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CLASSICAL AND QUANTUM
INFO-MANIFOLDS

R. F. Streater

Dept. of Maths., King’s College London, Strand, $\mathrm{W}\mathrm{C}2\mathrm{R}2\mathrm{L}\mathrm{S}$

1 Estimation; the Cramer-Rao inequality

Let $\rho_{\eta}(x)$ be a probability density, depending on a parameter $\eta\in R$ . The
Fisher information of $\rho_{\eta}$ is defined to be [8]

$G:= \int\rho_{\eta}(x)(\frac{\partial\log\rho_{\eta}(x)}{\partial\eta})^{2}dx$. (1)

We note that this is the variance of the random variable $\mathrm{Y}=\partial\log\rho_{\eta}/\partial\eta$ ,
which has mean zero. $G$ is associated with the family $\mathcal{M}=\{\rho_{\eta}\}$ of distri-
butions, rather than any one of them. This concept arises in the theory
of estimation as follows. Let $X$ be a random variable whose distribution
is believed or hoped to be one of those in $\mathcal{M}$ . We estimate the value of $\eta$

by measuring $X$ independently $m$ times, getting the data $x_{1},$ $\ldots$ , $x_{m}$ . An
estimator $f$ is a function of $(x_{1}, \ldots, x_{m})$ that is used for this estimate.
So $X$ is a function of $m$ independent copies of $X$ , and so is a random
variable. To be useful, the estimator must be independent of $\eta$ , which
we do not (yet) know. We say that an estimator is unbiased if its mean
is the desired parameter; it is usual to take $f$ as a function of $X$ and to
regard $f(x_{i}),$ $i=1,$ $\ldots$ , $m$ as samples of $f$ . Then the condition that $f$ is
unbiased becomes

$\rho_{\eta}.f:=\int\rho_{\eta}(x)f(x)dx=\eta$ . (2)

We use the notation $\rho.f$ for the expectation of $f$ in the state $\rho$ . A good
estimator should also have only a small chance of being far from the
correct value, which is its mean if it is unbiased. This chance is measured
by the variance. Fisher [8] stated, and Rao [24] and Cramer proved, that
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the variance V of an unbiased estimator $f$ obeys the inequality $V\geq G^{-1}$ .
For the proof, differentiate eq. (2) $\mathrm{w}$ . $\mathrm{r}$ . $\mathrm{t}$ . $\eta$ to get

$\int\frac{\partial\rho_{\eta}(x)}{\partial\eta}f(x)dx=1$ , (3)

which can be written as

$\int \mathrm{Y}(x)(f(x)-\eta)\rho_{\eta}(x)dx=\int(\frac{\partial\log\rho}{\partial\eta})(f(x)-\eta)\rho_{\eta}(x)dx=1$ . (4)

We note that this is the correlation of $Y$ and $f$ , so the covariance matrix
becomes

This is positive semi-definite, giving the result.
If we do $N$ independent measurements of the estimator, and average

them, we improve the inequality to $V\geq G^{-1}/N$ . This inequality express-
es that, given the family $\rho_{\eta}$ , there is a limit to the reliability with which
we can estimate $\eta$ . Fisher termed $V/G^{-1}$ the efficiency of the estimator
$f$ . Equality in the Schwarz inequality occurs if and only if the two func-
tions are proportional. Let $-\partial\xi/\partial\eta$ denote the factor of proportionality.
Then the optimal estimator occurs when

$\log\rho_{\eta}(x)=-\int\partial\xi/\partial\eta(f(x)-\eta)d\eta$. (6)

Doing the integral, and adjusting the integration constant by normalisa-
tion, leads to

$\rho_{\eta}(x)=Z^{-1}\exp\{-\xi f(x)\}$ (7)

which is the ‘exponential family’.
This can be generalised to any $n$-parameter manifold $\mathcal{M}=\{\rho_{\eta}\}$ of

distributions, $\eta=$ $(\eta_{1}, \ldots , \eta_{n})$ with $\eta\in R^{n}$ . Suppose we have unbiased
estimators $(f_{1}, \ldots , f_{n})$ , with covariance matrix $V$ . Fisher introduced the
information matrix

$G^{ij}= \int\rho_{\eta}(x)\frac{\partial\log\rho_{\eta}(x)}{\partial\eta_{i}}\frac{\partial\log\rho_{\eta}(x)}{\partial\eta_{j}}dx$. (8)

We note that $\mathrm{Y}^{j}:=\partial\log p/\partial\eta_{j}$ is a random variable with zero mean,
and that $G^{ij}$ is its covariance matrix. Rao remarked that $G^{ij}$ provides a
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Riemannian metric for $\mathcal{M}$ . We now derive the analogue of the inequality
when $n>1$ . Put $V_{ij}=\rho_{\eta}.[(f_{i}-\eta_{i})(f_{j}-\eta_{j})]$ , the covariance matrix of
$\{f_{i}\}$ . Differentiate the condition for being unbiased,

$\int\rho_{\eta}(x)f_{i}(x)dx=\eta_{i}$ (9)

with respect to $\eta_{j}$ , and rearrange as above, to get

$\int\rho_{\eta}(x)\mathrm{Y}^{i}(x)(f_{j}(x)-\eta_{j})dx=\delta_{ij}$ . (10)

This is the correlation between $Y^{i}$ and $f_{j}$ . The covariance matrix of the
$2n$ random variables $Y^{i},$ $f_{j}$ therefore is

This is therefore a positive semi-definite matrix. If it is not definite, it
has zero as an eigenvalue, which leads to $GV=I$ , and the manifold must
be the exponential family, as before. If it is definite, so is its inverse,
which is found to be

$(-V^{-1}(G-V^{-1})^{-1}(G-V^{-1})^{-1}-G^{-1}(V-G^{-1})^{-1}(V-G^{-1})^{-1})$ (12)

It follows that the leading submatrices $(G-V^{-1})^{-1}$ and $(V-G^{-1})^{-1}$ are
positive definite, and thus so are their inverses. It follows that we get the
matrix inequality $V\geq G^{-1}$ .

