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Chemotactic Patterns in Biological Systems

山口県立大学国際文化学部 野村厚志 (Atsushi Nomura)
Faculty $ofIntemationa\iota$ Studies, Yamaguchi Prefectural University.

1. Introduction

The Dictyostelium discoideum, a kind of slime mold, has a life cycle consisting of a vegetative stage

and an animal stage. In the early vegetative sta.ge,. $\mathrm{p}$a.rticula.$\mathrm{r}\mathrm{c}\mathrm{e}\iota$
]$.\mathrm{l}\mathrm{s}$ live $\mathrm{i}\mathrm{n}\mathrm{d}.\mathrm{e}\mathrm{p}\mathrm{e}\mathrm{n}\mathrm{d}\mathrm{e}\mathrm{n}\mathrm{t}$

]
$\mathrm{y}$ under the rich food

condition. However, once that their enviromnental condition becomes starvation, cells aggregate in the

following way. First, some of vegetative cells begin to secrete the messenger molecule called ’
$\dagger \mathrm{c}\mathrm{A}\mathrm{M}\mathrm{P}^{n}$ .

Cells are attracted by a $\mathrm{c}\mathrm{A}\mathrm{M}\mathrm{P}$ signal, that is, they move toward a $\mathrm{c}\mathrm{A}\mathrm{M}\mathrm{P}$ signal (chemotacsis). In addition,

cells have the mechanism relaying a $\mathrm{c}\mathrm{A}\mathrm{M}\mathrm{P}$ signal. Thus, particular surrounding cells aggregate to the core

cells, which initially secrete a $\mathrm{c}\mathrm{A}\mathrm{M}\mathrm{P}$ signal, as they relay a $\mathrm{c}\mathrm{A}\mathrm{M}\mathrm{P}$ signal. Figure 1 shows the schematic

representation of chemotactic cell movement caused by a travelling $\mathrm{c}\mathrm{A}\mathrm{M}\mathrm{P}$ signal wave. Note that the di-

rection of chemotactic cell movement is opposite to that of a $\mathrm{c}\mathrm{A}\mathrm{M}\mathrm{P}$ travelling wave. The slime mold self-

organizes spatial pattems such as a target pattern and a spiral pattern in cell density distribution. As time

proceeds in the cell aggregation process, circular and spiral pattems in cell density distribution become

unstable, that is, their propagating wave fronts break down and another type of a branching pattern so-

called ”
$\mathrm{s}\mathrm{t}\mathrm{r}\mathrm{e}\mathrm{a}\mathrm{m}\mathrm{i}\mathrm{n}\mathrm{g}$ pattern’\dagger is organized. After that, at the core of aggregate cells a multi-cellular mound is

formed and it becomes a multi-cellular moving slug in the animal stage. Last, a fruiting body is organized.

From the ffuiting body, many spores spread and they become to vegetative cells. That is, the life cycle re-

tums to the initial vegetative stage.

In this manuscript, focusing on the aggregation process, we explore the mechanism of breakdown of
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circular and spiral patterns and a streaming pattem formation process through numerical experiments with a

typical previous model. In addition, a simplified model to organize a streaming pattem is proposed to un-

derstand essential mechanism ofa streaming pattem formation process.

2. Previous Models

Several models simulating the chemotactic pattem formation process observed in the aggregation proc-

$\mathrm{e}\mathrm{s}\mathrm{s}$ have been proposed. The following set of equations is a typical model proposed by H\"ofer et al. (1995),

$\frac{\partial u}{\partial t}=\Delta u+\sigma[\phi(n)(b_{\mathcal{V}}+v^{2})\frac{a+u^{2}}{1+u^{2}}-\varphi(n)u]$ ,

’

$\frac{\partial v}{\partial t}=-k_{+}uv+k_{-}(1-v)$ , (1)

$\frac{\partial n}{\partial t}=\nabla\cdot \mathrm{b}\iota(n)\nabla n-\mathrm{x}(\mathcal{V})n\nabla u1$

a..nd,

$\phi(n)=’\frac{n}{1-\kappa_{\phi}n/(K+n)}$ , $\varphi(n)=d_{\iota}+d2^{\frac{n}{1-\kappa_{\varphi}n/(K+n)}}$ , (2)

:
$\mathrm{r}$

.

