
Title On Time Adaptivity and Stabilization (Algorithm Engineering
as a New Paradigm)

Author(s) Kutten, Shay

Citation 数理解析研究所講究録 (2001), 1185: 120-129

Issue Date 2001-01

URL http://hdl.handle.net/2433/64633

Right

Type Departmental Bulletin Paper

Textversion publisher

Kyoto University

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Kyoto University Research Information Repository

https://core.ac.uk/display/39198018?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

On Time Adaptivity and Stabilization

Shay Kutten

Technion, Haifa 32000, Israel, kutten@ie.technion.ac.il

Abstract:

We study the scenario where a transient fault hit a minority of the nodes in a distributed
system by corrupting their state. The notion of time adaptive, or of fault locality were
introduced to take advantage of the fact that the number of faults in such realistic scenarios
may be small. A stabilizing distributed protocol is called adaptive if its recovery time from
a state-corrupting fault is proportional to the number of processors hit by the fault, rather
than to the total number of nodes.

We describe time adaptive protocols, and upper and lower bound for their stabilization time,
and their fault resilience. We describe basic problems, both in the static case, and in the
interactive case, such that more general problems can be reduced to them. We then solve
these problems optimally. We describe the main techniques, as well as the new definitions,
such as that of the amount of fault resilience that can be obtained, the different kind of
stabilization (state stabilization versus output stabilization), and the additional desirable
properties for such protocols.

This area is rather new, and a lot of addition research is still needed.

:. $\mathrm{K}\mathrm{e}\mathrm{y}\mathrm{w}\mathrm{o}\mathrm{r}.\mathrm{d}_{\mathrm{S}}$: Time Adaptive, mending, Distributed Algorithms, Stabilization.

1 Introduction

Stabilizing distributed systems recover from a
particularly devastating type of faults: state-
corrupting faults. During a state corrupting
fault, the bits of the volatile memory in an af-
fected processor may be arbitrarily flipped. Their
resilience against such faults make stabilizing sys-
tems highly desirable, as it generalizes resilience
against any kind of transient fault. Naturally,
stabilization is quite expensive in terms of com-
putational resources. For example, one of the
common methods to make a system stabilizing
is the reset paradigm, which offers stabilization
with low space and communication overhead, at
the price of high stabilization $\mathrm{t}\mathrm{i}\mathrm{m}\mathrm{e}-\Omega(\mathrm{d}\mathrm{i}\mathrm{a}\mathrm{m})$ time
units is a trivial lower bound, where diam denotes
the network diameter. In this paper I survey some
attempts I participated in, to study a different
type of solutions we call time-adaptive protocols
[22], or fault local in the original paper [23]: these
are protocols which recover from a limited num-
ber of state-corrupting faults very quickly, typi-
cally at the cost of higher space and communi-

cation overhead. It is the belief of the author
that this end of the tradeoff spectrum is worthy
of further exploration.

in [23], and, later, in [22] we looked at one of
the basic building blocks of time-adaptive proto-
cols, called the persistent bit problem [23]. The
task is to maintain the value of a bit in spite of
state-corrupting faults. In some sense, the persis-
tent bit problem captures the essence of the state-
corrupting faults: maintaining a value is a trivial
task if no faults are involved, but it is not a simple
matter in face of state corruption. It seems that
any interesting time-adaptive protocol embeds a
solution to the persistent bit problem in it.

When speaking of time adaptiveity, we must
say that some of the results show that we need
to distinguish between different times. One cor-
responds to the concepts of output stabilization
and the other corresponds to state stabilization:
output stabilization is said to occur once the ex-
ternally observable portion of the state ceases to
change, and state-stabilization is said to occur
when the internal state ceases to change as well.
We describe proofs that these times often differ.

数理解析研究所講究録
1185巻 2001年 120-129 120

Results for Static Problems In [23], the per-
sistent bit problem was introduced, where the
goal is to retain the value of a common repli-
cated bit across the system in spite of transient
faults which may corrupt processors state arbi-
trarily, so long as the state at a majority of the
processors is not faulty. The bit value is re-
quired to be equal at all processors, and the com-
mon value should persist across faults. An al-
gorithm was presented with output stabilization
time $O(f\log n)$ for $f=O(n/\log n)$. However,
there the number of faults is cumulative: the algo-
rithm cannot correct more than $O(n/\log n)$ faults
throughout the execution of the system. In a cer-
tain sense, therefore, the state stabilization time
of the algorithm of [23] is infinity.