2 Entropy methods, exponential families

Gibbs knew that the state of maximum entropy, given the mean energy,
is the canonical state. More generally, let $\Omega$ be a countable sample space,
and let $\Sigma$ denote the set of probabilities (or states) on $\Omega$ . Let $f_{1},$

$\ldots$ , $f_{n}$ be
$n$ linearly independent random variables, whose means we can measure.
We want to find the ‘best’ choice for the the state, given these means.
The least prejudiced choice of $\rho$ (Jaynes) is to maximise the entropy $S$

subject to the $n+1$ constraints given by normalisation and the means
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of $f_{j},$ $j=1,$ $\ldots$ , $n$ . We use $\lambda,$ $\xi^{j}$ as Lagrange multipliers; then we must
maximise

$- \sum_{\omega\in\Omega}\rho(\omega)\log\rho(\omega)-\lambda\sum_{\omega}\rho(\omega)-\sum_{j=1}^{n}\xi^{j}\rho(\omega)f_{j}(\omega)$

by varying $\rho(\omega)$ subject to no constraints. We get

$\rho_{\xi}(\omega)=Z^{-1}\exp-\{\sum_{j}\xi^{j}f_{j}(\omega)\}$ where $Z= \sum_{\omega}\exp\{-\sum_{j}\xi^{j}f_{j}(\omega)\}$ . (13)

These make up the exponential manifold $M$ determined by $\mathcal{F}:=\mathrm{S}\mathrm{p}\mathrm{a}\mathrm{n}\{f_{1}$ ,
... , $f_{n}$ } and parametrised by $\xi^{1},$

$\ldots$ , $\xi^{n}$ ; these are called the canonical
coordinates on $\mathcal{M}$ , which has dimension $n$ . At least one, say $f_{1}$ , must be
bounded below, to ensure $Z<\infty$ holds for some $\xi$ .

The $\xi^{j}$ are determined by the given expectation values by the condi-
tions $\rho_{\xi}.f_{j}=\eta_{j},$ $j=1,$ $\ldots$ , $n$ . The $\eta_{j}$ are thus also coordinates for the
manifold (the mixture coords.) It is easy to show that

$\eta_{j}=-\frac{\partial\Psi}{\partial\xi^{j}}$ , $j=1,$ $\ldots,$
$n$ ; $V_{jk}--- \frac{\partial\eta_{j}}{\partial\xi^{k}}$ , $j,$ $k=1,$ $\ldots,$

$m$ , (14)

where $\Psi=\log Z$ , and that $\Psi$ is a convex function of $\xi^{j}$ . The Legendre
dual to $\Psi$ is $\Psi-\Sigma\xi^{i}\eta_{i}$ and this is the entropy $S=-\rho.\log\rho$ . The dual
relations are

$\xi^{j}=\frac{\partial S}{\partial\eta_{j}}$ $G^{jk}=- \frac{\partial\xi^{j}}{\partial\eta_{k}}.\cdot$ (15)

By the rule for Jacobians, $V$ and $G$ are mutual inverses. $\mathrm{T}\mathrm{h},\mathrm{e}\mathrm{r}\mathrm{e}\mathrm{f}\mathrm{o}\mathrm{r}\mathrm{e}$ .
the method of maximum entropy leads to the exponential $\mathrm{f}\mathrm{a}\mathrm{m}\mathrm{i}1.\backslash _{\mathit{1}}’$. which
allows the optimisation of the Cramer-Rao bound, and gives us estimators
of 100% efficiency.

3 Manifolds modelled by Orlicz spaces

Pistone and Sempi [23] have developed a version of information geometry,
which does not depend on a choice of $\mathcal{F}$ , the span of a finite number of
estimators. Let $(\Omega, \mu)$ be measure space and let A4 be the set of all prob-
ability measures that are equivalent to $\mu$ ; such a measure is determined
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by its Radon-Nikodym derivative $\rho$ relative to $\mu$ . The topology on $\mathcal{M}$ is
not given by the $L^{1}$-distance, but by an Orlicz norm.

