (2) the second step is to evaluate egs. 1.7a and 1.7b and to solve eq. 1.6, and (3) the
third is to take average’(r) with eq. 1.8.

1.2.1 Computational details

We employed the RRDFs calculated by the MD method reported by Jorgehsérji23].
Also, we evaluated here RRDFs with the extended RISM (XRISM) [24], where the simple
point charge (SPC)-like water model [25] was employed. The standard modification for LJ
parameters was made in the hydrogen site. The hypernetted chain (HNC)-like closure was
used in solving XRISM equation. All calculations were carried out at the temperature 298.15
K and the number density 0.033426 molectife/ Hereafter, we call the RRDFs of MD and
XRISM as RRDFs(MD) and RRDFs(XRISM), respectively.

We used gaussian functions f@#°(2) and the following function of eq. 1.9 fof!*(R),

1
exp(—am(R — (%)) +1 °

fi7(R) = (1.9)

to approximate RRDFs in the least square fitting technique. In this calculation, we employed

the real solid harmonics up to= 10.

1.3 Results and discussion

The RRDFs(XRISM) and RRDFs(MD) of oxygen-oxygen and hydrogen-oxygen are shown
in Fig. 1.1(a) as lined andlV and Fig. 1.1(b) as lined andIV, respectively. The RDFs of
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Figure 1.1:Fitted RDFs and RRDFs; (a) oxygen-oxygen and (b) hydrogen-oxygen. Solid JiHes
[l , andIV represent fitted RDF(XRISM), RRDF(XRISM), fitted RDF(MD), and RRDF(MD), respec-
tively. Dashed lines represent basis functions used for the fit of RRDF(XRISM).
the XRISM () and the MD (Il ) methods were constructed by the fitted basis functions, as
shown in Fig. 1.1(a) and Fig. 1.1(b), in comparison witrandIV . We found that threg”*
functions and onng’Z’S function are enough to reproduce well RRDHs&ndlV ). However,
we cannot reproduce the second pdakn(Fig. 1.1(a) and 1.1(b)) properly, when using only
two f;* functions and ong7* function. One can see thaaindlll well reproducedl andlV,
respectively. The basis setande mainly used to reproduce the peakandb in RRDFs. The
second basis setseems to correspond to the distribution of the “interstitial water molecules”,
which is suggested to be aroufit= 3.5 [5].

The resultant solvent coordinations in 3, (r) andny(r), are used to calculate the charge

density by the following equation,

Pq(T) = pgono(r) + 2pgunp(r), (1.10)

whereqo andgy are the charges of the oxygen and the hydrogen of solvent water, respectively.
The charge density in the plane including all the atoms (XZ-plane) is shown in Fig. 1.2(a) and
that in the bisector plane of the HOH angle (YZ-plane) is shown in Fig. 1.2(b). Because these
density maps havés, symmetry, we divided them into two regions and show only a half of

them in these figures. The right hand side is for the MD method and the left hand side for the

XRISM. The negative density (solid line) representgr) and the positive density (dashed
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Z(R)

X (A)

Figure 1.2:Charge distribution|¢|/A3); (a) in the plane including the oxygen and two hydrogens and

(b) in the bisector plane of HOH angle. Solid line represents negative part (oxygen), and dashed line is
for the positive part (hydrogen). The charge distributions constructed by MD and XRISM are shown in
the region X > 0) and the regionX < 0), respectively.

line) represents.;(r). In Fig. 1.2(a), one can see the negative charge distribution around the
hydrogen of the central water (hereafter, we call it “solute water”). When RRDFs(XRISM)
were employed, the maximum of the distribution is locatedXat= —254, Z = I.GA) and

the distance between the maximum and the hydrogen of “solute water” is evaluated to be 2.0
A. When RRDFs(MD) were employed, the maximum is &t € 2.4A, Z = 1.44) and the
distance is 1.8\. Thus, these distributions are attributed to the first peak in Fig. 1.1(b). These
negative charge distributions arise from the oxygen that forms hydrogen bond with “solute
water”. Positive charge distribution and negative one areXat 0.0, Z = —2.0A) and

(X =00,7= —3.1A) when RRDFs(XRISM) are employed and & & 0.0, Z = —1.8A)

and X = 0.0, Z = —2.8A) when RRDFs(MD) are employed. These distributions are at-
tributed to different type of hydrogen bonding solvent, as will be discussed below. Fig. 1.2(b)
shows charge distribution on the bisector plane of HOH. The positive distribution and neg-
ative one indicate that solvent water molecules are present over the average at the region of

Z < 0. The anglef (defined in the right-upper box) of O distribution is evaluated to be
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about 102 degree when RRDFs(XRISM) are employed and 124 degree when RRDFs(MD)
are employed, respectively. The latter value agrees well with previously reported value (about
130 degree) [10, 14]. The SDF of solvent oxygen site reconstructed by RRDFs(MD) present
the # value close to 125.3 (R-)s—l(—\/%)) degree which is the exact value when the oxygen
takes perfect tetrahedral network. However, #healue calculated with RRDFsS(XRISM) is
somewhat smaller than that of 125.3 degree. This is because the first peak of oxygen shifts
to outer region and the first peak of hydrogen shifts to inner region in RRDF(XRISM). We
can conclude that this small value is attributed not to the present reconstruction method
but to RRDFs(XRISM). As shown in Fig. 1.2(a) and Fig. 1.2(b), broad distribution is ob-
served aroundX,Y, Z) = (0.0,0.0,—1.9), (0.0,0.0, —3.0) when RRDFs(XRISM) were em-
ployed and aroundX, Y, Z) = (0.0,0.0, —1.8), (0.0, 0.0, —2.8) when RRDFs(MD) were em-
ployed. If water coordination took a simple tetrahedron structure (“standard coordination”),
there should be no distribution there and two separated distribution could be found at about
0 = +125. These broad distributions indicate a great deal of variation of solvent water from
“standard coordination”. This continuous distribution of solvent water was also reported by

Soperet al [8].

(a)

Figure 1.3:Three dimensional SDF map of the oxygen in solvent water using the real solid harmon-
ics up tol = 10; (a) constructed from RRDF(XRISM) and (b) constructed from RRDF(MD). The
isodensity surface fono(r) = 1.8 is shown. This figure was drawn with the help of MOLEKEL
package [26].

The three dimensional SDF of(r) > 1.80 reconstructed by RRDFs (XRISM) and RRDFs
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(MD) are illustrated in Fig. 1.3(a) and Fig. 1.3(b), respectively. Both SDFs look very similar
to each other. All of the lobes correspond to the distribution of the solvent water that forms
hydrogen bond with “solute water”, as discussed above. This character of the oxygen distri-
bution is essentially the same as those reported by Svistethedv[10] and Sopekt al [8].

These results indicate that RRDFs (XRISM) as well as RRDFs (MD) are useful to construct
SDFs.

Figure 1.4: The three dimensional SDF map of the oxygen in solvent water constructed by
RRDF(XRISM) using the real solid harmonics up to 2. The isodensity surface and the package used
are the same as in Fig. 1.3.

In order to check how much the SDFs depend on real solid harmonic expansion, we evalu-
ated the SDF of solvent oxygen site from RRDF(XRISM) using the real solid harmonics up to
[ = 2. The reconstructed 3D SD#;(r) is shown as an example in Fig. 1.4. Although edge
of the lobe is ambiguous because of the insufficient azimuthal accuracy, the shape and the
position of the lobes resemble well those of Fig. 1.3 calculated up-ta0. The XRISM cal-
culation of water followed by reconstruction of SDF witk= 2 is performed in a few minutes
in a personal computer [27]. Therefore, the present method to reconstruct SDFs from RDFs is

very powerful for investigation of solvation structures.

1.4 Conclusion

A new method to reconstruct SDFs from RDFs is presented here. This method was suc-

cessfully applied to liquid structure of water. In this method, the different expansion from that
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by Soperet al. leads to the linearized equation with which we can easily obtain approximated
SDFs. Our method presents reliable results using a small number of real solid harmonics. This
means that the present method can be easily applied to large molecular system.

RISM-SCF can evaluate the solvent structure such as RDFs even for chemical reactions
in reasonable computational time [28, 29]. The combination of the present method with the
RISM-SCF is one of the powerful methods to evaluate 3D picture of solvation structure.

We will compare this approximated SDFs with SDFs that are directly calculated by MD

method in forthcoming full article.
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Chapter 2

New evaluation of reconstructed spatial
distribution function from radial distribution
functions

2.1 Introduction

Local solvation structure such as hydrogen bonding has great influence on the stabilities of
compounds and their electronic structures [1]. To investigate such solvation structures, three-
dimensional (3D) solvation structure is very useful.

In this regard, 3D solvation structure has been studied by theoretical methods. For instance,
3D structures of pure solvent [2, 3] and binary solvent [4] were calculated directly with molec-
ular dynamics method (MD). Also, the integral equation theory (IET) [5], such as molecular
Ornstein-Zernike (MOZ) [6, 7] and 3D reference interaction site model (3D-RISM) [8-10],
were proposed to provide the 3D structures.

There is another approach to obtain 3D solvation structure [11-15]. The strategy is to recon-
struct 3D solvation structure from a set of one-dimensional (1D) solvation structures such as
radial distribution functions (RDFs). Because the 1D solvation structure that is averaged over
molecular orientations can be easily presented experimentally and theoretically, the method to
reconstruct 3D solvation structure from 1D data is very powerful to analyze solvation struc-
ture. Actually, Sopeet al. expanded the angular pair-correlation functions with spherical
harmonics and determined the coefficients with the maximum-entropy method [11-13]. Sato
et al. proposed most plausible solvation structure (MPSS) method [14], in which they deter-

mined the MPSS from a set of RDFs and also represented thermal fluctuation around MPSS
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with Gaussian functions. Recently, we have proposed a new method to obtain reconstructed
spatial distribution function (RC-SDF) from RDFs [15]. In the method, we expanded spatial
distribution function (SDF) using real solid harmonics and Gaussian functions on each solute
site. This method was successfully applied to water, in which clear picture of the 3D solvation
structure was presented. In the previous work, a few Gaussian functions were employed to
represent the radial part so as to reproduce the reference RDFs of water. This strategy is very
useful when limited number of Gaussian functions are employed; for example, the RDF of
water was reproduced well, as reported. However we need to increase the number of Gaussian
functions systematically in order to improve the quality of RC-SDF when the solvation struc-
ture is not simple. In our previous method [15], the computational time becomes very long as
a number of Gaussian functions increases.

To overcome this weakness, we refined our previous method to adopt a new type of basis
sets. We applied the new method to analyze the liquid structures of methanol and DMSO.
We selected these solvents as examples, because it is said that the former solvation structure is
well-defined and the latter one is broad. The results presented here are discussed in comparison

with SDF directly calculated by the MD method.

2.2 Method

SDF of solvent sites, n,(r), can be expanded at each solute sitey using the real solid

harmonics{Y,,.(0, )}, as follows,

Z Z NS (e = Qul) Yo (6, 0), 2.1)

n=0 m=—n
whereN;* (|r — Q,|) is the radial function around thesite. This function can be expanded

with one-dimensional functionf;”*} and ",

N;L]'I;SL |I‘ - Qn ZC?Smfzns |I‘ - Qn|)( - n05m0) + \/Efmsﬂr - Qn|)5n05m0 (2.2)

where{C}.’ .} are the coefficients to be determingd;"”} are spatially well localized func-

tions which reproduce anisotropic solvent structuren{ # 0), and f° is the function which
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represents isotropic one (m = 0). Insertion of eq. 2.2 into eq. 2.1 gives the following equa-

tion,

ns(r)l, = ans (Ir = Qyl) Z Z CilpmYum(0,0) + [ (It — Qyl).  (2.3)

n=1 m=—n

These coefficient$C’ 1 are determined under the following conditions. By integrating

,n,m

angular part of.,(r)|, around the; site, the RDF must be reproducabfdition 1). The sets
of {n,(r)|,} at each solute site must be consistent with each other in 3D spawdiijon 2).
ns(r)],, must be positive in 3D spacedndition 3).

The integration of,(r)|,, around the; site leads to the following equation,

E dgb/ sin @dOns(r)|,

0o m=n 773

2w
. Zf“n—czn So 3 e [ o [ sin0atiun.0) + 577~ Qb

n=1m=-n

= f”s(!r—Qn\), (2.4)

where we used the orthogonality condition of real solid harmonicg’ifis the RDF between
the solvens site and the solutgsite, (f7*(|r—Q,|) = ¢™*(|r—Q,|)), condition 1is satisfied.
To satisfycondition 2, we determined the coefficients so as to minimize the followiing

value [15],

Np N,

ZZ ns(re)], — ns(re)|,)?, (2.5)

k- n#y

whereN,, is the number of grid point around solute site avgdis the number of solute sites.
To keepn,(r) positive, we adopted the following strategy. In the calculation of real solid
harmonics, we divided a sphere into small regidggk = 1 ~ M) using a reduced grid

system [16] (Fig. 2.1) and approximated the real solid harmonics by eq. 2.6,
0,6) =Y Uknmoi(60,9) . (2.6)
k

where the functiony (9, ¢) is defined as,

1 when (0,¢) € Ay

0 (09) :{ 0 when (6,¢) & A, (2.7)
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Figure 2.1:Reduced grid sphere in the case of M=254. Note we used M=12302 in the present work.

{Ukn.m} are the matrix elements which can be calculated using real solid harmonics. In this
work, we used the reduced grid system (M=12302). Insertion of eq. 2.6 into eq. 2.1 leads to
the following eq. 2.8 for a given; = (r;,6,, ¢,),

M

ne(ri)ly ~ Y STEo(0;. ) (2.8)

k
whereS7; is defined by eq. 2.9,

N

ST =D (e = QD D D ClniUkmm + VarUroof(Jt; = Qul) - (2.9)

n=1 m=—n
To satisfycondition 3, we employed” defined by eq. 2.10 instead Bf (eq. 2.5);

NP Na

D= 530 el — )], +2 37 6(S75), (2.10)

ko n#y Jokm
where¢ is penalty function. The value of the penalty functiordishen S7;’ is positive but
monotonically increases as the valuel 8f;| increases. 157} is positive all over the space,
eq. 2.10 reduces to eq. 2.5. We will discuss the penalty function in detail below. By minimizing

I', we reach eq. 2.11, with which we can obtain the coeffici¢ats;, .},

a,i,n,m s a,t,n,m agZS(Sa}:) a,s
Z A(s)ﬁ,}':n;,m’cjﬁ,;l’,m/ = _B(s’), = Z asoz};s fz ’ (|rj - Qa|>Uk,n,ma (211)
j7k‘ Js

/87j7n/ 7ml
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O/an BO{’an

WhereA . and are represented by eqgs. 2.12 and 2.13, respectively [17],

Np
Agaimm, = (Nabas—1) > [ (Ire = Qal) 7 (Jrx — Q)
k
XYnm(eka ¢k)Yn’m’(0k’7 qbk’) (212)

Np
B(o;)l’n’m = Z £k — Qal) Yo Ok, k)

xZ aOay — D)7 (Ire — Q). (2.13)

In our previous workcondition Il was not considered because a sdtof(r)|,} was positive
almost all over the space, and the equation to be solved was li@eadition Il becomes
important as the number of the functioff”’} increases. Because cbndition Ill , eq. 2.11
is not a linear equation here. Thus, we solved it iteratively. The initial guess is calculated by
solving a linear equation (eq. 2.6 in ref [15]) because the results provided correct shape of SDF
as shown in our previous work.

The sets of n,(r)|, } are different from each other at To obtain final RC-SDF,(r) from

these values, we used the following equation with proper weigtt;),
Na
ne(r) = Y wa(r)ny(r)la (2.14)

Ng
Zwa(r) = 1. (2.15)

The simple weightw,(r) = 1/N,, was used through our study. Because the quality of
{ns(r)|,} far from the origin atomy; becomes worse, better weight function will improve

results. This procedure is summarized in Scheme 2.1.
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I Preparation of RDFs I

U

Determination of /™ and £
(Condition I)

4

‘ Calculation of initial coefficients {C{%m}o
without condition 111

g

ICalculation of {S}7} using eq. 2.9 I <:I{ ;:?C?sm}ul

Calculation of coefficients {Ci5} using eq. 2.11
(Condition II and Condition IIT)

4

Is the difference between {C i} and {Cim},
sufficiently small?

] No

I Eq.2.14 [
RC-SDF
Scheme 2.1
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2.3 Computational details

In the present method, any kind of functions can be usedféf'} in eq. 2.2. In this article,
we used roof functions fof "},

(0 for 0<r<r,_;
r—1r_
7 for Tl <r<wr

S () — Ty —Ti—1
) =9 v =7 (2.16)
——— for T <r< Tit1
Tig1 — T4
0 for rig <r

\

The following function was used as the penalty function in eq. 2.10.

wo-{5 G5

The a value can be determined arbitrary; in this work, we usee 15.0. Althoughn,(r)
becomes negative with thisin several regions, the negative value is small enough to neglect
it (minimum value is -0.11 in this work).

In the calculation of the MD simulation, we use simple rigid potential model for methanol
and DMSO with the intermolecular pair-potential. All Lennard-Jones parameters and the frac-

tional charges used for methanol and DMSO are listed in Table 2.1.

Table 2.1:Intermolecular potential parameters

elkcal mol~' /A charge

Methanot Oxygen 0.170 3.07 -0.700
Hydrogen 0.000 0.00 0.435

Methyl group 0.207 3.775 0.265

DMSCO’  Sulfur 0.23838 3.40 0.139
Oxygen 0.07152 2.80 -0.459
Methyl group 0.29397 3.80 0.160

Molecular geometry: (Methanoboy = 0.945A, rco = 1.430A, ZCOH = 108.5".
(DMSOY ros = 1.53A, r5¢ = 1.80A, Z0SC = 106.75°, ZCSC = 97.40".
@ OPLS model [18,19]° Reference [20]¢ crystallographic data [21]

MD simulations were carried out within the NVT ensembl&at 298.15 K under 1 atm. In
this simulation, the cubic periodic box was filled with 256 molecules. The simulation software

used was MOLDY [22]. Temperature was controlled with Bld$oover thermostat [23, 24].
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All of 3D figures are drawn with the help of MOLEKEL [25].

2.4 Results and discussion

First, we performed MD calculations of methanol and DMSO to obtain their RDFs. Then,
we evaluated RC-SDFs from the RDFs. For the purpose of comparison, we also calculated the

SDF from the MD trajectory directly (SDF(MD)).

2.4.1 Methanol

4.0

3.5t
3.0
2.5¢
2.0}
1.5}t
1.0}

0.5}

0.0
0

Figure 2.2:Reference RDFs of methanol calculated by MD.

The reference RDFs calculated directly by the MD method are shown in Fig. 2.2. The RDFs
between oxygen and oxygen, oxygen and hydrogen, and hydrogen and hydrogen display sharp
peaks, while the RDFs between oxygen and methyl group, hydrogen and methyl group, and
methyl group and methyl group exhibit broad peaks.

The SDF(MD) and the RC-SDF of oxygen site, hydrogen site, and methyl site are shown in
Figs. 2.3 and 2.4, respectively. In SDF(MD), the distribution of oxygen (O) lies nearer to solute
hydrogen site than the distribution of hydrogen (H) and lies more separately from oxygen site
than the distribution of hydrogen (H). These distributions of SDF(MD) are well reproduced by
RC-SDF, as shown in Fig. 2.4. The distribution of methyl group is mainly observed around
oxygen and hydrogen sites but it is more delocalized. Both SDF(MD) and RC-SDF present

essentially the same distribution of methyl group, while the distribution of RC-SDF is some-
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Figure 2.3:Three dimensional SDFs(MD) map of oxygen (a), of hydrogen (b), and of methyl group
(c) in methanol. The isosurfaces of SDFs are drawm(aj= 3.0.