The main positive result of [22] (Theorem 4.1
here), is an algorithm for the persistent bit prob-
lem. Let n denote the number of nodes in the
system (we use the terms “nodes” and “proces-
sors” interchangeably), and let f denote the num-
ber of faulty processors in the start state. Let
diam be the actual diameter of the network at
the start state. The algorithm guarantees, for
any $f<n/2$, that the output is recovered every-
where in $O(f)$ time units, and that complete state
stabilization occurs in $O(\mathrm{d}\mathrm{i}\mathrm{a}\mathrm{m})$ time. The algo-
rithm is fairly robust in the sense that f and the
network topology need not be known in advance.
The algorithm can be simplified (and its space
and communication requirements are reduced) if
a smaller upper bound on f is known a priori.

However, the results in [22] fall short of the
original goal. First, strictly speaking, the algo-
rithm is not self-stabilizing, where the require-
ment is to recover from any number of faults
$f\leq n$ (note, however, that preserving the value
of a bit is somewhat meaningless when $f\geq n/2$);
secondly, the algorithm is stated and proved cor-
rect only for synchronous networks; and thirdly,
the algorithm has high space and communica-
tion complexity. Moreover, $[^{?}]$ treats only non-
reactive tasks. Some of these shortcomings were
corrected in later papers, mentioned in the sequel.

The negative results of [22] (Theorem ?? here),
give lower bounds on the stabilization complex-
ity of the persistent bit problem. The algorithm
is optimal in terms of stabilization times: there is
no algorithm for the persistent bit problem with
output stabilization time $o(f)$, or state stabiliza-

tion time $o(\mathrm{d}\mathrm{i}\mathrm{a}\mathrm{m})$. We note that the lower bounds
are proved for the synchronous executions model
(and hence for the asynchronous model).

In [21], we announce that we can now prove the
following strictly stronger result.

Theorem 1.1 There exists a protocol for the
persistent bit problem in the asynchronous net-
work model such that if the state of $f\leq n$ of
the nodes is corrupted, then the output bits stabi-
lize everywhere in $O(f)$ time units, and complete
state stabilization occurs in $O(\mathrm{d}\mathrm{i}\mathrm{a}\mathrm{m})$ time units,
where diam denotes the diameter of the network.

The improvement is twofold: first, the new pro-
tocol works in the asynchronous network model;
and second, it can withstand any number of faults
(i.e., it is self-stabilizing).

Results for Dynamic Problems In [11], we
present solutions for the reactive problem that is
often used as a benchmark for such protocols: the
problem of token passing. We treat the realistic
case, where no bound is known on the time a
node can hold the token (a node holds the token
as long as the node has not completed some ex-
ternal task). We study the scenario where up to k

(for a given k) faults hit nodes in a reactive asyn-
chronous distributed system by corrupting their
state undetectably. The exact number of faults,
the specific faulty nodes, and the time the faults
hit are not known.

We present several algorithms that stabilize
into a legitimate configuration (in which exactly
one node has a token) in time that depends only
on k , and not on n (the number of nodes). The
solutions are presented in stages. First, a ba-
sic protocol is shown to stabilize in $O(k^{2})$ time
and use only a constant number of (logarithmic
size) variables per node. For this first protocol
it is required that k is smaller than \sqrt{n} , that is,
the first protocol does not self-stabilize (for large
$k)$. In terms of the number of individual nodes’
steps the stabilization takes $O(kn)$ steps, and it
is shown that any 1-stabilizing algorithm (that is,
when $k=1$) must use at least $n-3$ steps.

The other algorithms are built on the basic one:
one stabilizes in $O(k^{2})$ time and is self-stabilizing
(so k can be larger than \sqrt{n}), another enhanced
version stabilizes in $O(k)$ time (and is time opti-

121

$\mathrm{m}\mathrm{a}\mathrm{l})$ but the space it uses is larger by multiplica-
tive factor of k .

In [25] we outline the first proof that all reac-
tive specifications admit adaptive protocols. In
the reactive system model [28], the environment
injects new inputs to the system from time to
time, and the system is required to produce new
output values depending on the given inputs, in
an on-line fashion. (Both the inputs and the out-
puts are distributed: an output of a node may
depend on values input at various remote nodes
at various times.)

The key ingredient of the proof is a new algo-
rithm for distributing input values in an adaptive
stabilizing fashion. Our algorithm is optimal, up
to a constant factor, in the following measures:. Response time: the time it takes an input

value to influence the relevant output values,
$\mathrm{s}_{:}$tarting from the time of injection.. Recovery time, which consists of two mea-
sures $[18, 22]$: Output stabilization is the
time it takes until the outputs exhibit correct
values after. a fault. State stabilization is the
minimum time between faults, for which the
system is still guaranteed to have this output
stabilization time and this resilience.

