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THERMOELASTICITY SYSTEM IN
SHAPE MEMORY PROBLEMS

IRENA PAWLOW? ANTONI ZOCHOWSKIf
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ul. Newelska 6, 01-447 Warszawa, Poland,

e-mail: pawlow@ibspan.waw.pl, zochowsk@ibspan.waw.pl

(R—F v FRET #F 2—)

Abstract

We are concerned with a nonlinear 3-D thermoelastic system, which arises as a
model of dynamical processes in shape memory materials. The system has the form
of a fourth order viscoelasticity equation coupled with the temperature equation.
For such a system we have proved global in time existence for arbitrary data, as
well as the uniqueness of the solution. In addition, we have studied stability of
solutions with respect to distributed body forces and heat sources.

1 Thermoelasticity system

Let 2 ¢ R™, n = 2 or 3, be a bounded domain with a smooth boundary 6€2. We consider
the following problem (P):

uy — vQu; + gQQu =V -F)(e,0) +b, (1.1)
c(€,0)0; — kAY = 0Fjge(€,0) : €, + v(A€;) €, +g in Qr, (1.2)

with initial

u(0,x) = up(x), u(0,x) =u;(x), (1.3)
6(0,x) = 6p(x) in Q, (1.4)
and boundary conditions |

V6-n=0 on Sr,
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where
c(€,0) = c, — 0Fg9(€; 0). (1.7)

Here (2 refers to the region in a reference configuration.

The subscript ¢ denotes differentiation with respect to time, V- is the divergence with
respect to X, n is the unit outward normal to 952, Fyc(e, 0) and Fjy(€, 6) denote derivatives
of F(e,#) with respect to €, 6.

The meaning of the quantities in problem (P) is as follows: u : Q7 — R" is the
displacement vector, 6 : Q7 — IR, is the absolute temperature, € = (¢;;) with ¢;;(u) =
2(uij + ujzi), is the linearized strain tensor, €; = €(u;) is the strain rate tensor, F'(e, )
is the elastic energy, c(e, 8) is the specific heat coefficient.

The positive constants ¢,, k,v and k correspond to thermal specific heat, heat conduc-

tivity, viscosity and interface energy.
The vector b is a distributed external force and g is a distributed heat source.

The linear map
u+— Ae(u) = Atracee(u) I + 2ue(u), (1.8)

where A, > 0 are Lamé constants and I = (8;;) is the unit matrix, represents Hooke’s
law for the homogeneous isotropic material. Here A = (A;jx;) with

Aijrr = Mij0r + p(0ixdji + 0djn),
is the fourth order elasticity tensor satisfying the following symmetry conditions:
Aijrt = Ajit = Agyij.
The second order differential operator Q defined by
u— Qu=V-(Ae(u)), (1.9)

is known as operator of linearized elasticity. By (1.8) it admits the representation

Qu = pAu+ (A+ p)V(V - u). (1.10)
In the divergence V- we use the convention of the contraction over the last index, i.e.

V - (Ae(u)) = 0;( Aijrien(u) ) = Aijudjen(u) = AVe(u).

Moreover, throughout the summation convention is used, and the following notation: for
vectors a = (a;), b = (b;) and tensors B = (B;;), C = (Cy;), A = (Aijr) we write
a-b= aibi, B:C= BijCij, aB = Cl,iBij, Ba= B,-jaj, BA = Biinjkl, etc.

To problem (P) corresponds the free energy functional of the Ginzburg-Landau form

F(e, Ve, 0) = —c,0log0 + F(e(u),8) + g | Qu 2, (1.11)

with the subsequent terms representing thermal energy, elastic energy and interfacial
energy.

The main characteristic feature of (1.11) as a model of shape memory materials is the
nonlinearity in €: F(e,0) is a multiple-well in € with the shape changing qualitatively
with 6. The second characteristic feature is the presence of higher order term with
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coefficient x, which accounts for interaction effects on phase interfaces. Terms of this
type are known in the so called multiscale approach to modelling of phase transitions.
The particular form of k—term in (1.11) can be interpreted as a resultant of mechanical
forces acting on a layer element of interface.