Given $\rho\in \mathcal{M}$ , the Cramer class at $\rho$ is the set of all random variables
$X$ on $(\Omega, \mu)$ such that the moment-generating function

$\overline{X}_{\rho}(t):=\int e^{-tX}\rho d\mu$ (16)

is finite in a ’hood of the origin. This is enough to ensure that it is
analytic in an interval about $t=0$ . The Cramer class $C_{\rho}$ at a point $\rho$ in
$\mathcal{M}$ is furnished with the Luxemburg norm

$||X||_{\rho}= \inf\{r>0:E_{\rho}[\cosh(\frac{u}{r})-1]\leq 1\}$ . (17)

The Cramer class $C$ at $p$ is an Orlicz space, and so is a Banach space with
this norm. The centred Cramer class $C(\mathrm{O})$ is defined as the subset of $C$ at
$\rho$ with zero mean in the state $\rho$ ; this is a closed subspace. A sufficiently
small ball in the quotient Banach space $C/C(0)$ then parametrises a ’hood
of $\rho$ , and can be identified with the tangent space at $\rho$ ; namely, the ’hood
contains those points $\sigma$ of $\mathcal{M}$ such that

$\sigma=Z^{-1}e^{-X}\rho$ for some $X\in C$ . (18)

where $Z$ is a normalising factor. Pistone and Sempi show that the bilinear
form

$G(X, \mathrm{Y})=E_{\rho}[X\mathrm{Y}]$ (19)

is a Riemannian metric on the tangent space $C/C_{0}$ , thus generalising the
Fisher-Rao theory.

This theory is called non-parametric estimation theory, because we
do not limit the distributions to those specified by a finite number of
parameters, but allow any ‘shape’ for the density $\rho$ . It is this construction
that we take over to the quantum case, except that the spectrum is
discrete and the distributions are not always equivalent.

4 Efron, Dawid and Amari

A Riemannian metric $G$ , eq. (15) gives us a notion of parallel transport,
namely, that given by the Levi-Civita affine connection. Recall that an
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affine map, $U$ (acting on the right) from one vector space $\mathcal{T}_{1}$ to another,
$\mathcal{T}_{2}$ , is one that obeys

$(\lambda XU+(1-\lambda)\mathrm{Y}U)=\lambda XU+(1-\lambda)YU$, for all $X,$ $\mathrm{Y}\in \mathcal{T}_{1}$ and all $\lambda\in[0,1]$ .
(20)

The same definition works on an affine space, that is, a convex subset of
a vector space. This leads to the concept of an affine connection.

Let A4 be a manifold and denote by $T_{\rho}$ the tangent space at $\rho\in \mathcal{M}$ .
Consider an affine map $U_{\gamma}(\rho, \sigma)$ : $T_{\rho}arrow T_{\sigma}$ defined for each pair of points
$\rho,$

$\sigma$ and each continuous path $\gamma$ in the manifold starting at $\rho$ and ending
at $\sigma$ . Let $\rho,$

$\sigma$ and $\tau$ be any three points and $\gamma_{1}$ a path from $\rho$ to $\sigma$ , and
$\gamma_{2}$ any path from $\sigma$ to $\tau$ .

Definition 1 We say that $U$ is an affine connection, if $U_{\emptyset}=Id$ and

$U_{\gamma_{1}\cup\gamma_{2}}=U_{\gamma_{1}}\mathrm{o}U_{\gamma_{2}}$ . (21)

Let $X$ be a tangent vector at $\rho$ ; we call $XU_{\gamma_{1}}$ the parallel transport of $X$

to $\sigma$ , along the path $\gamma_{1}$ .
We also require $U$ to be smooth in $\rho$ in a ’hood of the point $\rho$ , when

we identify a ball in the tangent space with part of the manifold by
the exponential map. In physics it is usually the differential of $U$ along
a specified direction that is called ‘affine connection’. Equivalently, a
connection defines a covariant derivative of a vector field on the manifold:

$\nabla_{Y}X:=d/dtXU_{\gamma}(\rho, \gamma(t))|_{t=0}$ (22)

where $\{\gamma(t)\},$ $0\leq t\leq 1$ is any path from $\rho$ to $\sigma$ , which starts at $p$ in the
direction $\mathrm{Y}\in T_{\rho}$ . This is designed to convert vector fields to tensor fields.
Conversely, a covariant derivative defines a connection. This concept
allows us to specify that two tangent vectors to the manifold at points $\rho$

and $\sigma$ are parallel if the parallel transport (along a specified curve) of one
from $\rho$ to $\sigma$ is proportional to the other. A geodesic is a self-parallel curve
on A4: the tangent vectors to the curve at different points are parallel,
when transported along the curve. Geodesics relative to the Levi-Civita
connection are lines of minimal length, as measured by the metric.

Estimation theory might be considered geometrically as follows. For
theoretical reasons, we expect the distribution of a random variable to
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lie on a submanifold $\mathcal{M}_{0}\subseteq \mathcal{M}$ of states. The data give us a histogram,
which is a distribution, but not a pretty one. We seek the point on
$\mathcal{M}_{0}$ that is ‘closest’ to the data. Suppose that the sample space is $\Omega$ ,
with $|\Omega|<\infty$ . Let us place all positive distributions, including the
experimental one, in a common manifold, $\mathcal{M}$ . This manifold will have the
Riemannian structure, $G$ , provided by the Fisher metric. We then draw
the geodesic curve through the data point that has shortest distance to
the sub-manifold $\mathcal{M}_{0;}$ where it cuts $\mathcal{M}_{0}$ is our estimate for the state. This
procedure, however, does not always lead to unbiased estimators. Efron
[7] and Dawid [6] noticed that the Levi-Civita connection is not the only
useful one, and that there are others that might be used in estimation
theory. First, the ordinary mixtures of densities $p_{1},$ $\rho_{2}$ leads to

$\rho=\lambda\rho_{1}+(1-\lambda)\rho_{2}$ , $0<\lambda<1$ . (23)

Done locally, this leads to a connection on the manifold, now called the
$(-1)$ -Amari connection: two tangents are parallel if they are proportional
as functions on the sample space. This differs from the parallelism given
by the Levi-Civita connection. We need to use $(-1)$ -geodesics to give
unbiased estimates for $f$ .