\bullet ${\rm Res}_{\dot{i}}l_{\dot{i}}ence$: the severity of faults from which
the algorithm fully recovers.

While the time complexity measures are rather
intuitive, the resilience measure is new and re-
quires an explanation. Let us first motivate it
with the following little example. Suppose that a
value is input to a node at some time, and then
immediately a fault corrupts the state of that
node. Clearly, there is no way for the system to
recover the input value in that case. More gener-
ally, if a value is input to a node v at time t , and
at time $t_{f}\geq t$ all nodes in radius $t_{f}-t$ around
v are hit by a fault, then, by the same reasoning,
the input value may be irrecoverable lost. This
consideration leads us to the following definition.

Definition 1.1 A value input to the system at
time t is said to be (ρ, β)-established at time t_{1}

with respect to a given fault, if less than a fraction
β of all nodes in radius $\rho(t_{1}-t)$ around the origin
of the value are affected by the fault, for some
$0\leq\rho,$ $\beta\leq 1$.

If an algorithm can recover all (ρ, β)-established
values, we say it is (ρ, β) -resilient. The parameter
ρ is called the agility of the algorithm, and β is
its strength. Trivially, both the agility and the
strength are at most 1. For our algorithm, we
have $\rho\approx 0.023$ and $\dot{\beta}=1/2$.

Strong Time Adaptivity In [24] we wanted
to take advantage of the fact that various sub-
tasks in a huge network interest only parts of
the network, and it is desirable that those parts,
if non-faulty, do not suffer from faults in other
parts. Our approach is to refine the previously
suggested notion of time adaptive algorithms (or,
another name we used: fault local algorithms),
that was best suited for global tasks, for which
the complexity of recovering was proportional to
the number of faults. We refine this notion by in-
troducing the concept of tight fault locality to deal
with problems whose complexity (in the absence
of faults) is sub-linear in the size of the network.
In the context of the other papers mentioned, this
can be called also strong time adaptivity. For
a problem whose time complexity on an n-node
network is $T(n)$ (where possibly $T(n)=o(n)$),
a tightly fault local algorithm recovers a legal
global state in $O(T(x))$ time when the (unknown)
number of faults is x .

This concept is illustrated by presenting a gen-
eral transformation for MIS algorithms to make
them tightly fault local. In particular, our trans-
formation yields an $O(\log_{X})$ randomized mend-
ing algorithm and an $\exp(O(\sqrt{\log x}))$ determin-
istic mending algorithm for MIS. The methods
used in the transformation may be of interest by
themselves.

2 Related Work.

The study of self-stabilizing protocols was initi-
ated by Dijkstra [12]. Reset-based approaches to
self-stabilization are described in [20, 6, 9, 10, 15].
In reset-based stabilization, the state is con-
stantly monitored; if an error is detected, a spe-
cial reset protocol is invoked, to consistently es-
tablish a correct global state, from which the sys-
tem can resume normal operation (either some
agreed upon state, or [15] a state that is in some
sense “close” to the faulty state.) One of the

122

main drawbacks of this approach is that the de-
tection mechanism triggers a system-wide reset in
the face of the slightest inconsistency.

The distinction between output stabilization
and state stabilization has been used and dis-
cussed in a number of papers. For example, in [8]
it is noted that the output stabilizes in $O(\mathrm{d}\mathrm{i}\mathrm{a}\mathrm{m})$

time, while the state stabilization time may be
much larger. Parlati and Yung [31] and Dolev et

al. [17] study a few cases where state stabiliza-
tion coincides with output stabilization. Ghosh
et al. [18] explicitly distinguish between output
and state stabilization (‘fault gap’). In [15], a dis-
tinction is made between a state-corrupting fault
which triggers a reset, and a topological change
which results in a milder effect.

The papers most closely related to our work
are $[18, 4]$. In [18], an algorithm for the follow-
ing problem is presented: given a self-stabilizing
non-reactive protocol, produce another version of
that protocol which is self-stabilizing, but whose
output stabilization time is $O(1)$ if $f=1$. The
transformed protocol has O (T . diam) state sta-
bilization time, where T is the stabilization time
of the original protocol (no analysis is provided
for output stabilization time when $f>1$). The
protocol of [18] is asynchronous, and its space
overhead is $O(1)$ per link. However, it requires a
self-stabilizing protocol to start with, and it may
suffer a performance penalty in the case of $f>1$.
In [4] faults are stochastic, and consequently the
correctness of information can be decided with
any desired certainty less than 1. Under this as-
sumption, a time-adaptive algorithm is presented.
The algorithm handles both Input-Output rela-
tions, and reactive tasks. Additional examples for
the special case of $O(1)$ recovery time appear in
[13, 30, 15, 29]. For adaptive reactive protocols,
Afek and Dolev [4] give an adaptive algorithm for
the self-detection case, where each node can find
on its own whether it is faulty.

