Kyoto University Research Information Repository	
Title	Electrical Properties of Transparent Doped Titania Films by Sol-Gel Method (SOLID STATE CHEMISTRY-Amorphous Materials)
Author(s)	Lin, Hong; Uchino, Takashi; Kozuka, Hiromitsu; Yoko, Toshinobu
Citation	ICR annual report (1998), 4: 22-23
Issue Date	1998-03
URL	http://hdl.handle.net/2433/65157
Right	
Туре	Article
Textversion	publisher

Electrical Properties of Transparent Doped Titania Films by Sol-Gel Method

Hong Lin, Takashi Uchino, Hiromitsu Kozuka and Toshinobu Yoko

Transparent semiconductive TiO_2 films co-doped with Ru and Ta (Nb), and Co and Nb (Sb) were prepared on SiO_2 glass substrates by the sol-gel method using $\text{Ti}(\text{OC}_3\text{H}_7^{i})_4$ solutions. The solution preparation condition, solution composition, dopant content and heat-treatment temperature all severely affected the electrical resistivity of the resultant films. TiO₂ films co-doped with Ru and Ta (Nb) showed n-type conductivity, while those co-doped with Co and Nb (Sb) showed p-type conductivity. It seems that the obtained films can be utilized for assembling all-solid-state TiO₂-based pn type solar cell.

Keywords : Transparent semiconductive films / Sol-gel method / Titania films / Electrical resistivity / pn type solar cell

Solar energy is believed to be an essential energy source of the next century. A pn type solar cell with allsolid-state TiO₂-based films seems to have many benefits for effective utilization of the solar energy because the ultra violet and visible light of solar light would be adsorbed by n-type TiO₂ and p-type TiO₂, respectively. Here, transparent semiconductor electrodes with high conductivity are requested. We prepared TiO₂ films codoped with Ru and Ta (Nb), and Co and Nb (Sb) by solgel method, aiming at making n- and p-type transparent semiconductive films, respectively. The effects of solution composition, solution preparation condition, dopant content and heat-treatment temperature on the electrical resistivity of sol-gel derived films were studied. The conduction mechanisms of doped TiO₂ films were also discussed.

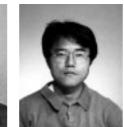
Transparent semiconductive n-type TiO_2 films were prepared by co-doping Ru and Ta (Nb). Titanium tetraisopropoxide (Ti(OC₃H₇^{*i*})₄), RuCl₃• xH₂O, TaCl₅ (NbCl₅), C₂H₅OH, 36.5% HCl (60% HNO₃ or diethanolamine (DEA)) and H₂O were used as starting materials.

Transparent semiconductive p-type TiO₂ films were obtained by co-doping Co and Nb (Sb). Ti(OC₃H₇ⁱ)₄, CoCl₂, NbCl₅ (SbCl₅), C₂H₅OH, acetylacetone (AcAc), (36.5% HCl) and H₂O were used to form Ti_{3(1-x)}Co_xM_{2x}O₆ (x = 0.3, M = Nb or Sb) solid solutions.

The gel films were dip-coated on SiO₂ glass substrates at a constant rate of 1 cm/min, heat-treated in air at 400°C-900°C for 10 min. Repeating the above procedure 3 times gave approximately 120 nm-thick films.

D.C. electrical resistivity was measured in air at room temperature for n-type TiO_2 films and during cooling from high temperature to room temperature for p-type TiO_2 films with two electrodes method.

The obtained n-type TiO_2 films were uniform and transparent in all the preperation conditions employed, and their crystalline phases were anatase when HCl or

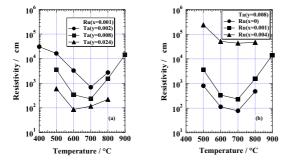

SOLID STATE CHEMISTRY - Amorphous Materials-

Scope of research

Inorganic amorphous materials with various functions are the targets of research in this laboratory. (1) To obtain a clear view of "what is glass" and the bases for designing functional glasses, we investigate the structure of glasses using X-ray and neutron diffraction analysis, high resolution MAS-NMR, and ab initio MO calculation. (2) To develop materials of high optical nonlinearity, we search heavy metal oxide-based glasses and transition metal oxide thin films, and evaluate the nonlinear optical properties by Z-scan methods. (3) Using sol-gel method, synthesis and microstructure control are carried out on various functional oxide thin films.