$\mu(n)=\mu_{1}+\mu_{2^{\frac{M^{r}}{M^{r}+n^{r}}}},$ $\chi(v)=\chi 0\frac{v^{m}}{A^{m}+v^{m}}$ , (3)

where $u$ is the concentration of a $\mathrm{c}\mathrm{A}\mathrm{M}\mathrm{P}$ signal, $v$ is the fraction of active $\mathrm{c}\mathrm{A}\mathrm{M}\mathrm{P}$ receptors per cell and $n$ is

cell density. The variables $u$ and $v$ respectively correspond to activator and inhibitor variables in a reaction-

diffusion mechanism. Refer to Table 1 for parameter names and their typical values. The first two equations

in Eq.(l) are derived from the Martial and Goldbeter model (Martiel and Goldbeter, 1987; Tyson et al.

1989). Figure 2 shows the null-clines for the first two equations in Eq.(l). The last equation in Eq.(l) de-

scribes temporal evolution of cell density, where the first term in the right side describes cell diffiision and

the second tern does chemotactic cell movement caused by spatial gradient of a $\mathrm{c}\mathrm{A}\mathrm{M}\mathrm{P}$ signal. The func-

tions $\mu(n)$ and $\chi(v)$ are step functions, threshold values of which are denoted by the parameters $M$ and
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$A$ , respectively. The function $\mu(n)$ refers to cell-cell adhesion at high cell density. The function $\chi(v)$ has

the effect suppressing chemotactic cell movement within the wave back of a $\mathrm{c}\mathrm{A}\mathrm{M}\mathrm{P}$ signal. The effect

solves $\mathrm{s}\mathrm{o}-\mathrm{c}\mathrm{a}\iota[\mathrm{e}\mathrm{d}’\dagger_{\mathrm{C}}\mathrm{h}\mathrm{e}\mathrm{m}\mathrm{o}\mathrm{t}\mathrm{a}\mathrm{C}\mathrm{t}\mathrm{i}\mathrm{C}$wave $\mathrm{p}\mathrm{a}r\mathrm{a}\mathrm{d}\mathrm{o}\mathrm{x}^{\dagger}$

’ (refef to the section 4. for more detail).

A pattern formation process obtained by the model consisting of Eqs.(1)$-(3)$ shows the good agreement

with that observed in real laboratory experiments. Figure 3 shows the result of a 1-dimensional numerical

experiment obtained by the model consisting of Eqs.(1)$-(3)$ . The left side of the system was triggered for

the $u$ component at the initial condition. Then, a set of waves on $u,$ $v$ and $n$ was organized at the triggered

left side. Since total cell density is conserved, cells were piled at the left side. The set of waves was

propagating from left to right at constant velocity. The propagating wave having low cell density region

refers to chemotactic cell movement. Whuile the direction of the propagating wave is left to right, the

direction of the chemotactic cell movement is right to left, that is, opposite to that of the wave propagation.

In addition, the movement is caused only within passage of the $\mathrm{c}\mathrm{A}\mathrm{M}\mathrm{P}$ signal wave front. Figure 4 shows

result of a 2-dimensional numerical experiment with the model consisting of Eqs.(1)$-(3)$ . Initially 6

positions were triggered for the $u$ component under cell density distribution perturbed with small noise

$n=1.\mathrm{O}\pm \mathrm{O}.1$ . In the initial stage, 4 groups of spiral waves were survived. When cell density became high at

the spiral cores (Fig.$4(\mathrm{b})$), pitch of wave trains became narrow (Fig.$4(\mathrm{a})$) and their propagating speed

became high. Then, the spirals were becoming unstable. Last, wave fronts around the cores of the spiral

waves broke down (Fig.$4(\mathrm{c})$) and streaming patterns were organized in the cell density distribution

(Fig.$4(\mathrm{d})$).

H\"ofer and Maini (1997) proposed the following minimal model simulating the aggregation process,

$\frac{\partial u}{\partial t}=\Delta u+\sigma(n)f(u,v)$,

$\frac{\partial v}{\partial t}=g(u,v)$, (4)

$\frac{\partial n}{\partial t}=\mu\Delta n-\nabla\cdot \mathrm{k}(_{\mathcal{V})}n\mathrm{v}u\iota$
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where $Xu,v$) and $g(u,v)$ are reaction terms (refer to Fig 5 for their null-clines), $\sigma(n)$ is an increasing

fimction of $n,$ $\mu$ is a constant parameter and $\chi(v)$ is an increasing fmction of $v$. Equation (4) consists of

