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Introduction for the Thesis 

 

 

Carbon clusters have long attracted interests in pure and applied sciences such as 

molecular spectroscopy, theoretical chemistry, and material sciences 1,2.  The 

importance of research on the structure and reactivity of smaller carbon clusters is ever 

growing in astrochemistry because the recent progress in spectroscopy over the 

microwave, infrared, and visible-ultraviolet regions has disclosed the existence of a 

variety of carbon chains and other carbonaceous particles in the space 3.  The 

characterization of these carbon-containing species is indispensable for the elucidation 

of the molecular evolution in the space. 

In the material science also the progress in the research activity has been 

astoundingly remarkable since the epoch-making discovery of buckminsterfullerene C60 

4 and the development of technique for mass-production of C60 5.  The discovery of 

carbon nanotubes (CNT), almost simultaneous with that of fullerenes 6, also has caused 

an explosive expansion of research activities in CNT science and technology 7,8.  

Various technical modifications of these new carbon allotropes have already yielded 

some new functional materials for commercial uses. 

The present status is such that the progress in application-oriented studies is so 

rapid that basic studies on elementary small carbon clusters tend to be a little behind 

relative to the former.  The primary motivation of the present study by the author is to 
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remedy for the lag in basic research on the composite units of the above-mentioned 

allotropes, that is, smaller carbon clusters.  These clusters include linear carbon chains, 

monocyclic and polycyclic carbon rings, closed-cage fullerenes, graphitic sheets, 

bowl-shaped isomers, and so on. 

A weak point of the study on these smaller carbon clusters is that ordinary 

spectroscopic techniques for the precise determination of molecular structures are not 

applicable except for short linear chain and small planar ring clusters.  Such 

experiments as gas phase ion-chromatography suggest that larger carbon clusters have 

several structural isomers 9,10, but detailed information on the structure cannot be 

obtained by such a bulk analysis. 

The scarcity of information on the structure of carbon clusters is related to the fact 

that carbon clusters are produced by relatively rude experimental methods such as 

electrical discharge of acetylene and other hydrocarbons and resistive heating of 

graphite.  It is considered that most carbon atoms in hot gases produced by such 

methods are in the forms of C, C2 and C3 with some longer linear chains 11–15.  Pieces 

of evidence suggest that in the gases produced by laser ablation of graphite there may be 

substantial amounts of monocyclic clusters in addition to the linear chains.  Therefore, 

the ablation technique seems a viable method to form and characterize various isomeric 

clusters both linear and cyclic. 

Laser ablation 16,17 has been widely used for the study of gases of metals and 

semiconductors of high melting points.  This technique is applied to the carbon cluster 

also in the past two decades.  For the analysis of cluster formation by laser ablation 

technique such detection methods as emission spectroscopy 18, fast imaging technique 
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19,20, and mass-spectroscopy are utilized.  In particular, mass-spectroscopy allows the 

determination of size distribution of clusters.  It also allows the detection of 

non-emissive clusters.  

However, in order for mass-spectroscopy to be useful for the study of neutral 

carbon clusters they must be ionized without decomposition beforehand, needless to say.  

In the past, ionization was effected mostly by multi-photon ionization with a high-flux 

lasers 21, which often caused fragmentation of nascent neutral clusters.  To avoid the 

fragmentation lasers emitting photons of energy just above the ionization energy of 

target clusters should be favorable.  In fact, such a one-photon ionization method was 

applied for the study of fullerenes whose ionization energies are relatively low so that 

fluorine (F2) lasers of photon energy of 7.89 eV (=157 nm), for example 22–24, were just 

capable of ionizing fullerenes having ionization energies of around 8 eV 25 without 

significant decomposition of the fullerenes.  As to the application of the one-photon 

ionization technique for the study of smaller carbon clusters it was prohibitive until 

recently because ionization energies of such clusters are higher than the photon energy 

of easily available lasers 26,27.  Just recently, however, the ninth harmonics of a 

Nd:YAG laser of an energy of 10.5 eV(=118 nm) 28,29 was applied to the study of carbon 

clusters of ionization energies having up to about 10 eV 30,31.  Thus, neutral clusters 

down to C6 became possible to ionize gently without extensive fragmentation.  In this 

thesis the author utilizes the same harmonics of a Nd:YAG laser to survey carbon 

clusters and their hydrogenated derivatives. 

Another advantage of laser ablation technique is that it is possible to produce 

derivatives of carbon clusters easily with adding reactants, such as H2 24,32–35, D2 34, H2O 
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32,33, D2O 32, N2 32,33, CH3CN 32,33, NH3 32,33, NO 22 and SO2 22, in the buffer gases, or 

treating some impurities, e.g. KOH 21,23, to graphite.  From those produced derivatives, 

the structure and reactivity of carbon clusters may be inferred to a certain degree.  One 

may draw an analogy to organic chemists’ "trapping technique" to get information on 

reaction intermediates.  By combining single-photon ionization technique, more 

reliable evaluation of reaction products is attained.  The carbon cluster derivatives such 

as polyacetylene HC2nH and cyanopolyynes HC2n+1N themselves are interesting from 

the viewpoint of interstellar chemistry because such carbon chain molecules are one of 

the abundant species in the space 36. 

Because of the limitation of experimental studies on the elusive neutral carbon 

clusters quantum chemical computations to predict the structure provide useful 

information.  This is particularly true in the case of clusters possible to have a number 

of isomeric structures.  According to computations it is predicted that carbon clusters 

Cn with n being less than 9 prefer linear structures whereas those larger than C10 favor 

monocyclic structures 37–39.  In particular, clusters of the form of C4n+2 (n≥2) are 

predicted to possess stability due to the aromaticity 38–41.  In spite of these 

computational prediction, however, definite experimental evidence to confirm 

monocyclic stable structures has not yet been obtained, although circumstantial 

evidence for the cyclic structure is available from various types of experiments such as 

photoelectron spectroscopy of gaseous negative ions 42,43 and infrared spectroscopy of 

matrix-isolated clusters 44–47.  Previous mass spectroscopic studies of the author’s 

group demonstrated that under a certain condition, C10− ions in particular are 

predominantly observed which suggests an extra stability of cyclic C10 48. 
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With the above-stated background the present thesis reports new findings which 

are presented as in the following manner:  in Chapter 1 the author reports the result of 

the time-of-flight mass-spectroscopic study on neutral carbon clusters produced by 

laser-ablation of graphite followed by a gentle one-photon ionization in the He buffer 

gas atmosphere.  It is found that clusters of one and the same size and constitution split 

into two components, slow and fast, along the direction of drift towards the detector.  

Furthermore, the size distribution of Cn of the slower component is totally different 

from the hitherto known distribution pattern and results in the sole survival of C10 at 

longer intervals between the ablation and ionization pulses.  The extreme stability of 

C10  is discussed intensively.  In Chapter 2, the He gas used as the buffer gas in 

Chapter 1 is replaced with H2 and D2.  As in the He buffer gas the ablated products of 

one and the same size and constitution split into a slow and a fast component. Similarly 

to the case of the He buffer gas in Chapter 1, the product of the type of C2nH2 supposed 

to be of a polyyne type survives at longer delay times.  In Chapter 3 the result of 

time-of-flight mass-spectroscopic measurements for the atmosphere of both He and H2 

buffer gases is presented at an elevated detection sensitivity and spectroscopic 

resolution.  The result reveals that the slower component observed and discussed in 

Chapters 1 and 2 is further split into two component, the implication of the splitting is 

argued.  
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Chapter 1 

Preferential formation of neutral C10 
upon laser vaporized graphite in He gas as 
studied by photoionization mass 
spectroscopy with 10.5 eV photons 

 

1.1  Abstract 

Neutral carbon clusters produced from laser-ablated graphite in a supersonic 

pulsed-helium expansion source were studied by time-of-flight (TOF) mass analysis 

using single-photon ionization with 10.5 eV photons.  Varying the delay time of an 

ionization laser pulse relative to a vaporization pulse, we found that a signal of C10, 

along with a weaker signal of C12, was intensified almost exclusively to the other Cn 

signals with relatively long delay times of 80–250 µs.  We observed two distinctly 

different TOFs for one and the same size, a short TOF at shorter delay times and a long 

TOF at longer delay times.  We attribute the difference in TOF to the difference in 

initial velocity of the neutral cluster.  We also performed the experiment within a high 

vacuum to find a similar difference in TOF for clusters of the same mass.  The bimodal 

arrival-time distribution from the source to the ionization region indicates that the bunch 

of laser-ablated clusters separates into two bunches with different velocities.  We 
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attribute this separation to the formation of a relatively dense boundary layer.  During 

collisions behind the boundary, the relatively stable neutral C10, probably of a 

monocyclic structure, is formed preferentially.  This must be the origin of the selective 

detection of C10 at the longer delay times. 

 

1.2  Introduction 

Small carbon clusters, Cn (n=2–30), have not only attracted general attention as 

spectroscopic interests 1,2 but also as possible building units of fullerenes and nanotubes 

3–5.  So far, pulsed-laser vaporization has been widely used for producing these clusters, 

and their growth, fragmentation, and isomerization processes have been studied 

extensively6–14.  Recently, using high-speed imaging techniques, space–time evolution 

of laser-ablated plasma plumes has been studied and compared with the formation of 

fullerenes 15–17.  However, the relationship between the abundance of Cn clusters and 

the formation of fullerenes and nanotubes is still under debate.  One of the difficulties 

in such investigations arises from the relatively high ionization potentials of neutral Cn 

clusters 18,19.  Mass spectroscopy with multiphoton ionization has been widely used to 

detect the carbon clusters because ofits high sensitivity.  However, it was demonstrated 

that multiphoton ionization often leads to secondary fragmentation 20.  Thus, the 

distribution of size determined by the multiphoton ionization mass spectroscopy may 

vary greatly from the actual size distribution of the neutral clusters. 

It has been shown that single-photon ionization must be more appropriate than 

multiphoton ionization to investigate the size distribution of neutral clusters.  Recently, 

Achiba et al. have reported nascent mass distribution of laser vaporized neutral Cn 
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clusters of n≥6 in helium buffer gas using single-photon ionization mass spectroscopy 20.  

They found that the distribution of neutral Cn in laser-ablated plasma was similar to that 

of anionic Cn
− produced simultaneously by the ablation laser pulse.  For both the 

neutrals and the anions, signals of n=10 and of even-numbered larger sizes were 

pronounced.  Wakabayashi et al. applied the same single-photon ionization technique 

to laser ablated graphite within a high vacuum to find a more distinct magic number 

behavior of C4n+2 (n=2–4) 21. 

We performed herein the measurement of neutral mass distribution of 

laser-vaporized graphite in He buffer gas, extending the condition of Ref. 20 to various 

delay times of the ionization laser pulse relative to the vaporization pulse.  The longer 

delay times studied here are comparable to those applied in a previous work in which 

the tandem irradiation of graphite with infrared (IR) and ultraviolet (UV) laser pulses 

under high vacuum yielded anionic C10
− almost exclusively 22.  It was suggested that 

the selective anion was formed by the attachment of slow photoelectrons produced from 

the second UV pulse to neutral C10 formed from the preceding IR ablation pulse.  The 

result of the present study gives the first clear evidence for such slow formation of 

neutral C10 in laser ablation processes. 

