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INEQUALITIES BETWEEN OPERATOR MEANS
BASED ON THE MOND.-,PECARIC METHOD
AND ITS APPLICATIONS

Technical College Zagreb, University of Zagreb Jadranka Miéié
Faculty of Textile Technology, University of Zagreb  Josip E. Petarié
KIRBEREM B K EFRE WEME (Yuki Seo)

1. Introduction. This report is based on [17].
J.LFuyjii and E.Kamei [8] introduced the relative operator entropy S(A|B) for
positive operators A and B on a Hilbert space H as a relative version of the

Nakamura-Umegaki operator entropy [15]:
S(A|B) = A%log (A"2BA"2) A%,

On the other hand, it is also expressed by
At, B—AV, B
a

S(A|B) = s — lima_,o +B— A,

where fi,, is the weighted geometric mean and V,, is the weighted arithmetic mean.
From point of veiw, they defined the following operator version of a-divergence

in the differential geometry (cf. [6]): For positive operators A and B on H,

Da(A,B)EETl_—a)(AV(,B—AﬁQ B) (0O<a<l)

(

In particular,
Di(A,B) =s —lima Do (A, B) = A— B — S(B|A)
Dy(A,B) =s —lim,0Do(A,B) = B— A~ S(A|B).

For the case of a = 1/2, it follows that a-operator divergence coinsides with by
four times the difference of the geometric mean and the arithmetic mean. For
the case of density operators, it coinsides with a relative entropy introduced by
Beravkin and Staszewski [2] in C*-algebra setting.

In this paper, we shall consider the estimates of a-operator divergence by terms
of the spectra of positive operators. For this purpose, we shall investigéte the

estimates of the difference of two operator means in general setting. We prove



that for positive invertible operators A, B and a given a > 0, there exists the

most suitable real number 3 such that
®(A 01 B) > a®(A) o2 ®(B) + P(A) (1)

where ® is a unital positive linear map and ¢y, 09 are operator means. In par-
ticular, if we put @ = 1 and ® is the identity map in (1), then we have the lower
bound of the difference of A o1 B and A o9 B:

Ao, B— Aoy B> [A.

Consequently we obtain the estimates of a-operator divergence by terms of the

spectra of positive operators.

2. A general theorem. Let ®(-) be a unital positive linear map from
the space of B(H) to B(K), where B(H) is the C*-algebra of all bounded linear
operators on a Hilbert space H. Jensen’s inequality asserts that if f(¢) is an

operator concave function on an interval I, then

f(2(4)) = 2(f(4))
for every selfadjoint operator A on a Hilbert space H whose spectrum is contained
in I (cf. [3, 5]).

Mond and Pecarié [13, 14] established that the problem of determining the
upper estimates of the difference and the ratio in Jensen’s inequality is reduced
to solving a single variable maximaization or minimization problem by using the
concavity of f(t), also see [12]. By using the Mond-Pe¢ari¢ method, we show the

following complimentary inequalities to Jensen’s one.

Theorem 1. Let A be a positive operator on H satisfying M > A > m > 0.
Let ®(-) be a unital positive linear map from the space of B(H) to B(K). Let
f(t),g(t) be real valued continuous functions on [m, M]. Moreover let f(t) be a

concave function. Then for a given o >0
®(f(A4)) 2 ag(®(A4)) + pI

holds for 8 = B(m, M, f, g, &) = minpm<i<m{ast + by — ag(t)}, wheré

oy = 1040) = f(m) M f(m) — mf(M)

by = .
M-m and by M—-m




Proof. Put h(t) = ast + by — ag(t) and 8 = ming,<i<pr h(t). Then it follows that
ast +by > ag(t)+ 8  fort e [m,M].
Applying this inequality to $(A) we have
ar®(A) +bsI > ag(®(A)) + B1.
On the other hand, since f(t) is concave, by definition
ft) >apt+b;  forte [m,M],

so that the inequality applied to A and then to ®(-) implies that

®(f(A)) > ayP(A) + bsl.
Combining these two ineqﬁalities we obtain

P(f(A)) = ag(®(4)) + 6L

O

Remark 2. If g(t) is a strictly concave differentiable function on [m, M], then a

value of B in Theorem 1 may be determined more precisely as follows:

B =agt, + by — ag(t,),
where t, € [m, M] is defined as the unique solution of ¢'(t) = a;/a when g’ (M) <
as/a < g'(m), otherwise t, is defined as M or m according as ay/a < g'(M) or

g'(m) < ag/a.
As an application of Theorem 1, we have the following corollary:

Corollary 3. Let A be a positive operator on a Hilbert space H satisfying mI <
A < MI where 0 < m < M. Let ®(-) be a unital positive linear map from the
space of B(H) to B(K). Let p,q any real number 0 < p,q < 1. Then for a given
a>0

B(AP) > a®(A)? + BI
holds for B = B(m, M, 49, o) =

ag M-—m -m =

-9
O((q —_ 1) (_1_M1’-m1’)q—1 + by Zf qmq—l > élvgl’—mp > qu—l
min{M? — aM?,m? — am?} otherwise.