2 parts, one of which is a reaction-diffilsion mechanism with a function $\sigma(n)$ controlling reaction speed

and the other ofwhich is a cell density evolution equation describing a cell diffusion and a chemotactic cell

movement caused by spatial gradient of an activator variable $u$ with the function $\chi(v)$ solving

$,\dagger \mathrm{c}\mathrm{h}\mathrm{e}\mathrm{m}\mathrm{o}\mathrm{t}\mathrm{a}\mathrm{c}\mathrm{t}\mathrm{i}_{\mathrm{C}}$ wave $\mathrm{p}\mathrm{a}r\mathrm{a}\mathrm{d}_{0}\mathrm{x}^{\dagger}’$. Other previous models proposed by other researchers are in the same form

(Vasiev et al. 1994; Polzehaev et al. 1998).

3. Mechanism of Streaming Pattern Formation

In ffi.is section the mechanism of a streaming pattern formation process is explored through numerical

exPeriments. Our main questions are why circular and spiral waves break down and why a streaming pat-

tem is organized. Previous studies did not clearly state the mechanism.

The following 2-dimensional numerical experiment provides us with the key information to understand

the mechanism of the streaming pattem formation process (Fig.6). First, the 1-dimensional wave train was

generated with the model $\mathrm{c}\mathrm{o}\mathrm{n}\mathrm{s}\mathrm{i}_{\mathrm{S}}\mathrm{t}\dot{\mathrm{m}}\mathrm{g}$ ofEqs.(1)$-(3)$. Next, the 1-dimensional wave train was arranged verti-

cally in a 2-dimensional domain, where small rectangular perturbation for the $n$ component was set in the

domain. The wave train simulates spiral waves or multi-triggered circular waves without their curvature

effect. Finally, a numerical calculation with the 2-dimensional version of the model was carried out. Figure

6 shows the result of the numerical experiment. When a wave travels on the perturbed region, it enlarges

the original perturbation on cell density $n$ (see Fig.6 and compare the vertical profiles of $n$ obtained at $\ulcorner-0.7$

and $\ulcorner-0.8$).

The above numerical experimental result shows us the mechanism of the streaming pattern formation

process (Fig.7). When a wave reaches the perturbed region having high cell density, part of the wave front
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located on the perturbed region travels faster than the other part does, since wave speed is almost propor-

tional to cell density $n$ (Fig.8). Difference on haveling wave speed causes wave front deformation (see

$u(xy,\ulcorner-0.8)$ and $n(xy,\ulcorner-0.8)$ in Fig.6). While planar wave front causes chemotactic cell movement whose

direction is parallel to that of wave propagation, deformed wave front causes chemotactic cell movement

whose direction is not only parallel but also perpendicular to that of wave propagation (Fig.7 $(\mathrm{b})$). This

chemotactic cell movement perpendicular to the wave propagation direction enlarges the original cell den-

sity perturbation. Cell density around the initially perturbed region becomes higher than that of the initial

cell density (Fig. $6(\mathrm{c})$); on the other hand, cell density around the neighboring region becomes lower. Since

a wave train repeats this mechanism over and over, cell density difference of initial perturbation is becom-

ing larger and larger. The cell density difference travels along with the train wave propagation. This leads to

a streaming pattem and breakdown of a wave train.

4. Simplified Models

In order to understand the essential mechanism of a streaming pattern formation process, it is important

to derive a simplified model. First, I show that the minimal model $\mathrm{E}\mathrm{q}.(4)$ proposed by H\"ofer and Maini

(1997) generates a streaming pattem. The following FitzHug-Nagumo type equations ($\mathrm{F}\mathrm{i}\mathrm{t}\mathrm{Z}\mathrm{H}\mathrm{u}\mathrm{g}$, 1961;

Nagumo et al., 1962) are utilized as the reaction terms off$(u,v)$ and $g(u,v)$,

$f(u,v)=u(u-\alpha)(1-u)-\mathcal{V}$,
(5)

$g(u,v)=\beta u-\mathcal{V}$,

where $\alpha$ and $\beta$ are constants. The functions $\sigma(n)$ and $\chi(v)$ in $\mathrm{E}\mathrm{q}.(4)$ are set to the following linear

functions,

$\sigma(n)=\sigma n0$
’

(6)
$\mathrm{X}(v)=\chi_{0}(_{\mathcal{V}v)}0^{-}$

’

where $\sigma_{0}$ , Xo and $v_{\theta}$ are constants. Figure 9 shows a 1-dimensional wave train and a streaming pattern
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formation process obtained by the simplified model consisting of Eqs.(4)$-(\mathit{6})$ . From these results, we can

understand that the minimal model reproduces a streaming pattern formation process.