A typical example of the elastic energy is the Falk-Konopka model [10] in the form
of sixth order polynomial in terms of ¢;;:

3 5 2

F(e,0) =) _FI(0)Ji(e) + D _Fl(0)Ji(e) + D _Fi(6)J5(e), (112)

i=1 i=1 i=1 '

where JF(e), i = 1,...,4*, are k-th order crystallographical invariants, that is appro-

priate combinations of the strain tensor components €;; and FF(f) are corresponding
temperature-dependent coeflicients.

The form (1.12) represents a generalization of the well known 1-D Landau-Devonshire

energy [8],[9]
F(e,0) = a1(0 — 0,)€® — aze* + azeb, (1.13)

where ; > 0 are constant parameters, and 6, > 0 is a critical temperature.

2 Motivation and known results

The equations (1.1),(1.2) express balance laws of linear momentum and energy (under
assumption of constant material density)

utt—V-cr:b, (21)
ee+V-q—-oc:e =y, (2.2)

with constitutive equations for stress tensor o and energy flux q accounting for interfacial
effects:

)
o= é + 0o, o’ =vAeg, (2.3)

q=—-kV0+p, P = —€:f/De- (2.4)

Here §f/de denotes the first variation of the functional f, and the internal energy e is
given by Gibbs relation

e=f+0s, s = —fs, (2.5)

where s is the entropy. In case of free energy (1.11) expressions (2.3), (2.4) become
o=F, - gAe(Qu) +vAe, (2.6)
q=-kVo - get(AQu). (2.7)

The stress tensor o contains three contributions: elastic stress, interfacial stress and
viscous stress according to Hooke’s-like law.

The energy flux is composed of the usuall heat flux expressed by Fourier law, and
nonequilibrium phase interface flux p. The latter, called interstitial work flux corre-
sponding to working of phase interfaces, appears in Dunn—Serrin [6] thermodynamical
theory of higher grade thermoelastic materials.
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In the literature there are known several 3-D free energy models describing phase
transitions in crystals, in particular model of Falk-Konopka [10], model of Ericksen [7],
which has been analysed numerically in [4], [14], 2-D gradient-type model of Barsch-
Krumhansl [2], and 2-D model for noncrystalline shape memory material [23].

In 1-D case the dynamical model describing martensitic phase transitions of the shear
type has been developed by Falk [8],[9]. There the shear strain plays the role of the order
parameter, that is quantity characterizing different phases. The corresponding free energy
has the form of Ginzburg-Landau functional, dependent on strain, absolute temperature
and strain gradient.

The resulting 1-D nonlinear thermoelasticity system has been the subject of intensive
mathematical studies, see e.g. references in the monograph of Brokate and Sprekels [3],
and [1].

A 3-D dynamical model corresponding to Falk—Konopka energy has been derived in
[17]. In a special case it constitutes an analog of 1-D Falk’s dynamical model. The
governing constitutive laws (2.3),(2.4) (imposed by entropy principle) are characteristic
for thermoelastic materials of higher grade.

A conceptually different 3-D evolution model is due to Frémond [11]. The free energy
depends on volumetric proportions of phases, strain tensor, absolute temperature and
gradient of strain tensor trace. For the existing mathematical analysis of this model we
refer e.g. to [3].

We mention also the model due to Fried—-Gurtin [12], with energy dependent on strain
tensor, multicomponent order parameter and its gradient.

3 Assumptions and main results

We assume that
(D) the boundary 09 is of class C2.

Further assumptions concern the elastic energy:

(FE-1) Structure: F(e,#) is of class C3 on S? x [0,00), where S? denotes the set of
symmetric tensors of second order in R". We assume the splitting

F(e,0) = Fi(e, 0) + Fx(e),

where F} (e, 6) is linear in 0 over certain interval [0, 6;) and satisfies (FE~2) for large
values of 0.

(FE-2) Growth conditions: Let ¢; and 6; be certain constants. There exists a constant
A such that for |€| > ¢; and 6 > 6, the following conditions are satisfied:

|Fijee(€,0)] < A+ AG" €|t |Fa/ee(€)] < A+ AleT,
|Fi/es(€,0)] < A+ A0 e, |Fi/00(€, 0)] < A+ A62|e|™,
where 5 )
0<r<—, 1<q§qn<——z), 1<q§@—,
Pn Dn 2 Dn
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pn =n+2, and g, is the Sobolev exponent for which the imbedding of W3 () into
L,, () is continuous, that is g, = 2n/(n —2) for n > 3 and ¢, is any finite number
for n = 2.