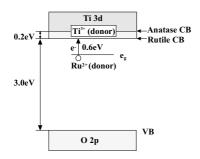
ProfAssoc ProfInstrYOKO, ToshinobuKOZUKA, HiromitsuUCHINO, Takashi(D Eng)(D Eng)(D Eng)

Guest Research Associates: JIN, Jisun (D Eng) ZHAO, Gaoling (D Eng)


Students:

Instr

LIN, Hong


(D Eng)

SAKIDA, Shinichi (DC) TAKAISHI, Daigo (DC) HATTORI, Takeshi (MC) TOKUDA, Youmei (MC) NIIDA, Haruki (MC) TATSUMI, Masao (MC) MIYAWAKI, Seikyo (MC) KAJITA, Daisuke (UG) KITAGAWA, Yukio (UG) TAI, Hiroaki (UG) HNO_3 was used as a catalyst. The resistivity of the films decreased in the order of DEA > HNO_3 > HCl additives. Refluxing the dopant solutions prior to mixing with $Ti(OC_3H_7)_4$ solution led to the decrease of the film resistivity. This was probably caused by the alkoxylation of RuCl₃ and TaCl₅ under refluxing, promoting the formation of solid solution.

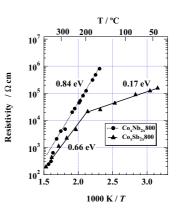

Figure 1. (a) Electrical resistivity of the titania films with a fixed content of Ru (x = 0.001) and various contents of Ta (y = 0 - 0.024). (b) Electrical resistivity of titania films derived with various Ru contents (x = 0 - 0.004) and a fixed Ta content (y = 0.008).

Figure 1 shows that the resistivity decreased with increasing Ta content and increased with increasing Ru content. This indicates that Ti^{3+} species, which are formed by Ta-doping via charge compensation, are the main donors responsible for the conduction in the present anatase samples (see Figure 2). Moreover, most of the films showed resistivity minima at a heat-treatment temperature of 700°C. This is due to the change of Ti^{3+} concentration by the Ta incorporation and the oxidation and reduction reactions during the heat-treatment. The lowest resistivity of $10^1 \sim 10^2 \Omega$ cm was attained.

Figure 2. Schematic energy level diagram for Ti^{3+} and Ru^{2+} in anatase and rutile TiO_3 .

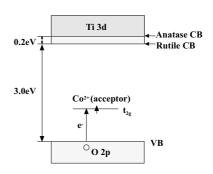

The obtained p-type TiO_2 films were also uniform and transparent when AcAc was used, while samples heat-treated at 800°C became opaque when HCl was added. Rutile phases appeared when the films were heat-treated at 700°C. Films co-doped with Co and Sb changed their crystalline phases from amorphous directly to rutile with increasing heat-treatment temperature. Contrarily, films co-doped with Co and Nb showed phase transition from anatase to rutile on heating. The crystallinity of films co-

Figure 3. Variation of logarithmic resistivity with reciprocal temperature in K for $Ti_{3(1-x)}Co_xM_{2x}O_6$ (M = Sb or Nb) films heat-treated at 800°C. The inserted numericals in eV are activitation energies.

doped with Co and Nb was slightly better than that of films co-doped with Co and Sb.

Figure 3 shows that logarithmic resistivity of films codoped with Co and Nb was directly proportional to the reciprocal absolute temperature. On the other hand, the slopes for films co-doped with Co and Sb were different below and above 200°-220°C, indicating that there are at least two conduction mechanisms with different activation energies. The phenomenon should be closely related to the valence state of Sb ions, causing the formation of different acceptor levels. Moreover, Co ion in Ti_{3(1-x)}Co_xM_{2x}O₆ may be present as Co²⁺ in high spin state, acting as an acceptor for electrons from the valence band of TiO₂. (see Figure 4).

Figure 4. Schematic energy level diagram for high spin Co²⁺ in titania.

The above obtained transparent n- and p-type TiO_2 based semiconductors are promising materials for designing a pn type solar cell.

References

- 1. Triggs P and Levy F, *Phys. Stat. Sol.* (b), **129**, 363 (1985).
- 2. Belloch J M., Isasi J, Lopez M L, Veiga M L and Pico C, *Mater. Res. Bull.*, **29(8)**, 861-9 (1994).
- 3. Lin H, Kumon S, Kozuka H and Yoko T, *Thin Solid Films*, in press.