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1. Introduction

This paper extends fuzzy stopping times in the discrete-time models to continuous-time
ones, and presents a fuzzy stopping model in a continuous-time ‘fuzzy stochastic systems’
which is constructed from fuzzy random variables. In Section 2, the notations and defini-
tions of fuzzy random variables are given and a continuous-time fuzzy stochastic system
is formulated. Next, in Section 3, fuzzy stopping times are introduced for continuous-time
fuzzy stochastic systems, and a stopping model by stopping stopping times is presented.
In Section 4, in associated stopping model for fuzzy stochastic systems, an optimal fuzzy
stopping time is constructed under a regularity assumption regading stopping rules. In
Section 5, it is shown that the optimal fuzzy reward is a unique solution of an optlmahty
equation under a differentiability condition.

2. Fuzzy stochastic systems

First, we introduce some notations of fuzzy random variables. Let (2, M, P) be a.
probability space, where M is a o-field and P is a non-atomic probability measure. Let
R be the set of all real numbers. A fuzzy number is denoted by its membership function
@ : R ~ [0,1] which is normal, upper-semicontinuous, fuzzy convex and has a.compact
support. R denotes the set of all fuzzy numbers. The a-cut of a fuzzy number a(€ R) is
given by

o ={z€R|a(z) > a} (aE(O 1]) and ao :=cl{z € R | a(z) > 0},
where cl denotes the closure of an mterval.. In this paper, we write the closed intervals by

Qo = [a; Gt forae [0, 1].

We use a metric o, on R deﬁned by
00o(@,0) := sup 0(@a,ba) for a,be R, ‘ o (2.1)

a€l0,1]

where ¢ is the Hausdorff metric on R. A map X : Q — R is called a fuzzy random
variable if ' ‘

{(w,2) e QxR | X(w)(z) >a}eMxB forallael0.1], - (2.2)
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where B is the Borel o-field of R. We can find some equivalent conditions in general
cases ([4]), however, in this paper, we adopt a simple equivalent condition in the following
lemma.

Lemma 2.1 (Wang and Zhang [7, Theorems 2.1 and 2.2]). For a map X : Q +— R, the
following (i) and (ii) are equivalent:

(i) X is a fuzzy random variable.

(ii) The maps w — X (w) and w — X} (w) are measurable for all a € [0,1], where
Xa(w) = [Xg (), Xg ()] == {z e R | X(w)(z) = a}.

Now we introduce expectations of fuzzy random variables for the description of stopping
models in fuzzy stochastic systems. A fuzzy random variable X is called integrably
bounded if w — X (w) and w ¥+ X (w) are integrable for all a € [0, 1]. For an integrably
bounded fuzzy random variables X, we put closed intervals

E(X)a = [ /Q X (w)dP(w), /Q XH(w) dP(w)] ., aclo,1]. (2.3)

Then, the expectation E(X) of the fuziy random variable X is deﬁned by a fuzzy number
([2, Lemma 3},[8]):

EX)(z) :== 81[10p1] min {a, 1%, (1:)} for z € R, v (2.4)
acil,
where 1p is the classical indicator function of a set D.

Next, we formulate fuzzy stochastic systems. Let [0,00) be the time space, and let
{X:}:0 be a process of integrably bounded fuzzy random variables such that E (sup;g )Z'tfo) <
oo, where X{I’O(w) is the right-end of the 0-cut of the fuzzy number X,(w) for t>0. We
assume that the map t +~ X,(w)(€ R) is continuous on [0,c0) for almost all w € Q.
{M;}+>0 is a family of nondecreasing sub-o-fields of M which is right continuous, i.e.
M, =),..u; M, for all t > 0, and fuzzy random variables X, are M,-adapted, i.e. ran-
dom variables X’; ., and X’;"‘a (0 <r <t;a €]0,1)) are M;-measurable. And M, denotes
the smallest o-field containing J,», M:. Then (Xt,Mt)LZO is called a continuous-time
‘fuzzy stochastic system’. A map 7 : Q ~> [0, 00] is said to be a stopping time if

{we|rw)<t}eM; forallt>0. -(2.5)
Then we have the following lemma.
Lemma 2.2. Let 7 be a finite stopping time. Define
Xr(w) = Xp(y(w) forwe Q. (2.6)

Then, X, is a fuzzy random variable.
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3. A fuzzy stopping model

In this section, we introduce a ‘fuzzy stopping time’ in accordance with the continuous-
time fuzzy stochastic system (X;, M,);>o defined in Section 2, and we discuss a stopping
problem by using fuzzy stopping times. Let Z be the set of all bounded closed sub-intervals
of R and let g : Z ~ R be a continuous o-additively homogeneous map, that is, g satisfies