We note that the above conditions imply the following growth of F'(e, 8):
IFi(e,0)] < A+ A"|e[™,  |Fy(e)| < A+ Ale[™.
The next two assumptions are physically natural.
(FE-3) Concavity with respect to 6 (thermal stability):
Fi/00(€,0) <0 for (e,0) € S?% x [0, 00).
This implies the lower bound for the specific heat coefficient

0<c, <c(e,0) for (€,6) €S*x[0,00).

(FE—4) Lower bound for the internal energy:

~A < (Fi(€,8) — 0F1/9(€,0)) + Fa(e) for (€,0) € S* x [0, 00).

The most restrictive is the assumption on §-growth exponent r < 1/2 and the assumption
on e—growth exponent ¢ < 6/5 in 3-D case. '

In 2-D case the latter assumption is not active, since ¢ and ¢ are then any large numbers.
Hence our assumptions admit the form of sixth order polynomial (1.12) only in 2-D
case. In 3-D case they require the growth with respect to € close to quadratic. The
temperature dependence is restricted to quadratic terms F2(6) (as in 1-D model (1.13)).
The growth condition on 7 is needed both in 2- and 3-D case.

We are looking for the solution in the anisotropic Sobolev space

V(p) = {(u,0) € W,*(Qr) x W' (Qr) },

with a parameter p related to the L,-integrability. The assumptions on the initial data
and the source terms correspond to this space.

(BV-p) Let é >0, p>1, py =p+6. The initial conditions satisfy the inclusions
u € Wi 2P(Q), u; € W2P(Q),

0 < 8o € W22/ (),

and the compatibility relations. The source terms satisfy

b € LP(QT)) g € Lpl (QT)a g Z 0 a.e.

The first main result concerns the existence of solutions to problem (P).
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Theorem 3.1 Ezistence. :
Under assumptions (D), (FE-1) - (FE-4), (BV-p) and the condition

0<vVE<v

there ezists for p > pn a solution (u,8) € V(p) to problem (P) for any T > 0. Moreover,
the following a priori estimates hold,

| u ng»z(QT)S A, |6 ”W,f*l(QT)S A, (3.1)
with a constant A dependent on the data of the problem, Q and time T .

The condition between x and v is needed for parabolic decomposition of elasticity equa-
tion (1.1).
This theorem has several consequences concerning regularity of the solution:

Corollary 3.1 For a solution to problem (P) the following holds: the functions u, Vu,
V2u, u, 6 are continuous in Qr, and

|u|7 IVUI, |V2ll', Iut| S A, 0 S 0 S A n QT,
I V2 L @r)s | VUt i) | VO llL,@r < A for pa <p < oo,
Cy < 0(61 0) < Cmaz = Cmax(A)-

The second result concerns the uniqueness of the solution. The proof requires an
additional regularity, which holds, provided p > p,. Moreover, stronger assumptions on
F(e,6) and g have to be imposed.

(FE-5) The function Fj(e, 8) is of class C* on the set S? x [0,00), and the heat source
satisfies
g€ Lo(Qr) and g>0 ae.

Theorem 3.2 Uniqueness.
Let the assumptions of Theorem 3.1 and (FE-5) be satisfied, and p > p,. Then the
solution to the problem (P) is unique for any T > 0.

We note that in case of uniqueness the solution has additional continuity properties:

Corollary 3.2 For a solution to problem (P) the following holds in case p > p,:
V3u, Vug, VO are continuous in Qr, and satisfy the bounds

|Viul, [Vuy, [VO] < A
Then, in particular, the stress tensor o is continuous in Qr.
The third main result establishes the stability of solution.

Theorem 3.3 Stability.
Under the assumptions of Theorem 3.2 the solutions (u®,6") corresponding to the right—

hand sides (b*, g), 1 = 1,2, satisfy the inequality
(u® = u', 6% — 0" ||y < A(I[b® = bH|r,0r) + 119° = 9'(IL,0m) (3.2)

for any finite p > p, and T > 0, where A is a constant dependent on the data of the
problem, Q) and time T
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4 Existence theorem — outline of the proof

The proof is based on the parabolic decomposition of equation (1.1) and the application
of the Leray—Schauder fixed point theorem. Here we present the main steps, the details
are given in [19].