3 Model

The system topology is represented by an undi-
rected connected graph $G=(V, E)$, where nodes
represent processors and edges represent com-
munication links. The number of the nodes is
denoted by $n=$ $|V|$. The distance (in the
number of edges) between nodes $u,$ $v\in V$ is

denoted dist(u, v) . The diameter of the graph
is denoted by diam. We denote $\mathrm{b}\mathrm{a}1|_{v}(d)$ $=$

$\{u|\mathrm{d}\mathrm{i}\mathrm{S}\mathrm{t}(v, u)\leq d\}$ for $d\geq 0$ (thus $\mathrm{b}\mathrm{a}\mathrm{l}1_{v}(0)=$

$\{v\})$. For $v\in V$, we define $N(v)=\mathrm{b}\mathrm{a}\mathrm{l}1_{v}(1)-\{s\}$:
the neighbors of \dot{i} .

A distributed protocol is a specification of the
space of local states for each node and a descrip-
tion of the actions which modify the local states.
As a part of each local state, there are distin-
guished input and output registers visible to the
external environment. The environment can take
two types of actions: input injection, i.e., assign-
ing values to input registers, or fault injection,
i.e., arbitrarily changing the state of an arbitrary
set of nodes. The nodes whose state was modified
by a fault injection action are said to be faulty.
By convention, we denote the set of faulty nodes
by F , their number by $f=|F|$, and the time
of the fault by t_{f} . We say that the faulty nodes
underwent a fault at time t_{f} .

In most papers (but not in all) we assume that
the system is synchronous. For simplicity, we ab-
stract the underlying communication mechanism
by assuming that actions may depend only on
the local state and the state of adjacent nodes.
(It is known how to translate this model to the
message-passing model; see, e.g., $[6, 16]$.) An exe-
cution of the system is a sequence of synchronous
steps: at each step, each node reads its own vari-
ables and the variables of its neighbors, and then
changes its local state according to the actions
specification.

4 The Persistent Bit Problem

The problem. The Persistent Bit problem is
defined as follows. Each node maintains an ex-
ternally observable output bit which satisfies the
following conditions (this is a degenerate case of
$\mathrm{i}\mathrm{n}\mathrm{p}\mathrm{u}\mathrm{t}/\mathrm{o}\mathrm{u}\mathrm{t}\mathrm{p}\mathrm{u}\mathrm{t}$ relation: there is no input).. Eventual Agreement. All output bits must

be equal, except perhaps for a $\mathrm{f}\mathrm{i}\mathrm{n}\mathrm{i}\dot{\mathrm{t}}\mathrm{e}$ time,
called output stabilization time immediately
following a fault.

\bullet Persistence. If the number of faults f in a
$\mathrm{g}\mathrm{i}_{\mathrm{V}\mathrm{e}\mathrm{n}\mathrm{S}}\mathrm{t}\mathrm{a}\mathrm{r}\mathrm{t}$ state satisfies $f<n/2$, then the
eventual common value of the output bits is
equal to the common va.lue of the. m.ajority
of the nodes in the start state.

123

Note that a global state may be faulty even if
all output bits are equal: this is because in gen-
eral, states have components other than the out-
put bits.

Our goal is to find a protocol with the smallest
possible output and state stabilization time. We
proved the following result:

Theorem 4.1 There exists a protocol for the
persistent bit problem such that if the state of
$f<n/2$ of the nodes is changed arbitrarily, then
the output bits are restored everywhere in $O(f)$

time units, and complete state stabilization oc-
curs in $O(\mathrm{d}\mathrm{i}\mathrm{a}\mathrm{m})$ time units, where diam denotes
the diameter of the network.

We proved that output- and state-stabilization
times above are the best possible. However, we
also discussed a simplified (and more efficient) so-
lution under the assumption that a better upper
bound on f is known.