 

1.3  Experiment 

A rotating and translating graphite rod of natural isotopic abundance (1.1% 13C 

and 98.9% 12C) was vaporized in a narrow channel (2 mm in diameter and 12 mm long) 

of a metal block by moderately focused laser pulses from a Nd:YAG laser (Spectra 

Physics DCR-11, 532 nm, 7 ns duration) to form neutral Cn clusters along with cations 
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and anions.  The clusters thus produced were expanded into a vacuum with a pulsed 

helium gas flow and lead to an ionization region composed of three disc electrodes 

having a central hole with a metal mesh.  The distance from the vaporization source to 

the first electrode was 54 mm.  The distances between the first and the second 

electrodes and the second and the last electrodes were 17 and 12 mm, respectively. 

High voltage charges of direct current at +5.00 and +4.11 kV were applied to the 

first and the second electrodes, respectively, while the last one was grounded.  The 

high voltage of the first electrode deflects the cations from the source.  On the other 

hand, the anions accelerated to the first electrode, but they decelerated and scattered 

during traveling through the holes of the three disk electrodes.  Thus, both the cations 

and the anions produced by the laser ablation processes do not appear in the mass 

spectrum. 

The neutral Cn clusters that were not affected by these high voltages entered into 

the space between the first and the second electrodes with He buffer gases, where the 

clusters were photoionized by the second laser pulse of 10.5 eV photons.  The distance 

from the vaporization source to the ionization region was 60 mm.  The photoionized 

cations of Cn
+ accelerated by the electric fields of the three electrodes were drifted in a 

field free region of 40 cm, and then detected by a multi channel plates detector.  All 

equipment, the source, the disk electrodes, and the detector, were set up coaxially.  

Owing to this coaxial configuration, we were able to separate not only the difference of 

masses, but also the difference of initial velocities of neutral clusters along the direction 

of gas expansion in the cluster source as a shift of mass peaks. (Details are given in the 

next section.) 
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Photons of 10.5 eV for the ionization were obtained by the ninth harmonic 

generation of Nd:YAG 23,24. A pulsed laser beam of third harmonics of Nd:YAG 

(Continuum Powerlite 8010, 355 nm = 3.5 eV, 5 ns duration) was focused with a CaF2 

lens of 10 cm focal length in the middle of a gas cell containing xenon gas at 25 Torr to 

produce 118 nm (10.5 eV) photons 15.  The output beam of 10.5 eV photons from the 

cell was paralleled with an LiF lens and then separated from the beam of 355 nm with 

an LiF prism and an aperture of 6 mm in diameter.  With this setup, only the 10.5 eV 

photons enter the ionization region to hit the neutral clusters. 

The time-of-flight (TOF) spectrum of the ions was recorded on a digital 

oscilloscope (Tektronix TDS544A) with an acquisition of 1000 pulses.  The system 

was operated at 10 Hz.  The delay time of the ionization pulse relative to the 

vaporization pulse was varied from 10 to 1000 µs. 

 

1.4  TOF Analysis 

The TOF of a cluster with mass m and an initial velocity v0 had been simulated 

numerically and it was found that it can be fitted well to the analytical expression 

 

t = αm1/2−βmv0+t0  (1), 

 

where α, β and t0 are constants.  The physical interpritation of this equation will be 

refered in chapter 3.  The second term of the righthand side is typically on the order of 

0.5% of the first term for C10 under the present experimental condition.  The linearity 

to v0 is held for the condition in which the ratio of acceleration voltages applied to the 
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first and second electrodes is tuned to give the sharpest TOF signal.  The coefficient β 

in Eq. (1) is calculated to be 1.78×10−13 amu−1m−1s2 for the present experimental setup, 

where m is given in an atomic mass unit.  The shift in TOF corresponding to mass 

difference by one (∆m=+1) is obtained from Eq. (1) to be 

 

α[(m+1)1/2−m1/2]−βv0  (isotopomeric shift)  (2). 

 

This isotopomeric shift becomes smaller as the value of m increases.  On the 

other hand, the shift in TOF for clusters with the same mass but with different velocities 

is given by 

 

−βm(v0'−v0)  (velocity difference shift)  (3). 

 

This shift is proportional to both the velocity difference ∆v0=v0'−v0 and the mass m.  

The velocity difference shift becomes larger as the mass m increases, in contrast to the 

isotopomeric shift in Eq. (2).  These relations in Eqs. (2) and (3) will be applied to the 

analysis of the splitting of mass peaks discussed in the subsequent section. 

 

1.5  Results 

1.5.1  Mass spectra in He buffer gas 

Figure 1-1 shows TOF mass spectra of laser vaporized graphite in He buffer gas 

subsequently ionized with 10.5 eV photons.  The numbers to the right of the spectra 

represent the delay times in µs of the ionization laser pulse to the preceding 
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vaporization pulse.  The assignment n of Cn is indicated in the third panel from the 

bottom.  The clusters larger than C5 are detected in the mass spectra, since the 

ionization potentials of Cn for n≥6 are lower than 10.5 eV but those for n≤5 are higher 

than 10.5 eV 2,18,19.  In the third panel from the bottom (delay = 54 µs), mass peaks 

from n=6 to 18 are clearly seen with the intensity maximum for the C10 signal.  The 

spectral distribution is essentially the same as that reported previously 20.  Sizable mass 

peaks are seen in the upper panels from 58 to 66 µs then fade away to 80 µs.  Instead, a 

peak with slightly longer TOF values from the peak of C10 emerges between 70 and 80 

µs.  Another peak appears in these delay times near the peak of C12.  These new peaks 

are intensified throughout all the longer delay times studied exhibiting the intensity 

maximum at roughly 160 µs.  At the delay time of 400 µs (uppermost of Fig. 1-1) one 

of the peaks is still discernible. 

The peak at t = 5.7 µs appearing in longer delay times shifts by about ~30 ns from 

the peak of C10 observed in shorter delay times.  One might consider that the former 

was due to hydrocarbon radical C10H.  However, we could deny this possibility 

because there was no additional source of hydrogen.  Thus we must consider the 

possibility that the TOF can vary for one and the same mass, that is, the shift in TOF is 

due to the difference of initial velocity of the neutral cluster drifting in the ionization 

region.  When the neutral cluster has, for example, a large velocity in the direction of 

the flight axis,  the TOF of the corresponding cation is shortened accordingly as seen 

in Eq. (1).  Employing the value β given in Sec. 4, the difference of 30 ns in TOF 

under the experimental condition corresponds to the velocity difference of ∆v0 ~ 1400 

ms−1 [Eq. (3)], which is roughly equal to the difference calculated from the gas 
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dynamics (see section 6.1).  Thus, we conclude that the delayed peak is also due to 

C10
+.  In other words, the velocity of C10 detected in shorter delay times is roughly 

1400 ms−1 larger than the velocity of C10 in longer delay times. 

Figure 1-2 depicts two distinctly different mass patterns for the "delayed" (longer 

delay times) and "prompt" (shorter delay times) clusters.  The two spectra in Fig. 1-1, 

namely those of the delay times of 160 µs for (a) and of 58 µs for (b), are reproduced as 

a function of the unit of mass.  The selective signal of C10 and C12 is noticeable in (a), 

while rather nonselective formation of various n of Cn in (b).  Figure 1-3 shows the 

intensity profile as a function of the delay time for the "prompt" (closed circles) and 

"delayed" (open circles) signals of C10.  Note that the temporal intensity for the 

delayed signal is at most one-fourth of the maximum for the prompt signal.  However, 

integrated intensity over the range of 70–400 µs is comparable to, or even higher than, 

the integrated intensity of the prompt signal in 40–80 µs. 

 

1.5.2  Mass spectra within a high vacuum 

In order to examine the effect of buffer gas upon the shift of TOF signals (70–80 

µs in Fig. 1-1), we also re-examined our group's previous TOF mass spectroscopic 

experiments of laser ablated Cn within a high vacuum 21.  In the previous study, for 

which a rotating graphite pellet was set at the center of the first electrode and the flight 

tube was longer (~65 cm), laser ablated neutral Cn clusters were ionized with 10.5 eV 

photons 4 mm above the graphite target to obtain TOF mass spectra.  All these 

procedures were performed within a high vacuum (2×10−8 Torr).  Figure 1-4 shows 

mass spectra of laser-ablated Cn clusters in a high vacuum.  Selected spectra are of the 
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delay times of (a) 40 µs and (b) 20 µs.  A similar splitting of mass peaks, as those in 

Fig. 1-1 (70–80 µs), was also observed in a high vacuum.  

In the upper panel spectrum (a), the splitting is clearly evinced by several mass 

peaks.  Each delayed signal indicated by an open circle is visible in comparable 

intensity to its adjacent prompt signal indicated by a closed circle.  The splitting for the 

signal of C10 is ~24 ns, while larger clusters exhibit larger splitting, namely ~33 ns for 

C14 and ~44 ns for C18 .  The inset in Fig. 1-4 (a) shows a plot of these shifts as a 

function of the cluster size n of Cn.  The linear dependence of the TOF shift as a 

function of the cluster size is in good agreement with the prediction from Eq. (3) 

(velocity difference shift).  The linearity also indicates that velocity differences 

between the prompt and delayed clusters are the same for all Cn clusters wherein n=10 

to 18.  Thus we can naturally conclude that the delayed clusters must have a common 

velocity irrespective of their masses. 

In the lower panel spectrum (b), a magic number behavior of C4n+2 (n=2–4) was 

clearly visible.  A prominent peak of C10, indicated by a closed circle, is accompanied 

by a smaller peak, indicated by a diamond.  The latter peak is attributable to the 

isotopomer of 13C12C9.  For C14 and C18, accompanying peaks indicated by diamonds 

are also attributable to the isotopomers of 13C12C13 and 13C12C17.  The inset in (b) 

shows the shift in TOF between adjacent peaks with a diamond and with a closed circle 

as a function of n of Cn.  The dotted curve represents a simulated curve using Eq. (2) 

(isotopomeric shift).  The agreement between the dotted curve and the observed shift 

shown in the inset of Fig. 1-4 (b) is good, which supports the assignment of the delayed 

peaks to the isotopomers, but not to the difference of initial velocity as in the delayed 
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peaks in Fig. 1-4 (a).  The observed intensity ratios in Fig. 1-4 (b) are also in good 

agreement when calculated with the abundance ratio for the isotopomer of 13C12Cn−1 

relative to 12Cn. 

 

1.6  Discussion 

1.6.1  Separation of cluster bunches upon laser ablation 

From the observed peak splitting, we infer that laser ablation ejectants separate 

into two bunches of different velocities.  Such separation of laser ablation products 

was often confirmed experimentally (including laser ablation of graphite 15), and 

theoretical characterizations of laser ablated plumes have been done 25.  It is not easy 

to translate the present experimental data into the gas dynamics of ablated plumes, 

because the instrumental setup of laser ablation cluster source used in present 

experiment was not optimum for the precise analysis of ablated plume dynamics.  We 

tentatively propose, however, that the observed bunch separation was due to the 

formation of dense boundary layer consisting of emitted carbon species and buffer gas 

molecules in the plume.  The formation of such boundary will split the clusters into 

two bunches.  Clusters behind the boundary may be subjected to heavier collisions 

with other clusters and/or buffer gas cause rearrangement of cluster size and its 

structure. 