There is another obvious convex structure, that obtained from the
linear structure of the space of centred random variables, also known as
the scores. Take $\rho_{0}\in \mathcal{M}$ and write $f_{0}=-\log\rho_{0}$ . Consider a perturbation
$\rho_{X}$ of $\rho_{0}$ , which we write as

$\rho_{X}=Z_{X}^{-1}e^{-f_{0}-X}$ (24)

The random variable $X$ is not uniquely defined by $\rho_{X}$ , since by adding a
constant to $X$ , we can adjust the partition function to give the same $\rho_{X}$ .
Among all these equivalent $X$ we can choose the score which has zero
expectation in the state $\rho_{0}:p_{0}.X=0$ . We can define a sort of mixture of
two such perturbed states, $p_{X}$ and $\rho_{Y}$ by

$‘\lambda\rho_{X}+(1-\lambda)\rho_{Y}$
’

$:=p_{\lambda X+(1-\lambda)Y}$ . (25)

This is a convex structure on the space of states, and differs from that
given in eq. (23). It leads to an affine connection, now called the $(+1)-$

Amari connection. How do these connections relate to the metric?
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Definition 2 Let $G$ be a Riemannian metric on the manifold $\mathcal{M}$ . $A$

connection $\gamma\vdasharrow U_{\gamma}$ is called a metric connection if
$G_{\sigma}(XU_{\gamma}, YU_{\gamma})=G_{\rho}(X, \mathrm{Y})$ (26)

for all tangent vectors $X,$ $\mathrm{Y}$ and all paths $\gamma$ from $\rho$ to $\sigma$ .

The Levi-Civita connection is a metric connection, but the $(\pm)$ Amari
connections are not; they are, however, dual relative to the Rao-Fisher
metric; let $\gamma$ be a path connecting $\rho$ with $\sigma$ ; then for all $X,$ $\mathrm{Y}$ :

$G_{\sigma}(XU^{+}(\rho, \sigma),$ $\mathrm{Y}U^{-}(\rho, \sigma))=G_{\rho}(X, Y)$ . (27)

Let $\nabla^{\pm}$ be the two covariant derivatives obtained from the connections
$U^{\pm}$ . Amari [1] defines intermediate covariant derivatives

$\nabla^{\alpha}=\frac{1}{2}(1+\alpha)\nabla^{+}+\frac{1}{2}(1-\alpha)\nabla^{-}$ (28)

These uniquely define connections, $U^{(\alpha)}$ , whose dual relative to $G$ is $U^{(-\alpha)}$ .
The Levi-Civita covariant derivative is the case $\alpha=0$ , which is self-dual
and therefore metric, as is known. Amari shows that $\nabla^{(\pm)}$ define flat con-
nections without torsion. Flat means that the transport is independent
of the path, and ‘no torsion’ means that $U$ takes the origin of $T_{\rho}\dot{\mathrm{t}}0\dot{\mathrm{t}}$he
origin of $T_{\rho}$ around any loop; it is linear, and not a general affine map. In
that case there are affine coordinates, that is, global coordinates in which
the respective convex structure is obtained by simply mixing coordinates
linearly. Amari shows that for $\alpha\neq\pm 1,$ $\nabla^{\alpha}$ is not flat, but that the man-
ifold is a sphere in the Banach space $\ell^{p},$ $p=-\alpha/2+1/2$ . In particular,
the case $\alpha=0$ leads to the unit sphere in the Hilbert space $L^{2}$ , and the
Levi-Civita parallel transport is vector translation in this space, followed
by projection back onto the sphere. The resulting affine $\mathrm{c}\mathrm{o}\mathrm{n}\mathrm{n}\mathrm{e}\mathrm{c}\mathrm{t}\mathrm{i}\mathrm{o}\dot{\mathrm{n}}$ is
not flat, because the shpere is not fiat. The metric distance $\mathrm{b}\dot{\mathrm{e}}\mathrm{t}\mathrm{w}\mathrm{e}\mathrm{e}\mathrm{n}$

measures is the Hellinger distance, and the natural coordinates are the
square-roots of the densities, imitating the wave-functions of quantum
mechanics. Similar results were obtained in infinite dimensions in $[9, 10]$ .

In estimation theory, the method of maximum entropy for unbiased
estimators makes use of the $\nabla^{-}$ connection. This is true also in the dy-
namics of neural nets, dense liquids, Onsager theory, Brownian particles
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in a potential and the Soret and Dufour effects [25]; the micro-state af-
ter a small time is replaced by a macrostate, which is the same as the
$\max$-entropy estimation of the state by one on the manifold generated by
exponentials of the macrovariables (or, slow variables). The (intractible)
microdynamics is continuously projected in a rolling construction onto
the (easier) manifold of exponential states. This idea was proposed by
Kossakowski [17], Ingarden, et al. [16], and beautifully expounded by
Balian, et al. [3]. The resulting non-linear dynamics can be described
thus: after each time-step of the linear dynamics of the system, Nature
makes the best estimate of the state among those lying on the manifold.