P {
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Figure 2.4:Three dimensional RC-SDFs map of oxygen (a), of hydrogen (b), and of methyl group (c)
in methanol. The isosurfaces are the same as in the Fig. 2.3.
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what more localized around solute oxygen site than that of SDF(MD) (compare Fig. 2.3(c)
with Fig. 2.4(c)). As shown by these examples, RC-SDF can produce well the distributions of
SDF(MD) except for moderately delocalized distribution of methyl group.

(2) (b) (c)

Figure 2.5:Difference maps between RC-SDF and SDF(MD) of oxygen (a), of hydrogen (b), and of
methyl group (c) in methanol. The region where the differemgér() of RC-SDF -n4(r) of SDF(MD))

is larger than 5.0 is drown with mesh and the region where the difference is less than -5.0 is drown with
solid surface.

Y (&)

X (A) X (A)

Figure 2.6: Two dimensional map of charge density; (a) The contour of SDF(MD). The interval of
contour is 0.010 for positive value and 0.015 for negative value. The region where negative value is less
than -0.210 is shaded. (b) The contour of RC-SDF. The interval is the same as in (a).

To make the difference between RC-SDFs and SDFs(MD) clearer, the difference maps
(ns(r) of RC-SDF -n4(r) of SDF(MD)) are shown in Fig. 2.5. As mentioned above, RC-
SDFs present almost same distribution with SDFs(MD).

To analyze the peak positions of these distributions, we show contour maps of charge density

calculated by4(r) of SDF(MD) and RC-SDF in Fig. 2.6(a) and 2.6(b). The charge density is
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represented by eq. 2.18,

py(T) = p Z Gyn4(r) (2.18)

wherep is the number density of solvent and is the charge of solvent site. In the case

of methanol, the negative distribution (solid line) mainly comes from the distribution (O) and
the positive one (dashed line) comes from the distributions of hydrogen and methyl group.
Because these distributions have little overlap between each other, the positive and negative
regions can be recognized as the distributions of hydrogen/methyl group and oxygen group,
respectively. By using this charge density maps, three different information can be compiled to
one figure. In Fig. 2.6(a), negative distribution is observed about X=-2.34 and Yq&qm@)

and positive distribution®,) is outside this negative area. Another positive distribution is
observed about X=0.69 and Y=2.08)((P,) and negative oneN>) is outside of this negative

area. The considerably localized distributidNg andP, and their very high peaks indicate

that oxygen and hydrogen atoms of solvent form strong bonding interaction with hydrogen and
oxygen of solute, respectively. On the other hand, the distributdonandP, are very broad.

In the case of RC-SDF, the distributioiNs; andP, are more localized than the distribution

P, andN,, as observed in the case of SDF(MD) (see Figs. 2.6(a) and 2.6(b)). Although the
peaks of these distributions are smaller than those of SDF(MD), the peak of RC-SDF are at
almost the same position as those of SDF(MD).

To investigate how much the RC-SDFs depend on the order of real solid harmonics used in
eg. 2.3, we calculated the distributions of solvent oxygen with real solid harmonics up to order
n = 2,n = 6, andn = 10, as shown in Fig. 2.7(a), 2.7(b) and 2.7(c), respectively. [26] In Fig.
2.7(d), SDF(MD) of oxygen is also shown. In Fig. 2.7(a), broad distribution is observed around
solute. Asn increases, this broad distribution separates into two distributions (Fig. 2.7(b))
concomitantly with increase of the height and the distribution approaches the SDF(MD). The
difference maps of RC-SDFs between= 2 andn = 10 and betweem = 6 andn = 10
are shown on Fig. 2.8. Although the difference in shape of RC-SDF betwee2 and RC-
SDFn = 6 is considerably large (Fig. 2.8(a)), the difference betwees 6 andn = 10
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Figure 2.7:Two dimensional RC-SDF map of oxygen in methanol with different angular momentum.
The interval of contour value is 2. (&)= 2, (b) n = 6, (c)n = 10, and (d) the result obtained by MD.
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becomes very small, as shown in Fig. 2.8(b). This result indicates that the increase in the order

n improve the shape of SDF.

SN

(a) (b)

Figure 2.8:Difference maps of RC-SDF (oxygen) between n=2 and n=10 (a) and n=6 and n=10 (b).
The region where the difference is larger than 5.0 is shown.

The computational time of these calculations is very short [27]; for instance, the calculation
of RC-SDF with real solid harmonics. (= 10) takes about 5 minutes for the distribution of
oxygen, about 8 minutes for that of hydrogen, and about 4 minutes for that of methyl group.
Although the basis functions and grid size are different from those employed in our previous
work [15], the computational time considerably decreases by using roof functions and discrete

real solid harmonics [28].

2.4.2 DMSO
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Figure 2.9:Reference RDFs of DMSO calculated by the MD method.
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In the case of DMSO, several broad peaks are observed in the reference RDFs (Fig. 2.9),
unlike methanol in which the reference RDFs exhibit sharp peaks attributed to hydrogen bond-
ing. These RDFs clearly indicate that the solvation structure becomes more complexed than

that of methanol.

(a) (b) (©)

Figure 2.10:Three dimensional SDFs(MD) map of sulfur (a), of oxygen (b), and of methyl group (c).
The isosurfaces of SDFs are drawmiét )= 2.0 for (a) and (b), and 2.9 for (c).

(a) (b) (c)

Figure 2.11:Three dimensional RC-SDFs(MD) map of sulfur (a), of oxygen (b), and of methyl group
(c). The isosurfaces are the same as in the Fig. 2.10.

The SDFs(MD) and RC-SDFs are shown in Fig. 2.10 and 2.11. The solvation structure by
SDFs(MD) (Fig. 2.10) is similar to that of DMSO-water mixture reported by Vishnyakov
al [4]. SDF(MD) of sulfur displays broad distribution near solute methyl grdop)(@and very
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broad distribution distant from solut®g) (see Fig. 2.10(a)). These distributions can be re-
produced well by RC-SDF, as shown in Fig. 2.11(a). SDF(MD) of oxygen, on the other hand,
presents relatively localized distribution around solute methyl griyg) &nd broad distribu-

tion (D) distant from solute oxygen site. The relatively localized distribution is attributed to
moderately strong electrostatic interaction between oxygen and methyl group. RC-SDF can
reproduce well this localized distributioidg). However, the broad distributiod() of oxy-

gen is moderately different between SDF(MD) and RC-SDF. The broad distribution of solvent
methyl group is presented around solute by SDF(MD), as shown in Fig. 2.10(c). RC-SDF can

present well this broad one as shown in Fig. 2.11(c).

(a) (b) (©)

Figure 2.12:Difference maps between RC-SDF and SDF(MD) of sulfur (a), of oxygen (b), and of
methyl group (c) in DMSO. The region where the differeneg(¢) of RC-SDF -n4(r) of SDF(MD))

is larger than 2.5 is drown with mesh and the region where the difference is less than -2.5 is drown with
solid surface.

The difference mapr(;(r) of RC-SDF -n4(r) of SDF(MD)) are shown in Fig. 2.12. Al-
though broad distributions can not be reproduced by RC-SDF, the important distributions,
such as one between solute oxygen and solute methyl groups, are reproduced very well, as

mentioned above.
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2.5 Conclusions

In our previous work [15], we proposed a new method to calculate RC-SDF from RDFs.
In this work, we successfully refined the method by using roof functions and discrete real
solid harmonics. Here, RC-SDF is computed under the three conditions described below. By
integratingn,(r)|,, around the solute site, the RDF must be reproduceddition 1). The sets
of {n,(r)|,} at each solute site must be consistent with each other in 3D space around solute
(condition 2). n(r)|, must be positive in 3D spacedndition 3). Although the equation
to be solved is not linear becauseaandition 3, RC-SDF can be obtained iteratively with
reasonable computational time. The obtained RC-SDF can produce not only well-defined 3D
solvation structure of methanol but also diffuse one of DMSO.

This method can present RC-SDF from any kind of RDFs with reasonable computational
cost. In other words, this method can be combined with methods which present RDFs, such
as neutron scattering and RISM-SCF [29, 30]. Combination of these methods provides much

clearer understanding of solvation event than the usual RDFs.
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Chapter 3

An integral equation theory for 3D solvation
structure: A new procedure free from 3D Fourier
transform.

3.1 Introduction

Solvation has been studied in full detail by experiment and theory because of its great impor-
tance in chemistry. In theoretical studies, integral equation theory (IET) for liquids is expected
to be a powerful tool for evaluation of micro properties related to solvation structure and ther-
modynamic properties.

One of the most important and popular IET is RISM [1]. This method, as modified by
Hirata et. al. (XRISM), has been applied to many molecular liquid systems [2, 3]. Because of
the simplicity of the equation and various range of its applicability, RISM has been combined
with other theoretical methods such as quantum method (RISM-SCF) [4, 5], Monte Carlo [6],
and solvation structure analysis [7-9].

Three-dimensional Ornstein-Zernike (3D-0OZ) [10], 3D-RISM [11,12] and MSOZ [13] can
directly evaluate 3D solvation structure around a solute molecule. Although these methods can
provide more accurate local solvation structure than RISM, expensive 3D Fourier transforms
are necessary in the calculation. Ten-no et. al. proposed another IET named partial wave (PW)
equation theory, which also presents 3D information [14-16]. Recently, Sumi et. al. evaluated
molecular orientation using density functional theory (DFT) [17].

In this work, we propose a new procedure to evaluate 3D-correlation functions with real

solid harmonics around solute site. Since our procedure employs radial and angular grid struc-
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tures instead of a 3D grid, expensive 3D Fourier transforms can be avoided in the calculation
of 3D convolution by employing spherical Bessel transforms. In this procedure, a new clo-
sure equation based on 3D-HNC closure and fussy cell method proposed by Becke [18] are
employed. By decomposition of the 3D correlation function, the site-site interaction between
solute and solvent can be evaluated more easily. Such information is useful for clearer un-
derstanding of solvation. We have applied this procedure to a typical benchmark system,
non-charged/charged HCI model in the present letter. The detail of our procedure is given in
Sec. 3.2. Special techniques necessary for employing the procedure are described in Sec. 3.3.

The results and conclusions are presented in Secs. 3.4 and 3.5, respectively.

3.2 Method
3.2.1 Ornstein-Zernike type equation

In the 3D-RISM integral equation for a solute-solvent system, total and direct correlation

functions in 3D spacé, andC.,, are written as follows [10-12];
H,(r) = Z Cs * (woy + phey ) (r), (3.1)
0

wherews,, is the intra-molecular correlation function between solvent molecule sitasgy,
p is the number density of solvent molecules, ardknotes convolution in direct spade;. }
are the radial site-site correlation functions of bulk solvent and these are usually evaluated with
the XRISM theory.

To consider 3D site-site interaction explicitly, we divide the three dimensional correlation
functions into the components assigned to each solute site. This division is performed by the

following function, in which modified Voronoi cells are employed,

> wa(r) =1. (3.2)

This function, proposed by Becke [18], is commonly used for the calculation based on DFT in

many ab initio guantum chemistry packages.
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The direct correlation function(’s, is formally divided into the components around the

solute site, by the function,
Cs(r) = D wa(r)Cs(r)
= Y ), (3.3)

where superscript is used to show thatgfs)(r) is a partial component of direct correlation
function. It is convenient to define an auxiliary functi@:f;ﬁ)(r), in which the position vectors

are referred to the atomic sites;
A9(r) = d(r + R,), Va. (3.4)

whereR,, is the position vector pointing to solute site The auxiliary functionc&? (r), can

be expanded with real-solid harmonics around solute sjtas follows:

D) = > () S (7). (3.5)
U'm/

By substituting Eqg. 3.3 into Eqg. 3.1 and using the notation in Eqg. 3.4, the total correlation
function is represented with the auxiliary functigff (r):
H,(x) = D cly) # (ws + pha,) (x). (3.6)
ad
Equation 3.6 can be represented by the solute-site centered comp({méﬁm/}, and real-
solid harmonics{S;,- }, by using Eq. 3.5, as follows:

Hy(1) = 337 el # (w4 phss) | (1) St ()

ad U'm/

Z Z hio;),l’m’ (ra)Sl’m’ (7204) . (37)

a U'm/

The auxiliary total correlation functiorf/,,, (r), is defined as follows:
H,,(r)=H,(r+R,),Vn. (3.8)
The auxiliary function can also be expanded with real solid harmonics:

Hy, (r) = Z Py, (7) St (P (3.9)

U'm/
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By following Talman’s strategy [19], the componen{ﬁ .}, on each solute center can be

oy, l'm

connected witH ,, ;.. }, as follows:

7 U'm Z Z [wlm U'm/! * hg?y)lm (T‘n), (310)

where a new intra-molecular correlation functiop, ;.. (R,) is defined in the:-space, as

follows:
Wim,I'm (k; R) ( )zll/H/eik-RSlm( )Sl’ ( )ko (3.11)

By substituting the component{sh .}, defined in Eq. 3.7 into Eq. 3.10, OZ-type equa-

avy,l'm

tion is obtained as follows:
Py e () ZZ [wlm i (Rapa) * C((xﬁ)lm * (wWay —l—phm)] (). (3.12)
Im af
This equation is reduced to the RISM equation by taking a spherical lifait (, m’ = 0) of
Eq. 3.12.

From the standpoint of 3D-RISM, the present procedure can be regarded as a 1D represen-
tation of 3D-RISM. On the other hand, Eg. 3.12 can also be derived from the partial Ornstein-
Zernike (POZ) scheme. If one of the molecular orientation of Eq. 3.5 in Ref. [16] is spherically
averaged and angular momentum indices are applied for another molecular orientation, POZ
reduces to Eq. 3.12. In this sense, we can say that the present method implements POZ with

angular functions in 2D (spherical Harmonics) for the first time.

3.2.2 Closure relation

In the present work, we start with the following 3D HNC closure [10-12]:

Cs(r) = exp(—Pus(r) + 75(r)) — 75(r) — 1, (3.13)

wheres = 1/kT, ther bond is defined as; = Hs — Cs5 andus(r) is the 3D interaction

potential between the solvent siteand the solute.
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The auxiliary direct correlation functior¢,;(r), is expanded around solute siteusing

real-solid harmonics as follows:

Cus(r) = Cs(r+Ry,)

= Z Ca&,lm(ra)slm(fa)- (314)
lm
By using Egs. 3.8, 3.9, and 3.14, théond can also be expanded around

7as(t) = > (hasim(Ta) = Casim(ra))Sim(Fa). (3.15)

Ilm

To solve Eq. 3.12, the equation which conn€géts; .., () } with both components of direct
correlation functiongc,s(7.)} and the partial direct correlation function{lssg?lm(ra)} are

necessary. Here,s (1) can be obtained from the following closure relation;
Caé,l’m’(roz> - /Ca6(r)5l’m’ (f’a)dgra
= / lexp(—Pus(r) + Tas(r)) — Tas(r) — 1] Sy (70,)d€2,,. (3.16)

By employing the functionw, and Eq. 3.3, partial direct correlation functioﬁ?lm(ra) can be

obtained from the bond, like the case of Eq. 3.16.

ne(ra) = [ (e Cos(6) St ),
= /wa(r) lexp(—pPus(r) 4+ Tas(r)) — Tas(r) — 1] Sy (74)dQ,, .

(3.17)

For simple liquids¢'®, (r.) is equal 0o im (T'a)-

ay,lm

The procedure to solve these equations is summarized in Scheme 3.1.

3.3 Computational details

One-dimensional functions, such &g, ;,,, andc,, ../, are defined on logarithmic grids.
The integral of Egs. 3.16 and 3.17 around the solute site is calculated using Gauss-Legendre
quadrature. Spherical Bessel transformation#,gf,,, andc.zs,, are performed using Tal-

man’s algorithm [20]. Since this grid system divides 3D space into the radial and angular
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parts, the choice of the grid size is more flexible than the cubic lattice. When the cubic lattice
is employed for 3D FFT, the number of grids must$de In our method, the number of the
radial grid is2”¥ and that of the angular grid can be changed depending on required accuracy.
Thus, it is easy for our method to reduce the computational memory.

To apply our method to a charged solute, Ng’s method [21] is employed. The 3D interaction

potential in Eq. 3.13 is written as follows:

Uy(r) = Z [ui (r — Ra) + uis(r — Ra)] (3.18)

[0}

whereu};] andu, are Lennard-Jones part and electrostatic part, respectively. By using multi-

pole expansion, the electrostatic potential is written as follows:

VAT Sim (0, 60)
El _w m\Yar Yo w
ua'y<r - Ra) - q'y Z 20 +1 |I' _ Ra|l+1 Ma,lmu

(3.19)

Ilm

whered, and¢,, are determined around the solute sitey’ is the charge of the solvent site,

~, and the multipole momenit/ *

a,lm

is written with the electron densify, of the solute sitey,

U

AQMZVM/W—RJmMMMﬁﬁﬁh. (3.20)

To employ Ng’'s method (Eq. (3.5) in Ref. [21]), the long range part of the electrostatic potential
and the short range part of the partial direct correlation fun@lﬁﬁ% are written by Egs. 3.21

and 3.22, respectively:

ng“merf(]r —Ra|)

u " (Jr — Ral) e (3.21)
) = e (ra) + BB (1) 100 mo. (3.22)

In this work, we use point chargg for the solute sitex and the following multipole mo-

ments:

M’LL

a,lm

u [,m=20
:{%x Lm0, (3.23)

By replacingMy,,,, in Eq. 3.19 by Eq. 3.23, simple electrostatic potential is obtained as fol-
lows:

4y0

El
~Ry) = e
u,. (r ) TR,

ary

(3.24)
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Table 3.1: Lennard-Jones interaction parameters

elkcal mol~' o /A
HCI» Chloride 0.5138 3.353
(charged/non-charged) Hydrogen 0.0397 0.400

& Reference [3]

Becke’s weight function can be formulated in terms of the following definitions:

Pa(r)
wa(r) = —20 (3.25)
A SN
PA<I') = HB¢AO.5 [1 - V(k) (T‘A, TB)} (326)
v (rp,rg) = UV (ra, ) <1.5 - 0.5 (I/(l_l)(TA, TB))2> (3.27)
vO(ra,r) = u(ra,rs) + aas (1 — (u(ra, TB))Q) (3.28)
p(ra,ms) = (ra —rp)/Ran (3.29)
ra = |[r—Ral, 78 =|r—Rg|, Rap=|Ra —Rg| (3.30)
1— 2
arp = 4—XAB (|laas < 0.5]) (3.31)
XAB
XAB = OA/0B. (3.32)

In this work, % is fixed to 4 andr (o) is the Lennard-Jones parameter of atom A (B).

We calculate the radial distribution functions (RDF&), = h.-00 + 1 of charged/non-
charged HCI model. The bond length used in this model isi1.@alculations are carried out
at 210 K and the molecular number densitypof 0.0180A-3. The atomic partial charges
used for the charged model are -@.2or chloride and +0.2 for hydrogen. The Lennard-
Jones interaction parameters are summarized in Table 3.1. The angular momentum of real
solid harmonics up to 5, and 512 and 800 grids for radial and angular parts, respectively, are

used.

3.4 Results and discussion

The results of non-charged/charged HCI model are shown in Figs. 3.1 and 3.2, respectively.

CI-Cl RDFs of RISM, POZ, and the present procedure in the non-charged model are in fair
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6.0 |

HCI1 model
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4.0

g(r)

0.0 2.0 4.0 6.0 8.0
rl A

Figure 3.1: Site-site correlation functions, (a) Cl(solute)-Cl(solvent), (b) H(solute)-Cl(solvent), (c)
H(solute)-H(solvent), of non-charged HCI model. Solid, dotted, and dashed lines show the results of
the present procedure, XRISM, and POZ [15], respectively. Circles denote the Monte Carlo results of
Hirata et. al. [3].
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Figure 3.2: Site-site correlation functions, (a) Cl(solute)-Cl(solvent), (b) H(solute)-Cl(solvent), (c)
H(solute)-H(solvent), of charged HCI model. See Fig. 3.1 for notations.
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agreement with the simulation (Fig. 3.1(a)). The present method can predict the CI-Cl solva-
tion structure better than POZ for the charged model (Fig. 3.2(a)).