The separated peaks for each Cn cluster were observed not only in helium buffer 

gas condition but also in high vacuum condition.  The velocity of each bunch can be 

estimated roughly for the vacuum condition experiment.  Since the distance from the 

graphite surface to the ionization region is 4 mm and the optimum delay for the 
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observation of the splitting is 40 µs, the velocity is estimated to be less than 100 ms−1.  

In contrast, the other bunch of clusters, which is able to escape being trapped by 

collisions behind the boundary, has a larger velocity of >1300 ms−1, since the maximum 

intensity of the prompt signal is observed within a delay time of a few µs (cf. Fig. 1-1 in 

Ref. 21).  The difference in velocity deduced here agrees with the difference estimated 

from the splitting of mass peaks in Fig. 1-4 (a) and Fig. 1-1.  But it cannot necessarily 

be concluded that the separations observed in both the buffer gas conditions and 

vacuum condition were based on the same cause, because many precedent researches 

for laser ablation process have shown that the dynamics of laser ablated plumes were 

much affected by existence of ambient gas.  In laser ablation process of graphite under 

high vacuum, similar splittings of TOF mass peaks for Cn
+ ions directly produced by 

ablation were observed by Choi et al. 26 and they concluded that the separation of ejecta 

is due to the formation of Knudsen layer 25,27. 

Further research for laser-induced gas dynamics based on finer experiments is 

performed in Chapter 3. 

 

1.6.2.  Preferential formation mechanism of C10 

Secondary reactions behind a boundary should be responsible for the selective 

signal of C10 [Fig. 1-2 (a)].  Multiple collisions are major processes in such gas 

mixtures.  In the case of faster growth and slower cooling, the extra energy of newly 

formed C−C bonds is transferred to an internal energy to heat up the cluster, which 

leads to the rearrangement or decomposition of C−C bonding to produce more stable 

fragments.  Energetic collisions during the formation of a dense layer may also heat up 
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the cluster to dissociate it into smaller clusters.  Such time-consuming fragmentation of 

larger clusters is conceivable for the mechanism of preferential formation of C10. 

Bowers and his colleagues have reported preferential loss of neutral C10 upon the 

metastable fragmentation of laser vaporized cluster cations of Cn
+ (n=24–29) 10.  

Bowers et al. 11 and Jarrold et al. 12,13 have reported preferential loss of C4n+2 upon the 

collision-induced dissociation of Cn
+, attributing such to monocyclicity.  We deduce 

that for neutral clusters as well such preferential fragmentation channels exist to explain 

the abundance of C10.  Therefore, we propose that the neutral C10 detected at the longer 

delay times has a monocyclic form. 

Monocyclic Cn clusters have been studied as factors that challenge theoretical and 

experimental issues 28–33.  Earlier theoretical studies have predicted stability of 

even-numbered monocycles of C2n 28,29, and aromatic stabilization for the carbon ring 

size of 4n+2 30.  Recently, the distortion of larger carbon rings has been discussed 

extensively 31–33.  Smalley et al. suggested that such monocyclicity resulted from 

laser-vaporized carbon clusters 34.  By using anion photoelectron spectroscopy, they 

found a different series of Cn clusters with relatively low electron affinities for n=10–29 

which was attributable to monocyclic clusters.  Molecular structures of Cn
− have also 

been investigated by ion mobility measurement 9,14.  All of these studies indicate that 

the neutral C10 cluster is the smallest monocyclic ring among the Cn clusters in the gas 

phase 1. 

It has been suggested that the monocyclic C10 cluster forms preferentially under 

the present experimental condition in He buffer gas.  It is worthwhile to note that the 

smallest linear chain molecule of C3 predominates carbon vapor molecules within a 
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high vacuum 1,2,28, while the smallest closed-cage molecule of C60 predominates under 

relatively high-pressure conditions 3,4,7,35.  Analogously to the case of C60, the smallest 

monocyclic C10, once formed as the stable fragment, can survive against further 

collisions with other clusters in the buffer gas 36.  The selective formation of neutral 

C10 found in the present work may be applicable to the spectroscopy of monocyclic 

carbon ring molecules and open a way to the synthesis of novel functionality materials 

consisting of sp carbon atoms. 
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Fig. 1-1 TOF mass spectra of laser vaporized neutral Cn clusters in He buffer gas 

photoionized with 10.5 eV photons.  The numbers to the right represent 

the delay times in µs of the ionization laser pulse relative to the preceding 

vaporization pulse.  The cluster size n of Cn is indicated in the third 

panel from the bottom. 
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Fig. 1-2 Two distinctly different mass patterns of the (a) "delayed" and (b) 

"prompt" Cn clusters.  The two spectra in Fig. 1-1, namely of (a) 160 µs 

and of (b) 58 µs, are reproduced as a function of the mass unit.  For the 

intensity normalization, the upper panel spectrum (a) is multiplied by a 

factor of 4. 
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Fig. 1-3 The intensity profile of the "prompt" (closed circles) and "delayed" (open 

circles) signals of C10 in He gas as a function of the delay time. 
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Fig. 1-4 The TOF mass spectra of laser-ablated graphite within a high vacuum 

subsequently photoionized with 10.5 eV photons.  The spectra 

correspond to the delay times of (a) 40 µs and (b) 20 µs, displaying the 

prompt (closed circles) and delayed (open circles) signals.  Peaks with 

diamonds are of the isotopomer, namely 13C12Cn−1 of 12Cn.  The insets 

show the cluster size dependence of the splitting in TOF for mass peaks in 

(a) and (b).  For details, see text (section 5.2). 
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Chapter 2 

A mass spectroscopic study of laser 

vaporized graphite in H2 and D2 gases: The 

stability of C2nH2 (n=2–5) and C10 
 

 

2.1  Abstract 

Carbon clusters, hydrocarbon molecules and radicals produced by laser 

vaporization of graphite in a hydrogen (H2 or D2) gas expansion source were studied 

using 10.5 eV one-photon ionization followed by time-of-flight mass spectroscopy.  

By changing the delay time of the ionization pulse relative to the vaporization pulse, we 

found two distinctly different mass patterns: rather non-selective signals of Cn (n=6–20) 

and CnHm (n=3–20 and m=1–4) at shorter delay times, while selective signals of C2nH2 

(n=2–5) and C10 at longer delay times.  The selective formation of the carbon cluster 

and hydrocarbon molecules at longer delay times is attributed to the relatively inert 

nature of polyynes H(−C≡C−)nH (n=2–5) and monocyclic C10.  The formation 

mechanism of these hydrocarbons and carbon clusters by laser ablation under hydrogen 

gas is discussed. 
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2.2  Introduction 

Carbon clusters and their hydrogenated derivatives have been studied in relation to 

interstellar chemistry, combustion chemistry, and material sciences.  Reactivity of 

linear carbon clusters has been studied employing the laser ablation of graphite under 

the presence of various gases such as H2 1–5, D2 4, H2O 1,2, D2O 1, N2 1,2, CH3CN 1,2, NH3 

1,2, NO 6, and SO2 6.  It was found that polyynes HC2nH were formed abundantly in H2 

gas 1–5, and also cyanopolyynes HC2n+1N were abundant in CH3CN and NH3 gases 1.  

These molecules were supposed to form as a result of the termination of reactive ends of 

linear clusters Cn by an H or N atom 1,2.  The stability of HC2n+1N accounts for the rich 

abundance of cyanopolyynes in interstellar space 7–11. 

Recently, longer polyynes HC2nH (n=8–13) in the gas phase have been identified 

by Maier's group using resonant two-color two-photon resonance ionization 

spectroscopy 12.  Tsuji et al. produced polyynes HC2nH (n=4–8) through the laser 

ablation of graphite particles in solution 13.  Hirsch produced dicyanopolyynes NC2nN 

(n=4–9) by the arc discharge of graphite rods in the presence of dicyan gas 14.  Cataldo 

produced the series of polyynes HC2nH (n=2–9) and their derivatives by a submerged 

electric arc in organic solvents 15,16. In the latter three experiments, the products were 

separated chromatographically and identified by electronic absorption spectra in 

solution 13,14,15,16. 

Mass spectroscopy is a powerful technique for the detection of large carbon 

clusters, Cn (n≥4), since most of the clusters are difficult to detect optically in the gas 

phase.  In most mass spectroscopic studies of carbon clusters so far reported, the 

ionization was done using photons emitted directly from commercially available lasers 
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such as ArF lasers (6.42 eV) 17.  Since the photon energy is lower than the ionization 

potential (IP) of most clusters Cn (n≤80), multi-photon ionization (MPI) is necessary to 

ionize the clusters 18–20.  However, the MPI may cause serious fragmentation of 

precursor clusters, so that the mass spectrum obtained by the MPI does not reflect the 

nascent mass distribution of the neutral clusters before the ionization.  

In order to obtain information on mass distribution of the neutral clusters, it is 

desirable to ionize by a single-photon rather than by multi-photons in order to avoid 

serious fragmentation.  Fullerenes such as C60 (Ei = 7.6 eV) have relatively small IP, 

and can be ionized by single-photon ionization using photons from F2 lasers at 7.89 eV 

3,5,6.  Recently, one-photon ionization of carbon clusters Cn down to n=6 was achieved 

by using 10.5 eV photons, which is the ninth harmonics of the fundamental radiation of 

Nd:YAG lasers 21–23.  We have studied carbon clusters produced by the laser ablation 

of graphite using one-photon ionization with the 10.5 eV photons, and found a condition 

for the preferential formation of neutral C10 clusters 23 and concluded that the 

preferential formation of C10 is a result of the formation of a dense boundary layer in the 

laser ablation process.  Very recently, a similar laser-induced dence layer was 

intentionally applied to a size control of silicon clusters 24. 

In this chapter, we have studied the mass spectra of carbon clusters and related 

hydrocarbon molecules produced by laser vaporization of graphite under the presence of  

H2 or D2 buffer gas using the 10.5 eV one-photon ionization in order to study the 

stability and formation mechanism of laser ablated carbon clusters.  By changing the 

delay times of the ionization laser pulse relative to the vaporization laser pulse, we 

found a condition in which the highly unsaturated dihydrides C4H2, C6H2, C8H2, and 
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C10H2 were preferentially formed together with the carbon cluster C10. 

 

2.3  Experiments 

2.3.1  Experimental setup 

Figure 2-1 shows a schematic view of the apparatus and the time sequence for the 

measurements.  The setup is essentially the same as that reported in Ref. 23 except for 

the use of H2 or D2 as a buffer gas.  A graphite rod (12C:13C = 98.9:1.1) of 1 cm in 

diameter was ablated by an intense laser beam obtained by focusing the fundamental 

radiation of a Q-switched Nd:YAG laser (Spectra Physics DCR-11, 1064 nm, 7 ns 

duration).  The diameter of the laser spot was ~1 mm on the target.  The ablation was 

done under the presence of H2 (99.99 %) or D2 (99.9 %).  The hydrogen gas was 

introduced by a pulsed valve (Parker-Hannifin General Valve 9–279–900).   The 

stagnation pressure behind the pulsed valve was set at 3–5 atm.  The vapor phase 

products were then carried by the hydrogen gas flow through a narrow channel of 2 mm 

in diameter and a length of 12 mm before expanding them into the vacuum.  At 48 mm 

downstream of the exit of the channel, the products were ionized by a 

vacuum-ultraviolet (VUV) photon at 10.5 eV.  