5 The finite quantum info manifold

Chentsov [5] asked whether the Fisher-Rao metric was unique. Any man-
ifold has a large number of different metrics on it; apart from those that
differ just by a constant factor, one can multiply a metric by a space-
dependent factor. There are many others. Chentsov therefore imposed
conditions on the metric. He saw the metric (and the Fisher metric in
particular) as a measure of the distinguishability of two states. He argued
that if this is to be true, then the distance between two states must be
reduced by any stochastic map; for, a stochastic map must ‘muddy the
waters’, reducing our ability to distinguish states. He therefore consid-
ered the class of metrics $G$ that are reduced by any stochastic map on
the random variables.

Definition 3 A stochastic map is a linear map on the algebra of random
variables that preserves positivity and takes 1 to itself.
Chentsov was able to prove that the Fisher-Rao metric is unique, among
all metrics, being the only one (up to a constant multiple) that is reduced
by any stochastic map. It is therefore uniquely defined up to this factor
within the category of commutative function algebras, with stochastic
maps as morphisms.

In quantum mechanics, instead of the abelian algebra of random vari-
ables we use the algebra of matrices $M_{n}$ . Measures on $\Omega$ are replaced
by ‘states’, that is, $n\cross n$ density matrices. For convenience we limit
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discussion to the interior of the set of states; these are positive-definite
matrices of trace 1, which are faithful states and invertible matrices.
We take this set to be the manifold $\mathcal{M}$ ; it is a genuine manifold, and
not one of the non-commutative manifolds without points that occur in
Connes’s theory. The natural morphisms of the quantum info manifold
are the completely positive maps that preserve the identity. Chentsov
found some good candidates for different monotone metrics, hinting that
uniqueness of the metric is not true for quantum mechanics. In fact, this
is so; Petz completed the analysis after Chentsov died; see $[20, 14]$ .

As in the classical case, there are several affine structures on this man-
ifold. The first comes from the mixing of the states, and is called the
$-1$ -affine structure. Coordinates for a state $\rho$ in a hood of $\rho_{0}$ are pro-
vided by $\rho-\rho_{0}$ , a small traceless matrix. The whole tangent space at $\rho$

is thus identified with the set of traceless matrices, and this is a vector
space with the usual rules for adding matrices. Obviously, the manifold
is flat relative to this affine structure.

$\mathrm{T}\mathrm{h}\mathrm{e}+1$ -affine structure is constructed as follows. Since a state $\rho_{0}\in \mathcal{M}$

is faithful we can write $H_{0}:=-\log\rho_{0}$ and any $\rho$ near $\rho_{0}\in \mathcal{M}$ as

$\rho=Z_{X}^{-1}\exp-(H_{0}+X)$ (29)

for some Hermitian matrix $X$ , which is ambiguous up to a multiple of
the identity. We choose to fix $X$ by requiring $\rho_{0}.X=0$ , and call $X$ the
‘score’ of $p$ . Then the tangent space at $\rho$ can be identified with the set
of scores, and $\mathrm{t}\mathrm{h}\mathrm{e}+1$-linear structure is given by matrix addition of the
scores. Corresponding to these two affine structures, there are two affine
connections, whose covariant derivatives are denoted $\nabla^{(\pm)}$ . Following
Hasegawa [13], one can also form interpolating affine structures from
eq. (28).

As an example of a metric on A4, let $p\in \mathcal{M}$ , and for $X,$ $\mathrm{Y}$ in $T_{\rho}$ define
the $GNS$ metric by

$G_{\rho}(X,\mathrm{Y})={\rm Re} \mathrm{T}\mathrm{r}[\rho X\mathrm{Y}]$ . (30)

This metric is reduced by all cp stochastic maps $F$ ; that is, it obeys

$G_{F^{*}\rho}(XF, XF))\leq G_{\rho}(X, X)$ , (31)
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in accordance with Chentsov’s idea. $G$ is just the real part of the scalar
product in the Gelfand-Naimark-Segal construction, and is positive def-
inite since $\rho$ is faithful. This has been adopted by Helstrom and others
[15, 28, 19] in the theory of quantum estimation theory. However, Nagao-
ka [18] has noted that if we take this metric, then the $(+1)$ and the $(-1)$

affine connections are not dual; the dual to the $(-1)$ affine connection,
relative to this metric, is not flat and has torsion. This failure of duality
is confirmed in [14].

In estimation theory we naturally seek a quantum analogue of the
Cramer-Rao inequality. Given a family $\mathcal{M}$ of density operators, parame-
-trized by a real parameter $\eta$ , we seek an estimator $X$ whose mean we
can measure in the true state $\rho_{\eta}$ . To be unbiased, we require Tr $\rho_{\eta}X=\eta$ ,
which, as in the classical case gives

Tr $\{\rho_{\eta}\rho_{\eta}^{-1}\frac{\partial\rho_{\eta}}{\partial\eta}(X-\eta)\}=1$ . (32)

It is tempting to regard $L_{r}=\rho^{-1}\partial p/\partial\eta$ as a quantum analogue of the
Fisher info; it has zero mean, and the above equation says that its co-
variance with $X-\eta$ is equal to 1. The Schwarz inequality then leads to
$\mathcal{V}(X)\geq[\rho_{\eta}.(L_{r}^{*}L_{r})]^{-1}$ , where we use $\rho.X$ to denote $\mathrm{T}\mathrm{r}[pX]$ . For several
estimators, the method used earlier gives this as a matrix inequality.