Further on A denotes a constant, depending only on the data of the problem, domain
and time horizon. .

Step 1. Parabolic decomposition. Chosing numbers «, 3 so that

a+ B =v, aff = —Z, (4.1)

(1.1) with initial conditions (1.3) and boundary conditions (1.5) decomposes into the
following systems of BVP’s for a vector field w:

w,— fQw =V - Fj(e,0) +b, in Qr,
w(0,x) = u;(x) — aQup(x) in £, (4.2)
w=0 on S,

and the displacement u:

w—aQu=w, in Qr,
u(0,x) = up(x) in Q, (4.3)
u=0 on Sr,

The condition between parameters x and v assures that ®a, R3 > 0. System (4.2),(4.3)
is coupled with the BVP (1.2), (1.4),(1.6) for 6.

Step 2. The solution map. We use the Leray—Schauder theorem in the following
formulation [5]:

Theorem 4.1 Let B be a Banach space. Assume that T : [0,1] x B — B is a map
with the following properties:

(i) For any fized X € [0,1] the map T(X,-) : B—> B is completely continuous.

(ii) For every bounded subset C of B, the family of maps T(-,x) : [0,1] — B, x €C,
s uniformly equicontinuous.

(iii) There is a bounded subset C of B, such that any fized point in B of T(A,-),
0 < X< 1, is contained in C.

(iv) T(0,-) has precisely one fized point in B.
Then T(1,-) has at least one fized point in B.

To define the corresponding operator we extend the definition of Fj (e, 6) to all values
of 0 in IR in such a way that it is of class C3, and that

Fijp9(€,0) >0 for (€,0) € 5% x (—00,0).
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We note that with such extension the specific heat coefficient c(€, ) remains bounded
from below for all (¢, 6) € S? x R. We define now the map T) from V(p) into V(p),

Ty : (0,0) — (u,0), A € 0,1},
by means of the following three problems: BVP for w

wi — QW = A[V - Fe(€,0) +b] in Qr,
w(0,x) = Alui(x) — aQup(x)] in Q, (4.4)
w=0 on Sr,

where € = €(ii), BVP for u

w—aQu=w in Qr,
u(0,x) = Aup(x) in Q, (4.5)
u=0 on S,

and BVP for 0

ex(€,0)0; — kAO = A[0F e (€,0) : € + v(A€):e,+g] in Qr,
6(0,x) = Ap(x) in ©Q, ’ (4.6)
V6-n=0 on Sr,

where

C)\(E, 9—) =Cy — /\H-F/gg(e, é)
Clearly a fixed point of 77 in V(p) is equivalent to a solution (u,6) in V(p) of the
decomposed system and thus constitutes a solution to problem (P) in V(p).
In further steps of the proof we shall verify assumptions of Theorem 4.1.
Step 3. First we show that T} is well defined in V' (p), i.e. the image 7(V (p)) belongs
to V(p). Here we use the fact that the systems (4.2),(4.3) are parabolic in the general
Solonnikov sense [19], and therefore the following result applies [22],[21].

Lemma 4.1 For a domain with 0Q € C?, the solution of the system

u; — Qu =f n QT7
u(0,x) =uy in Q,
u=0 on Sp,

satisfies the following inequality for 1 < p < oo,
[ullwzor) < AMlIElle,@r) + lluollyz-2re(gy }-

The application of Lemma 4.1 to BVP (4.4) implies w € W2'(Qr), u € W2*(Qr)
and the corresponding bounds by (@,0) in V(p)-norm. Furthermore, from the classical
parabolic theory [15], 6 € W2'(Qr) and is bounded by the same norm. Therefore

T)\(l_l, é) € V(p)
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Step 4. Equicontinuity of Ty. A direct comparison of solutions (w?, u’, %), i = 1,2,
corresponding to A* € [0,1], using Lemma 4.1, shows that

“Wl — W2“W§’1(QT)’ ”111 - u2||W3’2(QT) < A | )\1 — /\2 | . (4.7)
By the classical parabolic theory, using (4.7), we get estimate
||91 — 92||W;2:’1(QT) <A| AL = )\? |. (4.8)

Thus assumption (ii) of the Leray-Schauder theorem is satisfied.

Step 5. Uniqueness of the fixed point of T for A = 0.