The VUV laser pulses were obtained by generating the third harmonics of 355 nm 

photons in Xe gas 22,23.  The third harmonics of an Nd:YAG laser (Continuum 

Powerlite 8010, 355 nm = 3.5 eV, 5 ns duration) was focused by a CaF2 lens (f = 10 cm) 

in the middle of a gas cell (20 cm long) filled with ~25 Torr of Xe to generate photons at 

118 nm (= 10.5 eV).  The 10.5 eV radiation thus generated was made parallel by a LiF 

lens (f = 10 cm), separated from the 355 nm radiation by a LiF prism, and introduced 
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into the ionization region through an aperture of 6 mm in diameter. 

The cations ionized by the VUV photons were accelerated by static electric fields 

(+5.00 kV and +4.09 kV) toward the detector (Galileo 6205 chevron-stacked multi 

channel plate) to obtain mass spectra.  A digitizing oscilloscope (Tektronix TDS544A) 

was used to record the mass spectra with an acquisition of 1000 pulses.  The system 

was synchronized by a delay generator (Stanford Research Systems DG535) at the 

repetition rate of 10 Hz.  The delay time of the ionization laser pulse relative to the 

vaporization pulse was changed between 20 and 1000 µs. 

 

2.3.2  IP of carbon clusters, hydrocarbons and radicals 

Under our experimental condition, neutral species having lower IP than the photon 

energy of 10.5 eV were ionized and therefore able to detect by the mass spectroscopy.  

Figure 2-2 depicts the IP of carbon clusters Cn as a function of their masses per charge 

number.  The horizontal dotted line corresponds to the energy of a 10.5 eV photon.  

The IP of bared carbon clusters Cn ranges from 6 to 13 eV, which were measured by the 

charge transfer reaction between Cn
+ and various molecules with a known IP 18–20.  The 

IP of C2 was refined recently using charge-inversion, energy-loss spectroscopy 25.  The 

IP of a carbon atom was determined by VUV spectroscopy 26.  From Fig. 2-2 it is seen 

that only the clusters larger than C5 can be ionized by one-photon at 10.5 eV. 

The IP of some unbranched hydrocarbon molecules CnHm are also shown in Fig. 

2-2 27.  In general, the IP of the hydrocarbon molecules tends to decrease as the 

number of carbon atom (n) increases.  Hydrocarbon molecules with an even number of 

electrons (the open triangles in Fig. 2-2) have a higher IP than radicals with an odd 
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number of electrons (symbolized by closed triangles).  Most of them can be ionized by 

a single-photon at 10.5 eV.  Polyynes HC2nH indicated by diamonds in Fig. 2-2 have a 

lower IP than 10.5 eV, except for that of C2H2 28,29.  Saturated n-alkanes CnH2n+2 

(n=1–5) (closed circles) 28,30,31, methylidine CH 32, ethynyl C2H 33, and ethylene C2H4 28 

cannot be ionized by a 10.5 eV photon as shown in Fig. 2-2. 

 

2.4  Results and discussion 

2.4.1  VUV photoionization mass spectra in H2 

Figure 2-3 shows the time-of-flight (TOF) mass spectra of the products obtained 

by laser vaporization of graphite under the presence of H2 gas subsequently ionized with 

10.5 eV photons.  The spectra taken at different delay times of the ionization laser 

pulse relative to the vaporization pulse are shown for comparison.  The numbers 

shown at the right of each spectrum represent the delay times in µs.   

In the bottom trace (delay time 36 µs), mass peaks corresponding to CnHm (n≥3, 

m=0–4) are clearly seen.  For odd n (n≥7), a smooth distribution of intensity of mass 

signals for m=0–4 was observed.  The peaks of C3 and C5 were missing because of 

their larger IP than 10.5 eV 18.  The intense peak of C3H indicates that the IP of C3H is 

lower than 10.5 eV.  For even n (n≥6), the signal of dihydrides CnH2 was the strongest 

among those of the same n, except for n=10 and 14, for which the signals of bared 

clusters C10 and C14 were the strongest.  For n=4, only a peak of C4H2 was observed.  

The C4 cluster may exist, but was not able to detect because of its larger IP than 10.5 eV 

18.   

The fact that the number of hydrogen atoms m in any detected hydrocarbon CnHm 
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is at most m=4 indicates that highly unsaturated carbon chain molecules were formed by 

the ablation.  As for dihydrides CnH2, the alterations in intensity with respect to the 

carbon number n being odd or even were observed more clearly in the present 

experiment than in previous works 1–5. 

Other traces in Fig. 2-3 show spectra at longer delay times up to 90 µs.  The 

intensity of mass peaks decreased gradually as the delay time increased up to 40 µs, but 

increased again at 42 and 58 µs delay times.  At 90 µs delay time, a distinctly different 

mass pattern compared with that at shorter delay times was observed.  The peaks 

observed at 90 µs delay time can be assigned to C4H2, C6H2, C8H2, and C10. 

It is noted that peaks in the spectrum at 42 µs delay time shifted slightly from 

those at 40 µs delay time as indicated by dotted lines between the spectra from 38 µs 

through 58 µs delay.  The shift of TOF peak of C10 (~33 ns for m/z=120) was larger 

than the shift of C4H2 (~15 ns for m/z=50).  The shift in TOF is associated with the 

difference in the initial velocity of neutral clusters in the ionization region.  In a 

previous chapter, we have discussed that the difference in the velocity is attributed to 

the separation of the expanding plasma plume by forming a dense boundary layer 23.  

The separated two bunches of clusters have different velocities.  Clusters traveling in 

front of the boundary have faster velocity, while those behind the boundary have slower 

velocity.  Therefore, the mass signals observed at shorter delay times are attributed to 

the clusters in front of the boundary, while those observed at longer delay times are 

attributed to the clusters behind the boundary.  The shift of mass peaks seen in Fig. 2-3 

is due to this separation.  Clusters behind the boundary are subjected to heavy 

collisions with other clusters, hydrocarbons, and radicals as well as with hydrogen 
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atoms and molecules.  As a result, the species detected at longer delay times must be 

molecules that are more stable against the collisions. 

 

2.4.2  Fast and slow components 

Figure 2-4 plots the intensity of the mass signal as a function of the delay time for 

(a) C6, (b) C6H2, and (c) C10.  A bimodal distribution is clearly seen for C6H2 in Panel 

(b).  The fast component detected at shorter delay times (closed circles) showed the 

maximum at ~36 µs, while the slow component at longer delay times (open circles) 

showed the maximum at ~90 µs.  The fast and slow components correspond, 

respectively, to clusters in front of the boundary and to those behind the boundary as 

discussed above.   

In Panel (c), a slight amount of the slow component of C10 was seen, but the 

amount was not as much as that observed in He buffer gas 23.  In hydrogen buffer gas, 

a part of C10 clusters may react with hydrogen and/or hydrocarbons and thereby reduce 

the abundance of clusters.  No trace of the slow component was observed for Cn and 

CnHm other than C10 (and a pretty little for C12) and C2nH2 (n=2-4) as shown for C6 in 

Panel (a), as an example of this. 

As shown in figure 2-5, these dihydrides C2nH2 had kept or slightly strengthened 

their signal intensity in the delay time longer than 200 µs (Fig. 2-5 (a) for C8H2), unlike 

the carbon clusters observed in delayed component (Fig. 2-5 (b) for C10).  This result 

suggests the different formation mechanism between C2nH2 and C10 in the delayed 

components, or there is another process to produce only the dihydrides.  Detailed 

consideration about the dissimilar between C2nH2 and C10 is performed in the next 
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chapter. 

 

2.4.3  Dependence of vaporization laser power in D2 buffer gas 

In order to obtain information on the formation mechanism of hydrocarbons 

observed in the mass signals, we have investigated the dependence of mass patterns on 

the power of the vaporization laser pulses.  In this experiment D2 was used as a buffer 

gas, because mass peaks of monodeuteride CnD can be clearly distinguished from the 

peak of the isotopomer 13C12Cn−1.  The experimental conditions were the same as those 

described in Sec. 2 except for the power of the vaporization pulse. 

Figure 2-6 shows mass spectra obtained with various powers of the vaporization 

laser pulses.  Panel (a) shows mass spectra of the fast component (46 µs delay time ), 

and Panel (b) shows those of the slow component (146 µs delay time).  From the 

bottom to the top of each panel, the laser power corresponds to 20, 26, and 32 mJ/pulse, 

respectively.   

With the lower intensity of the vaporization pulses (20 mJ/pulse), peaks of bared 

clusters such as C10, C12, and C14 were observed strongly in the fast component.  As 

the laser intensity increased (26 and 32 mJ/pulse), the intensity of peaks of 

hydrocarbons increased.  Under vaporization pulses of high intensity, it is expected 

that hydrogen molecules are decomposed thermally into hydrogen atoms 34, they will be 

indispensable to form the hydrocarbons. 

It should be noted that the intensity of peaks of bared carbon clusters Cn in the fast 

component kept roughly constant irrespective of the power of the vaporization laser 

pulses, while the intensity of peaks of hydrocarbons increased monotonically as the 
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power of the vaporization laser pulses increased.  The different behavior between the 

carbon clusters and hydrocarbon molecules with respect to the vaporization laser power 

suggests that the small carbon clusters observed in Fig. 2-6 might not be the precursors 

of hydrocarbon molecules.  It is assumable that the increase of ablation laser power 

results in the generation of more reactive isomers and/or excited states of Cn, and they 

are the precursors of the dihydrides but not the carriers of observed carbon cluster 

signals. 

The dominance of C2nD2s in proportion to other hydrocarbon species allows to 

conjecture the other process of their selective formation.  It is known that large carbon 

clusters or carbon grains are produced in abundance with intense vaporization laser 

pulses 35.  Devienne and Teisseire showed that graphite bombardment by high-energy 

neutrals can produce long carbon chain species 36.  Therefore, laser ablated large 

carbon clusters and/or carbon particles may be possible to produce observed dihydrides 

by the reaction with hydrogen atoms.  As Kroto et al. felt 1,2, the laser ablation 

experiments may demonstrate the simple way of long polyynes formation in the 

interstellar regions. 

As for the slow component, peaks of C2nD2 (n=2–5) were observed exclusively 

together with the peak of C10 with any vaporization power.  The intensity of peaks of 

C2nD2 (n=2–5) increased as the power increased, as in the case of the fast component.  

The mechanism of the exclusive existence of C10 and C2nD2 (n=2–5) is discussed below. 

 

2.4.4  Fragmentation and survival 

The selective signals of C10 and C2nD2 (n=2–5) in the slow component as shown in 
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Panel (b) of Fig. 2-6 are noteworthy.  Two origins are conceivable for the exclusive 

existence of these molecules in the slow component: one being selective formation and 

the other being survival.  