In the present HCI model, the hydrogen site is embedded in the CI site, as shown in the
upper-right corner of Fig. 3.1. For preparing correct H-Cl and H-H RDFs, it is necessary for
IET to include intra-molecular interaction in the HCI molecule. The RDF of H-Cl obtained
by RISM exhibits an artificial peak at t=94 in charged HCI (Fig. 3.2(b)). When positive
hydrogen approaches negative chloride, the hydrogen site cannot come so close to chloride
because of CI-Cl repulsion [13, 15]. The artificial peak shows that RISM cannot evaluate
correct intra-molecular interactions. On the other hand, the correct profile of RDF is computed
by the present procedure, because it can correctly evaluate H-Cl intra-molecular interaction.

The H-H RDF of the non-charged model obtained by the present procedure can predict very
low probability of finding hydrogens within &, which agrees well with the results of POZ
and the simulation. In the charged model, the first peak calculated by the present procedure is

almost identical to that of the simulation, though the amplitude is somewhat underestimated.

9.0 2.0
6.0
3.0
0.0 ( H Cl ) 1.0
-3.0
-6.0
-9.0 0.0
90 -60 -30 00 30 60 90

X/ A

Y/A

Figure 3.3:3D solvation structureiy(r), of the charged HCI model. Solute chloride and hydrogen
nuclei are positioned at (0.0, 0.0) and (-1.3,0.0), respectively.
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The present procedure can also evaluate the 3D solvation stru€tyfe, = H,(r) + 1.
The hydrogen distributiorG'y(r), for charged HCI model is shown in Fig. 3.3. There is high
distribution around the Cl site{ = 1.1A ~ 2.34, Y = —1.5A ~ 1.54) because of the strong
electrostatic interaction between solvent hydrogen and solute chloride. On the opposite side
(X = —4.7A, Y = 0.04), there is a broad distribution. This distribution is derived from the
hydrogen which is bonded with the chloride aggregating around solute hydrogen. The 3D map

is in fair agreement with the previous results [13, 15].

3.5 Conclusion

We have proposed a new procedure to evaluate 3D solvation structure based on integral
equation theory. By employing the expansion of real-solid harmonics, the present procedure
does not need expensive Fourier transformations. In the derivation of 3D-HNC like closure, the
fussy cell method proposed by Becke is employed. This facilitates the calculation and much
clearer understanding of site-site interaction. The present procedure can provide quantitatively
accurate radial distribution functions. Some of the RDFs obtained by the present method are
in better agreement with those of simulation than those of previous IETS.

In the closure defined in Egs. (16) and (17), electrostatic potential is represented in 3D
coordinate. This will allow us easier use of the electrostatic potential calculated by quantum

chemistry.
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Chapter 4

A highly parallelizable solvation structure theory
based on Three-Dimensional Reference Interaction
Site Model: Application to biomolecules.

4.1 Introduction

Most of the biochemical reactions proceed in aqueous phase. The waters locate inside and
around a protein. Almost all of the proteins can proceed the reaction only in this environment.
For example, Bacteriorodopsin, which is a light-driven proton pump, prepare the hydrogen
bonding network between hydrated waters and residues inside. Protons are considered to be
transfered across the membrane through the network [1, 2]. To clear the functions of these
waters, the information for the distribution of them is indispensable.

The experimental study to obtain the hydration structure has been performed using several
powerful experimental techniques, such as X-ray diffraction at low temperature and the scat-
tering with very high-power neutron source. Thanks to these studies, the high resolution data,
which is accurate enough to discuss the hydration structure around protein, has become avail-
able. However, such solvation information is still very limited. Furthermore, almost all of
them are in crystal, which is believed to be essentially different from aqueous environment.

Theoretical approach to evaluate the hydration structure has been also performed. The most
popular treatment may be molecular simulation. Although the method was applied to some
solvation systems, to obtain the hydration structure inside and around protein with high-quality,
very long simulation is necessary. Recently a theoretical determination of hydration structure

around protein has been done by Imai et al. based on statistical mechanics [3]. They employed
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3D reference interaction site model (3D-RISM) [4,5] for hen egg-white lysozyme and showed
that 3D-RISM is capable of computing the solvation structure not only around protein but also
inside appropriately. Yoshida et al. showed that 3D-RISM can also correctly reproduce the
selective ion binding with human lysozyme [6].

In 3D-RISM calculation, the hydration structure is evaluated on 3D lattice grids. The size
of the protein which can be calculated is determined by the number of grid points and the
resolution of the data. In principle, it would be possible to compute high-quality hydration
structure around large size of the proteins whatever you want by increasing the number of grid
size. However, high computational cost and very long calculation are required to obtain such
results.

In this work, a new approach based on 3D-RISM, Fragment 3D-RISM, was developed, in
which 3D solvation structure is reconstructed from the solvation structures evaluated around
each solute site. Since these calculations are performed with a combination of logarithmic
grid and real solid harmonics, the number of grid points in the present scheme can be adjusted
more flexibly compared to 3D lattice grid employed in the conventional 3D-RISM. Moreover,
because the algorithm of the present method readily achieves high parallel performance, the
computational time can be reduced dramatically. The total solvation structure is reconstructed
with the calculated fragment results.

The organization of this paper is as follows. In Sec. 4.2 and 4.3, the formalism of the
present method and the computational details are presented, respectively. In Sec. 4.4, the
following three topics are described. First, the parallel performance of the present method is
checked. Second, the calculated results in this work are compared with those evaluated by the
conventional 3D-RISM in terms of hydration structure and partial molar volume. Finally, the
hydration structure around a protein called Fv fragment is evaluated. The computed results are

compared with the high-quality results obtained by X-ray crystallography.
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4.2 Method
4.2.1 Ornstein-Zernike type equation

3D-RISM equation is written by,
Ha(r) =) G [wha + phia] (1), (4.1)
s

whereH, andC,, are 3D total and direct correlation functions, is the intramolecular cor-
relation function of solvent, antdl" is the total correlation function of solvent. In the present

theory,H, andC,, are expressed as the sum of reference and residual correlation functions, as

follows:
H,(r) = H™(r)+ AH,(r), (4.2)
Ca(r) = CF(r)+ AC(r). (4.3)

The reference correlation functiong ! and C**' are defined with 1D correlation functions

by
H*(r) = Zcﬁ7 % [why + phly] (rs), (4.4)
By
Crf(r) = Y cpalrp), (4.5)
B

wherer; = |r — Rg| andRy is the position of the solute atomic site Inserting egs. 4.2,
4.3,4.4, and 4.5 into eq. 4.1 leads to the Ornstein-Zernike (OZ) type equation for the residual

correlation functions,
AH,(r) = Z ACs * [wh, + phy,] (r). (4.6)
8

The residual functionsAH,, and AC, are divided into the components on each solute

atomic site,
AHu(r) = Y ws(r)AHP (rp), (4.7)
B
AC,(r) = > ws(r)ACP (xp), (4.8)
B
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wherewg(r) is the weight function for solute atomic siteat the positionc. In this work,
AH&’B) andACC(f) are expanded with real solid harmonigg, around atom cente?, as fol-

lows:
ZA i (18) S (5). (4.9)
ZAqua (r3)Sim (E5), (4.10)

wherer s is a unit vector with its origin. The component of residual total correlation function

is approximated by the following equation,

AHlfz)a Z AC1lm 5% wéa + phﬁa} ( ) (411)

4.2.2 Closure

In 1D-RISM and 3D-RISM framework, there are many closure equations. Kovalenko and

Hirata proposed the following closure (KH closure) for 3D-RISM [7],

_ exp(Xa(r)) —1 for xa(r) <0
Ha(r) = { Xa(T) for xo(r) >0

Xa(r) = —Puy(r) + Hy(r) — Cy(r), (4.12)
wheres = 1/kgT, kg is Boltzmann'’s factor, and, (r) is the intermolecular potential function
between solute and the solvent site To solve egs. 4.9, 4.10, and 4.11, we elaborated the

following KH type closure,

MOy = BP0 ) = 1= HE ) o e <0
o X&V)(rw) — H™(r,) for xa )(rv) >0

X&) (1y) = = Bua () + {H (ry) + AHD (1)} = {3 (r,) + AC(r,)}, (4.13)

whereu,(r,) is the intermolecular potential function between solute and the solvent site
around solute sitg. The difference betweemn, (r) in eq. 4.12 and.,(r,) in eq. 4.13 is only
the origins of the vectorsandr,.

The procedure of the present method is summarized as follows. The reference correlation
functions, H**f andC*, are calculated by egs. 4.4 and 4.5 with the correlation functions ob-

tained by 1D-RISM [8—10]gtep 1). The residual correlation functiodsHY” (r.), ACS” (r.)

64



are calculated on solute sitewith egs. 4.9, 4.10, 4.11, and 4.18dp 2. After the step, the
solvation structure for the solvent site(H,(r) + 1) is evaluated by eqgs. 4.2, 4.4, and 4.7
(step 3. In this algorithm,step 2 which is most time demanding, is highly parallelized be-
cause the calculation of the residual correlation functions on each soluté sien be treated

independently.

4.3 Computational details

The grid set employed in this work is logarithmic grid [11] for radial part and the Lebedev
grid [12] for angular part. With the grid set, the convolution in eq. 11 is performed by spherical
Bessel transformation [11]. For the weight functiep(r), Becke’s function was employed
[13]. The calculation of the present method is parallelized with MPICH2 [14].

The geometries of the proteins were taken from PDB data and those of amino acids from
Klotho (Biochemical Compounds Declarative Database) [15]. The potential functions for
the amino acids and the proteins are united-atom OPLS parameters [16]. For solvent water
molecule, SPC-like model was employed [17] with a correction concerning the Lennard-Jones
parameters of the hydrogen sites(L.OA, €=0.056 kcal/mol). To visualize 3D solvation struc-

ture, VMD software was used [18].

4.4 Results and discussion
4.4.1 Computational Performance of parallelization

The computational performance of the parallelization was evaluated with a speed up ratio.
The benchmark calculation was performed using a small protein, Chignolin [19].

Speed up rati® (V) using N processors is defined as,

S(N) = Execution time with 1 processor (4.14)
~ Execution time with N processors '

If a program is completely parallelized(N) = N (dashed line in Fig. 1), corresponding to
linear speed-up. Although the evaluated speed-up &ig) is somewhat smaller thai

(filled circle in Fig. 1), the present method showed good performance. Since the execution
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Figure 4.1:Speed up ratio as a function of the number of used proces&grs (

time for the calculation is a sum of the times &tep 1andstep 2 the ratio ofstep 25,(N) is
also separately shown in Fig. 4.1, showing the degradation of the computational performance
mainly comes from thetep 1

In step 1 the 1D correlation functions for all solute sites and solvent sites are evaluated at
the same time. These functions between solute sites are mixed through the spherical convolu-
tion integral in RISM equation. Because transfer of very large data among each processor is
required, the performance of this step is degraded. On the others$tapddoes not include
the convolution integral between the solute sites, allowing to calculate the functions indepen-
dently. Note thastep 2is dominative in the total time and the contributions fretaps land

3 are significantly small. As a consequence, virtually linear speed-up is achieved.

4.4.2 Comparison of the present method with 3D-RISM

The present method can be considered as the approximation of 3D-RISM. To evaluate the
accuracy of this scheme, comparison between the present method and the conventional 3D-
RISM was performed on hydration structure and partial molar volume (PMV).

The hydration structures around tryptophan in zwitterionic form evaluated by the present
method and 3D-RISM are shown in Fig. 4.2. Because tryptophan is a molecule including

both of hydrophobic group (benzene ring) and hydrophilic grodfs;(; CO,, andNH in
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(a) (b)

(© (d)

Figure 4.2:3D hydration structures of oxygen site (pink) and hydrogen site (blue) around tryptophan
calculated by the present method (a) and (c) and by 3D-RISM (b) and (d). The isodensity surface of the
solvation structure is 3.5 for (a) and (b) and 4.5 for (c) and (d).

pyrrole), it is a good example for the comparison. When the threshold of the isodensity is 3.5
(Figs. 4.2(a) and 4.2(b)), the broad distributions of water hydrogen (blue region) and of water
oxygen (pink region) can be seen around hydrophilic groups. The shape of the distributions
evaluated by the present method (Fig. 4.2(a)) showed good agreement with that obtained by
3D-RISM (Fig. 4.2(b)). By increasing the threshold, strongly binding hydration waters can
be drawn selectively. In Figs. 4.2(c) and 4.2(d), the hydration structures with the threshold of
4.5 are shown. Strongly binding water oxygen and water hydrogen can be seen only around
NH; andCO;, respectively. Therefore, it is concluded that the present method reproduced
the distribution of hydration structure evaluated by the original 3D-RISM.

PMV of the solute molecule in molecular solvel), is expressed in terms of the 3D solute-

solvent direct correlation functions by the relation [20, 21]

VO = kT (1 - ,OZ / Cﬁ(r)drﬂ> : (4.15)
B

where Y. is the isothermal compressibility of the pure solvent. By inserting eq. 4.3 into eq.
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4.15,V0 is expressed with a sum of reference part and residual part, as follows:

V) = ksTx7 (1 _PZ/Caﬁ(rv)dr*y) _kBTXOTPZ/AO'y(rv)dI'V
af vy

— VAV (4.16)

140 | |@ the present method
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Figure 4.3:PMVs of 20 amino acids calculated by 1D-RISM, the present method, and 3D-RISM in
comparison with the corresponding experimental data [22—-25].

In Fig. 4.3, the PMVs of 20 amino acids in zwitterionic form calculated by 1D-RISM, the
present method, and 3D-RISM are plotted in comparison with the corresponding experimental
data [22-25]. If a theoretical value reproduces the experimental one exactly, the data is plotted
on the solid line. As shown previously [21], the PMV calculated by 1D-RISM is much smaller
than experimental data. On the other hand, the present method considerably improves the
agreement with the experimental values. The accuracy is almost the same as that of 3D-RISM.
In both of the present method and 3D-RISM, 1D-RISM strategy is used for the description of
the solvent-solvent correlations. This may be the reason of the same accuracy of the two 3D

type methods.

4.4.3 Hydration structure around a protein

The present method was applied to a protein called Fv fragment, which is a part of an

anti-dansyl antibody. The protein was thoroughly studied with X-ray crystallography at low
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temperature and high-quality crystal structures were obtained in different conditions [26, 27].
Because the hydration structures around them were also discussed in their works, it is a good
system to evaluate the difference between calculated and experimentally observed results. In
this work, the hydration structures around only the Fv fragment (unliganded state) [26] and
around the Fv fragment which binds withdansylL.-lysine (DNS-lys) (complex state) [27]

were evaluated. The geometries for the unliganded state and the complex state were taken
from PDB data (PDBID: 2dIf.pdb and 1wz1l.pdb). All the water molecules were removed

from the data before the computation.

Figure 4.4: 3D hydration structures of oxygen site (green area). The isodensity surfaces of these
structures are 2.5 (a) and 4.0 (b), respectively. For the sake of viewability, all of the residues are shown
with black spheres.

The hydration structures of water oxygéfir) around the unliganded state with different
threshold of isodensity surfaces are shown in Fig. 4.4 together with the hydration waters deter-
mined by X-ray crystallography. When the threshold is 2.5 (Fig. 4.4(a)), the broad hydration
structure is observed. The broadening of the distribution reflects the fluctuation of solvent
waters at room temperature. The hydration structure with the threshold 4.0 is considerably
localized (Fig. 4.4(b)). The distribution shows the area where waters bind strongly with the
protein, corresponding to peaksdf{r). These positions are in reasonable agreement with the
experimental data, which is obtained at low temperature (Fig. 4.4(c)).

The Fv fragment has a binding pocket with DNS-lys and the structure around the site is
greatly different between the unliganded state and complex state. In Fig. 4.5, the calculated

hydration structures around the binding site for these states are shown together with the ex-
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Figure 4.5:The hydration structure of oxygen site (green area) around the binding pocket of DNS-lys
for the unliganded state (a) and complex state (b). The isodensity surface is 3.5. The residues except
HIS98, TYR96, TYR99, and TYR102 are shown with black spheres. The red, blue, and cyan spheres
corresponds to oxygen atom, nitrogen atom, and carbon atom, respectively. The waters determined by
X-ray crystallography are shown with white spheres.

perimentaly determined waters (white spheres). In the unliganded state, the binding pocket is
surrounded by TYR96, HIS98, TYR99, and TYR102. Around the residues, there are many
waters observed experimentally and the positions of them were correctly reproduced by the
present method ( green mesh area in Fig. 4.5(a)). In the case of the complex state, these
residues flip away and the pocket is opened. Along the flip, the hydrophilic groups such as
N and O are pushed away and the hydrophobic groups such as benzene rings of TYR96 and
TYR99 appear. The distribution of waters can be seen around the binding pocket and there is
a hydrophobic space where DNS-lys binds (dotted circle in Fig. 4.5(b)), which is consistent
with the previous work [27].

In Fig. 4.6, the bottom of the binding pocket in the complex state is focused to see water
oxygen (green) and water hydrogen (white). The positively charged water hydrogen sites are
around N and O site of DNS-lys and TYR102, respectively, and the negatively charged water
oxygen site is around H site of TYR102, which shows the three hydrogen bondings between
DNS-lys and TYR102 (dotted line in Fig. 4.6). These distributions correspond to the water

experimentally observed by X-ray diffraction technique at low temperature [27].

70



Figure 4.6:The hydration structure of oxygen site (green area) and hydrogen site (white area) in the
pocket of DNS-lys, where the isodensity is 3.0. The residues except ALA 101 and TYR102 are shown
with black spheres.

4.5 Conclusion

In this article, a new approach, Fragment 3D-RISM, was proposed. The solvation structure
is calculated with three steps, the calculation of the reference correlation funcitepsi),
the residual correlation functionstép 2, and the building up of solvation structure from
the results obtained by the previous stegte 3. Because the most time demanding step
(step 2 is highly parallelized, the computational time can be reduced dramatically. Although
the present method is regarded as an approximation of 3D-RISM, the hydration structure of
tryptophan and PMV of amino acids were almost the same as those evaluated by the original
3D-RISM.

The method was applied to the hydration structure around the binding pocket between Fv
fragment and DNS-lys. By drawing the 3D solvation structure with small and large thresholds
of isodensity, the fluctuation of waters and tightly binding waters can be investigated. The
calculated hydration structure was good agreement with the experimentally observed results.

By evaluating not only water oxygen site but also water hydrogen site, which is difficult to
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be determined by X-ray crystallography, the direction of the hydrogen bonding was clearly

shown.
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Chapter 5

The position of water molecules in
Bacteriorhodopsin: A fragment
Three-Dimensional Reference Interaction Site
Model study

5.1 Introduction

The information of hydration structure is very fundamental in biosystem [1]. Hydrogen
bondings between waters and protein affect protein structure and activity of enzyme. The
information is also very useful in drag design since the position of waters in the vicinity of the
activity site has great influence on the stabilization of the drug-protein interaction [2, 3] .