3. Operator means inequality. In this section, we shall study the esti-
mates of the difference of two operator means related to a positive linear map by
virtue of Theorem 1. We recall the Kubo-Ando theory of operator means [10]:
A map (A, B) — A o B in the cone of positive invertible operators is called an

operator mean if the following conditions are satisfied:

monotonity: A< Cand B< Dimply Acd B<Co D,

upper continuity: A, | A and B, | B imply A, 0B, | A ¢ B,

transformer inequality: T*(A ¢ B)T < (T*AT) o (T*BT) for every op-
erator T, . '

normalized condition: A ¢ A = A.

The normalized condition is rarely assumed here. A key for the theory is
that there is a one-to-one correspondence between an operator mean ¢ and a

nonnegative operator monotone function f(¢) on [0, 00) through the formula
f)=10ot (t>0),
or
Ao B=A3(10 A 3BA 1)AS = Al f(A"3BA™3)A}

forall A, B VZ € > 0. We say that ¢ has the representing function f. In this case,
notice that f(¢) is operator monotone if and only if it is operator concave.
Simple examples of operator means are the weighted arithmetic mean V, and

the weighted harmonic mean !, (0 < p < 1) defined by
AV, B=(1-pA+pB and Al B=((1-pA4a+pB7)"

respectively. Another one is the geometric mean # which is just corresponding
to the operator monotonity of the square root. As a matter of fact, the p-power
mean (the weighted geometric mean ) f,, 0 < p < 1, are determined by the

operator monotone function t7;
Aty B=A3(A"3BATEYP A

and the geometric mean f is defined as A § B = A3 (A_%BA‘%)%A%.



Now, let ® be a positive linear map from B(H) to B(K). Ando [1] showed

that for a given operator mean o
®(A o B) < ®(A) o ®(B)

holds for every positive operator A and B. Related to this, we have the following
results. Let f; and f; be representing functions for operator means o; and o3

respectively. Then the following statements are mutually equivalent:
(i) @(A oy B) <®(A) op ®(B) for every positive invertible operator A, B.
(i) @(fi(A)) < f2(®(A)) for every positive invertible operator A.
(i) fi <f
Thus, if f, and f; are independent, then ®(A o, B) and ®(A) o, ®(B) have no

relation on the usual order. By applying Theorem 1, we obtain our main results

as follows:

Theorem 4. Let ® be a unital positive linear map from B(H) to B(K). Sup-
pose that two operator means o, and g2 have rebresenting functions f1 and f»
respectively, which are not affine. Let A and B be positive invertible operators
satisfying M >A>m > 0 and My > B > my > 0. Put m = my/M; and
M = My/m,. Then for a given a >0 i

B(A 0, B) > a®(A) o3 &(B) + f3(A) 2)

where [ is determined as the minimum of the function apt + by, — afa(t) on

[m, M with

(M) = fi(m) i be — M fi(m) — mfi(M)
afl— M—m an i — M—m

Proof. By the same technique in [1], we consider the unital positive linear map
¥ by

T(X) = &(A)1P(AT X AT)D(A) 3.
Since the representing functions f;, fo are nonnegative operator concave func-

tions, it follows from Theorem 1 that for a given a > 0

U(fi(A"3BA%)) > afy(¥(A 5BA3)) + 61



holds for 8 = B(@2, M2 ¢ £ ) in Theorem 1. Therefore we have

®(A 0y B) = ®(A)3U(fi(A"2BA™1))B(A)?
> ®(A)7(afo(W(A"2BA%)) + BI)B(A)?
= a®(A) 0y ®(B) + B(A). |

O
Remark 5. The value 8 = B(m, M, f1, f2,@) = aj,to+bs, —afa(to) can be writen
ezplicitly as '
. . 7] a’f1 . 7 a’fl /4
the unique solution of f5(t) = —~ if fo(M)< ~ < fa(m)
. ar, v
to={ M if < f(M)
m if fy(m) <L
a
Remark 6. If we put o =1 in (2) of Theorem 4, then we have the following:
®(A 0y B) — ®(A) 03 ®(B) > P(A)

holds for B = agpty + by — folto) and to is defined as the unique solution of
f3(@) = ay, when fo(M) < ay < fi(m), otherwise ty is defined as M or m
according as ay, < fs(M) or fo(m) < aj.