Overview of the protocol The main diffi-
culty in a time-adaptive solution to the persistent
bit problem is that output values are required to
change quickly, while old information must not be
deleted too early. To see that, consider a given
network, a node i_{0} in it, and let N_{0} be the set of
all nodes at distance t or less from \dot{i}_{0} . Suppose
that node \dot{i}_{0} starts with output bit 0 , and all the
nodes in N_{0} start with output bit 1. Clearly, in
the first t time units, i_{0} cannot distinguish be-
tween the cases of (a) all nodes in the system ex-
cept \dot{i}_{0} have output bit 1, and (b) only the nodes
in N_{0} have output bit 1 but all other nodes have
output value 0 .

By the problem specification, the output value
at node \dot{i}_{0} should be different in each of these
cases. However, at the first t steps \dot{i}_{0} must deem
itself faulty, because of the possibility of case (a)
above. Moreover, if the protocol is fault-local,
the output stabilization time is $O(f)$ for any f ,
and \dot{i}_{0} is forced to change its output value to 1
after $O(1)$ steps, and keep it 1 at least through
time t , in line with case (a). However, it may
later turn out that case (b) is true. Thus, if \dot{i}_{0}

removes all traces of its previous output value in
the first t steps, \dot{i} becomes, in effect, an additional
faulty node, which might adversely affect other
non-faulty nodes later.1 The intuitive conclusion

1Interestingly, in [27] it is shown that there are graphs

is that nodes should not purge their old state
even when they flip the value of their output bit.
On the other hand, if the original value is never
forgotten, then additional faults have cumulative
effect, rendering the solution non-stabilizing. A
satisfactory solution to the Persistent Bit prob-
lem, which is both fault-local and stabilizing,
needs therefore hit a delicate balance between
keeping old information and modifying it.

Our solution consists of two parts: one re-
sponsible for speedy stabilization of the output
(while keeping old information), and the other
for prudent state stabilization (removing obso-
lete information). Each node has, in addition to
the externally visible output bit, another bit we
call ‘input bit.’ Intuitively, the input bit serves
as a long term memory in the sense that it is
used infrequently to save the current value of the
frequently-changing output bit. In a legal state,
all these bits (in all nodes) are equal. The main
component of the output stabilization part is the
regulated broadcast protocol, which ensures that
in $O(f)$ time, each node knows the true value
of the input bits of sufficiently many nodes, and
no node has a wrong estimate of any input value
of any other node. The output bit is computed
locally by a simple majority rule over these esti-
mates. The key to state stabilization is the input
fixing protocol, which guarantees that all faulty
input bits are corrected in $O(\mathrm{d}\mathrm{i}\mathrm{a}\mathrm{m})$ time units,
while making sure that input values at non-faulty
nodes never change. In the remainder of this sec-
tion, we give some details regarding the first task.

The Regulated Broadcast protocol The
goal of the regulated broadcast protocol, abbre-
viated RB hereafter, is that each node will have a
faithful replica of the input value of every node in
the system. These replicas, called estimates, are
used to compute the local output bit by a ma-
jority rule. For now, assume that input bits at
correct nodes never change (we prove this later).
Under this assumption, it is sufficient for fault-
locality that in $O(f)$ time, there will be at least
$f+1$ correct estimates of non-faulty nodes, and
that the only values contradicting non-faulty val-
ues are estimates of the input values at faulty

where a subset of $\ominus(n\mathrm{d}2/3\mathrm{i}\mathrm{a}\mathrm{m}\mathrm{l}/3)$ nodes are the majority
in all neighborhoods (up to distance about $\frac{\mathrm{d}\mathfrak{l}\mathrm{a}\mathrm{m}}{2}$) for all
nodes in the graph.

124

nodes. We remark that flooding-based broadcast
cannot be used: consider the case where a node \dot{i}

is connected to the network only through a single
node j . If j is faulty, a flooding broadcast might
result in j corrupting all remote estimates of $\dot{i}’ \mathrm{S}$

value by broadcasting a wrong value on behalf of
\dot{i} . In general, if flooding is used for broadcast, a
single fault at an articulation point can cause a
large set of nodes to appear faulty by corrupting
their broadcast value.

The RB protocol avoids this problem. (It is
very similar to the power supply technique, sug-
gested independently in [2].) The protocol builds
a tree rooted at each input value, and uses flood-
ing to forward the root value of that tree. How-
ever, this ‘broadcast wave’ is slowed down to half
speed (this is done by exposing the internal value
only after an additional copy step). At the same
time, nodes keep verifying the integrity of the
tree and the broadcast information; if an incon-
sistency is found, a ‘reset wave’ is initiated; this
wave progresses at full speed down the broadcast
tree, erasing all estimates and tree structure as
it goes (but does not harm the other trees). Be-
cause of the speed difference, a wrong value can-
not reach too far before it is eliminated.