However, $\rho$ and its derivative do not (in general) commute, so $\mathrm{Y}$ is
not Hermitian, and is not popular as a measure of quantum information.
Helstrom, and Petz and Toth [21] get round this by using the idea of a
logarithmic derivative. Let $g$ be a real or complex scalar product on the
space of matrices; we say that a matrix $L$ is the $g$-logarithmic derivative
of the family $\rho_{\eta}$ if for any matrix $X$ ,

$\frac{\partial\rho_{\eta}.X}{\partial\eta}=g(L^{*}, X)$ . (33)

The symmetric logarithmic derivative uses the real part of the $GNS$ metric
for $g$ , so that

$\frac{\partial}{\partial\eta}\mathrm{T}\mathrm{r}(\rho_{\eta}X)=\frac{1}{2}\mathrm{T}\mathrm{r}[\rho_{\eta}(L_{s}X+XL_{s})]$ . (34)
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Another metric in Chentsov’s allowed class is the Bogoliubov-Kubo-
Mori metric; let $X$ and $\mathrm{Y}$ have zero mean in the state $\rho$ . Then put

$g_{\rho}(X, Y)= \int_{0}^{1}$ Tr $[p^{\alpha}Xp^{1-\alpha}\mathrm{Y}]d\alpha$ . (35)

This is one of the family of scalar products found by Petz to obey the
Chentsov property. The corresponding logarithmic derivative, $L_{B}$ , is de-
fined such that

$\frac{\partial}{\partial\eta}\rho_{\eta}.X=\int_{0}^{1}\rho_{\eta}^{\lambda}L_{B}\rho_{\eta}^{1-\lambda}Xd\lambda$ (36)

and is given explicitly by

$L_{B}= \int_{0}^{\infty}(\lambda+\rho_{\eta})^{-1}\frac{\partial\rho_{\eta}}{\partial\eta}(\lambda+\rho_{\eta})^{-1}d\lambda$ . (37)

Each metric leads to a Cramer-Rao inequality, also in matrix form for
several estimators, and some of these are stronger than others $[21, 22]$ .

The $BKM$ metric has other desirable properties, apart from entering
in Kubo’s ‘theory of linear response’. For the metric $g$ , the connections
with covariant derivatives $\nabla^{(\pm\alpha)}$ are dual, and there are affine coordinates
for $\nabla^{\alpha}$ , namely, it is the unit sphere in the (finite-dim.) Banach space
$C_{p}$ , the Schatten class with norm $||X||_{p}=(\mathrm{T}\mathrm{r}|X|^{p})^{1/p}$. The case $p=1/2$ ,
or $\alpha=0$ , leads to the Hilbert space of Hilbert-Schmidt operators, which
has been used in [4]. More, the Massieu function $\log Z$ is the generating
function for all the connected Kubo functions, and in particular, the mean
is the first derivative, and the metric is the second, as in eq. (14). The
entropy is again the Legendre transform of the Massieu function, and
the reciprocal relations of eq. (15) hold. It follows that the Cramer-Rao
inequality for the $BKM$-metric is achieved exactly. for the exponential
family, agreeing with the method of maximum entropy. In [12] we show
that the $BKM$ metric is the only Chentsov metric for which $\mathrm{t}\mathrm{h}\mathrm{e}\pm$-affine
structures are mutually dual.

6 Araki’s expansionals and the analytic manifold

Araki [2] has considered the case where $\rho$ is a $KMS$ state on a $W^{*}-$

algebra. He then perturbed the state by adding bounded operators to
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the $KMS$ Hamiltonian; the perturbed $KMS$ state has a convergent Kubo-
Mori perturbation expansion, which defines an analytic function in the
Banach space of bounded perturbations. We [26] try to follow this for
unbounded perturbations.

Let $\Sigma$ be the set of density operators on $\mathcal{H}$ , and let int $\Sigma$ be its interior,
the faithful states. We shall deal only with systems described by $\rho\in \mathrm{i}\mathrm{n}\mathrm{t}\Sigma$ ;
this means that for a free Schr\"odinger particle, or system of such, we are
limited to systems inside a finite volume of real space. Then we would
expect the entropy to be finite. The following class of states turns out to
be tractable. Let $p\in(0,1)$ and let $C_{p}$ , denote the set of operators $C$ such
that $|C|^{p}$ is of trace class. This is like the Schatten class, except that we
are in the bad case, $0<p<1$ , for which $C$ a $(\mathrm{T}\mathrm{r}[|C|^{p}])^{1/p}$ is only a
quasi-norm. Let

$C_{<}= \bigcup_{0<p<1}C_{p}$
. (38)

One can show that the entropy

$S(\rho):=-\mathrm{T}\mathrm{r}[\rho\log p]$ (39)

is finite for all states in $C_{<}$ . We take the underlying set of the quantum
info manifold to be

$\mathcal{M}=C_{<}\cap \mathrm{i}\mathrm{n}\mathrm{t}\Sigma$ . (40)

We shall cover A4 with balls, each belonging to a Banach space, and
shall show that we have a Banach manifold when $\mathcal{M}$ is furnished with the
topology induced by the norms; for this, the main problem is to ensure
that various Banach norms are equivalent.

