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Patterns on the Fish Skins Induced by Anisotropy in Diffusion

九大大学院理学研究院 望月敦史 (MOCHIZUKI Atsushi)

Department ofBiology, Faculty of Sciences, Kyushu University

amochscb@mbox.nc.kyushu-u.ac.jP

Most of the stripes observed on fish skins are either parallel or perpendicular to their

antero-posterior axis (Kondo&Asai, 1995). Some species have parallel stripes, some have

perpendicular ones, and small number of species has random stripes, where the direction of

the stripe is not fixed. For example, very close two species (Genicanthus melanosphilos and

Genicanthus watanabei) show very different pattems; G. melanosphilos shows perpendicular
and G. watanabei shows parallel stripes to the antero-posterior axis. On the other hand, the

direction of stripes obtained by simple reaction diffusion systems is basically free. The

stripes patterns generated by the reaction-diffusion mechanism in two-dimensional space has

stable periodicity (Turing, 1952), however, the direction of the stripe is not stable; that is

variable depending on the initial distribution. What makes the strong directionality in the

actual fish skin?

Figure 1. An example ofparallel stripe to the antero-posterior axis (G. watanabei)

In fact, there is strong possibility that a fish skin has the property to make

directionality in its structure. In the structure of fish skin, we can see that each scale comes
out to the same direction along the antero-posterior axis. The epidermis is wrapping the

scales and making zigzag form. As the zigzag structure $\mathrm{d}\mathrm{o}\mathrm{e}\mathrm{S}\mathrm{n}^{\mathrm{t}}\mathrm{t}$ exist along dorso-ventral

axis, the structure is different between the antero-posterior axis and the dorso-ventral axis.

This structural difference may make difference in speed of informational transfer between the

two directions.
From the idea, we developed a modified reaction-diffusion model where the

substances likely to diffuse faster to the special direction rather than simple homogeneous
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diffusion. By using the anisotropic diffusion-reaction model, we can explain the transition
of the pattem in actual fish.

Model
The anisotropic property of the fish epidermis is modeled by incorporating the

anisotropy into the diffusion term. The usual diffusion term is derived by assuming that the
flux of substance is linear to the gradient of the substance. In this study, it is assumed that
the diffusion coefficient is not a constant but a function of an angle between the gradient and a
special direction. The special direction means the direction where the substances diffuse
faster. In other word, we assumed that the flux would be enhanced if the direction of
gradient of the substance is same as the special direction, and it would be reduced if the
direction of gradient is perpendicular to the special direction.

The assumption is expressed mathematically in the following:

$\frac{\partial u}{\partial t}=\nabla\cdot(D_{\mathcal{U}}(\theta_{u})\nabla u)+_{V}(_{u},\mathcal{V})$ (1a)

$\frac{\partial v}{\partial t}=d\nabla\cdot(D_{v}(\theta)\mathcal{V}\nabla v)+_{l}g(u,\mathcal{V})$ (1b)

where $\theta_{u}$ and $\theta_{v}$ indicate the angles of the gradient of the variables

( $\theta_{u}=\tan^{-1}((\partial \mathcal{U}/\partial y)/(\partial u/\partial x))$ and $\theta_{v}=\tan^{-1}((\partial v/\partial y)/(\partial v/\partial x))$ ), and $D_{\sigma}(\theta_{\sigma})$ indicates the

function of anisotropy in diffusion term. The form of the $D_{\sigma}(\theta_{\sigma})$ used in the analysis is:

$D_{\sigma}( \theta_{\sigma})=\{1-\delta_{\sigma}\cos 2(\theta\sigma-\varphi)\}\frac{1}{2}$ , where $\varphi$ indicates the angle of most diffusive direction.

We call the parameter $\delta_{\sigma}\dagger \mathrm{t}\mathrm{a}\mathrm{n}\mathrm{i}_{\mathrm{S}}\mathrm{o}\mathrm{t}\mathrm{r}\mathrm{o}\mathrm{p}\mathrm{y}^{\uparrow 1}$, which indicates the degree of distortion of the

diffusion range from a circle. If the anisotropy is $0$ , the diffusion range is just a circle
(normal diffusion), and if the value is large the distortion of diffusion range is large. We can
choose different values of anisotropy for the two substances ( $\delta_{\mathcal{U}}$ and $\delta_{v}$ ). On the other
hand, the diffusive direction $\varphi$ is assumed to be common between the two substances

(because it comes from the structure of epidermis). This method to incorporate the
anisotropy into the diffusion is first modeled by Kobayashi (Kobayashi, 1993), where he

studied pattem formation the dendritic crystal growth like snow crystal.
The forms $f$ and $g$ indicate reaction terms. We use the form studied by

Schnakenberg (Schnakenberg, 1972);

$f(u,v)=A-u+u^{2}v$ (1c)
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$g(_{\mathcal{U}},v)=B-uv2$ (1d)

where A and $\mathrm{B}$ are positive constants. We also tried some different formulae later.