By the regularity of the problem, for A = 0 the system (4.4)—(4.6) has the unique solution

(w,u,6) = (0,0,0). Therefore V(p) > (u,d) = (0,0) is the unique fixed point of Ty(-).
The essential part of the proof is the verification of assumption (iii) of the Leray-

Schauder theorem.

Step 6. A priori bound for a fixed point. Without loss of generality we set A =1 and

assume that (u,6) € V(p) is a fixed point of 7.

Step 6.1 First we show that temperature is nonnegative. With this we prove energy

estimates, and then improve them reccursively.

Lemma 4.2 If (u,0) is a fized point of T1, that is it constitutes a solution to problem
(P) in V(p), then § > 0 in Qr.

Proof. Let (u,60) € V(p) for p=n+2, and g € L,(Qr). We consider the parabolic
problem for 7:

n—=V-(kVn)+d-Vn—an=f in Qr, .
n(0,x) = 6p(x) in Q, (4.9)
Vn-n=0 on Sr,

where k
k:c(e,é’)’ d =Vk,
_ F/Be(e; 0) P € f _ I/(A.Gt) T ]
cle,0) B c(e,0)

By assumption and the imbedding theorems, #, €, Ve are continuous in Qr, € ,V0 are
bounded in L,(Q) for any ¢ € [0,T], the coefficient k is bounded from below and from
above by positive constants, and the right-hand side f is nonnegative.

With this we check that the assumptions of the existence theorem [15], Thm III 5.1,
are satisfied. Therefore there exists the unique generalized solution to problem (4.9), with
n € V21’1/ ?(Qr). Next we apply the modified version [19] of the stability result [15], Thm
I1I 4.5, to the solutions of the problem (4.9). To this purpose we take smooth functions
a™, d™, f™ > 0, 65 > 0 converging to a, d;, f, 6 in appropriate norms. By maximum
principle [15], Thm I 2.2, the classical solution 7™ to problem (4.9) with smooth data
satisfies n™ > 0 in Qr. By stability theorem

n™ — n  stronglyin  Vy°(Qr).
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For the definition of spaces Vzl’l/ 2(Qr), V(Qr) see [15]. With this we conclude the
following: For any nonnegative smooth function ¢ and any ¢ € (0,T)

OS/$]¢nmd$=/9¢(nm—n)dx+/ﬂ¢ndx,

where the first integral on the right-hand side converges to 0. Therefore,

/ ¢ondzr > 0

Q

and consequently 7 > 0 a.e. in Q7. It is now enough to observe that 7 coincides with 6,
since (4.9) is equivalent to (1.2),(1.4),(1.6). O

Step 6.2 Energy estimates. We multiply equation (1.1) by u;, equation (1.2) by 1, and
integrate over (Q; performing integration by parts and using boundary conditions. Then
in view of the nonnegativity of temperature and boundedness from below of the internal
energy, using Gronwall’s inequality we arive at

Lemma 4.3 A fized point of T\ satisfies, for almost any t € (0,T),
1
/[§|ut|2 + ¢80 + (Fi(€,0) — 0F19(€,0)) + Fa(€) + §|Qu|2] dr <A, (4.10)
Q

with a constant A dependent only on the initial data, the sources b, g and time T.

Step 6.3 Improvement of estimates. The energy estimates allow to obtain more refined
bounds for the fixed point. The essential tool is the following ellipticity property of the
operator Q, see Necas [16] p. 260:

Lemma 4.4 Assume 02 € C?. Then for the solution of the problem
Qu=f£f in Q, u=0 on 09,

it holds
fe L) = ue W2Q).

Due to this property, and (4.10), we obtain the following chain of implications
lullzorwi@) <A = lellworwie) S A = llelliwori, @) <A (4.11)

The further procedure consists in obtaining more estimates from the decomposed system.
To this purpose we use the regularity property of parabolic systems given by the following
generalization [19] of Friedman-Ne¢as Lemma [13]:

Lemma 4.5 Let u be a solution of

ut—Qu=f+V-cr mn QT;
u(0,x) =0 1n Q,
u=0 on St.