Lower Bounds on Stabilization Times We
proved that the output and state stabilization
times of the algorithm of [22] for the persistent
bit protocol are asymptotically optimal.

Saving Space One way to reduce the space
complexity is to assume that there is a known
upper bound F on the number of processors cor-
rupted in a single transient fault. Under this
assumption, the algorithm can be converted to
one with output stabilization time $O(f)$, state-
stabilization time $O(F)$, and space complexity
$O(F)$.

5 The Asynchronous and Self
Stabilizing Algorithm of [21]

The high-level structure of the protocol of [21] is
identical to that of the algorithm presented in [22]

The internal structure of each of the modules
is different, though. Let us first describe the

change which allows the protocol to be fully self-
stabilizing in the synchronous model. For that
purpose, only a change in the input fixing proto-
col is needed, while the output stabilization part
remains unchanged. The key is the fact (estab-
lished in [22] $)$ that if the input bits do not change
their values for 2 . diam consecutive time units,
then all nodes agree on the values of all input bits
(since these values are broadcast at the rate of
two pulses per link). We therefore change the in-
put fixing algorithm as follows. In the old input-
fixing algorithm, each node estimates diam, and
counts up to 2 $\cdot \mathrm{d}\mathrm{i}\mathrm{a}\mathrm{m}+1$; when the counter hits
the bound, the input bit is set to the value of the
$\mathrm{o}\dot{\mathrm{u}}\mathrm{t}\mathrm{p}\mathrm{u}\mathrm{t}$ bit. In the new algorithm, we force all
counters to have the same value and to count up
to 6 $\cdot \mathrm{d}\mathrm{i}\mathrm{a}\mathrm{m}+1$. Forcing all counters to be equal is
done by taking the counter value, at each step, to
be one plus the minimum of all neighbors’ coun-
ters (including the local counter). With this mod-
ification, it is easy to prove the following lemma.

Lemma 5.1 If some input value changes its
value in the time interval [$0,2$. diam], then no
input value is changed in the time interval [4 .
diam, 6 . diam].

Lemma 5.1 guarantees that in any case, an in-
terval of 2 . diam time units without any change
in the input values will occur, and with this it
is simple to show that complete state stabiliza-
tion occurs in $O(\mathrm{d}\mathrm{i}\mathrm{a}\mathrm{m})$ time units regardless of
the start state.

To make the algorithm asynchronous, we need
to make a deeper change, both in the input fixing
and in the output stabilization protocols. These
changes are based on combining known tech-
niques with some new ideas. For the output sta-
bilization part, we observe that the “power sup-
ply” algorithm by Afek and Bremler [2] can be
slightly modified to have the properties needed
for the persistent bit problem. The idea is to
synchronize each broadcast tree by a stream of
“ticks” generated by the root. The effect of slow-
ing down the broadcast but not the reset is ob-
tained by having the broadcast, in every ho wait
untile it “consumes” two ticks. More details can
be found in [2].

The input fixing protocol has two parts: the
depth computation and the counter synchroniza-
tion, and we need to modify both. For the depth

125

computation, we have developed a little proto-
col based on the Bellman-Ford Algorithm which
never underestimates the depth, and stabilizes in
$O(\mathrm{d}\mathrm{i}\mathrm{a}\mathrm{m})$ to the correct value. For the synchonisa-
tion part, we use a variant of the self-stabilizing
synchronizer described in [8]. We note that the
fact that the stabilization time of that synchro-
nizer is $O(\mathrm{d}\mathrm{i}\mathrm{a}\mathrm{m})$ presents no problem since state
stabilization cannot occur in $o(\mathrm{d}\mathrm{i}\mathrm{a}\mathrm{m})$ time units
anyway (see [22], Theorem 4.3). Finally, we com-
bine the synchronizer pulses with the regulated
broadcast ticks.

6 Reactive Tasks: the Case of
Mutual Exclusion

In this problem it is required that exactly one
node ”possesses the token” (i.e. a locally com-
putable predicate TOKEN holds for that node)
at any moment, and that every node eventually
holds the token.

Note that this is a reactive system: a node P

holds the token until some outside entity signals
P , and P alone, that P can release the token.2

Let k-stabilizing protocols be time adaptive
protocols for the case that an upper bound $k\leq n$,
on the number of faults, is known (where n is the
total number of processes). That is, k-stabilizing
protocol stabilizes in a time proportional to k and
not to n . Some of the protocols in [11] are k-
srabilizing, while others are time adaptive even
if k is not known. The latter, however, consume
more space. (Note that in [22] knowledge regard-
ing the number of faults saves space.)