The waters in biosystem can be classified into “surface” or “bound”, according to whether
they are surrounded by other water molecules or protein [4]. Some proteins contain the bound
water molecules inside, which sometimes play an essential role on their functional features.
For example, it is well known that hydrogen bonded water molecules play a key role in Bacte-
riorhodopsin (bR), which is a light-driven proton pumHalobacterium salinarumTo reveal
the mechanism of the pump, a huge number of approaches including X-ray crystallography [5],
resonance Raman [6] and Fourier transform infrared spectroscopy [7] have been performed.
These experimental approaches have elucidated that the hydrogen-bonding networks of these
water molecules providing the proton pathway in the pump [7]. Theoretical approaches to
study the mechanism have been also performed [8-14]. In most of the studies, the mechanism

of bR function was focused and the initial positions of bound waters inside protein were taken
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from experimental data.

The theoretical prediction of the water distribution is still very limited. It is extremely diffi-
cult task for the molecular simulation such as molecular dynamics to compute the distribution
because it is necessary to sample the interaction between the protein and water molecules on
the extensive free energy hypersurface. It has been shown that an integral equation theory for
molecular liquids, three-dimensional reference interaction site model (3D-RISM) [15, 16], is
a powerful tool to study the distribution of bound and surface waters and numerous applica-
tions have been carried out [17-21]. We have recently developed a new approach based on
3D-RISM, in which the equations are elaborated so that the high parallel performance can be
achieved (fragment 3D-RISM) [22]. Similar to the original 3D-RISM, our method evaluates
the 3D solvation structure but the required computational time can be compressed. Although
the present theory is regarded as an approximation of 3D-RISM, the obtained distribution func-
tion is virtually the same as that by the original method [22]. Furthermore, the new theory is
practically free from the grid size since the distribution functions are computed by the expan-
sion around the individual solute site. Actually the functions are described in higher-resolution
than the original one.

In the present work, we applied the fragment 3D-RISM to computations of the waters’ posi-
tion in bR and compared with those obtained by X-ray crystallography as well as by previous
simulations. After brief description of the method, details of the calculation are explained in

section 5.3. The bound waters are discussed in section 5.4.

5.2 Method

3D correlation functions of a solvent site H, andC,, are expressed with reference and

residual correlation functions, as follows:

Ho(r) = H'(r) + AHu(r), (5.1)
Colr) = C™H(r) + AC,(r). (5.2)

76



For the reference correlation functiorf$:*f andC™!, 1D correlation functions are employed
[22]. The residual functionsd H andAC, are 3D functions and divided into the components

localized on each atomic site of solute,

AHu(r) = D ws(r)AHD (rp), (5.3)
AC,(r) = Y ws(r)AC (rp), (5.4)
B

wherewg(r) is the weight function for solute atomic siteat the positionc. In this work,

AHY andAC” are expanded with real solid harmonigg,, as follows:

AHP (rg) = ZAH}T@LW)SM%)’ (53)

ACO(rg) = ZAC@

Im,«

Tﬁ Sl ( ) (56)

wherer; is a unit vector with its origin at atorfi. The component of residual total correlation
function can be approximated by the following equation in analogy with the original RISM

theory,
AHlm a Z AOlm 5 % [Won + PRy (7). (5.7)

To solve Egs. 5.5, 5.6 and 5.7, we elaborated the following Kovalenko-Hirata (KH) type
closure [23],

AHO () = exp(x(r,) =1 — H¥(r,)  for x&(r,) <0
« Y X(o?)( ) Héef(r’» for X((37) (1'7) >0

Xg)(rv) = —ua(ry)/kpT

+{H (r,) + AHD (r,)} — {CFF(x)) + ACD(x,)},  (5.8)

wherek is Boltzmann'’s factoru, (r.,) is the intermolecular potential function between solute
and the solvent site, which is evaluated on the grid points around solute-gite

Hypernetted chain (HNC) closure is another popular equation used in integral equation the-
ories for liquids. Site-site correlation functions, such as radial distribution functions, can be

evaluated well by HNC closure. KH closure sometimes greatly underestimates the site-site
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correlation functions, but the process of the numerical solution is much stabler than that of
HNC closure.

The flow chart of the present method is shown in Scheme 5.1.

I. Calculation of 1D correlation functions of neat
solvent by RISM/KH

v

II. Calculation of reference correlation functionsj

H ') Clr)

E
0
E

III. Calculation of residual correlation functions
Egs. 5.5, 5.6,5.7, and 5.8

v

IV. Calculation of 3D solvation structure
Egs. 5.1 and 5.3

Scheme 5.1

5.3 Computational details

The reference correlation functions were calculated by 1D RISM/KH procedure [24, 25].
Using the converged 1D direct correlation function, the reference correlation funéfighs
and C™! were evaluated. The residual correlation functions were then calculated by Egs.
5.5, 5.6 and 5.7, coupled with Eg. 5.8. In this approach, the calculation was performed on
logarithmic grid for radial part and the Lebedev grid [26] for angular part. With the grid set,
the convolution integral in Eq. 5.7 can be calculated by spherical Bessel transformation [27].
To reduce the computational cost per one CPU, calculation was parallelized with MPICH2
[28]. The solvation structure was evaluated with Egs. (1) and (3) from the obtained residual
correlation functions. For visualization of 3D solvation structure, VMD software [29] was

used.
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5.4 Results and Discussion

The geometry of bR was taken from the PDB data (PDBID: 1¢c3w) [5] and OPLS parame-
ters [30] were employed. All the water molecules inside the protein in PDB data were removed
before the computation. SPC-like model of water was employed [31] with a correction con-
cerning the Lennard-Jones parameters of the hydrogemsi-’eés(ﬁ, ¢=0.056 kcal mot?). bR
is a large molecule and the number of the solute sites is 2221 for the parameter set. However,
the required memory size of the present method was about only 850 MB per one CPU, mean-
ing the allowance to perform the computation even with PC cluster. It is noted bR is in the cell
membranes in reality, but they are ignored in the the present computation. We believe that the

surrounding water or membranes have no effect on the water molegsi@sthe protein.

.
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Figure 5.1: 3D distribution of waters inside bR. The green (white) regions correspond to the
area where the distribution function of water oxygen (hydrogen) site is larger than 3.2. The
bound waters detemined by X-ray crystallography are represented by red spheres.

bR contains altransretinal, which binds covalently to Lys216 through a protonated Schiff
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base linkage. The distribution of waters around retinal calculated by the present method and
the water molecules obtained by X-ray diffraction data [5] are shown in Fig. 5.1. Except for
Lys216 and retinal, bR is represented by ribbon for the sake of viewability. The scattered green
(white) areas shown in the figure indicate where the distribution function of water oxygen (hy-
drogen) site is greater than the threshold value, 3.2. The bound waters determined by X-ray
crystallography are represented by red spheres. Several positions of the comparatively-large
area coincide with the experimental data, suggesting that the water distribution is correctly re-
produced by the present method. The distribution of waters are not continuous and intermitted
by residues. In the case of aquaporins, the bound waters are continuously distributed through

out the channel [32]. This may be the large difference between a pump and a channel.

(d) \T(B/SChiﬁ base
H

o _ASP85

o Wa. %>/
ASP212 (
o LT e
% Wb

Figure 5.2: 3D solvation structure of water oxygen (green) and hydrogen (whife) Time
positions of bound waters determined by X-ray crystallography are shown with dashed line.
The white surface show the areas where the distribution of water hydrogen is larger than 2.2
(@), 3.2 (b), and 4.2 (c). In these panels, distribution of water oxygen larger than 3.2 is shown.
In panel (c), possible hydrogen bondings are depicted with dashed line. Schematic drawing of
this area is shown in (d).
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Let us look at closely the regiond and B, which are enclosed with dashed lines. Fig.
5.2 focuses the water distribution in regién around Schiff base. The scattered green areas
shown in the figure indicate where the distribution function of water oxygen site is greater than
the threshold value, 3.2. To display the strength of hydrogen bondings clearly, distributions of
water hydrogen greater than 2.2, 3.2, and 4.2 are respectively shown in Figs. 5.2(a), 5.2(b), and
5.2(c). The positions of bound waters obtained by X-ray diffraction are also shown with dashed
line, Wa, Wb andWc [5]. Conspicuous localized distributions of oxygen and hydrogen are
found surrounded by LYS216, ASP85 and ASP212, which coincides with the result obtained
by X-ray crystallography. Shibata et al. proposed that waéasand Wb strongly bind with
oxygen site of ASP85, and watdVc strongly binds with ASP212 from the FTIR studies
[33, 34]. These strong hydrogen bondings are found in Fig. 5.2(c). The broad distributions in
Figs. 5.2(a) and 5.2(b) indicate the fluctuation of waters because the present calculation was
performed at the condition of room temperature. The schematic picture of the bound waters
drawn from these figures is illustrated in Fig. 5.2(d). The thick and thin dotted lines show
the strong and weak hydrogen bondings, respectively, which is in good agreement with the
network reported by Shibata et al. In the neighborhood of ARG82, the distribution of oxygen
site is found Wd) but no hydrogen site can be seen, at least, with the threshold, 4.2. This
means the watéWwd is captured by the residue but its orientation is relatively free compared
to aforementioned water moleculéd/a, Wb, andWec.

Fig. 5.3(a) shows the distributions of water oxygen (green) and water hydrogen (white) sites
in regionB, upside the retinal. There are two main diffuse solvation structures (distributions
andll ). By X-ray crystallographyWe andWf{ are detected ih andll , respectively.We in
the distribution links ALA215 (in helix G) and TRP182. Schulten et al. reported another wa-
ter molecule in the vicinity ofWe (see Fig. 1 in their work [11]), although no water molecule
is reported in the X-ray crystallography except We [5]. Fig. 5.3(a) shows that there are
interaction between water and THR178 (thick dotted line), which may correspond to the water
reported by Schulten et al. [11]. Another main distributidin (s continued from LYS216
to ASP96 and THR46 in the vicinity of the helix G backbone, which is distorted from stan-
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Figure 5.3: (a) 3D solvation structure of water oxygen (green) and hydrogen (whiB) in
Distributions of water oxygen and water hydrogen larger than 2.5 are shown. (b) Schematic

drawing of bound waters proposed from panel (a).
dard a-helical conformation [5]. The watéWf binds with the carbonyl group of LYS216.
Humphrey et al. proposed other two bound waters in this area [10]. The broad green and
white distributions correspond to these waters. The hydrogen bonded waters are shown in Fig.
5.3(b).

Both ofl andll make hydrogen bonding network from the Retinal to ASP96 and to THR46,

which is consistent with the previous works’ conclusions [5,10, 11, 14].

5.5 Concluding Remarks

Fragment 3D-RISM was applied to the calculation of the distribution of bound waters in
Bacteriorhodopsin. The computed distributions show good agreement with those by X-ray
diffraction experiment. The method is highly parallelizable and can sufficiently reduce the
required computational cost and time while adequate distribution of water molecules are ob-
tained.

In the neighborhood of the Schiff base, several water molecules captured by residues were

found. ASP85 and ASP212 obviously accept hydrogen bonding from neighbor waters because
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the direction of oxygen-hydrogen bond in water can be discriminated from the distribution. On
the other hand, the water near ARGS82 is also captured by the residue but rather freely oriented.
Near the G-helix backbone to ASP96, two largely continuous distributions were seen. They
are consistent with the bound water molecules reported in molecular simulation study.

The fragment 3D-RISM method is highly efficient with capability to predict the solvation

structure concerning sufficiently large bio-molecules.

83



Bibliography

[1] M. Chaplin, Nature Rev. Mol. Cell Biolz, 861 (2006).

[2] R. A. Engh, H. Brandstetter, G. Sucher, A. Eichinger, U. Baumann, W. Bode, R. Huber,
T. Poll, R. Rudolph, W. von der Saal, Struct4rel353 (1996).

[3] J. B. Finley, V. R. Atigadda, F. Duarte, J. J. Zhao, W. J. Brouillette, G. M. Air, M. Luo, J.
Mol. Biol. 293 1107 (1999).

[4] E. Mayer, Protein Scil, 1543 (1992).

[5] H. Luecke, B. Schobert, H.-T. Richter, J.-P. Cartailler, J. K. Lanyi, J. Mol. &&1, 899
(1999).

[6] S.O. Smith, J. Lugtenburg, R. A. Mathies, J. Membr. B84, 95 (1985).
[7] H. Kandori, Biochim. Biophys. Actd46Q 177 (2000).
[8] S. Hayashi, I. Ohmine, J. Phys. Chem1®4, 10678 (2000).

[9] S. Hayashi, E. Tajkhorshid, H. Kandori, K. Schulten, J. Am. Chem. $26, 10516
(2004).

[10] W. Humphrey, I. Logunov, K. Schulten, M. Sheves, Biochemi88y3668 (1994).

[11] J. Baudry, E. Tajkhorshid, F. Molnar, J. Phillips, K. Schulten, J. Phys. Chet5B05
(2001).

[12] F. Zhou, A. Windemuth, K. Shulten, BiochemisBg, 2291 (1993).

84



[13] M. Nina, B. Roux, J. C. Smith, Biophys. 88, 25 (1995).

[14] B. Roux, M. Nina, R. Poms, J. C. Smith, Biophys. 41, 670 (1996).

[15] A. Kovalenko, F. Hirata, Chem. Phys. Le200, 237 (1998).

[16] D. Beglov, B. Roux, J. Phys. Chem.1®1, 7821 (1997).

[17] S. Phongphanphanee, N. Yoshida, F. Hirata, Chem. Phys 44&t196 (2007).

[18] T. Imai, R. Hiraoka, T. Seto, A. Kovalenko, F. Hirata, J. Phys. Cheml.lB 11585
(2007).

[19] T. Imai, R. Hiraoka, A. Kovalenko, F. Hirata, Proteins-Structure Function and Bioinfor-

matics66, 804 (2007).
[20] T. Imai, R. Hiraoka, A. Kovalenko, F. Hirata, J. Am. Chem. Sb27, 15334 (2005).
[21] N. Yoshida, S. Phongphanphanee, F. Hirata, J. Phys. Chdaml,Bl588 (2007).
[22] D. Yokogawa, H. Sato, T. Imai, S. Sakata,be submitted
[23] A. Kovalenko, F. Hirata, J. Chem. Phyisl0, 10095 (1999).
[24] F. Hirata, P. J. Rossky, Chem. Phys. L88, 329 (1981).
[25] Molecular Theory of Solvatigredited by F. Hirata (Kluwer, Dordrecht, 2003).
[26] V. I. Lebedev, D.N. Laikov, Dokl. Mathb9, 477 (1999).
[27] J. D. Talman, J. Comput. Phy&9, 35 (1978).

[28] MPICH2 High-performance and widely portable implementation of MPI

http://www.mcs.anl.gov/research/projects/mpich2/index.php.
[29] W. Humphrey, A. Dalke, K. Schulten, J. Mol. Graphit4 33 (1996).

[30] W. L. JorgensenQPLS and OPLS-AA Parameters for Organic Molecules, lons, and
Nucleic AcidqYale University, 1997).

85



[31] H.J. C. Berendsen, J. P. M. Postma, W. F. van Gunsteren, and J. Hermate,molec-
ular Forces, edited by B. Pullman (Reidel, Dordrecht, 1981).

[32] S. Phongphanphanee, N. Yoshida, F. Hirata, J. Am. Chem.186¢1540 (2008).
[33] M. Shibata, T. Tanimoto, H. Kandori, J. Am. Chem. Sb25 13312 (2003).

[34] M. Shibata, H. Kandori, Biochemistdd, 7406 (2005).

86



Part |l

Quantum chemical calculation with
solvation effect

87



Chapter 6

Localization or delocalization in electronic
structure of Creutz-Taube-type complexes in
aqueous solution

6.1 Introduction

Mixed-valence complexes containing several metal centers with different oxidation state
have received intense theoretical and experimental interests because of their flexible electronic
structures and potential ability of molecular electronics [1]. Their electronic structures are
explained in terms of a superposition of two localized electronic structures. Robin and Day
classified mixed-valence complexes into three classes, namely classes I, Il, and Ill, consid-
ering the strength of metal-metal interaction which determines the magnitude of mixing of
the two localized electronic structures. In class |, the metal-metal interaction is negligibly
weak and the distribution of ‘excess electron’ or ‘hole’ is completely localized upon one of
the metal centers. In class lll, the interaction is strong enough and the distribution is fully
delocalized. The interaction in class Il is intermediate between them. This classification of the
mixed-valence complexes is discussed in many theoretical calculations and such experimen-
tal measurements as intervalence charge transfer spectra (IVCT) [1-4]. Both experimental
and theoretical works for mixed-valence complexes were summarized in detail by Dexhadis
al. [5] Recently, Reimergt al. discussed electronic structure and some physical properties
using reorganization energy [6].

Creutz-Taube compleX(NH3);Ru — pyrazine — Ru(NHz3);]°* (1in Fig. 6.1) [7, 8], is one

of the typical mixed-valence complexes. There has been heated controversy over how much
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Figure 6.1: Geometries of(NH3)sRu — pyrazine — Ru(NH;)s5]°* (1), [(NH3)50s — pyrazine —
Os(NHs)s)>* (2), [(NHs)sRu(4,4' — bipyridine)Ru(NHs)5°" (3), and [(NH;);0s(4,4" —
bipyridine)Os(NHjz)5]°* (4) used in this work. (unitd)
localized its electronic structure is. In this regard, many experimental and theoretical works
have been performed so far to understand the electronic structure. For instance, the electronic
structure was investigated by Stark effect [9], near-IR-vis spectra [10], and IVCT spectra. [2]
Creutz discussed the relationship between the physical properties of these complexes and the
mechanisms of electron transfer processes in her recent reviéw-of° iron, ruthenium and
osmium complexes, and showed that Creutz-Taube complex is delocalized while the larger
bipyridine-bridged complex is localized in aqueous solution [8]. Density functional theory
(DFT) [1, 11-13], MP2 [13], and complete active space SCF (CASSCF) calculations [14]
were performed as well. All these studies indicated that the electronic structure is delocalized
in this complex due to its strong metal-metal interaction; in other words, this complex belongs
to class Ill.

On the other hand, the electronic structure of 4igyridine-bridged dinuclear Ru complex,
[(NH3)5Ru(4, 4 — bipyridine)Ru(NH;)5]>* (3in Fig. 6.1), was reported to be quite different
from that of1. Stark effect [9] and IVCT spectra [3, 4] indicated that the metal-metal inter-
action of3 is weak and the electronic structure is substantially localized. Fetreli [15]
explained this electronic structure and visible spectra by using a four-site vibronic model.

Marcus-Hush theory was also applied to evaluate the IVCT specBH6f19]. Besides these
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studies, only a few computational studies3dfave been reported to our knowledge, in which
DFT [1], CNDO/S [14], and Cl methods [20] have been used. In these previous studies, solva-
tion effects were not taken into consideration except for one pioneering work [20], in which the
continuum model was employed to incorporate solvent effect. In reality, however, solvation
effects should be taken into consideration because the localized electronic structure is signif-
icantly stabilized by polar solvent. Another important issue is to consider its multi-reference
nature in the electronic structure, which is closely related to mixing of localized wavefunc-
tions. Standard methods such as CASSCF might not be applicable to these mixed-valence
complexes in reasonable computing time because of their large sizésfagesxample.

In the present article, we theoretically investigated, pyrazine-bridged dinuclear Os com-
plex, [(NH;)50s — pyrazine — Os(NHjz)5]°" (2 in Fig. 6.1), and 4, 4’-bipyridine-bridged dinu-
clear Os complex(NH3);0s(4, 4 — bipyridine)Os(NHj3)5]5* (4 in Fig. 6.1). The complexes,
2 and4, are not known experimentally to our knowledge. In fact, to understand the true na-
ture of the mixed-valence complexes, the consideration of vibration coupling and time scale
of solvation is indispensable, as reviewed recently. However, it is also important to evaluate
theoretically the electronic structure of real molecules of mixed-valence complexes without
modeling and static solvation effect. In this work, we evaluated some factors which deter-
mine the localization/delocalization of the ions without modeling and tried to relate them with
fundamental parameters such as overlap and energy gap. Though our study does not incor-
porate vibration-coupling and solvation time scale [5], we believe the knowledge of relation
between fundamental parameters and localization/delocalization nature is also worthwhile to

understand these mixed-valence complexes.