Result
We calculated the model $(\mathrm{l}\mathrm{a})-(\mathrm{l}\mathrm{d})$ and derive pattems by using computer simulation.

The used Parameters values are ones that generate stripes in simple reaction-diffusion model.
The boundary condition is periodic. The initial distribution is equilibrium value with small
random fluctuation. To remove the effect of the boundary, the periodic boundary condition
was chosen.

Figure 2 The obtained pattems by computer simulation

(1) The effect ofpositive same anisotropy
We incorporate the same positive value of anisotropy in both substances (i.e.

$\delta_{u}--_{\delta_{\mathcal{V}}})$ . Fig. $2\mathrm{a}$ shows the simulation results, when the most diffusive direction is parallel
to the $\mathrm{x}$-axis $(\varphi--0)$ . We cannot find any directionality in this figure. This $\mathrm{r}\mathrm{e}\mathrm{s}\mathrm{u}\mathrm{l}_{b}\mathrm{t}$ was
observed even if the value of the anisotropy is very large.
(2) The effect of anisotropic diffusion $\mathrm{o}\mathrm{f}\mathrm{l}\mathrm{e}\mathrm{S}\mathrm{s}- \mathrm{d}\mathrm{i}\mathrm{f}\mathrm{f}\mathrm{f}\mathrm{i}\mathrm{s}\mathrm{i}_{\mathrm{V}\mathrm{e}- \mathrm{S}\mathrm{u}}\mathrm{b}\mathrm{S}\mathrm{t}\mathrm{a}\mathrm{n}\mathrm{C}\mathrm{e}\mathcal{U}$

Fig. $2\mathrm{b}$ shows the simulation results when the anisotropy of $u$ is positive and that of $v$

is $0$ . In the figure, the most diffusive direction is parallel to the $x$-axis $(\varphi--\mathrm{o})$ . The
direction of the stripe becomes always parallel to the most diffusive direction of $\mathrm{u}$, even if we
changed the diffusive direction $\varphi$ . The wave-length of the stripe is not influenced by $\delta_{u}$ .
(3) The effect of anisotropic diffitsion of $\mathrm{m}\mathrm{o}\mathrm{r}\mathrm{e}- \mathrm{d}\mathrm{i}\mathrm{f}\mathrm{f}\mathrm{f}\mathrm{i}\mathrm{s}\mathrm{i}\mathrm{v}\mathrm{e}- \mathrm{S}\mathrm{u}\mathrm{b}_{\mathrm{S}\mathrm{t}}\mathrm{a}\mathrm{n}\mathrm{C}\mathrm{e}\mathcal{V}$

Fig. $2\mathrm{c}$ show the results when the anisotropy of $v$ is positive and that of $u$ is $0$ . The
most diffusive direction is parallel to the $x$-axis $(\varphi--\mathrm{o})$ . In this case, the direction of the lines
is likely to be perpendicular to the diffusive direction of $v$. We can remember that $v$

corresponds to what is called inhibitor. Then we can intuitively understand the result that the
direction of the stripes crosses the most diffusive direction of $v$ .
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Figure 3 Summary of directionality of obtained stripes

Fig. 3 summarizes the directionality of stripe obtained pattems. The diffusive
direction is fixed to be parallel to the $x$-axis. Each point indicates the direction of the
observed stripe, horizontal, vertical, or not determined. To identify the direction is done by
using a computer algorithm.

The result depends only on the relative magnitude of anisotropy of $u$ and $v$ . When
$\delta_{u}$ is larger than $\delta_{v}$ , the direction of the stripe is horizontal; the direction is parallel to the
most diffusive direction. When $\delta_{v}$ is larger than $\delta_{u}$ , the direction of stripe is
perpendicular to the most diffusive direction. Only when the anisotropies of both substances
are almost the same, the direction is not determined.

We tested several different conditions. We changed the value of parameter in
reaction term, value of diffusion coefficient $\mathrm{d}$ , the function of anisotropy in diffusion term and
also the form of the reaction term. The result does not depend on these changes. The same
figure was obtained from all the trials we tested. We can say that this result is very general.
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