Clusters and hydrocarbons in the slow component are subjected to multiple 

collisions with other clusters, hydrocarbons, and radicals, as well as with hydrogen 

atoms and molecules.  During these collisions, carbon chain molecules may 

polymerize into larger clusters, which could not be observed under the present 

experimental conditions.  It has been discussed that stable neutral fragments, i.e. 

monocyclic C10 carbon clusters, may be ejected preferentially from the larger carbon 

clusters 37.  Part of the C10 detected in the slow component would originate in the 

fragmentation from the larger carbon clusters. 

Moreover, molecules observed behind the boundary would survive from heavy 

collisions, and thus chemically inert molecules could only survive there.  Polyynes are 

rather stable against the collisions, and thus they were observed selectively in the slow 

component.  The survival of the C10 implies that it has a monocyclic form, since the 

linear C10 may be not stable against collisions with H or H2.  In the slow component, 

the monocyclic C10 will fragment selectively and/or survive. 

 

2.5  Conclusion 

In this chapter, the origin of the carbon clusters and related hydrocarbon molecules 

produced by laser vaporization of graphite in a hydrogen (H2 or D2) ambient gas was 

discussed.  The comparatively larger increase of C2nD2 signal than other hydrocarbon 

species upon the vaporization laser intensification brings a supposition that their 
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selective formation process exists e.g. carbon species bombardment by hydrogen atoms.  

The selective formation of C10 observed behind the boundary is attributable to the 

fragmentation of larger carbon clusters and/or to survival from heavy collisions.   The 

survival of C2nH2 (n=2–5) is a result of the chemically inert nature of polyynes, and the 

survival of C10 indicates its monocyclicity.  Detailed discussion on the laser ablation 

process will be discussed in next chapter 38. 
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Fig. 2-1 A schematic view of the apparatus.   The time sequence of the 

measurement is shown in the inset at the bottom left. 
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Fig. 2-2 Plot of the ionization potential (Ei) of carbon clusters Cn (open circles) and 

unbranched hydrocarbon molecules CnH2m (open triangles), and radicals 

CnH2m+1 (closed triangles) as a function of their mass unit per charge 

number (m/z).  The Ei of polyynes (diamonds) and n-alkanes (closed 

circles) are also shown. The horizontal dotted line corresponds to the 

energy of a 10.5 eV photon. 



Chapter 2 

 48

 

 

Fig. 2-3 Mass spectra of laser vaporization of graphite in H2 gas ionized with a 

single-photon at 10.5 eV.  The numbers to the right of the spectra 

represent the delay times in µs of the ionization laser pulse relative to the 

vaporization pulse.  Vertical lines between the spectra from 38 µs 

through 58 µs delay indicate the shift of TOF peaks of the same molecule. 
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Fig. 2-4 Plot of the intensity of mass peaks of the fast (closed circles) and slow 

(open circles) components of (a) C6, (b) C6H2, and (c) C10 as a function of 

the delay time. 
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Fig. 2-5 The dissimilarity of time profiles between (a) carbon cluster (C10) and (b) 

dihydride (C8H2) signal intensity for prompt component (closed circle) 

and delayed component (open circle) .  
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Fig. 2-6 Power dependence of the vaporization laser pulses on mass spectra in D2 

gas; (a) the fast component (46 µs delay time) and (b) the slow component 

(146 µs delay time).  The intensity of the signals in Panel (b) is 

multiplied by a factor of four. 
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Chapter 3 

Time-of-flight mass spectroscopy of 

carbon clusters and hydrocarbons produced 

by laser ablation of graphite under H2 buffer 

gas: Formation and stability of C10 and 

C2nH2 (n=2-5) 
 

 

3.1  Abstract 

The products of laser ablation of graphite under the presence of H2 gas were 

analyzed by time-of-flight mass spectroscopy combined with the 10.5 eV single-photon 

ionization technique.  By changing the delay time of the pulse of an ionization laser 

relative to the pulse of a vaporization laser, three distinctly different velocity 

distributions of neutral species were identified as a result of the ablation process.  The 

first component that appeared earlier in the ionization region consisted of various 

carbon clusters, Cn, and hydrocarbons, CnHm (n=4–20, m=1–4), while the second and 

third components that arrived later consisted of C10 and C2nH2 (n=2–5) only.  The 

abundant existence of C10 and C2nH2 in the second and third components is attributable 
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to the stability of these molecules against collisions, which means that the detected C10 

must be a monocyclic carbon cluster while the C2nH2 (n=2–5) molecules must be 

polyynes.  Through heating the buffer gas to 600 K, the abundance of C10 in the third 

component drastically increased.  The efficient production of C10 in the third 

component at high temperatures indicates that collisions between carbon clusters 

enhance the production of monocyclic C10. 

 

3.2  Introduction 

Carbon clusters and their hydrogenated derivatives have received attention from 

many researchers in the fields of molecular spectroscopy, combustion chemistry, 

materials science, and interstellar chemistry for many years 1,2.  Among many 

experimental techniques, the laser ablation of graphite under the existence of various 

buffer gasses has been employed actively in order to investigate the structure and 

reactivity of carbon clusters and their derivatives 3–9.  It was found that polyynes, 

HC2nH, were produced abundantly under H2 buffer gas, while cyanopolyynes, HC2nCN, 

were produced under CH3CN and NH3 gases 4.  The production of polyynes and 

cyanopolyynes by the laser ablation of graphite under these buffer gases have received 

attention in connection with the rich abundance of these molecules in interstellar space 

10–14. 

The process of laser ablation itself has been a subject in the study of non-linear 

gas dynamics.  The dynamics of ablation products have been investigated through the 

use of emission spectroscopy 15,16 and fast ICCD photography 16.  The ions directly 

produced by the ablation process have also been studied using mass spectrometry 17–20.  
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These detection techniques, however, are insensitive to the ground state neutral species, 

which are supposed to be the most abundant products of ablation but do not emit any 

photon.  In order to investigate these non-emissive neutral species,  the 

photo-ionization of products followed by time-of-flight (TOF) mass spectroscopy have 

been employed 21. 

Neutral carbon clusters produced by the laser ablation of graphite has been 

extensively studied employing TOF mass spectroscopy since the early work by Rohlfing 

et al 3.  Most of these studies employed the technique of multi-photon ionization (MPI) 

to ionize carbon clusters 4–6,22.  The MPI technique is a powerful one, but its drawback 

is that it induces serious fragmentations upon ionization.  As a consequence of this 

fragmentation, the mass signals observed were often contaminated by the strong peaks 

of the fragments, so that the mass pattern observed with the MPI technique does not 

correspond directly to the abundance of neutral species before the ionization.  In order 

to avoid such fragmentation, single-photon ionization via moderately weak vacuum 

ultraviolet (VUV) light was employed by several groups 7–9,23–26.  Single-photon 

ionization at 157 nm (= 7.89 eV) radiation of an F2 laser was used for the study of 

fullerenes produced by laser ablation 7–9,23.  Since the radiation at 157 nm is enough to 

ionize fullerenes but not enough to ionize small carbon clusters, fullerenes can be 

selectively detected in mass spectra by ionizing with the radiation at 157 nm.  In order 

to ionize small carbon clusters whose ionization potential is larger than 8 eV, 

single-photon ionization at 118 nm (= 10.5 eV), at the ninth harmonics of fundamental 

radiation of a Nd:YAG laser, was employed 24–27. It was reported that mass patterns 

obtained by the single-photon ionization were sometimes drastically different from 
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those obtained by MPI in some cases 24–27. The varying mass patterns could be 

attributed to the serious fragmentation by strong MPI pulses and/or the accidental 

resonance enhancement of the MPI process.  In either event, we must be careful that 

the intensity of the TOF mass signal obtained by MPI may not contain information on 

the abundance of neutral species before ionization.  Single-photon ionization should be 

employed for the discussion of the abundance of neutral species before ionization. 

In a previous chapter 27, we reported on the study of carbon clusters, hydrocarbon 

molecules, and radicals produced by the laser ablation of graphite in a hydrogen (H2 or 

D2) gas expansion source studied using 10.5 eV one-photon ionization followed by 

time-of-flight mass spectroscopy.  We observed a significant shift of TOF peaks by 

changing the delay time of the pulse of an ionization laser relative to the pulse of a 

vaporization laser.  The shift of TOF peaks was interpreted as a result of the formation 

of two separate groups of ablation products having different initial velocities during the 

course of the ablation and the succeeding expansion processes.  In the faster 

component, Cn (n=6–20) and CnHm (n=3–20 and m=1–4) were abundantly observed, 

while C2nH2 (n=2–5) and C10 existed selectively in the slower component.  The 

separation of the ablation products was explained by the formation of a dense layer of 

clusters produced by laser ablation.  In the present study, the TOF signal of carbon 

clusters and hydrocarbon molecules produced by laser ablation of graphite under the 

existence of H2 buffer gas was studied more carefully in order to analyze the velocity 

distribution of ablation products as well as to understand the chemistry under laser 

ablation. 
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3.3  Experiments 

The upper part of Figure 3-1 depicts the experimental setup of the present 

experiment.  A graphite rod (1 cm in diameter, 12C : 13C = 98.9% : 1.1%) was 

vaporized using the second harmonics of a Q-switched Nd:YAG laser (Spectra-Physics 

DCR-11, 1064 nm, 7 ns duration, 7.1 mJ/pulse) in a vacuum chamber.  The graphite 

rod was rotated slowly by a motor so that the laser ablation always occurred on a fresh 

surface of the rod.  The pulses of the vaporization laser was loosely focused onto the 

graphite rod with a quartz lens whose focal length was 25 cm.  The size of the spot of 

the vaporization laser was about 1 mm in diameter on the target surface.  Products of 

the laser ablation were introduced into the ionization region through a short channel 

employing a pulsed buffer gas flow of H2 generated by a solenoid valve 

(Parker-Hannifin General Valve 9-279-900).  The size of the channel was 2 mm in 

diameter and 12 mm in length.  The pressure of the H2 gas before the valve was set at 

15 atm, where the intensity of the mass signal became its maximum.  The pressure of 

the vacuum chamber was about 1x10−7 torr without the buffer gas flow, while the 

pressure increased up to 1x10−6 torr with the buffer gas flow. 

Products of the laser ablation were ionized by 10.5 eV (= 118 nm) pulsed radiation 

at 60 mm downstream of the ablation point.  The 10.5 eV radiation was generated as 

the third harmonics of 355 nm radiation in a Xe gas cell 28,29.  The cell was made of 

stainless-steel whose diameter and length were 2 cm and 20 cm, respectively.  The 

third harmonics of a Q-switched Nd:YAG laser (Continuum Powerlite 8010, 5 ns pulse 

width, 150 mJ/pulse) was tightly focused in the cell filled with 16 Torr of Xe gas by a 

CaF2 lens (f = 10 cm at 355 nm) to generate 10.5 eV photons.  The VUV radiation at 
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10.5 eV thus generated was paralleled by a LiF2 lens (f = 10 cm at 118 nm), and then 

separated from the 355 nm radiation by an LiF prism before leading into the ionization 

region through an 8 mm-diameter aperture.  The power of the VUV radiation was 

weak enough so that only single-photon ionization could occur at the ionization region. 