Iff,o € L,(Qr) for 1 <p < oo, then

I Vu e, @n< A, T, (I £ llLoer) + 1| @ L0 )-
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Using growth conditions (FE-2) and Lemma 4.5 we get

2/pn 2/pn
1FellL,,@r) < A+ AlBI RS, = 1VWl,.en < A+ AI0Z5,.). (4.12)
Consequently, by Lemma 4.1,
2/pn
”VUHW}%;}(QT) <A+ AHOHL/:EQT)' - (413)

With these estimates we are able to prove the temperature bounds. To this end we
multiply the temperature equation by  and integrate over @); using boundary conditions.
Due to growth conditions and Gronwall’s inequality we get

Lemma 4.6 There exists a constant A, such that
101l 2o t0,7322000)) + IV O|Lo(@r) < A
By this lemma it follows from (4.13) by imbedding theorems that
lellwzrgny SA = lef<A in Qr, [[VelL@n <A for p>p. (414
Continuity of €, together with (FE-1), (FE-2) implies
ey < c(€,0) < emaz(A) in Qr. (4.15)

We apply now the classical parabolic theory to BVP for §. Estimating the right-hand
side in Ly, j»(Qr) norm we conclude

1
160wes @ <A = IV0lkp@r), [Ollzyen) SA for p2> 2o (416)

Next we perform an iterative improvement of a priori bounds. Going back to the decom-
posed system we conclude the following:

IV - Frell, @) SA = weW2(Qr) = ueWy2(Qr). (4.17)
Hence, by the imbedding,
ledllL,@r) <A for p>pn. (4.18)
Cosidering again the temperature equation gives the following:
10llwz1opy S A for p2pn = [0]<A in Qr, ||VO||r,@n) <A for p>pn
In the last iteration, using the above bounds, we get
IV F/GIIL,,@T) <A for p>pa,

hence
IWllwzign SA = lullwirg,y <A for p>pn.

This completes the derivation of a priori bounds for a fixed point.



156

Step 7. Complete continuity. Let (1", ") be a bounded sequence in V(p), such that
(@",0") — (4,0) weaklyin V(p) for n — co.

We shall show that for the images of T},

(u", ™) = T\(a", ") (4.19)
it holds
u® — u strongly in 'W,?*(Qr), (4.20)
0" — 6 strongly in W2'(Qr) (4.21)
for n — oo, where B
(u’ 9) = T)\(ﬁ’ 6)1 (422)

that is T) maps the bounded subsets into precompact subsets in V(p). The arguments
are based on the Aubin compactness theorem, which implies strong convergences

" = @ in L,(0,T,W)(Q), 6 — 0 in L,(0,T,W,(Q)),
and therefore
V- Fj(e",0") - V-F)(€0) stronglyin L,(Qr),
where €" = ¢(@"), € = €(@1). Consequently, an application of Lemma 4.1 implies that
w" — w strongly in Wg’l(QT).

Thereby, the convergence (4.20) results.

To prove the convergence (4.21) we consider the BVP for the difference ™ = 6™ — 6.
By exploiting the additional regularity of data g, 6y in (BV—-p), which implies that 6" €
Wlfl’l(QT), we show that the right-hand side converges to 0 in L,(Qr) norm, and therefore
n" — 0 strongly in W2'(Qr). O

5 Uniqueness theorem — outline of the proof

The proof consists in the direct comparison of two solutions by means of energy estimates
and the application of Gronwall’s inequality. Let (u!,6') and (u?, 6%) be the solutions
corresponding to the same data. To simplify notation we set for i = 1,2

v=u’-u n=6%— 0" € = g(u’) € = e(u}),

i i pi i1 i i pi i i pi
¢ =c(e,6") =3 Fle = Fje(€', 0") Floe = Fge(€', 0°).
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The difference (v, 7n) € V(p) satisfies the following BVP:
K
v — vQvi + ZQQV =V (F/2€ - F/le): (5.1)
e — ky'An = V02 Flp. 1 € — "0 Fjp, : €
+ vy’ (A€)) : € — vy (Ag) &

+(* =g
+ k(72 — 4" A0
= Ry +Ry+R3+ Ry in Qr, (52)
v(0,z) =0, v4(0,z) =0, n(0,z) =0 in £, (5.3)
v=Qv=0, Vp-n=0 on Sr. (5.4)

In the first step we obtain energy estimates for the mechanical part. To this end we
multiply (5.1) by v; and integrate over Q;. Integration by parts, and the use of initial
and boundary conditions yield for almost any ¢ € (0,7') the identity