New Techniques: Let us first mention the
techniques used here, that we hope will be proven
useful also for other reactive tasks as well. For
that consider the propagation of inputs and the
propagation of faults: Intuitively, in a non-trivial
reactive system, nodes change their states as a re-
sult of the states of $\mathrm{t}\mathrm{h}\mathrm{e}\tilde{\mathrm{i}}\mathrm{r}\mathrm{n}\mathrm{e}\mathrm{i}\mathrm{g}\mathrm{h}\mathrm{b}\mathrm{o}\mathrm{r}\dot{\mathrm{s}}$; for example,
when a node P stops holding the token, and its
neighbor $P’$ starts holding the token as a result.

$2(\mathrm{A}\mathrm{n}$ alternative assumption, that other nodes are
aware of the signal (e.g. if it arrives after a fixed time),
would have simplified the $\mathrm{t}\mathrm{a}s\mathrm{k}$ considerably; However, this
would not have been a realistic assumption, since, in real-
ity, the signal models the completion of some local (mutual
exclusion user) task at $P.$)

This propagates (to $P’$) the input that told P to
release the token. If, however, P acted as a re-
sult of a fault, then $P’$ should not have changed its
state; now that it did, $P’ \mathrm{s}$ state is now corrupted,
and we say that the fault has propagated (to P).
Intuitively, the techniques we use here bound the
propagation of faults. Such bounding is essential
for time adaptivity, since, if faults propagate to
the whole network, any recovery process would
have to be global too. Techniques for bound-
ing were shown in the papers mentioned above
for non-reactive systems. However, bounding is
more difficult in reactive systems, since such sys-
tems must still propagate the inputs.

Results: In that paper we use the two common
time related complexity measures (See the defini-
tion in [11] $)$ (1) The sum (over all nodes \dot{i}) of
steps, where in one (atomic) step, node P reads a
neighbor’s state, computes, and writes $P’ \mathrm{s}$ vari-
ables. (2) asynchronous time, or rounds, the time
assuming (for the sake of time complexity calcu-
lation only) that no step lasts longer than one
time unit, and that nodes take steps in parallel.

We present two $k- \mathrm{s}\mathrm{t}\mathrm{a}\mathrm{b}\mathrm{i}1\overline{\mathrm{i}}_{\mathrm{Z}\mathrm{i}\mathrm{n}}\mathrm{g}$ algorithms for to-
ken passing over an asynchronous ring of nodes
(processes). The first stabilizes in $O(k^{2})$ rounds,
or $O(k^{2}n)$ steps, using a constant number of vari-
ables per node (each of $O(\log n)$ bits).

The second algorithm can be viewed as a “par-
allelized” version of the first. Its round complex-
ity is $O(k)$. Thus it is (asynchronous) time op-
timal. However, the space it uses is larger by a
multiplicative factor of k .

On the negative side we show that any token
passing self stabilizing algorithm requires at least
$\Omega(n)$ steps, and thus its step complexity cannot
be a function of k alone. (This also means that
our algorithms are step optimal for a constant $k.$)

7 General Adaptive Tasks, [25]

Problem Statement An input assignment
(respectively, output assignment) is a mapping
from node names to a given input domain (resp.,
output range). An input assignment history
(resp., output assignment history) for time t is
a set of input assignments (resp., output assign-
ments), one for each time step $0\leq t’\leq t$. A

126

reactive problem is specified by a function map-
ping each time step to a binary relation over the
input and output assignment. A reactive prob-
lem is said to be solved by a given algorithm if in
any execution of the algorithm, at each time step
t , the sequence of values taken by the input and
output registers satisfy the relation specified by
the problem for time t .

Standard techniques (based on the full-
information protocol) show that one can reduce
any reactive problem to the following basic build-
ing block problem.

Stabilizing Adaptive Bit Distribution
problem (SABD). Each node v has an output
bit denoted $\mathrm{o}\mathrm{u}\mathrm{t}_{v}$. A special node called source,
denoted by s , gets an input bit $\mathrm{B}_{s}(0)$ from the
environment at time 0 . The goal is that eventu-
ally, $\mathrm{o}\mathrm{u}\mathrm{t}_{v}$ holds $\mathrm{B}_{s}(0)$. The difficulty is that at
some unknown time $t_{f}\geq 0$, the state of a subset
$F\subseteq V$ of the nodes is corrupted arbitrarily, for
an unknown $|F|=f$.