(3.1) and (3.2):
g (ch> = Zg(cn) (3.1)

for bounded closed intervals {c,}32, C Z such that 3 - ¢, € T and

9(Ac) = Ag(c) (3.2)

for bounded closed intervals ¢ € Z and real numbers A > 0, where the operation on closed
intervals is defined ordinary as Y . ¢ = cl{d v Zn | To € coyn = 0,1,2,---} and
Ac:= {Az | z € c}. We call this scalarization satisfying (3.1) and (3.2) a ‘linear ranking
function’, and it is used for the evaluation of fuzzy numbers (Fortemps and Roubens [5]).
Now we introduce an evaluation of the fuzzy random variable X, provided that 7 is a
finite stopping time. Let w € Q. From (2.6), the a-cut of the fuzzy number X’T(w) is a
closed interval XT(L,,),O, (w), and the expectation is given by the closed interval E(X. ,) from
the definition (2.3). Using the linear ranking function g, we estimate it by g(E(X,.q)).
Therefore, the evaluation of the fuzzy random variable X, is given by the integral

1
[ oEEanda (9
0
‘Then we have the following lemma regarding (3.3).

Lemma 3.1. For a finite stopping time 7, it holds that

/01 9(E(X:a)) do = /01 E‘(g(XT,a)) da=E (/Olg(Xr,a(-),) da) ‘ (3.4)

Now we introduce fuzzy stopping times, which is a fuzzification of classical stopping
times and is a continuous-time extension of fuzzy stopping times in [8].

Definition 3.1. A map 7 : [0,00) x Q@ > [0,1] is called a fuzzy stopping time if it
satisfies the following (i) - (iii):

(i) For each ¢t > 0, the map w — 7(¢,w) is M;-measurable.

(ii) For almost all w € Q, the map t — 7(¢,w) is non-increasing and right continuous
and has left-hand limits on [0, co).
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(iii) For almost all w € Q, there exists to > 0 such that 7(t,w) = 0 for all t > ¢.

Definition 3.1 is the similar idea to fuzzy stopping times given in dynamic fuzzy systems
by Kurano et al. [3]. Regarding the membership grade of fuzzy stopping times, 7(t,w) =0
means ‘to stop at time ¢’ and 7(¢,w) = 1 means ‘to continue at time t’ respectively. We
have the following lemma regarding the properties of fuzzy stopping times.

Lemma 3.2.
(i) Let 7 be a fuzzy stopping time. Define a map 7, : Q + [0,00) by
Folw) :=inf{t > 0| 7(t,w) <a}, weQ forac(0,1], (3.5)
where the infimum of the empty set is understood to be +o0o. Then, we have:
(a) {w]|Talw) <t} eM, fort>0;
(b) Folw) < Fw(w) aa.weQ ifa>d];
(€) limute fw (W) = Falw) a8 weQ ifa>0;
(d) 7To(w) = limgo Talw) < o0 a.a. w €.
(i) Let {Fa}acp,1 be maps 7, : Q > [0, 00) satisfying the above (a) (b) and (d). Define
amap 7 : [0,00) x Q- [0,1] by

F(t,w) := sup min{e, 1z, >4(w)} fort>0andw € Q. (3.6)
a€f0,1}

-Then 7 is a fuzzy stopping time.

We consider the estimation of the fuzzy stochastic system stopped at a fuzzy stopping
time 7. Let w € Q. A fuzzy stopping time 7 is called finite if 7o(w) = limg o Ta(w) < 00
for almost all w € Q. Let 7 be a finite fuzzy stopping time. From Lemma 3.2(i), its
a-cut is X;, o(w) := Xz, (w)a(w), where 7, (w) is a ‘classical’ stopping time given by (3.5).

Therefore, from the evaluation method in (3.3), we define a random variable
1
Grw) = [ 9Kl da, weQ (3.7)
_ 0 .

The ékpecﬁation E(G#) is the evaluation of the fuzzy random variable X;. In this paper,
we discuss the following problem.

Problem 1. Find a fuzzy stopping time 7* such that E(Gz.) > E(G+) for all fuzzy
stopping times 7.

In Problem 1, 7 is called ari"opfinial quzy st;opping‘time’.' By Lemma 3.1, we have

B B ([ opie) = [ Potan 63
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for fuzzy stopping times 7. In order to analyze Problem 1, in the next section we need to
discuss the following subproblem induced from (3.8).