Positive ions produced by the VUV radiation at 10.5 eV were accelerated with 

static electric fields created by three plates whose voltage were kept at +4.80 kV, +3.98 

kV, and 0 V, respectively, as shown in Figure 3-1.  The distances between the first and 

second electrodes, and the second and third electrodes were 2 cm and 1.5 cm, 

respectively.  The accelerated ions were detected by multi-channel plates (Galileo 

6205) placed at 75.3 cm downstream of the ionization region.  The signals detected at 

the multi-channel plates were recorded with a digitizing oscilloscope (Tektronix 

TDS544A) and plotted as a function of time to obtain TOF mass spectra.  All the 

measurements were done at the repetition rate of 10 Hz. 

The time sequence of the vaporization pulse, the ionization pulse, and the 

recording of TOF signal by the detector is shown in the lower part of Figure 3-1.  

Spectra were recorded at many different time intervals between the vaporization and 

ionization pulses.  Since ablated molecules with different initial velocities enter the 

ionization region at different times, the spatial distribution of molecules generated by 

the ablation can be obtained by changing the delay time of the ionization pulse relative 

to the vaporization pulse.  The timings of all the instruments were controlled by delay 

generators (Stanford Research Systems DG535). 

 

3.4  Results 
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3.4.1  Molecules detected by TOF spectroscopy 

Figure 3-2 compares the TOF mass spectra of the products produced by the laser 

ablation of graphite under the existence of H2 buffer gas observed at different delay 

times of the ionization pulse relative to the vaporization pulse.  The numbers shown at 

the right side of each spectrum represent the delay times in units of µs.  The 

assignment of each mass peak is given in the spectrum at the delay time of 35 µs. 

Mass peaks corresponding to CnHm (n≥4, m=0–4) are clearly seen in the spectrum 

taken at the delay time of 35 µs except for those corresponding to the pure carbon 

clusters of C4, C5, and a hydrocarbon of C4H.  Since the ionization potentials of C4 and 

C5 are larger than 10.5 eV, these molecules are not able to be ionized by the 

single-photon at 10.5 eV 30.  In other words, the absence of the mass peaks 

corresponding to C4 and C5 clearly indicates that only single-photon ionization took 

place, but MPI did not take place under our experimental conditions.  Therefore, the 

relative intensities of the TOF mass signal shown in Figure 3-2 carries information on 

the abundance of each neutral molecule produced by the laser ablation. 

A smooth distribution of intensities of mass signals was observed for C2n+1, C2n+1H, 

C2n+1H2, C2n+1H3, and C2n+1H4 with n= 2–7.  On the other hand, the intensities of C2n 

and C2nH2 were observed stronger than those of C2nH, C2nH3, and C2nH4 for n=2–6.  

The fact that the maximum number of hydrogen atoms m in any detected hydrocarbons 

of both C2nHm and C2n+1Hm was m=4 indicates that highly unsaturated hydrocarbon 

molecules were formed by the ablation.  The clear alternation in the intensities for 

even numbered clusters, C2nHm, indicates that dihiydrides C2nH2 and bared carbon 

clusters C2n are chemically more stable than others. 
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At delay times longer than 65 µs, all peaks disappeared except for C4H2, C6H2, 

C8H2, C10H2, and C10.  At the delay time of 200 µs, the mass peak of C10 disappeared 

but other peaks corresponding to C2nH2 with n=2–5 were still able to be detected.  It 

should be noted that the peaks of C4H2 and C6H2 still remained clearly even at the delay 

time of 8 ms. 

 

3.4.2  Shift of TOF peaks 

In a previous chapter, we reported on the sudden change of TOF signals of the 

same species by changing the delay time of the ionization pulse relative to the 

vaporization pulse 27.  The shift was interpreted as a result of the formation of two 

separate groups of ablation products having different initial velocities caused by the 

ablation process.  In the present chapter, the shift of TOF signals was more carefully 

examined than the previous one.  It turned out that there were actually three different 

velocity components, and the velocity in each component changed slightly as a function 

of the delay time of the ionization pulse relative to the vaporization pulse.  The details 

are described below. 

Figure 3-3 shows the expansion of the TOF mass spectra of C4H2, C6H2, and C8H2 

at the delay times between 35 and 200 µs.  The numbers shown on the right side of the 

spectra represent the delay time in µs.  The spectral intensities were plotted with the 

same scale except for the spectrum observed at the delay time of 35 µs, which is 

multiplied by a factor of 0.025.  In the spectra of C4H2 shown in the left panel of 

Figure 3-3, an intense TOF peak designated as C4H2 (I) was observed at the delay time 

of 35 µs, but its intensity decreased at 55 µs and almost disappeared at 65 µs.  On the 
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other hand, a new peak designated as C4H2 (II) appeared at about 0.05 µs later TOF at 

the delay time of 55 µs and this remained until 100 µs.  Another peak designated as 

C4H2 (III) started to appear at 70 µs and remained even at the delay time of 200 µs.  

All of these three peaks can be assigned to the signal of C4H2.  The same behavior of 

TOF signals was also observed for both C6H2 and C8H2 as shown in the center and right 

panels of Figure 3-3.  The shift of TOF is attributable to the difference in the initial 

velocity of these molecules caused by the ablation process as discussed in Sec. 5. 

The upper panel of Figure 3-4 shows the change of peak intensity of C4H2 as a 

function of the delay time of the ionization pulse relative to the vaporization pulse.  

The closed circles (●), open circles (○), and asterisks (*) show, respectively, the 

intensities of the peak of C4H2 (I), C4H2 (II), and C4H2 (III).  The intensities of C4H2 

(II) and C4H2 (III) are multiplied by a factor of 20.  The component C4H2 (I) reaches a 

maximum at the delay time of about 30 µs, while the components C4H2 (II) and C4H2 

(III) find their maximum at about 60 µs and 90 µs, respectively. 

More detailed analysis revealed that the TOF of each component changed slightly 

by altering the delay time as shown in the lower panel of Figure 3-4.  The component 

C4H2 (I) designated as closed circles showed the change of the TOF from 6.305 µs to 

6.315 µs as the delay time increased.  On the other hand, the TOF of the component 

C4H2 (II) designated as open circles decreased from 6.355 µs to 6.340 µs as the delay 

time increased.  The TOF of the component C4H2 (III) designated as asterisks started at 

6.335 µs and approached to 6.340 µs as the delay time increased.  Essentially the same 

shift of TOF was observed for both C6H2 and C8H2. 

Panel (a) of Figure 3-5 shows the expansion of the TOF mass spectra of C10 and 
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C10H2 in H2 buffer gas at various delay times.  The intensity of the TOF peak of C10 

and the shift of TOF are shown in Figure 3-6.  The three components C10(I), C10(II), 

and C10(III) showed the same behavior as C4H2; each component has one maximum in 

intensity, and the TOF of the first component (C10(I)) increased, the TOF of the second 

component (C10(II)) decreased, and the TOF of the third component (C10(III)) 

approached a constant value.  Panel (b) of Figure 3-5 shows the expansion of the TOF 

mass spectra of C10 in He buffer gas at various delay times for the sake of comparison.  

The same shift and change of TOF was observed in both H2 and He buffer gasses.  The 

same TOF behaviors observed for different buffer gas indicate that the shift and change 

of TOF shown in Figures 5 and 6 originate in the process of laser ablation itself.  The 

origin of the shift of TOF is discussed in Sec. 5. 

 

3.4.3  Dependence on ablation intensity 

Figure 3-7 compares the mass spectra obtained with different powers of the 

vaporization laser.  The upper three traces are the TOF mass spectra obtained with 

relatively weak pulses of the vaporization laser (4.0 mJ/pulse), while the lower traces 

are those with relatively intense pulses (7.1 mJ/pulse).  Traces (a) are the spectra taken 

at 35 µs delay time of the ionization pulse relative to the vaporization pulse, while 

traces (b) and (c) are those at 65 µs and 200 µs delay times, respectively.  As was 

previously reported 27,  the intensity of C10 kept roughly constant irrespective of the 

power of the vaporization laser as seen in trace (b), for example, while the intensities of 

other hydrocarbons increased drastically as the powers of the vaporization laser 

increased.  At vaporization pulses of 7.1 mJ, smaller hydrocarbons such as C4H2 or 
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C6H2 intensified compared with weaker vaporization pulses at 4.0 mJ.  The 

pronounced signal of C4H2 and C6H2 indicates that these small hydrocarbons were 

fragmented from larger clusters. 

 

3.4.4  Dependence on the temperature of buffer gas 

The dependence of TOF signals on the temperature of buffer gas was examined 

using He gas.  For this experiment, the cluster source made of stainless steel block was 

replaced with a copper tube.  Details of the modified cluster source are shown in 

Figure 3-8.  In order to change the temperature of the buffer gas, the copper tube was 

heated to about 1100 K with an iron-chrome wire heater.  At this temperature, the 

actual gas temperature was about 600 K, which was measured by a thermocouple placed 

at the end of the copper tube.  All conditions except for the modified cluster source 

were the same as those described in Sec. 3.   

The TOF spectra observed through the heating of the buffer gas to 550 K were 

essentially the same as those observed at the room temperatures.  On the other hand, 

the clear enhancement of the third component of C10 and C12 was recognized with the 

temperature of the buffer gas at about 600 K, as shown in Figure 3-9 (compare this with 

Figure 3-5 (b)).  The intensity of the TOF of C10 observed at the temperature of 600 K 

is plotted in Figure 3-10 as a function of the delay time.  By comparing these with the 

upper panel of Figure 3-6, it is clearly seen that the third component of C10 was 

drastically enhanced by heating up the buffer gas.  On the other hand, only a slight 

enhancement of the second component relative to the first component was observed 

even at the temperature of 600 K. 
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3.4.5  Comparison between one-photon and multi-photon ionization 

Figure 3-11 compares the TOF mass spectra of laser ablation products observed by 

one-photon ionization and those by multi-photon ionization (MPI).  These experiments 

were conducted in He buffer gas in order to simplify the spectra.  For MPI experiments, 

we used the third harmonics of a Nd:YAG laser (3.5eV) for ionization.  The third 

harmonics of an unfocused pulse of 150 mJ/pulse was used to ionize the ablation 

products.  The diameter of the ionization pulse was about 10 mm. 

Trace (a) in Figure 3-11 shows the TOF spectrum obtained by 10.5 eV one-photon 

ionization at the delay time of 45 µs.  The TOF spectrum obtained by MPI at the same 

delay time is shown in trace (b).  Small carbon clusters such as C2, C3, C4 and C5 were 

clearly observed by MPI.  In addition, carbon clusters larger than C40 were also 

observed.  The bimodal distribution of the TOF spectrum obtained by MPI has been 

reported previously 3.  The most intense peak in the larger carbon clusters is C60 3,9,23.   