Let $\rho_{0}\in \mathcal{M}$ and write $H_{0}=-\log\rho_{0}+cI$ . We choose $c$ so that $H_{0}\geq I$ ,
and we write $R_{0}=H_{0}^{-1}$ for the resolvent at $0$ . We define a ’hood of $\rho_{0}$ to
be the set of states of the form

$\rho_{V}=Z_{V}^{-1}\exp-(H_{0}+V)$ , (41)

where $V$ is a sufficiently small $H_{0}$-bounded form perturbation of $H_{0}$ . The
necessary and sufficient condition to be Kato-bounded is that

$||V||_{0}:=||R_{0}^{1/2}VR_{0}^{1/2}||_{\infty}<\infty$ . (42)

44



The set of such $V$ make up a Banach space, $\mathcal{T}(0)$ , with (42) as norm.
The first result is that $\rho_{V}\in M$ for $V$ inside a small ball in $\mathcal{T}(0)$ . For the
proof, let $a$ be the form-bound of $V$ , and let $q_{V}$ be the form of $H_{0}+V$ .
Then we have for some $b\geq 0$ ,

$-bI+(1-a)q_{0}\leq q_{V}\leq bI+(1+a)q_{0}$ . (43)

Let $L$ be any finite dimensional subspace of Dom $q_{0}$ , and put

$\lambda(q, L)=\sup\{q(\psi, \psi) : ||\psi||=1, \psi\in L\}$ . (44)

Then the ordered eigenvalues of $q$ are given by

$\lambda(q, n)=\inf\{\lambda(q, L) : \dim L=n\}$ . (45)

$i^{\mathrm{F}\mathrm{r}\mathrm{o}\mathrm{m}}(43)$ we have for each $L$ ,

$-b+(1-a)\lambda(q_{0}, n)\leq\lambda(q_{V}, L)$ . (46)

Since $\lambda(q_{0}, n)arrow\infty$ with $n$ , the spectrum of $H_{V}$ is purely discrete. Thus

$\exp\beta(b-(1-a)\lambda(q_{0}, n))\geq\exp-\beta\lambda(q_{V}, n)$ . (47)

Summing over $n$ gives the traces

$\mathrm{T}\mathrm{r}e^{-\beta H_{V}}\leq e^{\beta(b-(1-a)H_{0})}$

which is of trace class for some $\beta<1$ if $a$ is small enough.
We now consider [27] the special case when $V$ is an $H_{0}$-bounded as

an operator; the condition for this is $||R_{0}V||<\infty$ . Then $V$ is also form-
bounded, since

$||R_{0}^{1/2}VR_{0}^{1/2}||_{\infty}\leq||R_{0}V||_{\infty}<\infty$ . (48)

In this case we can use the larger norm to provide a topology. This
is not equivalent to the topology we get using the norm (42); we are
moving from $\rho_{0}$ in a direction more regular than the general direction in
the tangent space, and this allows us to furnish this slice of the manifold
with a stronger topology. The state defined by $V$ is given by

$\rho_{V}:=Z_{V}^{-1}\exp-(H_{0}+V)$ . (49)
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Thus, $V$ and $V+cI$ give rise to the same state; near $p_{0}$ the regular
directions in $\mathcal{M}$ are thus parametrised by the quotient space

$\overline{\mathcal{T}}=\mathcal{T}/\{cI\}$ . (50)

We may therefore use the score, $V-\rho_{0}.V$ , as coordinates for the ‘regular’
manifold, now using just the operator bounded perturbations. We show
that these are displacements of the state in analytic directions; in [11] we
find a more general class of analytic directions, which together make up
the ‘analytic’ manifold. This is an attempt to find the quantum analogue
of the Cramer class. We shall come to this later.

The norms $||R_{0}V||_{\infty}$ on overlapping regions are equivalent. For, around
$\rho_{V}$ we perturb with $X$ such that $||R_{V}X||_{\infty}<\infty$ , and

$||R_{V}X||_{\infty}=||R_{V}H_{0}R_{0}X||_{\infty}\leq||R_{V}H_{0}||.||R_{0}V||_{\infty}$ , (51)

and the converse inequality holds similarly. We define the $(+)$ -affine
connection by transporting the score $V-\mathrm{T}\mathrm{r}\rho V$ at the point $\rho$ to the
score $V-\mathrm{T}\mathrm{r}\sigma V$ at $\sigma$ . This connection is flat and torsion-free, since
it patently does not depend on the path between $\rho$ and $\sigma$ . The $(-)-$

connection can be defined in $\mathcal{M}$ since each $C_{p}$ is a vector space. It is
likely, but not proved, that the (-)-mixture of states is continuous in the
topology we have defined here.

A case between operator bounded and form bounded is $\epsilon$-bounded:
$||V||_{\epsilon}:=||R_{0}^{1/2-\epsilon}VR_{0}^{1/2+\epsilon}||_{\infty}<\infty,$ $0\leq\epsilon\leq 1/2$ . (52)

This is the analogue of the Cramer class, since we prove that $Z$ is an
analytic function of $V$ in this case.

Araki proved that if $V$ is bounded, the Kubo-Mori expansion con-
verges:

$\log Z_{V}=\sum_{n=0}^{\infty}(n!)^{-1}\int_{0}^{1}\prod d\alpha_{i}\delta(\sum\alpha_{i}-1)I\iota_{n}^{\nearrow}$ (53)

where
$I\mathrm{i}_{n}^{r}:=\mathrm{T}\mathrm{r}(p^{\alpha_{1}}V\ldots\rho^{\alpha_{n}}V)$ . (54)

We prove (with Grasselli) that the series converges also for $\epsilon-$ bounded
perturbations, and that the $||V||_{\epsilon}$ are equivalent on overlapping regions.
We now give an outline of the method.
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We need an economical estimate for the $n$-Kubo function. If $V$ were
bounded, we could use the H\"older inequality for traces, with $p_{i}=1/\alpha_{i}$

using that $\Sigma\alpha_{i}=1$ :