1
/ (5 | vi | +g | Qv |2) dx + 1// (Ae(vy)) : €(vy) dzdt’
Q t
_ / (F%, — FL) : e(v.) dadt. (5.5)
Qt
Besides, we have the following identity,

5 | lev)Pde = : /Q t%k(v)[?dxdt’: || etw)setvo doat. (5.6)

Qt

Combining (5.5) and (5.6) and using the estimate
| Ffe = Fl IS Al e(v) | + [ D), (5.7)

which follows from the regularity assumption (FE-5) and the uniform bounds on €, ¢* in
Qr, by Young’s and Gronwall’s inequalities, we arrive at

Vel 07122 + | €V) | Lo 0.TiL2() T QVI| L0202 + |l€(VE)ILa(or) < AHnHLzEQT))'
5.8
Hence, due to Lemma 4.4,

||V||Loo(0,T;wg(Q)) < A||77HL2(QT)- (5.9)

The energy estimates for the thermal part are obtained from multiplying equation (5.2)
by 7 and integrating over @Q;. In view of the bound

0< < kv,

Cmam

it follows that

4
1‘/772 dx + i |Vn|? dzdt’ < —/ knVn - Vot d:zdt'—i—Z/ Rindzdt’. (5.10)
2 Q Cmax Qt Qt i=1 t
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Further procedure consists in majorizing the right-hand side of (5.10) and the subsequent
application of Gronwall’s inequality. To this end we use the uniform bounds on €, §,
Ve, € and V0, which imply uniform bounds on ¢* and V+* in Qr, as well as the estimates

|Ral, |Ral, [Rs| < A(ln] +[e(v)] + le(ve)])- (5.11)

All integrals in (5.10), except the last one, are estimated directly by applying Young’s
inequality and (5.8). The R4—term is first integrated by parts, and majorized by using
the bounds

[v* = ' < Allnl + |e(v))), (5.12)
V(" =) < Allnl + |Vl + [e(v)] + [ Ve()]), (5.13)
and estimate (5.8). In consequence we arrive at
/nz(t, x) dz + QCk / |Vn|dzdt < A/ n° dzdt'. (5.14)
Q mazx ¢ t

Hence, via Gronwall’s inequality, n = 0 in Q7. Simultaneously, by inequality (5.9), v =10
in Q7. This completes the proof of uniqueness. a

6 Stability theorem — outline of the proqf

The proof uses similar arguments as the existence theorem, utilizing:
e parabolic decomposition;
e Solonnikov theory of parabolic systems, Lemma 4.1;
e cllipticity property of operator Q, Lemma 4.4;
e regularity property of parabolic systems, Lemma 4.5.

Here we present the main steps of the proof, the details are given in [20].

The starting point are the energy estimates for v = u?—ul!, n = 62 -6, where (u*, §?)
are solutions to the problem (P) corresponding to (b?, g*). We use the same simplifying
notation as in the uniqueness proof. Functions (v,n) € V(p) satisfy BVP (5.1)—(5.4),
where in addition the right-hand side of (5.1) contains b? — b! and R3—term in (5.2) has
the form

Ry =’¢" —7'g".
By repeating the arguments of the uniqueness proof, we get the following energy inequal-
ity:

[[VillLoo(0,75120) + V]| Looomwi@)) + 1Nl o,rsL2(2)) + 1€V |La(@r) + 1V ILa(@r) <
< A(||b2 - blan(QT) + ||g2 - QIHLz(QT))7 (6'1)

which leads to more refined estimates. By virtue of imbedding and parabolic estimates
it follows from (6.1) that

€| Leo (0L, (@) < A(D? = B |La@r) + 1197 — 9'IL200)5 (6.2)
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11|y, /(@r) < A(IID? = b |Ly(0r) + 1197 — 6 L2(0r))- (6.3)

Let (w!,u!),(w!, u!) denote the corresponding solutions of the decomposed problems

(4.2),(4.3) and

Z=W2'—W1.

The functions (z,v) satisfy the following BVP’s:

7~ BQz =V - (F},—F})+b’'—b' in Qr,
z(0,2) =0 in €, (6.4)
z=0 on S,

and

vi—aQv=z in Qr,
v(0,z) =0 in Q, (6.5)
v=0 on St .