On the other hand, the bimodal distribution was not observed using 10.5 eV one-photon 

ionization as seen in Trace (a).  Figure 3-12 shows the expansion of the TOF signal in 

the mass region up to C100 obtained through 10.5 eV one-photon ionization.  Carbon 

clusters up to C80 were detected, but the signal intensities of larger carbon clusters were 

100 times smaller than the signal of C10.  The bimodal distribution of ion signals in the 

TOF spectrum by MPI shown in trace (b) of Figure 3-11 may be attributed to the 

fragmentation of C40–C120 from much larger clusters caused by intense MPI pulses.  In 

any case, clusters larger than C40 did not exist abundantly in our cluster source as the 

neutral species produced by the laser ablation before the ionization. 
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Traces (c) and (d) of Figure 3-11 show the TOF produced by MPI at the delay 

times of 100 µs and 160 µs, respectively.  Carbon clusters larger than C40 disappeared 

at the delay time of 100 µs, but appeared again at the delay time of 160 µs.  The TOF 

signals of carbon clusters larger than C40 remained until 250 µs of the delay time, but 

disappeared again after 250 µs.  On the other hand, carbon clusters smaller than C30 

were always observed until the delay time of 4 ms. 

Figure 3-13 shows the peak intensities and the shift of the TOF of C60 observed by 

MPI.  The fullerene C60 observed after 160 µs of the delay time seen in Figure 3-11 

can be attributed to the third component (III) but not to the second component (II), as 

the shift of TOF in this component increased as a function of the increase in the delay 

time (see Figures 3-4 and 3-6).  Both of the components (I) and (III) had a single 

maximum in intensity.  The maximum intensity of C60 in the component (III) was 

observed at the delay time of 160 µs. 

 

3.5  Analysis and Discussion 

3.5.1  Shift of TOF 

One of the important findings of the present research was the shift in TOF by 

changing the delay time of the ionization pulse relative to the vaporization pulse as 

shown in Figures 3-4, 3-6, and 3-13.  The shift of TOF should be attributed to the 

difference in initial velocities of ablated species.  As shown in Figure 3-1, the direction 

of the beam of buffer gas through the cluster source was collinear with the axis of ion 

acceleration in the present experiment.  Therefore, products of ablation could possess 

certain velocity distributions towards the axis of the acceleration.  The distribution of 
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initial translational velocities along the axis before the acceleration must be the origin of 

the peak shift of TOF mass spectra. 

For the Wiley-McLaren type of time-of-flight mass spectrometer 31 employed in 

the present work, the flight time t of a molecule with mass m and charge q can be 

expressed analytically as follows 31. 
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In Eq. (1), U0 is the initial translational energy of a molecule defined as 

2
00 2

1 mvU = , where v0 is the initial velocity of the molecule.  The symbols x1, x2 and x3 

represent the distances, and E1 and E2 are the electric fields as shown in Figure 3-1.  

The last term t0 in Eq. (1) is the offset of time, which is mainly caused by the delay of 

electrical circuits.  The plus sign in the first term of the right-hand-side of Eq. (1) is for 

the case when the initial velocity v0 is negative, while the minus sign is for positive. 

When m and v0 are small enough so that U0 is smaller than qx1E1, the following 

approximation can be applied.  
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These assumptions are valid for our experimental setup, since qx1E1= 8.5×10−17 

kgm2s−2 (x1= 13 mm, and E1= 4.1×104 Vm−1) while, for example, U0= 4.0×10−19 

kgm2s−2 for v0= 2000 ms−1 of C10.  With these approximations, the flight time t can be 

simplified as follows. 
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In the second line of Eq. (4), the symbols α and β  are the coefficients of the first 

and second term of the right-hand side of the first line of Eq. (4).  The values α and β 

and the offset t0 are determined only by the instrumental settings, but do not depend on 

molecules.  Consequently, the flight time can be described by the sum of two terms, 

one is proportional to m1/2 and the other is proportional to mv0. 

The coefficients in Eq. (4) calculated from the values of the present instrumental 

setup were α = 2.1×107 kg−1/2s and β = 1.5×1014 kg−1m−1s2, and t0 = 2.5×10−8 s.  It was 

confirmed that our observed TOF spectra can be analyzed completely within 

experimental errors for molecules with any mass by Eq. (4) adopting the values of the 

coefficients given in the above.  From the analysis of the observed TOF by the use of 

Eq. (4), the initial velocities of molecules at any delay time were calculated.  The 

initial velocities thus determined are also given on the right side of the lower panels of 

Figures 3-4, 3-6 and 3-13. 
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3.5.2  Split of ablated plumes 

As described in Sec 4, three bunches of ablated species were observed.  The 

motion of each bunch can be surmised by the initial velocities obtained by the use of Eq. 

(4).  As seen in Figures 3-4, 3-6 and 3-13, the first bunch (component (I)) had initial 

velocities of 3000 – 500 ms−1 towards the detector.  The third bunch (component (III)) 

had initial velocities of 500 – 0 ms−1 towards the detector.  On the other hand, the 

second bunch (component (II)) had initial velocities of 1000 – 0 ms−1.  The negative 

velocity means that the second bunch was moving backwards. 

The splitting of plumes produced by laser ablation has been studied for various 

conditions both experimentally and theoretically 16,32–36.  It has been demonstrated that 

there are two types of bunch-separation in the propagation of ablated plumes.  One is 

the separation due to the formation of a Knudsen layer 32–36,  and the other is the 

separation due to the generation of a shockwave 16,32,33. 

The formation of a Knudsen layer is induced by collisions among the ablated 

species at the initial stage of gas expansion 34,35.  In front of the Knudsen layer, ablation 

products expand adiabatically, so that the ablation products moves rapidly from the 

ablation surface to the vacuum.  On the other hand, it is known that there exists 

another component near the target surface that does not escape from the ablation surface 

quickly.  This component is often referred to as a Knudsen layer.  The formation of 

the Knudsen layer is characteristic of the laser ablation process, which forms even under 

the vacuum without the buffer gas 32,33,37.  Ablation products in the Knudsen layer are 

compressed by the flow of the buffer gas.  Thus we conjecture that the compression of 

the Knudsen layer by buffer gas results in the formation of a dense layer of carbon 
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clusters, which moves rather slowly.  As a result, the formation of the dense layer of 

carbon separates the ablation plume in two; one is the component in front of the layer 

which expands adiabatically, and the other is the component behind the layer which 

moves slowly due to the existence of the layer. 

The second type of separation is due to the generation of a shockwave in the 

adiabatically expanding region 33.  It occurs only under the existence of the buffer gas. 

Collisions between rapidly propagating species and buffer gas cause the turbulence 

resulting in the formation of the shockwave.  Once the shockwave is generated, it is 

known that the adiabatically expanding region is separated into two components, one is 

the forward-moving component and the other is the stopped/backward-moving 

component 16,32,33. 

The bunch-separations observed in our study must result from the same 

phenomena as those observed in the general ablation process described above.  Thus, 

we conjecture that the first and second components ((I) and (II)) were in front of the 

dense layer of carbon, while the third component (III) was behind the layer.  In front of 

the dense layer, the generation of the shockwave further separated the components into 

two, one is the forward-moving component (component (I)) and the other is the 

stopped/backward-moving component (component (II)).  This diagram explains the 

observed shift and change of TOF shown in Figures 3-4, 3-6, and 3-13. 

The first component (I) expanded almost freely without heavy collisions.  Thus, 

the TOF mass spectra of the component (I) must carry the information on the chemical 

species produced by the initial ablation process.  On the other hand, molecules in the 

second component (II) are subjected to heavy collisions with other molecules and buffer 
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gas due to the resulting turbulence.  Also, there must be many collisions in the third 

component (III) due to the existence of the dense layer in front of the component.   

Thus, molecules observed in the second and third components were produced as a result 

of fragmentation, clustering and chemical reactions which were induced by collisions 

during the expansion.  Molecules detected in the second and third components, then, 

must be stable against collisions. 

 

3.5.3  Molecules in component (I)  

Molecules in the first component (I) were almost free from collisions.  Thus the 

TOF mass spectra obtained through one-photon ionization must carry the information 

on the abundance of molecules produced by the vaporization pulses. 

Bared carbon clusters Cn for n=6–15 were clearly observed at the delay time of 35 

µs as shown in Figure 3-2.  In addition, larger clusters up to C100 were continuously 

observed in the first component (I), as shown in Figure 3-12.  These carbon clusters 

were produced at a very early stage of the ablation and the succeeding expansion 

processes.  Therefore, most of these molecules must be ejected directly from the 

graphite surface as a result of an vaporization pulse. 

Under H2 buffer gas, hydrocarbons of CnHm for m=1–4 were also observed.  The 

abundance of these hydrocarbons in the first component (I) increased by increasing the 

power of vaporization pulses as shown in Figure 3-7.  The temperature of ablation 

plumes of graphite is known to be 2500 – 4000 K 15.  At such high temperatures, 

hydrogen molecules would thermally decompose into hydrogen atoms 38.  An increase 

in the abundance of hydrocarbons at higher power of vaporization pulses clearly 
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indicates that the thermally decomposed hydrogen atoms, but not hydrogen molecules, 

mainly reacted with carbon clusters to form these hydrocarbons.  The formation of 

hydrocarbons CnHm for m=1–4 by laser ablation of graphite under hydrogen gases (H2 

and D2) were discussed in the previous chapter 27. 

It is natural to consider that hydrogenated derivatives observed in the first 

component (I) must have similar structures with their parent carbon clusters.  An 

unbranched linear chain or monocyclic ring would be predictable as stable structures for 

carbon clusters Cn of n≤30 39–42.  Carbon clusters with monocyclic ring structures are 

chemically stable, and they do not react with hydrogen atoms easily.  Thus, the 

hydrocarbons observed in the first component (I) must have a structure of unbranched 

linear chain.   Thermally decomposed hydrogen atoms may attack each end of linear 

Cn molecules to form C−H chemical bonds.  The fact that dihydrides C2nH2 were 

abundantly observed for clusters with even numbers of carbon atoms indicates that 

these dihydrides were polyacetylene (H−(C=C)n−H), which is chemically stable.  On 

the contrary, linear carbon clusters with odd numbers of carbon atoms, C2n+1, have a 

cumulenic form (:C(=C=)2n−2C:), and thus any hydrocarbons C2n+1Hm up to m=4 were 

produced by the reaction with hydrogen atoms. 

 

3.5.4  Molecules in components (II) and (III)  

Molecules in the second (II) and third (III) components were subjected to heavy 

collisions with other molecules and the buffer gas.  Thus molecules observed in these 

components must be stable against collisions. 

As shown in Figure 3-2, dihydrides C2nH2 for n=2–5 were observed even at the 
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delay time of 8 ms.  It is reasonable because of the inert property of polyacetylene 

(H−(C=C)n−H).  Collisions with carbon clusters do not destroy these polyacetylene 

molecules easily. 

In addition to the polyacetylene molecules, carbon clusters of C10 were selectively 

observed in the components (II) and (III).  If these were linear in structure, it would not 

survive against collisions with hydrogen atoms and other carbon clusters.  Thus, the 

carbon cluster C10 observed in the components (II) and (III) must be monocyclic C10.  

It is predicted that the monocyclic form is more stable than the linear chain for C10 40–44.   

The signal of C10 faded away faster than the signals of the polyacetylene molecules as 

shown in Figure 3-2.  Thus, monocylclic C10 must be fairly stable against collisions, 

but not as stable as the polyacetylene molecules. 