Further if we choose a such that 8 = 0 in (2) of Theorem 4, then we have the

following corollary:

Corollary 7. Assume that the conditions of Theorem 4 hold. Then

: ant + bfl
®(Ao; B) > mrsntJSnM{——————f2 )

1B(A) o5 O(B).

Corollary 8. Let ® be a unital positive linear map from B(H) to B(K). Let
A and B be positive invertible operators satisfying M; > A > m; > 0 and
My > B >my > 0. Putm=my/M; and M = My/m;. Let p,q € (0,1) be given

real numbers. Then for a given a > 0

(A t, B) — a®(A) 4, ®(B) > 39(A) (3)



holds for 8 = B(m, M,p,q,a) =

MP —mP\T  MmP —mMP . m'™d MP —mP  M™9
— - ] < <
alg 1)<aqM—m> * M—m if q =M -—m = q
min{M? — aM? mP — am?} otherwise.

Proof. This corollary follows from Theorem 4 since the representing function of
the p-power mean f, and the g-power mean f#; are fi(t) = t* and fo(t) = t¢
respectively. . O

Following after [9], for a symmetric mean ¢, a parametrized operator mean o;
is called an interpolational path for ¢ if it satisfies

(1)Ao, B=A,AoyyB=AocBand Ao, B=B

(2) (Ao, Bjg(Ao,B)=A Tpte B

(3) the map t — A o, B is norm continous for each A and B.

For example, it is easy to see that the p-power mean {, is an interpolational path
for a geometric mean f}, so Af#f,B is called the geometric interpolation. Corach,
Porta and Recht [4] pointed out that the geodesic from A to B is the path A §, B
for the Finsler metric with the distance d(A,B) = ||log(A"2BA"2)|| and the
relative operator entropy S(A|B) is the velocity vector of A §, B at p = 0.
Moreover, J.L:Fujii [7] showed that the path A V, B is the geodesic from A to B
for the distance d(A,B) = ||A — B||. It easily follows that Af,B and Af,B have
no order relation for p # ¢. By virtue of Corollary 8, we obtain the estimation of

the difference of the geometric interpolation A §, B:

Corollary 9. Let A and B be positive invertible operators satisfying My > A >
my > 0and My > B > myg > 0. Put m = my/M; and M = My/m;. Let
p,q € (0,1) be given real numbers. Then

_IBIAZAﬁpB-AﬁqBZﬁA (4)
hold fO’f’ﬁ = ﬁ(m2/Ml7M2/ml7p) 9,0 — 1) and ﬁl = ﬁ(ml/M%Ml/m?)q;p:a =
1), which are defined in Corollary 8.

Proof. If we put a = 1 and @ is the identity map in (3) of Corollary 8, then we
have the right-hand sides of (4). Moreover, when the substitutions p — g and
q — p are made in (3) of Corollary 8, we have the left-hand sides of (4). O



The following corollary obtain the estimate of the difference of two paths
AV, Band A, B:

Corollary 10. Let A and B be positive invertible operators satisfying My > A >
my > 0and My > B > my > 0. Putm =mg/M; and M = My/m;. Letp € (0,1)

be a given real number. Then

max{l—p-}—pm-—m”,l—p—i—pM—M”}AZAVp B—AtthZO.

Proof. It follows that

mP—(1-p+pm) if p<=r”
—(1— > : 1
zf —(1 P+P$)_{ MP—(1—p+pM) if p> M=

Put 8 =max{l —p+pm —m?,1 —p+pM — MP}. Then we have
(A72BA73) - (1-p)+pA~3BA™2) > .

Therefore, it follows that A f, B— A V, B > —BA. | O

4. a-operator divergence. As applications, we obtain the estimates of a-
-operator divergence. Since A Vo, B > A f, B (0 < a < 1), it follows that
a-operator divergence is positive, that is, D,(A, B) > 0. By corollary 10, we

obtain the upper bound of a-operator divergence.

Theorem 11. Let A and B be positive invertible operators satisfying 0 < miI <
A< MI and 0 <myl < B< MyI. Putm = 'A’}—i and M = %—f Then

" l1—a4+am—-—m* 1—a+aM — M

max{ ol —a) , ol —a) }A > D,(A,B) > 0.

Corollary 12. Let A and B be positive invertible operators satisfying 0 < m I <

A< MI and 0 < mol < B < M,I. Putm:;"‘—ﬁ— andM:—A"’f—f. Then

max{m — 1 logm, M — 1 —log M}A > Do(A, B) = B — A — S(A|B),
max{1 — m +mlogm,1 — M + Mlog M}A > D(A,B) = A— B — S(BJA).
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