6.2 Method and Computations

6.2.1 Method

As described above, the metal-metal couplingliis considered very strong and that of
3 is considered very weak. The DFT method can be applied to the complexes with strong

metal-metal interaction but seems to be difficult to apply to the mixed-valence complexes
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with weak metal-metal interaction because the DFT method tends to overestimate delocalized
character [13]. CASSCF and CASPT2 methods are believed to be most reliable for this type of
compound. However, it is noted also that the mixed-valence complexes are too large to apply
the CASSCF method.

In the present work, we employed a method proposed by Farardel[21] to treat the
multi-reference nature of the wave function. The first step of this method is to calculate two
wave functionsy 4 and V¥ g, by the UHF method with the same geometry, where symmetry-
broken UHF orbitals are employed [22]?. In ¥ 4, the excess electron is localized on one
metal center, while inl' 5 it is localized on the other metal center. Thasg and ¥ 5 corre-
spond to the non-orthogonal ‘diabatic states’ [23]. The second step is to construct ‘adiabatic’

wave functions¥ , andVy_, from ¥4 and¥ 3, as follows;
\IIE+/7 =CyV, 1+ CpV¥p. (61)

Coefficients and the energi¢s, ,_ of the adiabatic states can be obtained by solving the fol-

lowing secular equation;

Hyao—FE  Hpp— ESap
Huyp—ESap Hpp—FE

=0, (6.2)
whereH g = (V4|H|V ), Hgp = (Vp|H|V ), Hap = (VA|H|V ), andSsp = (VA|Vp).

The solvation effects were evaluated by considering the interaction of the point charge and
the dipole moment of solute with reaction field, in which the solute was placed in a spherical
cavity immersed in a continuous medium with a dielectric constarih this situation, the
solvation free energy chang®G is given by eq. 6.3,

e—1¢> e—1 p?
2¢ a 2e+1a’

AG = — (6.3)

whereq is total chargey: is dipole moment, and is a radius of the spherical cavity which is
determined by the method of Worag al. [24]. Thee value is taken to be 78.39 throughout

the present study to represent aqueous environment. Because the complexes examined possess
positive charges, the dipole moment was evaluated with the procedure of &VahgThey

divided dipole moment of charged molecule into two pattsand .y, which correspond to
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the dipole moment of electrons and that of nuclear charges, respectively. Total dipole moment

of the molecule. is represented by eq. 6.4,

M ECASIR N (6.4

e
where( andn, are the total charge and the number of electrons, respectively. In the calculation

of ., we used density matrix of the total wave function,

P, = CiP,, + CEPL 4 2C4Cp det(U) det(V) P,

1% [z

(6.5)

whereP,, is “generalized” density matriXJ andV are unitary matrices of the corresponding
transformation [25], all of which are defined according to Faragtlal [21]. P;}, andP/fj are

usual density matrices of A and B states, respectiyelyas calculated from the partial charge

on all the atoms, which is determined so as to reproduce the electrostatic potential evaluated

with wavefunctions at each grid point around the solute molecule.

6.2.2 Computational Details

To calculate ‘adiabatic’ states, we used GAMESS program package [26] with several mod-
ifications by us. In all the calculations, core electrons of Ru (up to 3d) and Os (up to 4f) were
replaced with effective core potentials (ECPs), where (341/321/31) set was used for valence
electrons of Ru and (341/321/21) set was used for those of Os [27]. For C, N, and O, the
6-31G(d) sets were employed and for H the 6-31G set was employed. To check the reliabil-
ity of this basis set system, electron-transfer matrix element was evaluated with larger basis
sets, in which all electron basis sets, [84333/843/75/1] [28] augmented with an f-funetion (
1.235) [29], 6-311G(d), and 6-31G were used for Ru, N, C, and H, respectively. These two
different basis set systems presented almost the same value of the electron-transfer matrix ele-
ments [21, 30]. Thus, the smaller basis set system was employed throughout the present study.

In 1, theRu — NH3 andRu — pyrazine bond distances were taken from the X-ray crystal
structure [2], while geometries &fH; and pyrazine were optimized by the DFT(B3LYP) [31]
method since structural data are not available for these moieties. In the geometry optimization,

we used Gaussian 98 program [32] 218, and4, metal — N (ammonia), metal —N(pyrazine),
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andmetal — N(4,4" — bipyridine) distances were taken to be the same as thodeetause

there is no experimental data and our purpose is to compare them in the same situation.

HN NH; o' HsN  NH;
-
HsN—Ru Ru—NH;
H;N :/T\IH3 bridge H3N§ \NH3
Scheme 6.1

The energy curves were calculated as function of the displacementaf the bridging
ligand from the midpoint of the two metal centers (see Scheme 6 AsfarAlong the lines of
their procedure, we calculated the diabatic potential energy surface, assuming thet:the
NHj; distance did not change along the antisymmetric stretching motion of the bridging ligand.
These assumption is reasonable because the displacementsabf- NH3 groups have little
influence to the potential energy surface [33].3|rthe dihedral angle in 4, 4’-bipyridine was
fixed to be 40 degree, which was optimized by changing the dihedral angle with an interval of
10 degree. This angle is the same as that reported previously [1]. The effect of dihedral angle

on electronic structures will be discussed below.

6.3 Results and Discussion
6.3.1 Potential Energy Curve of Diabatic States

As shown in Fig. 6.2, two symmetry-broken wave functidnsand WV ; are calculated with
the UHF method along the reaction coordinAte These two states are degenerate at the sym-
metrical structureAr=0. As shown in Fig. 6.2, SOMOs of these states are almost localized
on each metal center. Heng, represents the state in which SOMO is almost localized on the
metal of the left hand side, anlz represents the other state. These are ‘diabatic’ states.

The ‘adiabatic’ states of ground and excited states are calculated in gas phase by using

eg. 6.2, as shown in Fig. 6.3. In all these complexes, the adiabatic state exhibits a single
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Figure 6.2: Energy curves and SOMOs of two symmetry-broken wave functignsand ¥ z; (a)
[(NH3)5Ru — pyrazine — Ru(NH3)5]°* (1), (b) [(NH3)50s — pyrazine — Os(NH3)5]°* (2), (c)
[(NH;3)5Ru(4, 4’ —bipyridine)Ru(NHs)5]>+ (3), and (d)[(NHz)50s(4, 4’ — bipyridine)Os(NHs)5]>*+
(4).
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Figure 6.3: Energy curves of diabatic states. Solid and dotted lines represent the energy curves
of ground state and excited state, respectively(NHs)sRu — pyrazine — Ru(NH3)5]°" (1), e
[((NH3)50s — pyrazine — Os(NH3)5]°F (2), O [(NH3)5Ru(4,4’ — bipyridine)Ru(NHjz)5]°* (3),

andA [(NH3)50s(4, 4’ — bipyridine)Os(NH;)5]°" (4).
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minimum at the symmetrical structur&(=0), indicating that the electronic structures of all
these complexes are delocalized in gas phase. In Fig. 6.3, we can see the energy splitting
between two adiabatic state increases in the @de#d < 1 < 2. According to the ‘two-state’

model, the strength of the mixing depends on the difference in enelyigs£ Hgp — Ha4)

and overlap integral945) between two ‘diabatic’ states: the larger the overlap is and the
smaller the difference in energy is, the mixing becomes large. At the seam of crossing between
two states, electron transfer matrix, is discussed in terms of overl&p g between two states.

The value,V, is calculated by eq. 6.6 using the important parameters, Hg, Ha4, and

Hgpineq.6.2;
V =(1-5%)" [Hap — Sap(Haa + Hpp)/2] (6.6)

Actually, V' linearly depends o1%' 45, as shown in Fig. 6.4. Thus, it is worthwhile to clar-
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Figure 6.4:Correlation ¢) between electron transfer matrixX, andS 4z and correlationd) between
spr andS4p. Dotted lines are determined by least-square method.
ify what is the origin of the difference i 45, or the strength of the state-mixing in these
complexes examined. In the present ‘two-state’ moslgk is defined, as follows [21]:
N
Sap = (Va|¥p) = (det U)(det VI) [ [ sii (6.7)
=1

95



whereU andV are unitary matrices of the corresponding transformation. Notations used
here, except fos,;;, are the same as those in referensg.represents the overlap between

corresponding orbitals,; andb;, belonging to each diabatic states.

We found that alls;; is almost 1.0 except for one overlap termy;, between two specific

orbitals. Consequentlys 45 mainly depends on this overlap, as shown in Fig. 6.4.
Sap o sp = (belag) - (6.9)

These key orbitalg, andb, are the corresponding orbitals that are almost same with canonical
G-spin HOMO orbitals inl ~ 4. The similar relation was previously reported by Kogfa

al [34]. Theseq, andb, orbitals are mirror image to each other; one of them is localized on
Ru!/Os' site and the other is on RIDS’ site. In these orbitals, thé, orbital expands to the
bridge part, as illustrated in Fig. 6.5. Apparently, the overlap integral betweand b, in

1 and2 is much larger than i and4; in the latter complexes, these orbitals are completely
separated and localized on each metal center.

The sy term is further divided into six parts, as follows [34].

b,m,o0 b,m,o b,m,o b,m,o
E § 1J § II E 1J
Skk — Skk’ = Skk —+ 2 S
1 J I I<J
o b—b m—m 0o—o b—m b—o m—o
= Spx TSk TSk TS TS TSk (6.10)

where “b”, “m”, and “0” stand for bridge ligand, metal center, and remaining part, respectively.
In all complexes, “m-m”, “b-m”, and “b-b” pairs provide dominant contributionssi@, as
shown in Fig. 6.6.

The overlaps),”™ depends on the metal-metal distance; the longer the distance is, the less
the overlap is. I8 and4, the distance is about twice as long as that @ind2. The longer
metal-metal distance i and 4 leads to the significantly smallef;, ™ than that ofl and
2. The overlapsZ;m between the metal part and the bridge part is mainly determined by the

overlap between the metd)} orbital in b, (i) and ther and=* orbitals of bridging ligand in
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Figure 6.5: Corresponding orbitalg, and br, Which are almost the same as the canonitabin
HOMO orbitals; (a)[(NH3)sRu — pyrazine — Ru(NH3);5]°" (1), (b) [(NH3)50s — pyrazine —
Os(NH3)5]%* (2), (c) [(NH3)5Ru(4,4’ — bipyridine)Ru(NH3)5]%* (3), and (d)[(NH3)50s(4,4" —

bipyridine)Os(NHs)5]°+ (4).
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Figure 6.6: Overlap componentts, sb.%, sb.™, s 2, s, si=°, and s9,° of [(NH3);Ru —

pyrazine — Ru(NHz)5]°" (1), [(NH3)50s — pyrazine — Os(NH3)s5]>" (2), [(NH3)5Ru(4,4" —

bipyridine)Ru(NHs)5)>* (3), and [(NH3)50s(4, 4’ — bipyridine)Os(NH3)5]5" (4). @) b, m, and o

represent bridge part, metal center, and the other part.

ax (b). Since thed, orbital of Os more spatially expands than that of Ru [35], the overlaps

between the Od, orbital and ther* orbital on bridge ligand o2 and4 are larger than those

of 1 and3. The overlap between 4, 4’-bipyriding orbital of by (ax) and metall, orbital of

ay (Bk) in 3and4 is much smaller than the overlap between pyrazinR@nd metall,. orbitals

in 1 and2, as easily seen in Figures 5¢ and 5d. Therefore the ordgf dfis 3< 4 < 1 < 2.
Interestingly, a remarkable differencesfy.” is observed among these complexes, whereas

the shapes of the orbitals are very similar to each other. It is likely that because the Os

orbital is closer in energy to the pyraziné orbital than the Rul,. orbital, ther™ orbital more

contributes to ‘diabatic’ state in the Os complex than in the Ru complex [36]. The contribution

of =* orbital toa; andb;, was evaluated by the following equation;
(b = C7r¢7r + Cﬂ*¢7‘(’*7 (611)

where¢ is the contribution of the bridge moiety to the corresponding orhitdb,). The ¢,
and¢,- are canonical orbitals of 4, 4’-bipyridine calculated by the HF meth@tl. of 3 and
4 are 0.006 and 0.018, respectively. This difference leads to the differentg’ inetweerd
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and4. In 1 and2, a, andb;, orbitals exhibit amplitude to some extent on the bridge group, as
shown in Figs. 6.5a and 6.5b, which leads to the lasfjgt value of2 than that ofL.

Summarizing the above discussion, #jg ™, s?. ™, ands},* (x S4p) increase in the order
Ru < Os and in the orde8 and4 < 1 and2. Thus, the energy splitting between two diabatic
states increase in the ord&k 4 < 1 < 2. These differences in overlaf), 5 is one of key fac-
tors for localized vs delocalized electronic structure in agueous solution, as will be discussed

in the next section.

In Aqueous Solution
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00 |

-0.1 T

AG/eV
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0.4
-0.12 -0.06 0 0.06 0.12
Ar / angstrom

Figure 6.7: Free energy curves of, 2, 3, and 4 in aqueous solution;e [(NH3)sRu —
pyrazine — Ru(NHs)5]°* (1),  [(NH3)50s — pyrazine — Os(NHg3)5]°" (2), O [(NH3)sRu(4, 4" —
bipyridine)Ru(NH;)5)>* (3), andA [(NH3)50s(4, 4’ — bipyridine)Os(NH3)5]5+ (4).

Free energy curves (FEC) in aqueous solution are shown in Fig. 6.1 amd 2, FEC
possesses a single minimum at the symmetric geoméatry (@), as is the case for gas phase.
The FEC of3 has two minima at\r = +0.08A, showing that the electronic structure ®f
is localized in aqueous solution. The key to understand the differer@éam the others is
dipole moment, which is computed by eq. 6.4. Dipole moment is zero at the paint ef 0
in all the complexes due to the symmetry of the total wavefunction. It increases with increase

in Ar. Apparently the dipole moment changes much larged than in the others, as shown
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Figure 6.8: Changes of dipole moment alonyr. In solid circle, the dipole moments of 'diabatic’
states at\r = -0.10, 0.0, and + 0.10 are schematically showjiNH3); Ru—pyrazine—Ru(NH3)5]>+

(1), e [(NH3)50s —pyrazine — Os(NH3)5]°* (2), O [(NH3)5Ru(4, 4 — bipyridine) Ru(NHs)5]°T (3),

andA [(NH3)50s(4,4" — bipyridine)Os(NH;z)5)°* (4).

in Fig. 6.8. In4, FEC is influenced by the dihedral angh@ between two pyridyl rings. When

5 is 40 °, its electronic structure is delocalized, as shown in Fig. 6.9. However, it becomes
localized when is 80 °. Because the energy difference between the mininda-a40 “and

5 =80 °, the electronic structure dfis between localized and delocalized one (Class II). The
effect of the dihedral angle will be discussed below in more detail.

Ohet al. studied how much dipole moment of di-ruthenium complexes changes upon going
to excited state from ground state in water using electronic absorption (Stark effect) spec-
troscopy [9]. They reported that the change is about O (D}Lfand 29 (D) for3. As clearly
shown in Figure 7, the electronic structurelois delocalized at ground state in aqueous so-
lution. In the electronic absorption, the transition should be from the delocalized electronic
structure at ground state to the delocalized structure at excited state. On the other hand, the
electronic structure o8 is localized at the equilibrium geometry at ground state in aqueous
solution (Ar = 0.08A4). The dipole moment was evaluated to be -17 (D) and 20 (D) at the
ground and excited states, respectively. The calculated change of dipole moment is about 37
(D). These computational results of dipole moment change are consistent with the experimen-

tal data.
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Figure 6.9:Free energy curves ¢fNH;z)50s(4,4’ — bipyridine)Os(NH3)5]> (4) at 69 =40°),
70°), and 80°(\). The standard of free energy is that at 40 ‘@wd= 0. a)¢ is the dihedral angle
between two pyridyl planes of 4, 4’-bipyridine.

Change of dipole moment is induced by the mixing ratio of two diabatic states (see eq.
6.5) whose dipole-moment direction is opposite to each other, as illustrated in Fig. 6.8. In the
present two-state model, the mixing rafiodepends o 45, AH, andS,p, as represented
by eq. 6.12,

_ Cp—Cy

14+ Sam
= = tan @ 6.12
Cp+Cy 1—Sup anv, ( )

wheref is given by solving eq. 6.2,

/1_ 2
6= Ltan! { Sap Al } _ (6.13)

2 Hap — Sap (Haation)

R

WhenAr = 0, two diabatic states are in the same enerlyy/(= 0), which leads taR = 0;

this means that two states mix in the same ratig & C). In this case, dipole moment is

0. At Ar # 0, on the other hand, the mixing ratio is not equivalent and the dipole moment
Is induced. AsR increases, the localization of adiabatic wave function increases. Fig. 6.10
shows change ok as a function ofAr. In Ar > 0 the sign of R is positive fol and2 and
negative for3 and4. This sign shows which of the stafe, and ¥ 5z is dominant inAr > 0.

In 1 and?2, ¥y is dominant in the adiabatic states, as shown in Figs. 6.2(a) and 6.2(b). On
the other handy¥ 4 is dominant in the adiabatic states ®and4. One can see that R &

changes much larger than those of the others, which means the contribution of one diabatic
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Figure 6.10: Mixing ratio R vs Ar; o [(NHs)sRu — pyrazine — Ru(NHs);5])°", e [(NH;3)50s —
pyrazine — Os(NH;z)5]°*, O [(NH3)5Ru(4, 4’ — bipyridine) Ru(NHs)5]°*, andA [(NH;3)50s(4, 4’ —
bipyridine)Os(NHgz)5]5 .

state considerably increases with increaséin in other words, the adiabatic wavefunction
tends to localize on one center3rio a more extent than in the others.

Becausean andtan~! are monotonous functions asthz is very small, the mixing ratio

R can be compared with each other using following quaritity

R = AH : (6.14)
Hup — Sap (Haatton)

The largerR’ is, the more localized the electronic structure is. As represented by eq. 6.13,

the mixing ratio is determined by subtle balance among several parameters sugh &5,

etc. It should be emphasized that the solvation energy, which is mainly determined by the

dipole moment of the complex, increases enough to stabilize the localized electronic structure

when the two coefficients)'s, Cp, are remarkably different. 18, R’ is much larger than

in the others, becaus&H is the largest and 45 is the smallest, as discussed above. This

leads to the much larger dipole moment3rthan in the others, which further leads to the

larger stabilization energy by polar solvent. Thus, the electronic structiBésdbcalized in

agueous solution.
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6.3.2 FEC along Rotation of the Bridge Group

In 3 and4, two pyridyl rings can rotate around C-N and/or N-N bond axis. The increase in
the dihedral angled] decreases the overlap betwegnorbital of Cy and C}, which further
changes the energy levelsoaindr* orbitals of the bridge group, and therefore, the electronic
structure of these complexes is influenced by this rotation. It is interesting to investigate how
much the localization/delocalization of the electronic structure depends on the rotation.

FEC of4 were evaluated at = 40°, 70°, and 80°, as shown in Fig. 6.9. Although the elec-
tronic structure oftis delocalized af = 40°, as was discussed above, it is sufficiently localized
at 80 °. As previously mentioned, the dipole moment, which has great influence on the local-
ization in aqueous solution, is mainly determined by the paraniétérq. 6.14). Because the
change of the dihedral angle between two pyridyl planes has little influence dp the* in-
teraction, A H is almost constant. From eq. 6.14, we can say that the difference in FEC among
§ =40°,70°, and 80° is mainly governed by the overfag; andH 4 5. Becaused 45 is almost
proportional toS 45, Sap is the main factor that determines the localization/delocalization of
these complexesS,p decreases with an increase in the dihedral angle; for instspgas
0.044 atd =40° (Ar = 0) but significantly decreases to 0.015at 80°(Ar = 0). This small
Sap atéd = 80° induces the large dipole moment At # 0, which leads to the localized

electronic structure at this angle [37] .