The existence of C10 in the components (II) and (III) may also be accounted for by 

the selective fragmentation of monocyclic C10 from larger carbon clusters or the dense 

layer of carbon.  Several studies suggest that large carbon clusters at high temperature 

produce C10 preferentially as fragments during their cooling processes 45–47.  Such 

selective fragmentation may also explain the selective signal of C10 at longer delay 

times 27. 

 

3.5.5  Enhancement of C10 at high temperatures 

As shown in Figures 3-9 and 3-10, the abundance of C10 in the component (III) 

increased drastically by heating the buffer gas up to 600 K.  On the contrary, no 

enhancement of C10 was observed in the components (I) and (II).  Thus, warm buffer 

gas accelerates the formation of carbon cluster C10 only behind the dense layer of 
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carbon.  More collisions between the buffer gas and ablated species are expected at 

higher temperatures.  These collisions may induce selective fragmentation of 

monocyclic C10 from larger carbon clusters or the dense layer of carbon more efficiently.  

Also, the dense layer of carbon itself must be heated due to the compression by the 

heated buffer gas.  As a result, the warm dense layer of carbon may fragment 

monocyclic C10 more efficiently, which resulted in the increase of the signal of C10 in 

the third component. 

It has been reported that the high temperature (about 1300 K) of the reaction 

region is indispensable for the efficient production of fullerenes, in general 48–50.  As 

shown in Figure 3-13, C60 was also observed in the third component.  Since Figure 

3-13 displays the results of MPI, the existence of signal of C60 in the third component 

does not mean that C60 existed as the neutral products before the ionization.  However, 

it must be true that precursor molecules of C60 existed abundantly in the third 

component.  Although we do not observe a clear enhancement of the signal of C60 or 

other fullerenes at the temperature of 600 K with one-photon ionization, the 

enhancement of C10 behind the dense layer of carbon at higher temperatures may have a 

connection with fullerene formation.  More experiments are needed for further 

discussion. 

 

3.5.6  Signals of C60 observed by MPI 

Using the MPI technique, TOF signals of larger carbon clusters Cn with n>40 were 

clearly observed in addition to the smaller carbon clusters shown in Figure 3-11.  On 

the other hand, such larger carbon clusters were not observed clearly in the 10.5 eV 
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one-photon ionization.  It is well-known that the intense TOF signal of C60 with MPI 

has led to the discovery of fullerenes 3,22.  However, the fact that the intensities of the 

TOF signal of larger carbon clusters obtained by one-photon ionization indicates that 

these larger clusters and fullerenes do not exist abundantly as the initial neutral species 

of the ablation products.  Stronger signals of fullerenes using MPI may be a result of 

the fragmentation of fullerenes from much larger clusters or the dense layer of carbon 

with intense MPI pulses. 

 

3.6  Conclusions 

Neutral species produced by the laser ablation of graphite under H2 buffer gas 

were characterized by time-of-flight mass spectroscopy combined using the 10.5 eV 

one-photon ionization technique.  The observed TOF spectra clearly indicated that the 

ablated plumes split into three bunches, the first component expanded adiabatically 

having a large forward velocity, the second component flew backwards due to the 

turbulence caused by the collision with the buffer gas, and the third component moved 

slowly behind the dense layer of carbon.  In the second and third components, ablated 

species were subjected to heavy collisions with other molecules as well as with the 

buffer gas, so that only the chemically inert molecule survived.  As a result, 

polyacetylene (H−(C=C)n−H) with n=2–5 and a bared carbon cluster C10 were 

selectively observed in the second and third components.  The stability of C10 implies 

that it must be monocylcic C10.  By heating the buffer gas, the abundance of C10 in the 

third component increased, which suggest that the monocyclic C10 were also produced 

selectively by the fragmentation of larger carbon clusters or the dense layer of carbon. 
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The existence of C60 in the third component may indicate the relation between the 

monocyclic C10 and the formation of fullerene.  The present research is the first 

identification of the dynamics of neutral species produced by the laser ablation of 

graphite. 
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Fig. 3-1 A schematic view of the TOF apparatus.  The time sequence of the 

measurement is shown in lower part. 
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Fig. 3-2 TOF mass spectra of laser ablation of graphite in H2 gas ionized with a 

single-photon at 10.5 eV.  The numbers to the right of the spectra 

represent the delay times in µs of the ionization laser pulse relative to the 

ablation pulse.  Spectra observed at the delay times of 55 µs and 65 µs 

are expanded by a factor of 20, and those at 200 µs and 8000 µs are 

expanded by 40.  Assignments of each TOF peaks are given in the 

spectra observed at 35 µs.  Vertical lines between the spectra indicate the 

shift of TOF peaks of the same molecules. 
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Fig. 3-3 Expansion of the TOF mass spectra shown in Figure 3-1 in the spectral 

regions of C4H2 (left), C6 and C6H2 (center), and C8 and C8H2 (right).  

The numbers to the right of the spectra represent the delay times in µs of 

the ionization laser pulse relative to the ablation pulse.  Spectra observed 

at the delay time of 35 µs are multiplied by a factor of 0.025.  The 

symbols (I), (II), and (III) after the assignments of molecules represent the 

first, second, and third components, respectively, of ablation plumes (see 

text). 
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Fig. 3-4 Change of peak intensity (top) and shift of TOF (bottom) of C4H2 as a 

function of the delay time of ionization pulse relative to the ablation pulse.  

Signals corresponding to the first (I), second (II), and third (III) 

components are displayed as closed circles (●), open circles (○) and 

asterisks (*), respectively.  The peak intensities of the second and third 

components are multiplied by a factor of 20. 
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Fig. 3-5 Comparison of TOF spectra in the region of C10 observed in H2 buffer gas 

(left) with those in He buffer gas (right).  The numbers to the right of the 

spectra represents the delay times in µs of the ionization laser pulse 

relative to the ablation pulse.  Spectra observed at the delay time of 35 µs 

are multiplied by a factor of 0.025. 
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Fig. 3-6 Change of peak intensity (top) and shift of TOF (bottom) of C10 as a 

function of the delay time of ionization pulse relative to the ablation pulse 

observed in He buffer gas with one-photon ionization.  Signals 

corresponding to the first (I), second (II), and third (III) components are 

displayed as closed circles (●), open circles (○) and asterisks (*), 

respectively.  The peak intensities of the second and third components are 

multiplied by a factor of 20. 
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Fig. 3-7 Power dependence of the ablation laser pulses on mass spectra in H2 

buffer gas; (a) the delay time of 35 µs, (b) the delay time of 65 µs, and (c) 

the delay time of 200 µs.  Top spectra were obtained with the ablation 

power of 4.0 mJ/pulse, and bottom spectra were obtained with the ablation 

power of 7.1 mJ/pulse. 
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Fig. 3-8 A schematic view around the modified cluster source for the experiments 

of heated buffer gas.  The copper tube placed after the pulsed valve was 

heated by a wire heater up to 1100 K.  When the copper tube was heated 

up to 1100 K, the temperature of the buffer gas was about 600 K, which 

was measured by a thermocouple placed just after the exit of the gas 

through the cupper tube. 
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Fig. 3-9 TOF mass spectra of laser ablation of graphite in heated He gas observed 

by one-photon ionization.  The temperature of the buffer gas at the exit 

was about 600 K.  Only the spectral region of C10, C11 and C12 is shown.  

The numbers to the right of the spectra represent the delay times in µs of 

the ionization laser pulse relative to the ablation pulse.  The spectrum 

observed at the delay time of 35 µs is multiplied by a factor of 0.025. 
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Fig. 3-10 Change of peak intensity of C10 observed in heated He buffer gas with 

one-photon ionization.  The temperature of the buffer gas at the exit was 

about 600 K.  Signals corresponding to the first (I), second (II), and third 

(III) components are displayed as closed circles (●), open circles (○) and 

asterisks (*), respectively.  The peak intensities of the second and third 

components are multiplied by a factor of 20. 
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Fig. 3-11 TOF mass spectra of laser ablation of graphite in He buffer gas. 

(a) Observed with the 10.5 eV one-photon ionization at the delay time of 

45 µs. 

(b) Observed with MPI at the delay time of 45 µs. 

(c) Observed with MPI at the delay time of 100 µs. 

(d) Observed with MPI at the delay time of 160 µs. 

The spectra observed at the delay time of 45 µs ((a) and (b)) are 

multiplied by a factor of 0.05. 
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Fig. 3-12 Expansion of the TOF mass spectra observed in He buffer gas with the 

10.5 eV one-photon ionization.  Numbers in the trace represents the 

assignment of number of carbon atoms in the clusters.  The inset is the 

expansion of the spectrum in the mass region of C30 and C70. 
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Fig. 3-13 Change of peak intensity (top) and shift of TOF (bottom) of C60 observed 

in He buffer gas with MPI.  Signals corresponding to the first (I) and 

third (III) components are displayed as closed circles (●) and asterisks (*) 

respectively.  The peak intensities of the third component are multiplied 

by a factor of 20. 
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Summary of the Thesis 

 

 

Laser ablation of graphite in helium or hydrogen buffer gas was studied by 

time-of-flight mass spectroscopy for the purpose of investigating laser ablation process 

and the structures and reactivity of ablation products.  Neutral carbon clusters Cn and 

their hydrogenated derivatives CnHm produced with Smalley type laser ablation cluster 

source were identified by Wiley-McLaren type time-of-flight mass spectrometer.  

Employed single-photon ionization technique using ninth harmonics of Nd:YAG laser 

(10.5 eV = 118 nm) had brought the better time-of-flight mass spectra reflecting true 

distribution of produced Cn and CnHm without the effect of multiphoton process such as 

photo-induced fragmentation than multiphoton ionization method. 

 

Under He atmosphere condition, two distinctly dissimilar mass patterns of carbon 

clusters were confirmed by varying the delay time of the ionization relative to the 

ablation.  With shorter delay time, various size of Cn (n≥6) were observed.  With 

longer delay time, on the contrary, merely the mass peak of C10, along the weaker signal 

of C12, was detected  On the precise analysis of flight time, it was concluded that 

ablation products had split into two components with different velocities ("prompt" 

components and "delayed" components) due to the formation of dense boundary layer in 

the ablated plume.  The peculiarly observed C10 in the delayed component was 
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assigned to monocyclic isomer with no reactive dangling bonds and special stability 

predicted theoretically. 

 

For H2 ambient gas case, various CnHm (n≥3, m≤4) and Cn (n≥6) were detected in 

the fast component.  In the delayed component, however, only dihydrides C2nH2 

(n=2–5) in addition to C10 were observed peculiarly.  The dihydrides of delayed 

component were assigned to polyacetylenes.  The observed coexistence with stable 

polyyne molecules and no hydrogenation also supported the especial stability and 

chemical inertness of C10. 

 

Further fine experiment with higher sensitivity and resolution revealed that the 

"delayed" component consists of two different components ("second" component and 

"third" component).  It was clarified that the C10 observed in the "third" component 

was enhanced remarkably by heating the buffer gas up to 600 K.  The enhancement 

suggested the relation of monocyclic carbon clusters with fullerenes formation. 

 

It was concluded that, in this study, the ablation process of graphite was pursued 

by time-of-flight mass spectroscopy and non-emissive neutral products indiscernible by 

other experimental methods were identified successfully. 
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