Now, I explain the effect of the function $\chi(v)$ suppressing the chemotactic cell movement within wave

back. Let us assume that the chemotactic cell movement is always effective, that is, $\mathrm{X}(v)=\mathrm{X}\mathrm{o}$ . Then,

chemotactic cell movement is caused by concentration gradient of a $\mathrm{c}\mathrm{A}\mathrm{M}\mathrm{P}$ signal wave within wave front

and also within wave back. However, direction of chemotactic cell movement within wave front is opposite

to that within wave back. Thus, it is believed that chemotactic cell movement is cancelled. This is so-called

$,\dagger_{\mathrm{C}\mathrm{h}\mathrm{a}\mathrm{C}\mathrm{t}}\mathrm{e}\mathrm{m}\mathrm{o}\mathrm{t}\mathrm{i}\mathrm{c}$wave $\mathrm{p}\mathrm{a}\mathrm{r}\mathrm{a}\mathrm{d}\mathrm{o}\mathrm{x}|’$. Therefore, to solve the chemotactic wave paradox, all of the previous models

including the minimal model of $\mathrm{E}\mathrm{q}.(4)$ have the step function $\chi(v)$ suppressing the chemotactic cell

movement within wave back.

However, I show that the function $\chi(v)$ solving the chemotactic wave paradox is not necessary to or-

ganize a streaming pattern. First, I present a simplified model based on the assumption that $\chi(v)$ is con-

stant. In the minimal model of $\mathrm{E}\mathrm{q}.(4)$ I utilize the FitzHug-Nagumo type equations as reaction terms and

the following functions as $\sigma(n)$ and $\chi(v)$ ,

$\sigma(n)=\frac{\sigma_{0}}{n}$ ,
(7)

$\chi(v)=\mathrm{x}_{0}$ .

Figure 10 (a) shows the 1-dimensionat wave train obtained by the simplified model consisting of Eqs.(4),

(5) and (7). Chemotactic cell movement is observed within wave front and within wave back. The profile of

the chemotactic cell movement is asymmetric and the amount of chemotactic cell movement within the

wave back is larger than that within the wave front. Thus, the direction of net chemotactic cell movement is

same as that of wave propagation and opposite to the direction of chemotactic cell movement observed in

the previous models. This implies that the fimction $\sigma(n)$ should be inversely proportional to cell density $n$

under the fixed Xo for organizing a streaming pattern as shown in Fig.11. Using the 1-dimensioanl result
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of a wave train (Fig. $10(\mathrm{a})$), I carnied out a 2-dimensional numerical experiment. Then, I successfully real-

ized a streaming $\mathrm{P}\mathrm{a}\mathfrak{n}\mathrm{e}\mathrm{r}\mathrm{n}$ formation process as shown in Figure $10(\mathrm{b})$ .

5. Conclusion

In this manuscript, I have reviewed the previous models describing breakdown of spiral and target pat-

tems and a streaming pattern fornation process on the aggregation process ofthe Dictyostelium discoideum.

Through several numerical experiments with one ofthe previous models, I have shown the mechanism why

spiral and target patterns break down and why such a streaming pattem is organized. In addition, a simpli-

fied model based on the model proposed by H\"ofer and Maini (1997) has been proposed. The simplified

model does not take account of so-called \dagger \dagger chemotactic wave $\mathrm{p}\mathrm{a}\mathrm{r}\mathrm{a}\mathrm{d}\mathrm{o}\mathrm{X}^{1}$

’ for more simplification. I have

shown that the simplified model can organize a streaming pattern in spite ofthe simplification.
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Table 1. Typical parameter values utilized in the previous model consisting $\mathrm{o}\mathrm{f}\mathrm{E}\mathrm{q}\mathrm{s}.(1)-(3)$ .
Name $\sigma$ a $b$ $d_{\mathrm{J}}$ $d_{\mathit{2}}$ $k_{+}$ .. $k_{-}$ Xo
Value 70.0 0.014 0.2 0.026 0.234 2.5 2.5 0.5
Name $\mu_{1}$ $\mu_{2}$

$A$ $M$ $K$
$\kappa_{\phi},\kappa_{\varphi}$ $m$ $r$

Value 0.003 0.009..5 0.72 1.2 8.0 . 0.7 10.0 4.0

Fig.1 Propagation of a $\mathrm{c}\mathrm{A}\mathrm{M}\mathrm{P}$ signal wave and its chemotactic cell movement (chemotacsis).