Problem 2. Let a € [0,1]. Find a stopping time 7* such that E(g(XT.,a)) > E(9(Xra))
for all stopping times 7.

In Problem 2, 7* is called an ‘a-optimal stopping time’.

4. An optimal fuzzy stopping time

In this section, we consider a method to construct an optimal fuzzy stopping time. In
order to characterize a-optimal stopping times, we let

Uy = ess sup E(g9(Xra)|M;) fort>0. (4.1)

T: stopping times, 7>t

Then we have that U are right continuous with respect to ¢t > 0 since Xt,a and M; are
right continuous with respect to t > 0 and g is continuous. We define a stopping time
ok : Q+—[0,00) by

oa(w) = inf {t > 0| Up(w) = g(Xea(w)) } (4.2)

for w € Q and « € [0, 1], where the infimum of the empty set is understood to be +o0.
Then the next theorem is obtained by the classical stopping problems ([1] and [6, Theorem
3 in Sect.3.3.3]).

Theorem 4.1. Let a € [0,1]. If o, is finite almost surely, then o, is a-optimal and
E(U(?) = E(g(Xa;,a))'

In order to construct an optimal fuzzy stopping time from the a-optimal stopping times
{0% }acp0,1), we need the following regularity condition.

Assumption A (Regularity). The map o + o%(w) is non-increasing for almost all
w € Q. ' '

Under Assumption A, we can define a map & : [0,00) x Q — [0,1] by

5*(t,w) := sup min{e, Lor >ty (w)} fort>0andwe Q. (4.3)
a€l0,1] '

For a fuzzy stopping time *(¢,w), we denote its a-cut in (3.5) of by 6;(w). Then we note
that 75(w) and o7 (w) are equal except at most countable many a € (0, 1].

Theorem 4.2 (Optimal fuzzy stopping time). Suppose Assumption A holds. If P(65 <
0o) = 1, then &* is an optimal fuzzy stopping time for Problem 1. Further it holds that

i (w) :=min{t > 0| 5*(t,w) <a}, weQ forac(0,1] (4.4)
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The following result implies a comparison between the optimal values of the ‘classical’
stopping model and the ‘fuzzy’ stopping model (Problem 1). Then we find that the fuzzy
stopping model is more better than the classical one. This fact has been explicitly shown
in the discrete-time model by [8].

Corollary 4.1. It holds that, under the same assumptions as Theorem 4.2,
E(G) < E(Gs-), - (49)

where ¢* is the optimal fuzzy stopping time and 7* is an optimal stopping time in the
class of classical stopping times.

5. Optimality equations

In this section, we consider the optimality conditions for the optimal rewards {U}}:>o.
The following theorem shows their optimality characterization.

Theorem 5.1. Fora € [0,1] and t > 0, the fol]ovﬁng (i) — (iii) hold:
(i) For almost all w € §, it holds that
Uf (w) 2 9(Xisa(w))-
(ii) For almost all w € , it holds that
Ui (w) 2 E(U7 M) (w), T € [t,00).

(i) For almost all w € Q satisfying U*(w) > g(X;o(w)), there exists € > 0 such that
Ui (w) = E(UZ | M) (w), € lte).

In the rest of this section we discuss the optimality equations for the optimal reward
process {Uf}s»0. Let L?([0,00)) be the space of continuous functions u. : [0,00) — R
satisfying foc’o(u,)2 dr < oo and lim;,u; = 0. Let £ be the space of functions u. €
L?*([0,00)) such that wu. is differentiable on [0, 00) and du;/dt € L?([0,00)). Then we write
Auy := —dug/dt. For t > 0, we put a bilinear form on £ x £ by

(u.,v.), =/ u,vpdr  for u.,v. € L. (5.1)
t

For a stochastic process {¥;}:>0, we define the differential AY; by a stochastic process:

}/t(w) - 1/t+s ((.d)

AY;(w) = lim (5.2)
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if the limit exists. The following theorem gives an optimality equation of the optimal
fuzzy reward process {Ug}:>o by the differential.

Assumption B. It holds that U%(w) € £ and g(X ,(w)) € £ for almost all w € Q and
all o € (0,1].

Theorem 5.2 (Optimality equation). Suppose Assumption B hold. Let a € (0,1].
The optimal reward process {Uf}:>o is a unique solution satisfying the followmg three
inequalities (5.3) — (5.5): For almost all w € Q,

Uf(w) 2 9(Xia(w)) forallt>0; (5.3)
AU (w) >0 forallt > 0; ' _ (5.4)
<AU_“‘(w), Ue(w) — g()?.,a(w))>t =0 forallt>0. ~ (5.5)
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