By using Lemma 4.5 and estimate (5.7) we get
1Vz2l|L,(@r) < AlleMW)ILy@n) + 17llz,6er) + 11b* = B IL,0n) (6.6)
for 1 < p < co. Consequently, the application of (6.2) and (6.3) yields

2p,

”VZHLp(QT) < A(I|b2 - bl'le(QT) + ||92 - gl||L2(QT)) for p<—. (67)
n
We note that in case 2 < n < 4,
n 2 n
2B <Py,
2 n
By virtue of Lemma 4.1, (6.7) implies
2p
IV Vllwziign < AU = blr,0r + [19° = ¢'llLaen) for p< 7” (6.8)
Hence, in particular (provided n < 4),
leM)llw2, @r) < AlIb* = bIL,, p@n) + ll9° = ¢'llz@n)- (6.9)

The application of the imbedding theorem implies that

IVeW)llt,n@n» 1eMlLy@r < AD® =blx, . (Qr) + lg° = ¢'l|zaer)  (6:10)

for p > B2, The above estimates allow us to obtain further bounds on 7 by applying
again the classical parabolic theory. To this end let us rewrite n—equation (5.2) in the

form

4
c'n — kAn = ZR: where R} =c'R;. (6.11)

=1
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We start with limiting the right-hand side in Lo(Qr)-norm by

A(”b2 - bllle(QT) + ”92 - 91HL2'(QT))'

The terms R, R}, R} are estimated directly by using bounds (5.11),(6.3),(6.8). The Rj-
term is estimated by applying Hélder inequality, and using bounds (5.12),(6.2),(6.3).
Since the coefficient ¢! in (6.11) is positive and bounded, the parabolic theory gives

1llw21igp < AD? =b!||Lyon +119” = 9'llL2(@n)- (6.12)
Hence, by imbedding theorem,
1nllz,(@r) < A(Ib? = bYla@r) + 1l9° = g'llza@n) for 2<p < q"j:"- (6.13)
We note that in case n > 2,
q"f" = qnn;{;z > .

With estimates (6.10),(6.13) we can bound the right-hand side of n—equation (6.11) in
Ly, /2(Qr)-norm by A(|[b?> —bY||L, . + 19> — g"[lz,, »(@r))- To this purpose we use
similar arguments as above. Consequently, we arrive at

||77”W5;11/2(QT) < A(Hb2 - b1||Lpn/2(QT) + ”92 - ngLpn/z(QT))J (6'14)
and by the imbedding,

VL, @r) Illzaer < AU = b, u@0) + 19° = Iz, 20r) (6.15)
for p > E=. This concludes the first round of estimation. In order to obtain further
improvements, we return again to the system (6.4), (6.5). Using bound

IV - (Ff = Fjo)| < Ale(v)[ + [nl + [Ve(v) | + V7)), (6.16)
which holds owing to the continuity of €,6', Ve and V@, together with estimates
(6.10),(6.15), Lemma 4.5 gives

Izl 0ry IVIlwaziapy < AUD? =B, @n) +119* — 9'llz,, 200)- (6.17)

Hence, due to imbedding,

IVeW)lL @) l€VellL,iom < A(D? = bl|L, @r + l9° = ¢'lIz,, @) (6.18)

for p > p,. Now we can return again to n—equation and bound its right-hand side in
L,(Qr)-norm for any p > p by A({[b2 = bllx,..m + llg? — 9'llL,(em)- In the analysis
of the Rj-term by Holder inequality we take advantage of the fact, that 6* € W2 (Qr)
forpy=p+46, 6>0.

Similarly as above, the parabolic theory gives

Inllw21(gr < AUID® = b, @n + ll9* = ¢'llL,@n) for p>pn. (6.19)
By the imbedding,
1Vnlle,er) < A(D? = blL,, 0n) +119° = 9'lIL,0r) for p = pn. (6.20)

Thanks to (6.10), (6.15), (6.18), (6.20) we can estimate the right-hand side of system
(6.4) in L,(Qr)—norm for p > p,. The subsequent application of Solonnikov theory allows
to obtain the final estimates - ’

llzllwzory [VIlwazr < AUD? = bllL,0n) +119° = 'l @n); (6.21)
This completes the proof. a
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