6.4 Conclusions

We have theoretically studied the electronic structures of Creutz-Taube complex and its
analogues. They have been attracting great deal of interests in understanding its electronic
structure, namely, localization or delocalization. There are two important requirements to un-
derstand the electronic structure of the system. One is multi-configurational description in the
wave functions, which is caused by a inherent character of mixed-valence metal complex, and
the other is solvation effect, which is not negligible. In the present study, we have theoretically
investigated these complexes by consideration of “two-state model” based on ab initio molec-

ular orbital theory and dielectric continuum model, and related the localization/delocalization
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of the electronic structure with fundamental parameters, such as overlap and energy gaps. Al-
though the calculation is not sufficient for the understanding of the true nature of the ions, our
work showed the important factors which determine the localization/delocalization.

It is found that all of the electronic structure of the examined complexes would be delo-
calized in gas phase, but the electronic structur8 wfith a long bridge, [(NH);Ru(4, 4'-
bipyridine)Ru(NH)s]°*, shows localized electronic structure in aqueous environment, In
the electronic structure changes as the dihedral angle becomes large. The localized electronic
structures of the complexes are interpreted in terms that the magnitude of the mixing of two
diabatic states is small; because of latgl and smallS, 5, the mixing ratioR is much larger.

Thus, one of two states becomes dominant enough and the dipole moment of the complex sig-
nificantly increases, which leads to large solvation effects. In the other two complexed,

2, m and~* orbitals in pyrazine and bipyridine interact well with drbital of metal center.

As aresult, overlap 4z becomes sufficiently large to induce the electron delocalizatiod, In

we wish to propose the possibility that the electronic structure can be designed by introducing
some substituents &t; andC;, positions of 4, 4'-bipyridine; such substituents increases the

dihedral angle between two pyridyl plane to decregisg.

104



Bibliography

[1] S. B. Braun-Sand and O. Wiest, J. Phys. Chem0& 285 (2003)

[2] U. Furholz, H.-B. Birgi, F. E. Wagner, A. Stebler, J. H. Ammeter, E. Krausz, R. J. H.
Clark, M. J. Stead, and A. Ludi, J. Am. Chem. St06, 121 (1984).

[3] C. Creutz, Inorg. Chenl7, 3723 (1978).

[4] J. E. Sutton, P. M. Sutton, and H. Taube, Inorg. Ch&£&n1017 (1979).

[5] K. D. Demadis, C. M. Hartshorn, and T. J. Meyer, Chem. R@&{, 2655 (2001).

[6] J. R. Reimers, Z.-L. Cai, and N. S. Hush, Chem. PB{$, 39 (2005).

[7] C. Creutz and H. Taube, J. Am. Chem. S8§,.1086 (1973).

[8] C. Creutz, Prog. Inorg. Cher80, 1 (1983).

[9] D. H. Oh, M. Sano, and S. G. Boxer, J. Am. Chem. Sd@ 6880 (1991).
[10] D. H. Oh and S. G. Boxer, J. Am. Chem. S&&2, 8161 (1990).
[11] A. Bencini, I. Ciofini, C. A. Daul, and A. Ferretti, J. Am. Chem. S&21, 11418 (1999).
[12] Z. Chen, J. Bian, L. Zhang, and S. Li, J. Chem. Py, 10926 (1999).
[13] J. Hardesty, S. K. Goh, and D. S. Marynick, J. Mol. Struct. (Theocl38)223 (2002).
[14] A. Broo and S. Larsson, Chem. Phy61, 363 (1992).

[15] A. Ferretti, R. Improta, A. Lami, and G. Villani, J. Phys. Chem1@4, 9591 (2000).

105



[16] G. C. Allen and N. S. Hush, Prog. Inorg. CheBn357 (1967).
[17] N. S. Hush, Prog. Inorg. Cher8, 391 (1967).
[18] J. T. Hupp, Y. Dong, R. L. Blackbourn, and H. Lu, J. Phys. Chem3278 (1993).

[19] K. W. Lau, A. M.-H. Hu, M. H.-J. Yen, E. Y. Fung, S. Grzybicki, R. Matamoros, and
J. C. Curtis, Inorg. Chem. Act226, 137 (1994).

[20] I. Cacelli, A. Ferretti, and A. Toniolo, J. Phys. Chem185 4480 (2001).

[21] A. Farazdel, M. Dupuis, E. Clementi, and A. Aviram, J. Am. Chem. Sd@ 4206
(1990).

[22] a) To obtain the localized UHF wavefunctions, we adopted the following strategy. At
the biggining, we prepared the localized wavefunction for the geometry where one of
the metal-bridge distances was taken to be very long but the other was normal. The ob-
tained wavefunction is well-localized. After check $f and spin density, we calculated
the wavefunction of the ions whose metal-bridge distance was taken to be moderately
shorter, where we employed the above-calculated well-localized UHF wavefunction as
initial guess. Until the metal-bridge distance became the same as the real one, we con-
tinued the above procedure. This technics presented the well localized broken-symmetry
UHF wavefunction; for instance, the spin densities on Ru centetswd 1.09 and -0.01,
respectively. The bond order analysis showed that the free valence electrons on one metal
and the other af\r=0.00 are).95 and0.00 for 1, 0.92 and0.02 for 2, 0.93 and0.00 for
3, and0.91 and0.00 for 4. These results indicate that the wavefunction is well localized.

b) The S? values for localized UHF wavefunctions At-=0.00 are0.78 for 1, 0.80 for

2, 1.03 for 3, and1.04 for 4 (Supporting Information Table S4), indicating that the spin-
contamination little occurs ih and2 but somewhat ir8 and4. To investigate the nature

of spin-contamination of bipyridine systems, we calculated the quartet spin state of the
ions because this is considered to contribute considerably to the spin contamination. The

unpaired electrons are localized on two metal centers and bridging ligand in the quartet

106



state. Thus, itis likely that the spin-contamination of the quartet spin state would increase

the spin density on the bridging ligand and makes¥h&alues somewhat large.

[23] In the present study, UHF wave functions have been used just as basis functions to con-
struct the total wave function, and it might be unsuitable to call it ‘diabatic basis’ in
a precise sense. However, we use the word of ‘diabatic’ or ‘adiabatic’ throughout the
manuscript to describe the transformation and mixing nature of the wave functions just

for the convenience.
[24] M. W. Wong, M. J. Frisch, and K. B. Wiberg, J. Am. Chem. Sbt3 4776 (1991).

[25] H. F. King, R. E. Stanton, H. Kim, R. E. Wyatt, and R. G. Parr, J. Chem. RWy4936
(1967).

[26] M. W. Schmidt, K. K. Baldridge, J. A. Boatz, S. T. Elbert, M. S. Gordon, J. H. Jensen,
S. Koseki, N. Matsunaga, K. A. Nguyen, S. Su, T. L. Windus, M. Dupuis, and J. A.
Montgomery, J. Comput. Cherh4, 1347 (1993).

[27] P.J. Hay and W. R. Wadt, J. Chem. Ph§&.270 (1985).
[28] T. Koga, H. Tatewaki, H. Matsuyama, and Y. Satoh, Theor. Chem. 2@2;.105 (1999).

[29] A. W. Ehlers, M. BShme, S. Dapprich, A. Gobbi, A. éllwarth, V. Jonas, K. F. Bhler,
R. Stegmann, A. Veldkamp, and G. Frenking, Chem. Phys. Le2685111 (1993).

[30] Electron-transfer matrix elements calculated with smaller basis set and larger one are

0.276 eV and 0.266 eV, respectively.
[31] A. D. Becke, J. Chem. Phy88, 5648 (1993).

[32] M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman,
V. G. Zakrzewski, Montgomery, J. A., Jr., R. E. Stratmann, J. C. Burant, S. Dapprich,
J. M. Millam, A. D. Daniels, K. N. Kudin, M. C. Strain, O. Farkas, J. Tomasi, V. Barone,
M. Cossi, R. Cammi, B. Mennucci, C. Pomelli, C. Adamo, S. Clifford, J. Ochterski, G. A.

107



[33]

Petersson, P. Y. Ayala, Q. Cui, K. Morokuma, N. Rega, P. Salvador, J. J. Dannenberg,
D. K. Malick, A. D. Rabuck, K. Raghavachari, J. B. Foresman, J. Cioslowski, J. V. Ortiz,
A. G. Baboul, B. B. Stefanov, G. Liu, A. Liashenko, P. Piskorz, I. Komaromi, R. Gom-
perts, R. L. Martin, D. J. Fox, T. Keith, M. A. Al-Laham, C. Y. Peng, A. Nanayakkara,
M. Challacombe, P. M. W. Gill, B. Johnson, W. Chen, M. W. Wong, J. L. Andres, C.
Gonzalez, M. Head-Gordon, E. S. Replogle, and J. A. P&pdeissian 98Revision A9
(Gaussian, Inc., Pittsburgh, PA, 1998).

To calculate potential energy surface (PES), we fixed metaj-distance and changed

only Ar. We examined how much the relaxation of the métél; distances influences

the PES, as follows: We optimizdth — NHj3 distances with the DFT(B3LYP) method at

Ar = 0.00 andAr = 0.09 A. The maximum difference of equatorial — NH; distance
between these two geometries is negligibly small (0.805as reported. [11] On the
other hand, one of the axial RWiH; distances at\r=0.09A becomes longer by 0.0157

A and another one becomes shorter by 0.024®an those at\r=0.00A. To evaluate

how much the relaxation of axidu — NHj distances influences PES, we changed the
axial Ru — NH; distances at\r = 0.094, considering the DFT-optimizedu — NH;

bond distances. The adiabatic energy, E-, of this geometry is 0.185 eV above the energy
atAr = 0.00. WhenRu — NHj3 distances are fixed, its energy is 0.175eV above. Because
these two geometries present almost the same energy, it is likely that the relaxation of the
Ru — NHj distance little influences the PES. Fgrwe also examined the influence of

the relaxation of the meta¥H; distances for PES.
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[35] S. Fraga, K. Saxena, and J. Karwowskandbook of atomic dataedited by B. Pullman
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[36] To compare the orbital energy of Os with that of Ru, we calcul@t&dH3;);]** (M=Ru

or Os) with the HF method. The orbital energiesigforbital are -0.6908 eV for Ru and

-0.6231 eV for Os, respectively.
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[37] This decrease arises from the decreaﬁjj‘i, as shown in Fig. 6.6.
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Chapter 7

Electronic structure and solvation structure of
[Ru(CN)g]*~/3~ in aqueous solution: A RISM-SCF
study

7.1 Introduction

The study of metal complexes in solution phase captures the researcher’s interests and their
structural properties have been extensively reporeted including experimental and theoretical
approaches. In particular, much attention has been payed to the bimetallic cyanide-bridged
complexes from the view point of electron transfer chemistry. They are widely used as an
intramolecular (inner-sphere) electron transfer system. For instance, the transfer rates have
been experimentally determined on [(BJERUNCRuU(CN}]~ complex from femtosecond-
spectroscopic investigations, and details of the process as well as the solvation dynamics have
been revealed [1]. Numerous structural studies including X-ray diffraction have been also
reported so far.

Onthe other hand, studies on the element of these complexes, i.e. fundamental six-coordinated
complexes are rather limited, especially for ruthenium complex [2-4], It is also surprising
that theoretical studies are further limited [5-7]. Since it is very perceivable that the elec-
tronic structure of the molecule is significantly changed in solution phase, main interests of
the current issues are the electronic structure of the complex and solvation structure around
it. It should be noted, however, the electronic and solvation structures are strongly coupled in
general. A simultaneous approach both from solvation chemistry and quantum chemistry is

required to study the present system theoretically.
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RISM-SCF theory, that combines the statistical-mechanics of molecular liquids [8, 9] with
ab intio molecular orbital theory [10-12], is a promising tool to tackle the present subject.
In the theory, electronic structure of a solute molecule in solution and solvent distribution
around the solute molecule are solved in a self-consistent manner. The methods have been
widely applied to a variety of solute-solvent system including transition metal complex [13].
In the present article, we report a theoretical study for the electronic and solvation structure of
[RU(CNX]*~ and [Ru(CN)]?~ in aqueous solution based on the RISM-SCF theory. A serious
problem in dealing with these systems is the assignment of effective charges that are necessary
to carry out RISM calculation. Because of the specially high symmetry of the system, the con-
ventional RISM-SCF procedure can not attain the simultaneous solution of the equation. By
implementing an efficient technique, we obtain the electronic structure and solvation structure
in a self-consistent manner for the first time.

The organization of this article is as follows. After describing the computational detailes,

electronic and solvation structures of [Ru(GN) and [Ru(CN)]?~ are discussed.

7.2 Computational Details

RISM-SCF theory combines two major theoretical elementsathmitio molecular orbital
(MO) theory and the RISM integral equation method. In the theory, the solvation effect on the
electronic structure of a solute is taken into account in a self-consistent manner, and simul-
taneous equations for the solute electronic structure and solute-solvent correlation functions
are solved by use of the variational principle for the solvation free energy of the system. We
recommend referring to the reviews and previous studies [14, 15].

In the RISM-SCF method, the electrostatic potential (ESP) charges, which are determined
so as to reproduce the electrostatic potential around a solute molecule, is usually adopted since
this set of charges is considered to be suitable to describe the electrostatic interaction between
solute and solvent molecules. However, it is widely known that the assignment of ESP charge
becomes often difficult because of the ill-posed nature of ESP fitting procedure. This difficulty

gets more strained when buried atom exists in the system. In the present case not only the
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Table 7.1: Lennard-Jones parameters
atom o/A </kcalmot! ¢/l

Ru 4.68 0.036

C 3.65 0.150 »—

N 3.20 0.170 =»—
water

o] 3.17 0.155 -0.82

H 1.00 0.056 0.41

2 determined by RISM-SCF method.

See Table 7.2.

ruthenium but also carbon atoms are buried and the charge assignment of these atoms are not
easy. To overcome this problem, we incorporate the modified charge assignment procedure
proposed by Morita et al. [16] into the RISM-SCF computation. The procedure offers a robust
definition of the ESP charges.

The MO calculations were performed at the spin-restricted Hartree-Fock (HF) level of the-
ory by using the Dunning-Huzinaga double-zeta basis sets [17]dqtblarization function
on carbon ¢=0.75) and nitrogena=0.80). The standard effective core potential and basis
set parameters suggested by Stevens et al., in which 28 inner-shell electrons are replaced with
the core potentials, were used for Ru [18]. The density functional theory (DFT) computations
were also carried out with the hybridized HF/ Becke/ LYP using VWN formula 5 (B3LYP)
for [Ru(CN)]3~, in which we found very similar tendency to the HF-level computations. The
point group of the complex was taken as the octahedral symm@t)y &nd the geometry was
fixed through the study at the X-ray structure [2-BJRu-C)=2.02& and R(C-N)=1.157.

The electronic structure was solved under the assumption of same symmetry for [Rd(CN)
while D,;, was employed for [Ru(CN)?~ to deal with the Jahn-Tellar effect.

The grid points to evaluate ESP were distributed around the centers of all the composing
atoms based on 194 Lebedev polyhedrons [19] with six equally spaced layers from 10 to 30
Bohr for each directions. Total numbers of grid points were 183&6] was1.0 x 10~* and
1.0 x 10~* for Ru(lll) and Ru(ll) complexes, respectively. The constraint for the total charge

was employed to define the ESP charges.
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Table 7.2: Effective atomic charges and contributions to the solvation free energy
effective charges|e|

atom Mulliken ESP Ap /kcal mol?

Ru -0.0738 (-0.0738) 0.3353 (0.3353) 35.46

C(ax) -0.0440 (-0.0443) 0.1628 (0.1628) 26.41

[RU(CNX]?>~ C(eq) -0.0794 (-0.0794) 0.1638 (0.1638) 26.54
N(ax) -0.4353 (-0.4347) -0.7211 (-0.7211) -93.76

N(eq) -0.4125 (-0.4126) -0.7185 (-0.7185) -93.26

total free energy -366.13

Ru -0.4356 (-0.5147) 0.5677 (0.3188) 80.56

C(ax) 0.0626 (-0.0409) 0.2998 (0.1269) 58.61

[RU(CN)J*~ C(eq) 0.0626 (-0.0409) 0.2998 (0.1269) 58.61
N(ax) -0.6567 (-0.5400) -1.0611 (-0.8467) -188.50

N(eq) -0.6567 (-0.5400) -1.0611 (-0.8467) -188.50

total free energy -698.74

2 Values in parenthesis are in gas phase.

RISM equation were solved with the hyper-netted-chain (HNC) approximation. SPC-like
water model [20] was employed to describe solvent water. The Lennard-Jones parameter of
carbon and nitrogen were the OPLS parameter set [21], and that of ruthenium was the same
as our previous study [13]. These are summirised in Table 7.1. The density of ywateay
assumed to be 1.0g/érat a temperaturel() of 298.15K.

All the computations were carried out with our modified version of GAMESS program

packages.

7.3 Results and Discussion

7.3.1 The Electronic Structure

The effective charges computed by Mulliken population analysis and by the ESP procedure
are shown in Table 7.2 together with the solvation free eneigy) (

In all the cases, the charges of nitrogen atoms are negative and greater in absolute values
than those of the buried atoms. This trend is similar in the two population analyses, although
the effective charges derived from them are slightly different. The difference comes from

the fact that each method reflects different characteristics of the electronic structure. The
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Mulliken analysis represents the distribution of electron density in the solute, while the ESP

is determined so as to reproduce the electrostatic potential around the solute. In other words,
it is related to how the electronic distribution is seen from solvent molecules. For the results
of ESP charges, it can be said the electronic character of the two complexes are similar in
the gas phase: the effective charges on the ruthenium and carbon atoms are positive (ca. 0.3
and 0.1, respectively), whereas the charge on nitrogen atoms is notably negative (-0.7 to -0.8).
The change of charges on the central ruthenium upon the reduction is not so large, and excess
electron is de-localized over the whole complex.

The situation is changed in the solution phase. The solvation considerably affects the elec-
tronic structure of [Ru(CNJ*~ and the effective charges are significantly altered from the
gas phase ones. On the contrary, the electronic structure of [REI(CN$ undisturbed and
the charges are virtually the same. The quadrupole moniéntsQ,,, @..) of this complex
are(2.065,2.065, —4.131) and(2.092,2.092, —4.184) in the gas and aqueous solution phase,
respectively. This electronic structure change is closely related to the hydration structure of
these complexes as we will discussed later. In [Ru¢fN) the axial and equatorial nitrogen
and carbon atoms are considered to be different each other in nature because of the Jahn-Tellar
effect. But the effective charges of them are almost identical and any further difference is not
seen.

How does the solvation affect the orbital energies of these complexes? Figure 7.1 illus-
trates the change of orbital energies near the frontier orbitals by the solvation. The horizontal
axis of the graph is the orbital energy in gas phase, while the vertical axis represents that in
aqueous solution. The mark denoted by the symmetry gtgus degenerated three orbitals
in [Ru(CN)]*~ complex corresponding té,,, d,. andd,. of the ruthenium 4 orbitals. The
electronic structure of [Ru(CN)?*~ is computed withD,;, symmetry so as to allow the splitting
of these orbitals into two degenerateg)(and one singly occupied,) orbitals. The orbital
energies in both phases (including some virtual orbitals) show very good correlation in each
complex. This means that the orbital energies becomes negatively greater in aqueous solution

but the solvation just shifts all the energies equivalently. Presumably, this happens because of
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Figure 7.1:Selected orbital energies in the gas phase and in aqueous solution. The occupied orbitals
are labeled with their degeneracy (the number in parenthesis).

the specially high symmetry of the present system. It is noted that the total energy represented
by the total hamiltonian is not invariant upon transferring from the gas to agqueous solution
since the system we are considering is dissipative one. The deepening of orbital energies does
not seem to matter much.