Fig.2 Null-clines for the model Eq.(l) with Eqs.(2) and (3). Cell density $n$ is fixed to 1.0. Refer to Table 1
for parameter values.

Fig.3 Numerical experiment with the model consisting of Eqs.(1)$-(3)$ at $\ulcorner-2.0$ . A $\mathrm{c}\mathrm{A}\mathrm{M}\mathrm{P}$ wave propagates
from left to rigt. Refer to Table 1 for parameter values utilized in this experiment. Boundaries are
defined by the Neumann zero condition for the both sides.
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Fig.4 Numerical experiment with the model consisting of Eqs.(1)$-(3)$ in a 2-dimensional domain System
size is $400\cross 400$ (mesh). (a) $u(xy,t^{=_{1}}5),$ $(\mathrm{b})n(x,y,\ulcorner-\iota 5),$ $(\mathrm{c})_{\mathcal{U}}(Xy,\ulcorner-30)$ and (d) $n(x,y,\iota=30)$ . Refer
to Table 1 for parameter values utilized in this experiment. Boundaries are defined by the Neumann
zero condition for the four sides.

Fig.5 Null-clines for a typlcal $\mathrm{F}\overline{\mathrm{l}}\mathrm{t}\mathrm{Z}\mathrm{H}\mathrm{u}\mathrm{g}\mathrm{h}$ -Nagumo type reaction model utilized in the simplified model of
$\mathrm{E}\mathrm{q}.(4)$ .
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Fig.6 Numerical experiment of a 2-dimensional wave train with the model consisting of Eqs.(1)$-(3)$ .

(a) $u(xy,t),$ $(\mathrm{b})n(Xy,t)$ and (c) 1-dimensional vertical profiles at the horizontal position indicated

with the arrows in (b). Refer to Table 1 for parameter values utilized in this experiment. System size

is $300\cross 50(\mathrm{m}\mathrm{e}\mathrm{s}\mathrm{h})$ .

Fig.7 Schematic representation of a streaming pattern formation process. When a planar wave reaches the

high cell density region (a), the planar wave is deformed by the dependence of wave speed on cell

density (Fig.8). The wave front deformation causes the chemotactic cell movement perpendicular to

the direction ofthe wave propagation (b).
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Fig.8 Dependence ofwave propagation speed on initial cell density $n$ . The model consisting ofEqs.(1)$-(3)$

is utilized. Refer to Table 1 for parameter values.

(a)

(b)

Fig.9 Numerical experiments of a 1-dimensional wave train (a) and a streaming pattern

formation process (b) obtained by the simplified model consisting of Eqs.(4)$-(6)$ .
Patameter values utilized in these experiments are $\alpha=0.05,$ $\beta=1.0,$ $\sigma_{0}=100$ , Xo $=5.0$ ,

$v_{0}=0.14$ and $\mu=0.01$ . Boundaries are defmed by the Neumann zero condition for the 1-

dimensional experiment and by the periodic condition for the 2-dimensional experiment. System

size ofthe 2-dimensional domain is $100\cross 40$ (mesh).
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$n(Xy,t)$

$\Gamma-0$ $\ulcorner-10$ $\ulcorner-20$ F30
(b)

Fig.10 Numerical experiments of a 1-dimensional wave train (a) and a streaming pattem formation proc-
ess (b) obtained by the simplified model consisting of Eqs.(4), (5) and (7). In the l-dimensional

wave train, net chemotactic cell movement is from left to right (focus on the right side and the left

side in the 1-dimensional domain). Parameter vaiues utilized in these experiments are $\alpha=0.05$ ,

$\beta=1.0,$ $\sigma_{0}=500,$ $\chi_{0}=1.0$ and $\mu=0.01$ . Boundaries are defined by the Neumann zero
condition for the 1-dimensional experiment and by the periodic condition for the 2-dimensional

experiment. System size ofthe 2-dimensional domain is $100\cross 50$ (mesh).

Fig.11 Chemotactic cell movement in the simplified model consisting ofEqs.(4), (5) and (7). The function
$\sigma(n)=\sigma 0/n$ makes the part ofthe wave around the low cell density region faster than other part.

Chemotactic cell movement perpendicular to the direction ofthe wave propagation is directed from

low cell density region to high cell density region. Thus, initial perturbation on cell density is en-
larged by the passage ofthe wave.
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