$|\mathrm{T}\mathrm{r}[\rho^{\alpha_{1}}V_{1}\ldots\rho^{\alpha_{n}}V_{n}]|\leq \mathrm{T}\mathrm{r}\rho||V_{1}||_{\infty}\ldots||V_{n}||_{\infty}$. (55)

We do better, since there is $\beta<1$ such that $\rho^{\beta}$ is of trace class, so we can
replace $\rho$ by $\rho^{\beta}$ . We can thus borrow $\rho^{(1-\beta)\alpha_{j}}$ to help bound the potentials.
Also, as $\Sigma\alpha_{j}=1$ , the region of integration is the (overlapping) union of
regions $S_{j}$ where $\alpha_{j}\geq 1/n$ . By cyclicity, we may take $j=n$ . We then
write $\rho^{\alpha_{j}}V_{j}$ as

... $[\rho^{\alpha_{j}\beta}][H^{1-\delta_{j- 1}+\delta_{j}}\rho^{(1-\beta)\alpha_{j}}][R^{\delta_{j}}V_{j}R^{1-\delta_{j}}]\ldots$ (56)

The dots are factors taken with other terms. We bound the middle $[$ ... $]$

by the spectral theorem, arranging the parameters $\delta_{j}$ so that we get an
integrable function of $\alpha_{j}$ in $S_{n},$ $1\leq j\leq n-1$ . We bound the final $[$ ... $]$

using the $\epsilon$-boundedness of $V$ , by a suitable choice of the $\delta_{j}$ . We end up
with a factorial bound on the $n$-point function, so the series converges as
a geometric series.

The manifold can be furnished by a real-analytic structure, by assert-
ing that the ring of germs of analytic functions on the manifold consists
of functions that are analytic in these analytic directions. The mixture
coordinates $\eta$ are examples of analytic functions; we say that we have an
analytic parametrisation of the manifold by $\eta$ . It remains to prove that
the $\xi$ are analytic functions of $\eta$ , before we can say that $\eta$ are analytic
coordinates.

7 Singular perturbations

Every point of our manifold has some directions in its tangent space
that remain within $\mathcal{M}$ but are not analytic directions. Consider the
anharmonic oscillator,

$H=(p^{2}+q^{2})/2+\lambda q^{2n}$ , $\lambda>0$ . (57)

It is known that $\exp-\beta H$ is of trace-class for all $\beta>0$ , so these states
are in A4. It is also known that there is a singularity at $\lambda=0$ . Our result
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shows that if we start at $\lambda>0$ then there is a region around this state
where the manifold has analytic directions. Obviously, any point in $\mathcal{M}$

has many analytic directions: the bounded perturbations, provide many
such. The metric is finite in a much wider class of directions: if $\rho^{\beta}$ is of
trace-class, and $V$ is a form such that $p^{\delta}V$ is bounded for $\delta=(1-\beta)/2$ ,
the a regularised $BKM$ metric in the $V$-direction is finite at $\rho$ .

The natural class of states, the analogue of the Orlicz space of [23], is
the set $\mathcal{M}_{\max}$ of states of finite entropy. The natural class of states $\sigma$ in
a ’hood of a state $\rho$ of finite entropy consists of states of finite entropy
whose entropy relative to $\rho$ is also finite. This ’hood will consist of many
non-analytic perturbations of $\rho$ . It is known that the $-1$-mixture (the
usual mixture) of states of finite entropy has finite entropy, so $\mathcal{M}_{\max}$ has
the-l-affine structure. Here is a simple proof.

Theorem 1

$S(\lambda\rho+(1-\lambda)\sigma)\leq\lambda S(\rho)+(1-\lambda)S(\sigma)$

$+\lambda\log(1/\lambda)+(1-\lambda)\log(1/(1-\lambda)).(58)$

Proof.
$-\log x$ is an operator monotone decreasing function. Since $\lambda\rho+(1-\lambda)\sigma\geq$

$\lambda\rho$ , we have
$-\log(\lambda\rho+(1-\lambda)\sigma)\leq-\log(\lambda\rho)$ .

Hence
$-\lambda\rho.\log(\lambda\rho+(1-\lambda)\sigma)\leq-\lambda\rho.\log(\lambda\rho)$ .

Similarly

$-(1-\lambda)\log(\lambda\rho+(1-\lambda)\sigma)\leq-(1-\lambda)\sigma\log((1-\lambda)\sigma)$ .

Adding, gives

$S(\lambda\rho+(1-\lambda)\sigma)\leq-\lambda\rho.(\lambda\rho)-(1-\lambda)\sigma.\log((1-\lambda)\sigma)$

$=\lambda S(\rho)+(1-\lambda)S(\sigma)+\lambda\log(1/\lambda)$

$+(1-\lambda)\log(1/(1-\lambda))<\infty$ .

So the space $\mathcal{M}_{\max}$ of density matrices of finite entropy is a (-l)-affine
space.
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In [26] we propose a Luxemburg norm for the tangent space at a point
$\rho\in \mathcal{M}_{\max}$ . We expect that a’hood of a point $\rho$ will consist of all states $\sigma\in$

$\mathcal{M}_{\max}$ having finite relative entropy, thus: $S(\sigma|\rho):=\rho.$ ( $\log\rho-\log$ a) $<\infty$ .
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