Ap can be decomposed and assigned to contribution from each afpooihposing the

solute molecule, becauge. is formally expressed as a sum of the site-site contributions.
e
and

M = =T Y [ i () = 12,0 + Shosean(r)). 72)

where s indicates atoms in solvent molecules, and the functibnsandc,, are total and
direct correlation functions, respectively,,, is essentially equivalent to the pair correlation
function (PCF). Note that\y, is not the same as the solvation free energy of an isolated
atoma in the solvent. The correlation function used to evaluaje, depends on all other

atoms in the solute. As listed in the table, the greatest contribution to the solvation free energy
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comes from nitrogens. This is quite a contrast to the hexaammine complex [13], in which
the contribution from the embedded ruthenium is dominant. Presumably, the excess electron
weakens the effect from the ruthenium and direct electrostatic interaction between nitrogen

and solvent plays central role in the solvation process.

7.3.2 The Solvation Structure

2'0 T T T T T T T T T T T T T T T T T T T
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0.5 T RuCN) | ]
[ 4-
[Ru(CN) 6]
0.0 ) M. P R R
0.0 2.0 4.0 6.0 8.0 10.0

R/ A

Figure 7.2:PCF between the ruthenium and oxygen atom of solvent water.

A big advantages of the present method is to provide the information of solvation structure
in atomic level. Figure 7.2 is PCF between the central ruthenium and oxygen atom of sol-
vent water. In the present model, direct contact of ruthenium and oxygen atoms should appear
around(ogr, + 00)/2 = 3.94. A small shoulder found arourgi5A in [RU(CNX]*~ corre-
sponds to the sovlation structure of this contact. The conspicuous peaks dounsid in
the both complexes are attributed to the oxygen atom circling around the solute molecule. If
the oxygen approaches to the complex along C—N axis, the peak position must be longer. For
this results, the oxygen is considered to approach to nitrogen atoms perpendicular to the C—N
axis. Since the ligand cyano group in these complexes is linear, there is a space for solvent

molecule to enter the area between the ligands. Consequently, it is considered that attractive

116



interaction in [Ru(CNy]*~ is strong enough to make a direct contact between the metal and
solvent. However, it must be reminded that counter cations are not included in the present
computations. In reality, the central metal may attract the cations and solvent molecules tend

to be excluded from the nearest neighbour of the metal.
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Figure 7.3. PCF between cyano group and hydrogen atom of solvent water. Solid lines are
[Ru(CN)]?>~ and dashed lines represent [Ru(GNY .

Figures 7.3 and 7.4 are PCF around the cyano group. First thing one notices in these figures
is the peak around 2f0in the N—-H PCF. This can be obviously assigned to the hydrogen
bonding of solvated water molecule. The distinct peak aroundl Bithe N-O PCF is another
evidence of this hydrogen bonding. As mentioned above, the bonding is not co-linear along
the C—N axis if we consider the peak positions. In the C—O PCF, the position of the first peak
is found around 3.4. Itis geometrically impossible to arrange C, N and O atoms in a straight
line, since the peak positions of C—O and N-O are too close. A possible solvent location that is
consistent with these peak positions is shown in the figure. Itis noted, however, that the peak in
C-0 PCF is rather broad and a small shoulder is seen aroufd #itls length is sufficient to
align three atoms in a straight line. In summary, there is a strong hydrogen bonding between the
nitrogen and hydrogen atoms, but solvent molecules can be placed with wide range of angles

in a continuous fashion. Two O—H moieties depicted in the figure correspond to the limits of
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these distribution. Similar to the discussion in the effective charges, axial and equatorial atoms

are virtually the same and their PCFs are indistinguishable.
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Figure 7.4:PCF between cyano group and oxygen atom of solvent water. See the caption in Fig 7.3.

It is noted that all the peak positions in PCF of [Ru(GR) and those in [Ru(CNJ*~ is
very close to each other and only the peak height is slightly greater in [Ry[€Nhan that

in [RU(CN)]?~. This implies that the solvation structure around these complexes are similar.

7.4 Conclusions

Solvation and electronic structure for the two metal complexes, [Ru{ENand [Ru(CN)]*~
in aqueous solution, are studied by means of the ab initio RISM-SCF method.

The electronic structure of these complexes in gas phase are similar from the view point
of ESP fitting charge. The electrons tend to show patrtiality to nitrogen atoms and the buried
atoms (ruthenium and carbon) are positively charged. The solvation effect differentiates the
electronic structure of them. [Ru(CNJ- is insensitive to the effect and the partial charges
assigned on each atom are not changed, whereas the electronic structure of JRu(@N)
significantly polarized by the solvation.

For the results of peak positions of PCF around the two complexes, we can conclude that the
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solvation structure is not greatly changed from the oxidation states of the complex although

the peak heights, i.e. solvation strength are slightly different each other.
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Chapter 8

Alternative couplings of solute—solvent interaction
iIn RISM-SCF method

8.1 Introduction

Electronic structure is considerably affected by solute—solvent interaction. In many cases,
the electrostatic interaction is the dominative one that governs the electronic structure of the
molecules as well as the solvation structure. Numerous representations have been proposed to
describe this Coulombic interaction. For example it is replaced with the interaction between
the electronic density of the solute and the surrounding media within the framework of dielec-
tric continuum models such as polarisable continuum model (PCM) [1, 2]. In the reference
interaction site model-self-consistent field (RISM-SCF) theory, the electrostatic potential of
the reaction field at solute atomproduced by the surrounding molecules is expressed as the

consequence of the statistically averaged charge distribution.

Vo= (V)= IOZ / %gas(r)dr, (8.1)

wheregq, is the partial charge on the sitein solvent,p is the bulk density of solvent, and
Jas(r) is the pair correlation function (PCF) betweemnds. The interaction energy,) is

described as the product of the partial charge assigned on the site in aéﬂ)l)tar(d(v).
Ew =V'-q =) Vgl (8.2)

In the original version of RISM-SCF, a set of partial charges is determined so as to reproduce

the electrostatic potential (ESP) around the solute with the least square fitting procedure, which
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is used for the chargey(®) in Eq.(8.2). This is presumably the most reliable choice of the
partial charge in the present purpose and RISM-SCF have been successfully applied to broad
range of chemical phenomena [3—-7]. However, it is known that ESP charge set sometimes
shows ill behaviours such as multiple-valued nature.

In the present work, other types of the interaction are examined as an alternative to the

description of the solute—solvent interaction.

8.2 Method

In the conventional RISM-SCF procedure, ESP chacﬂ%Po set is used to represent the
solute electronic structure. Since the least square fitting is analytically employed the charge

set attributed to the electron is described as the following closed-form equation,

—1tr (a~'PB) — N,

diep = —tr (a7'PB) — AL, (8.3)
whereP is ‘density matrix’,B anda are defined by
gnd points
Bl = > [y, 8.4)
grid points
(a)ij - ; Ir; — I'kHI”j — 1| (8.5)

N, is the total numbers of electrons. For the meanings of other notations, we recommend
referring to the original paper [5, 6]. The solvated Fock matrix element of the conventional
RISM-SCF method

a1

Fsolv — Feas _ Vt . ale o
1ta—11

(1'a”'B-8)|, (8.6)

is derived using this definition of charge set (Method A).
The simplest procedure to derive the charge set is undoubtedly Mulliken population analysis

(MPA), in which the charge on atomis given by,

(albs) ==D_(PS),,.. (87)

peQ
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whereS is overlap matrix. The relationship between these two charge sets is discussed in the
Appendix. In the spirit of the conventional RISM-SCF procedure, the solvated Fock operator

(Fj‘,jlv) can be defined as follows (Method B).

Fsolv — Feas _ X, (88)
where the matrix element related to atomand/ is given by,
1
X = §(Va +V3)S, 1€ aandr e f. (8.9)

As stated above, two representations of the wave function are used in the RISM-SCF theory,
qffgp and ql(&)PA. They are obtained from the electronic structure calculation and used for
solving RISM equation. Egs. 8.6 and 8.8 are describing the interaction part of the electronic
hamiltonian and related to these charges, respectively. Now, ‘dual’ type procedure may be
possible to be considered (Method C). The Fock operator defined in Eq. (8.6) is used for
the electronic structure computations, whilst the Mulliken charge set derived from this Fock
operator is used for the RISM computations. The resultant PCF is used for the construction
of Eg. 8.6. It is noted that the quantity in the square brackets of Eq. 8.6 can be computed
only with the information of the basis functions and the grid poinis;, which expresses the
spatial property around the solute molecule.

The reason to choose this combination is as follows; The electrostatic interaction computed
with Eq. 8.8 is generally stronger than the ESP case, Eq. 8.6. This is belBauseially
reflects the extension of electronic clouds of the solute molecule through the grid points, thus
the solute—solvent interaction can be treated in a reliable manner. Meanwhile, the absolute
values ofqggp is slightly greater thamh(\j)PA in many molecular systems, meaning the polar-
ization of a molecule is somewhat emphasized when uﬁﬁg. Since the charge set directly
governs RISM computations, solvation structure depends on the choice of the charge set. The
present choice of combination is very pragmatic but effective way to compute the solvation
effect. Such discordance in the description of the interaction is often seen in the framework of

QM/MM and causes no problems in our experiences.
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Table 8.1: Several properties of water molecule in aqueous solution

Method gas A B C
Mulliken charge ¢o) / || -0.68 -0.82 -1.20 -0.78
dipole moment / Debye 2.24 2.84 2.71 2.67
A I kcal mol! — -8.66 -17.05 -5.07
FEreorg | kcal mol™ 0.00" 3.36 10.42 1.74
Euw lau — -0.42943 -0.52387 -0.33787

orbital energy (@ ¢;/au | -20.5565 -20.5861 -20.5784 -20.5803
(&) eofau | -1.3463 -1.3746 -1.3857 -1.3694
(b)) es/au| -0.7109 -0.7403 -0.7455 -0.7348
(&) es/au | -0.5758 -0.6185 -0.6128 -0.6093
(Do) es/au | -0.5029 -0.5371 -0.5412 -0.5302

@ Total energy is -76.04635 au in gas phase.

In the following section, these three procedures are compared from the view point of physi-

cal properties and the convergency.

8.3 Results and Discussion
8.3.1 Benchmark computations on water in aqueous solution

We have applied three types of RISM-SCF method to water molecule in aqueous solution.
Hartree-Fock method with DZP basis sets [8] was employed for the electronic structure com-
putations and SPC-like parameters [9] were adopted in the the RISM part. The experimental
geometry Ron=0.9573 and ZHOH=104.52) is used. All calculations were carried out at
the temperature 298 K and the solvent density 0.03334 molécule/

The representative physical properties are summarised in Table 8.1. Mulliken charge as-
signed on the oxygen and the dipole moment show that the electronic structure of the water
molecule in aqueous solution is polarised in all the cases compared with the molecule in the gas
phase. The interaction between the solute and solvent in Method B is the strongest, while that
in C is the weakest. The conventional procedure (Method A) is intermediate between them.
The excess chemical potential() becomes negatively greater while the reorganisation or
polarisation energyK;...,) becomes positively greater, as the interaction is strengthened. The

interaction regularly makes the orbital energies deeper except &drmethod A. At this mo-
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ment we do not have any clear explanation of the nonstandard depth of the orbital.
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Figure 8.1: PCF around water molecule in agueous solution computed by three different meth-
ods.

The pair correlation function (PCF) computed by the three methods are plotted in Fig. 8.1.
The positions of the first peaks in O—H and O-0O look very similar, but their heights are slightly
different each other. The hydration number is one of the measures to judge the reliability
of PCFs. By integrating the O—H PCF up to the first minimum, we obtained 1.90 (Method
A), 1.86 (Method B) and 1.55 (Method C) respectively. All these values are less than two,
which is good accordance with estimation in a molecular simulation studies (1.6—1.9) [10, 11].
The heights and hydration number show that the interaction computed by Method C is the
smallest among the three, which is consists with the properties discussed above. Fig. 8.2
illustrates the convergence profile of the computations of the three methods. Exactly the same
algorithm were used for computing the RISM-SCF. The convergence is judged by the root-
mean-square-deviation of the electrostatic potentials in the successive iteration cycles. Because
of its moderate interaction, computation by Method C quickly converges to the threshold. On
the other hand, convergence rate of Method B is two time slower than Method C.

All these results clearly show that the interaction by Method C is weaker than the conven-

tional method, A, while that by B is stronger than A. In other words, the electronic structure
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Figure 8.2: Convergence behaviour of the three methods.

by Method B is the most greatly distorted with respect to the gas phase one. Another point
we would like to point out is that the solute-solvent interaction is well described by the linear
response regime of solvation in many cases. The convergence rate must be faster as weaker

the interaction.

8.3.2 A charge-transfer complex NH-BH;

NH;-BHj; is known as a typical charge-transfer complex. The sum of Mulliken charges
in NH; moiety in the gas phase is0.26|e| at the optimized geometry, exhibiting its charge-
transfer character. According to our experience, the RISM-SCF computation diverges when
the conventional Method A is applied to this system in aqueous solution. The reason of this
behaviour originates from the effective charge assigned on the hydrogen attached to the boron
atom (Hs;). The value given by ESP procedure is largely negative (-0.2, for example) that
attracts hydrogen of liquid water. The height of the first peak in theHHPCF increases,
then the polarisation of B—klbond is enhanced by the solvation, which again attracts water
hydrogen atoms. Because of this endless cycle, the convergence is not usually attained. The

situation is the same when using Method B due to its strong interaction.
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The convergence can be obtained only when using Method C since its interaction is the
most moderate. In the present work, Hartree-Fock method with DZP basis set is carried out.
Lennard-Jones parameters are taken from literatuees € 3.71A, e = 0.136 keal mol™*

[12], ox = 3.424, ex = 0.170 keal mol " [13], o = 2.004, e = 0.070 keal mol ! [14]).

The parameter for Klis set to the same as SPC-like water’s. Fig. 8.3 shows the PCFs around
the solute molecule. All peaks indicate that the description of the hydration is reasonably
obtained with this method. Because of the negative charge on the hydrogen atom attached to
the boron, B—H PCF shows a well-marked peak aroundAl.Bt the same time, hydrogen

atom in solvent water is also attracted to the boron atom.

2.5

201

15[

PCF

1.0

0.5

0.0L

Figure 8.3: PCF around NyBH;. Hyy indicates the hydrogen of solvent water

The converged Mulliken charges o HB, N and Hy are—0.107|e

, —0.160|e|, —0.526]e|
and0.336|e|, respectively. The corresponding charges in the gas phaseéar&r|e|, 0.208|e|,
—0.715]e| and0.326|e|, respectively. In aqueous solution, the charge-transfer is strongly en-
hanced and the sum of Mulliken charges in NHoiety is+0.48|e|, which is twice as large as

in the gas phase. It is of great interests that even the sign of the effective charge of the boron
atom inverts by flowing electrons from NHo BH; moiety. The boron atom also attracts elec-

tron from the attached hydrogen atoms. These changes in the effective charges indicate that
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the electronic structure around the boron is significantly affected by the solvation.

8.4 Conclusions

In the present work, we proposed other type of electrostatic couplings between solute and

solvent molecules within the framework of RISM-SCF theory. It is found that the interaction

by Mulliken-type method is stronger than the conventional method based on ESP, while that

by dual-type method is much more moderate than the others. The dual-type method is very

pragmatic but effective way to compute the solvation effect.

Appendix

We consider the relationship between the two chacf{ép and q&‘?PA. Let us start with

considering the first term in Eq. 8.3.

—tr (a_lPB) = - Z Z a;/éBuy,oaPVu

B m

1 1
- _ a;l (| V)P, (8.10)
ZZ Q;h'a_rg’ |rg—r| !

B v

wherep andv are atomic orbitals (basis set) belonging to atgnasdr, respectively. Intro-

ducing Mulliken-type approximation on the matrix element,

1 1 1 1
il ~ 5 ( n ) (ulv). (6.11)

ry —r| re — 14| |r,; — 1y
Eq. 8.10 is rewritten as follows,

_% D> > e (Gag + day) {ulv) By

o &n peg ven

= Y e+ ) P = S8 = (alhn) - @12

&n ueg ven HEB

Note thata is symmetric matrix. Thus thel(EeS)JP is reduced thl(\Z}DA by applying Eq. 8.11 to

Eq. 8.10, since the second term in Eg. 8.3 disappears by using the same approximation.
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Chapter 9

New-generation of the reference interaction site
model self-consistent field method: Introduction of
spatial electron density distribution to the
solvation theory

9.1 Introduction

Quantum molecular orbital calculation (MO calculation) with solvation effect is a funda-
mental tool in the theoretical study of chemical physics in solution. Many solvation theories
have been proposed for investigation of chemical process in solvation phase.

In dielectric continuum model, such as polarizable continuum model (PCM) [1], solvent
molecules are replaced by macroscopic media with dielectric constant. The electronic struc-
ture is solved in vacuum cavity surrounded by the dielectric continuum. In quantum mechan-
ics/molecular mechanics simulations (QM/MM), the neighboring solvent molecules around a
solute molecule are treated explicitly. The electronic structure and solvation structure are cal-
culated by averaging over various solvent configurations. Although these methods have been
widely employed, the former oversimplifies microscopic characters of solvent and the latter
requires large computational cost for the generation of the solvent configurations. Reference
interaction site model self-consistent field (RISM-SCF) [2, 3] is another method, in which sol-
vation structure is provided by an integral equation theories based on statistical mechanics of
molecular liquids (RISM) [4,5]. RISM-SCF offers not only various macroscopic thermody-

namic quantities but also microscopic properties such as radial distribution functions (RDFs)
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with reasonable computational cost. RISM-SCF has been successfully applied to understand
the interplay between the electronic structure and solvation structure [6].

In the treatment of solvation effect, Coulomb interaction between solute and solvent molecules
is primarily important factor in most cases. A common representation for the interaction is the
sum of pairwise interactions between point charges assigned on each atom. The most popular
method to set the charges is the least-square fitting (LSF) procedure, in which the effective
charges are determined so that the electrostatic potential (ESP) derived from MO calculation
can be reproduced at a set of grid points. Although the LSF procedure, which is employed
for the original RISM-SCF [2], is very simple, several weak points have been pointed out so
far. For example, the atomic charges depend on the choice of the set of grid points. When
buried atoms exist in the molecule, the evaluation of the atomic charges are often ill-behaved.
Besides, the representation of point charges neglects spread of electron distribution.

To obtain more realistic Coulomb interaction, another strategy has been used in quantum
chemical study, especially in the field of density functional theory. In this strategy, the aux-
iliary basis sets (ABSs) on each atom are prepared to divide electron density into the com-
ponents assigned on each atom. Gill, Johnson, Pople, and Taylor proposed a procedure to
determine ABSs which reproduce the ESP provided by MO calculation (GJPT procedure) [7].
The great advantage of GJPT procedure is that it treats directly spatial electron density dis-
tribution (SEDD) and does not require the set of grid points; it is free from these artificial
parameters. As described later, GJPT procedure is very stable to determine the charges even if
a buried site is involved in the solute molecule.

In this paper, we propose the new-generation RISM-SCF, in which GJPT procedure is em-
ployed. The present method, RISM-SCF explicitly including SEDD (RISM-SCF-SEDD), is
much more robust in the connection between RISM and MO calculation than the original ver-
sion of RISM-SCF and significantly expands the versatility of the RISM-SCF family. In Sec.
9.2, the RISM-SCF-SEDD formalism and the relation between GJPT and LSF procedures are
presented. In Sec. 9.3, the computational details of this work are described. The results of

H,0O, CoH5;OH, and HLi evaluated by RISM-SCF-SEDD are shown in Sec. 9.4.
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9.2 Method
9.2.1 The formalism of RISM-SCF-SEDD

In GJPT procedure, model electron dengitis determined so that the ESP calculated by
MO calculation can be reproduced, under the constrain of conservation of total number of

electron. Gillet al. showed thap can be obtained by minimizing the following quantity:

D= 2n [ [ (p(e0) = e0) 1 = ral (plra) — irs)) draes + 21 [Ne -/ ﬁ(r)dr} (©.1)

wherelN, is the number of electrons apds the electron density derived from MO calculation.

p(r) is represented by the set of AB$gr) centered on each solute site,

plr) = difi(r), (9:2)

where Ngs is the number of ABSs [8]. The expansion coefficiedt® eq. 9.2 can be deter-

mined by the following equations,

d = X "tr(PY)-AX"'Z, (9.3)
ZX-tr(PY) — N,

4

A 7' X7 ’ ©.4)

using the density matrix”,, } (= >_.n,C,;C};) calculated from MO coefficientsC,,; } and

occupation numbet;. The components of the matrX, Y, andZ are defined, as follows:

XZ] = //fi(r1)|r1 — r2|fj(r2)dr1dr2, (95)
Y,uz/,i = //gb#(rl)gzﬁy(rlﬂrl —r2|fi(r2)dr1dr2, (96)
z = [ (0.7)

whereg is the basis function employed in MO calculation.

The effective electrostatic interaction betwegmnd solvent is then given by [2]

Vi=n" qu//%hwﬂr —r,|)drdr’ (i € ), (9.8)

whereh,, is total correlation function between solute siteind solvent site. ¢, is partial

charge of solvent site, n" is the number density of solvent, andis the coordinate of solute

134



sitea. By employing the standard procedure in RISM-SCF [2, 3], the solvated Fock matrix is

given by,

VX~1Z

Hsolv — He&s — VX_IY
* 7ZtX-1Z

[Z'X7'Y - 8], (9.9)
whereHs* is the Fock matrix in gas phase afids overlap matrix.

9.2.2 The relationship between GJPT and LSF procedures

In this section we would like to make a brief comment on the relationship between GJPT
and LSF procedures. In the standard LSF procedure, atomic populgsatetermined by the

following equation [2],

q = A 'tr(PB) - )AT'1, (9.10)
1'A~'tr(PB) — N,
A 1tg_11> (9.11)

The components oA andB are defined as follows:

1
= 12
S DYy rmry 5-12)
l
Buo = 3 [ A, (9.13)
1 T — Tallre — 14|

wherer;,, is the coordinates of grid point ang is those of solute site.
Comparing egs. 9.3 and 9.10, the stability of the charge-determination depends on the
character ofX~! and A~!. In the case of LSF proceduré, is calculated from the grid
set around the solute molecule. Since grid paipts far fromr, (or rz) in most cases
(|rr — rar] > |rays — rul), €0.9.121s,

’ 1
A = 2
k

ry, —Ty) — (Yo — Tar)||(vr — rar) — (v — )]

1
~ Z —— = Const. , (9.14)
B ’I'k - I'M|2

wherer,, is arbitrary point in the molecule (ex. the center of mass). Thus all the components

of A tend to be very similar to each other and the behavior of inverse of such matrix sometimes
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becomes unstable. [9] On the other hand, the components of eq. 9.5 are much characterized
only by the center of ABSsf; and f;. Therefore, the components Xfare very different from
each other an&X ! is robustly given compared tA~! is. The advantage of GJPT procedure

relative to LSF procedure is mainly from this different character.

9.3 Computational details

In the present study, normal gaussian functions are employed for ABSSs,
filr) = C; exp(—airz), (9.15)

whereC; is an appropriate coefficient [10]. Eqg. 9.8 is simplified, as follows;

3
Vi= p;qui (o%) 2 /OOO 4ﬂr2th(7’)dr (i € a) (9.16)
The exponents of the functions and the number of ABSs are determined using the algorithm
employed in the GAUSSIAN 03 [8, 11].

RISM and these expressions have been implemented by us in GAMESS [12]. A robust
solver for RISM calculation is also implemented (see Appendix). The integration of egs. 9.5
and 9.6 are calculated using the Obara-Saika recursions [13,14]. All calculations are performed

with GAMESS [12] and Gaussian 03 [11].

9.4 Results and discussion

RISM-SCF-SEDD is applied tH,0O, C;H5OH, and HLi in agueous phase. The calculation
in this article is performed by restricted Hartree-Fock (RHF) with 6-31G* [15, 16 HigD
andC,H;OH, and with 6-31G** [17] for HLi [18]. The Lennard-Jones (LJ) parameters are
summarized in Table 9.1. For comparison in the charge determination, two sets of grid points
are prepared for the LSF procedure in the original RISM-SCF. The grid points employed in
this work consist of radial part and angular part; the radial part is prepared from 5 to 50 Bohr
(set A) and from 10 to 50 Bohrdet B) and angular part is based on deltoidal icositetrahedron

(vertex 26).
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Table 9.1:Lennard-Jones interaction parameters

o(A)  e(kcal/mol)

H,0°
0 3.166 0.155
H 1.000 0.056
C,H;0H
P 3.800 0.050
P 2.500 0.050
oP 3.070 0.170
H(OH)*  1.000 0.056
HLi
He 2.00 0.070

Lid 2.126452 0.018279

& From Ref. [2],

b From Ref. [27],
¢ From Ref. [28],
4 From Ref. [29]

9.4.1 Hy,O

H,O is one of the typical molecules studied by many chemists. In this section, electrostatic
structure (charge and dipole moment) and solvation structure calculated by RISM-SCF-SEDD

and the original RISM-SCF are presented.

Table 9.2: Charges and dipole moment fél,O derived from RISM-SCF-SEDD and the original
RISM-SCF withset Aandset B

qs qA aB
@) -0.974 -0.994 -0.993
H 0.487 0.497 0.496
dipole moment (D) 2.699 2.737 2.747

The charges evaluated by RISM-SCF-SEDQR)(and the original RISM-SCF calculated
using theset A andset B grid (q4 andqg, respectively) are shown in Table 9.2, where the
dipole moment calculated by these methods are also shown. In the ddg® ahere is little

difference between, andqg. Although absolute value efs is somewhat smaller thapy 5,
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these are very similar to each other. The difference in the dipole moment is also very small.
By comparing with the experimental value of dipole moment (2.6 D), it is shown that RISM-

SCF-SEDD and the original RISM-SCF give reasonable evaluation in electrostatic structures.

g(r)

r / angstrom

Figure 9.1:RDFs ofH,O derived form (a) RISM-SCF-SEDD and (b) the original RISM-SCF.

RDFs calculated by RISM-SCF-SEDD and those by the original RISM-SCF are shown in
Fig. 9.1. The sharp peak located around Zl.@orresponds to hydrogen bond between H and

O. These methods correctly evaluate the height and the positions of these peaks.

9.4.2 C.H;0H

C,H;OH has buried site<;; of CH; group andC, of CH, group, and the effective charges
of these atoms in gas phase have been studied in detail [19, 20].

qg derived from RISM-SCF-SEDD angly,z derived from the original RISM-SCF df;,
C,, andO are shown in Fig. 9.2. They are plotted along the each RISM-SCF cycle. The charge
at iteration cycle = 1 corresponds to that in gas phasegz significantly depends on the choice
of grid sets even in gas phasgg of C; is almost zero bug 4 is negative. The difference in
charges derived from the grid set becomes large as iteration cycle increases. The clgnge of
from gas phase to aqueous phase is not so large. On the othetjaandnotonously increases
or decreases and eventually diverges. Such divergence sometimes occurs in the calculation of

the original RISM-SCF when the buried sites exist in a solute molecule. In the case of RISM-
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Figure 9.2:The change ofis, q4, andqg of Cy, Cs, and O along the RISM-SCF iteration cycle.

SCF-SEDD, the grid set is not needed and the conveqgésisimilar to the convergegs. The
stability of q5 and the independence of grid points show that RISM-SCF-SEDD is superior to

the original RISM-SCF when buried sites exist.

4

g()

r / angstrom

Figure 9.3:RDFs of CoH;OH derived form (a) RISM-SCF-SEDD and (b) the original RISM-SCF.

The RDFs calculated by RISM-SCF-SEDD and the original RISM-SCF are shown in Fig.
9.3. Those computed wiltjs and withq,4 look like very similar as in the case 6f, O, while
the peaks corresponding to hydrogen bond'mgz(.OA) by RISM-SCF-SEDD is somewhat

lower than that by the original one.
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9.4.3 HLi

Table 9.3:Chargesqs, q4, andqy for H site of HLi molecule calculated in gas phase and in aqueous
phase.

as q4 an
H in gas phase -0.756 -0.763 -0.730
Hin aqueous phase -1.044 -1.384 -0.887

HLi is a very simple molecule but the polarization induced by solvent is very large. The
natural charges [21, 22] calculated with IEF-PCM [2){), qs, andq4 are shown in Table
9.3. The corresponding gas values are also shown in Table 9.3. In gas phase, the values
calculated by all these methods are almost the same with each other. However the charge

deviation between H and Li iq4 is much stronger than thosedpz andq in agqueous phase.

14 (a) a H\ /c_\ K/H 1 (b) ¢

12 O—H H—Li [o] 12
10 a b, ] 10
—~ ~
— b —
- 8 X 8
5 —no|i &

r /angstrom r /angstrom

Figure 9.4: RDFs of HLi derived form (a) RISM-SCF-SEDD and (b) the original RISM-SCF.
Schematic figures of solvation structure around Li and around H are shown.

RDFs provided by RISM-SCF-SEDD and the original RISM-SCF are shown in Figs. 9.4(a)
and (b). The schematic solvation structures are shown in the right-upper side of Fig. 9.4(a).
Sharp peaks located around 1.35 (paaland 2.09A (peakb) in Fig. 9.4(a) correspond to
direct interactions, H-H and O-Lli, respectively. They originate from the the strong Coulomb
interaction between H-H and O-Li. Compared to paand pealb, the peaks located around

2.35 (peakc) and 2.80A (peakd) are broad, since they correspond to indirect interaction as
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shown in the schematic figure. Pediks moderately broad compared to p&aK he difference

in these peaks shows that solvent H can move around a solute molecule more easily than the
solvent O can. The solvation structures by the original RISM-SCF are very different from
those by RISM-SCF-SEDD. For example, H-H (pexland Li-O RDFs, which correspond to
direct interaction, are too high. In particular, pedkoks like that obtained in solid state. This

is because the ESP derived frem is very strong.

In RISM-SCF procedure, ESP is expressed by point charges or ABSs that are determined so
as to reproduce the ESP directly computed from the electron density, i.e., molecular orbitals
(Umo)- The accuracy of the fitted ESPY;;) by the point charges or ABSs can be examined by
measuring the deviation from the original E@R/ = Uy, — Uno. It should be noted that the
converged electron densities of RISM-SCF-SEDD and of the original RISM-SCF are slightly

different from each other. We thus defined the deviatid&S*PP and AUCRS, respectively.

0.06

0.04 -

0.02 +

0.00 b LiH e

-0.02

AU (a.u.)

-0.04 -

-0.06 -

-0.08

-0.10

-10 -5 0 5 10
X / angstrom

Figure 9.5:The difference of the ESP evaluated by RISM-SCF-SEDD and by the original RISM-SCF
from that calculated by QM calculation along HLi bond:; solid and dotted line correspoAd &P
and AURG, Shaded area show the region where the distance from solute site is shorter than the LJ
parameterg /2.

In Fig. 9.5, theAUSFPP and AUCRS along the H-Li bond are showii/p;; reproduces/yio
very well in the case of RISM-SCF-SEDD. On the other hdng, by the original RISM-SCF
(q4) is considerably different from th&yo: AUCRS is strongly positive, especially in the

region of X < 0 and2.5 < X < 5.0 A, while itis negative in the region close to the solute H

20< X <25 fA). These discrepancies seem to be insensitive to the choice of the grid points

141



and AU®RSG does not change so much even the grid range is shifted to the shorter distance
(from 5 to 20 Bohr). This deviation in the fitted ESP is very crucial to determine the RDFs and
is related to unphysical peaks in the original RISM-SCF, suahdepicted in Fig. 9.4(b).

9.5 Conclusions

We developed the new-generation of RISM-SCF, RISM-SCF-SEDD. The main advantages
of the present method are that it includes explicitly spatial distribution of electron density
and that it is grid free and robust compared to the original RISM-SCF. In this article, the
independence of the grids and the origin of the stability of the calculation are discussed from
the definition of the matrices used in the charge-determination.

RISM-SCF-SEDD was applied 18,0, C,H50H, and HLi in aqueous phase. The charges
derived from the method are very stable and reasonable both in the céls® pfvhich is
typical example, and in the case 6fH;OH, which has buried sites. In the case of HLI,
the polarization in charges between H and Li is strongly enhanced in water. With RISM-SCF-
SEDD, the origin of the polarization was clearly discussed from the solvation structures, which

is difficult with the original RISM-SCF.

Appendix: A Robust solver for RISM

In RISM, the iterative calculation is needed. When the interaction between solute and sol-
vent is very large, the calculation is sometimes diverge, especially at early stage of the compu-
tation. To solve RISM in stable manner, a robust solver is developed in this work.

Hypernetted-chain (HNC) closure is given by,

hap(r) = exp(Xas(r)) — 1, (A1)

Xool?) = ~pptanlr) + Bas(r) = cas(r) #2)

wherec,s(r) is the direct correlation functiom,,;(r) is total correlation functior is Boltz-
mann constant and,;(r) is the pair potential between sitesand 3. (Al) is very unstable

whenx,s(r) is large.
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With a parameteF’, (Al) is rearranged by,

has(r) = exp [F + (xos(r) = F)] —1 = exp(F) |3 1 (xaslr) = F)'| 1. (A3)

n=0
When (x.5(r) — F') is small enough, we can truncate the expansion up te 1. A new
artificial ‘closure’ is then constructed, as follows;

B exp(F) [1+ (xap() = F)] =1 (xap(r) > F)
has(r) = { exp(xas(r)) — 1 Cop(r) <F) A9

WhenF' = 0, (A4) corresponds to Kovalenko-Hirata type closure [24].

In general, the calculation of total correlation functiépg(r), by KH closure is more robust
than that by HNC closure is. To evaluate correlation functions in stable manner especially at
the beginning of the RISM iteratiorf is gradually increased in a stepwise fashion. In each
F value, iterative calculation between RISM and (A4) is performed until the convergence is
achieved. Whett' becomes sufficiently large, the equation is switched from (A4) to the normal
HNC closure (Al). This solver is more robust than the previous one used in our original RISM-

SCF program.
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General Conclusion

In this thesis, the author developed the methods focused on three-dimensional (3D) solvation

structure and electronic structure. The achievements in this thesis are summarized, as follows.

In part I, the author proposed two theoretical methods; one is to reconstruct 3D solvation
structure from radial distribution functions (RDFs) and the other is to calculate 3D solvation
structure based on statistical mechanics. It was clearly shown that the 3D solvation structures
obtained by these method showed the valuable informations, such as the strength of the inter-
action between solute and solvent molecules and the fluctuation of solvent molecules around a
solute molecule.

In chapters 1 and 2, 3D solvation structure is reconstructed by RDFs. The 3D solvation
structure is expanded with real solid harmonits and the coefficients are determined so
that the RDFs calculated by the coefficients can reproduce the reference RDFs. The equations
of the present method are so simple that the 3D distribution are calculated with reasonable
computational cost. Moreover, the method can be used as a tool for the analysis in experimental
studies because it is possible to employ the RDFs obtained by experimental method as the
reference RDFs.

In chapter 3, the method to calculate directly 3D solvation structure was derived based on
statistical mechanics. The 3D solvation structure is expanded with real solid harmgpics,
as in chapters 1 and 2. The coefficients are determined from the equation derived based on
statistical mechanics. The present method can be considered as the expansion of Reference
Interaction Site Model (RISM) because the equation with 0 andm = 0 corresponds to

RISM equation. The 3D distribution evaluated here correctly reproduced the results obtained

147



by molecular simulation.

In chapter 4, another method to calculate 3D distribution function directly was proposed.
Although the method derived in chapter 3 can calculate 3D distribution function accurately,
the computational cost for large systems such as hydration structures around a protein becomes
very high. By approximating the method in chapter 3 and using parallel computing technique,
the author succeeded the reduction of computational cost and time in the present method. The
present method was applied to a large protein called as Fv fragment. The evaluated hydration
structures reproduced the waters determined by X-ray crystallography very well.

In chapter 5, the method derived in chapter 4 was applied to Bacteriorhodopsin (bR), which
is a light-driven proton pump. The present method made it possible to calculate the 3D distri-
bution functions of water oxygen site and water hydrogen site with reasonable computational
cost. The hydrogen bonding network obtained by the present method correctly reproduced that

proposed in previous works.

In Part Il, the quantum mechanical calculation with solvation effect was performed using
dielectric continuum model and RISM-SCF scheme.

In chapter 6, the electronic structure of Creutz-Taube complexes in agueous phase was the-
oretically studied. There are two important requirements to understand the electronic structure
of these complexes. One is a multiconfigurational description in the wave functions between
localized state and delocalized state and the other is the solvation effect. In this work, two
state model based on ab initio molecular orbital theory and dielectric continuum model were
employed. The mechanism of the localization and delocalization of the wave function and the
solvation effect on the electronic structure were elucidated by the present method.

In chapter 7, the weakpoint of the original RISM-SCF was overcome by introducing the
modified charge assignment procedure proposed by Morita and Kato into RISM-SCF. This
method was applied to the electronic structuréfof(CN)g]*~/3~ in aqueous solution. In gas
phase, the electronic structures of these complexes are similar to each other from the point

of view of fitted point charges on each solute site. The nitrogen atoms tend to be negatively
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charged and the point charges of buried sites (ruthenium and carbon atoms) become positive.
However, the solvation effect considerably affects the electronic structuf@udfCN)g]>~
compared tdRu(CN)g]*~. The electronic distribution between the buried sites and nitrogen
atoms is more polarized ifiRu(CN)g]*~ than in[Ru(CN)g]>~.

In chapter 8, three algorithms of the charge assignment were examined. In addition to
the conventional method employed in the original RISM-SCF, Mulliken-type and dual-type
(Mulliken plus conventional) methods were proposed and applied to water. The interaction
between solute and solvent waters evaluated by Mulliken-type method was the strongest, while
that obtained by dual-type method was the smallest. With the dual-type method, the electronic
structure of NH3;BH; in water, which cannot be obtained by the original RISM-SCF, was
successfully evaluated.

In chapter 9, the weakpoint of the original RISM-SCF was overcome by another strategy.
In the present method, the author introduced auxiliary basis sets (ABSs) to incorporate spatial
electron density distribution (SEDD) explicitly. By replacing the point charges employed in
the original RISM-SCF by the ABSs, the instability in the charge assignment was drastically
removed. In the case of a water molecule in agueous phase, the new generation of RISM-
SCF (RISM-SCF-SEDD) obtained reasonable solvation structures and the electronic structure,
as the original RISM-SCF does. RISM-SCF-SEDD was also appligd, iOH and HLi,
which cannot be calculated well by the original method. The obtained charges and solvation

structures evaluated by the present method were reasonable.

A huge number of molecules make solvent system very complicated. However the com-
plexity itself is the origin of the variety of the reactions in solvent. To tackle the interesting
system, the author developed the methods to calculate 3D solvation structure (in Part |) and the
electronic structure with solvation effect (in Part Il) in this thesis. The two approaches from
the point of view of solvent structure and the electronic structure of solute molecule make it

possible to elucidate the mechanism of reactions in solvent at the molecular level theoretically.
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