The Concept of core Because of the lack of
space, we explain here only the intuition behind
the main new technique used by the algorithm.
At time 0 , the source gets the input value, it as-
signs it to B_{s} and starts a regulated broadcast.
The idea is to quickly, but carefully, create repli-
cas of the original input bit. Thus, if faults hit
only a small number of nodes, most of the replicas
remain correct. Moreover, we should be quick, so
that the later the faults occur, the more correct
replicas there are, and the larger is the resiliency
of the algorithm. On the other hand, we should
be careful not to replicate a value that was al-
ready corrupted by faults.

The local replica at a node v is called B_{v} . For
any time $t>0$, let heard (t) denote the set of
nodes that were reached by the broadcast (e.g.,
heard(0) $=\{s\})$. To better understand the dif-
ficulty, note that a state corrupting fault may
change the values of the B variables, including
the value of B_{s} . Thus, even a non-faulty node
joining heard (t) by receiving an RB may, in fact,
be receiving an incorrect value for B. The central
idea of the algorithm is to let such ajoining node
use, and help maintain , the following invariant.

Definition 7.1 The core Invariant: At each time
step t there exists a set of nodes core (t) such that

the majority of the values of $\{\mathrm{B}_{u}(t)|u\in \mathrm{c}\mathrm{o}\mathrm{r}\mathrm{e}(t)\}$

are equal to the input bit.

Assume for now that the invariant holds true. If
a node v could consult all the nodes in core (t)

before committing to a value for B_{v} at time t , then
the value assigned to B_{v} would be correct as well.
This approach raises two questions: first, how is
core (t) to be defined, and second, how can v find
the values of the B_{u} variables for nodes in core (t)

at time t . As for the second question, we shall see
that regulated broadcast suffices, assuming that
a fault may hit only a minority of core (t) . (This is
the “approximate” answer: Node v will, actually,
be able to consult the authentic votes of core (t) ,
only by some time $t’>t.$)

It remains to explain how can core (t) be defined
constructively. One possible choice is:

Example 7.1 core $(t)=\{s\}$ for all t . With
this definition, an algorithm would have had zero
agility- the number of faults for which the algo-
rithm is resilient does not grow with time. If the
original core is corrupted (by just one fault), the
core invariant is violated.

For better fault resilience, it is desirable that
core grows as fast as possible, while preserving
the invariant. The first idea for maintaining the
invariant for a growing core is inductive: a node
v would join the core only after verifying that the
value it assigns to B_{v} is the majority value of the
current core. This improves the agility, but still
does not lead to an optimal one. Consider the
following example for a choice of core (t) .

Example 7.2 Let the maximum core at time t

be all the nodes in heard $(t-1)$. Intuitively, a

node v , at distance d from the source s consults
all the nodes the are closer to the source. Thus
v has to collect a vote from a node u such that
dist $(u, v)\approx 2d$. Moreover, the earliest that u can
join heard and core is time $d-1$. Thus, the radius
of the core at any time t is $O(\sqrt{t})$. In terms of
Def. 1.1, we have $\beta=1/2$ but ρ is not a constant.
Thus ρ here is not optimal. In our algorithm we
manage to have constant ρ .

We formalize the requirements of core as fol-
lows. (Example 7.2 motivates the notion of t^{c} (as
opposed to t in Requirement 3.)
Requirements for core:

127

1. core(O) $=\{s\}$.

2. For all $t\geq 0,$ $\mathrm{c}\mathrm{o}\mathrm{r}\mathrm{e}(t)\subseteq \mathrm{c}\mathrm{o}\mathrm{r}\mathrm{e}(t+1)$.

3. If $v\in \mathrm{c}\mathrm{o}\mathrm{r}\mathrm{e}(t+1)-\mathrm{c}\mathrm{o}\mathrm{r}\mathrm{e}(t)$, then there exists
a time $t^{\mathrm{c}}\leq t$, such that v can verify (if v

is non-faulty) by time t that all votes from
nodes in core (t^{C}) are authentic.

4. Except for the case of core(O) $=\{s\}$, the first
core consulted by a node v , does not include
v .

Note that in Requirement 3 Node v verifies the
authenticity of votes of nodes in some core (t^{c}) ,
as opposed to core (t) . Intuitively, this relaxation
in the requirement generates a trade-off in the
value of ρ . Optimizing the trade-off enables us to
improve ρ beyond that of Example 7.2.

We choose core $(t)\mathrm{d}\mathrm{e}\mathrm{f}=\{v\in V|\mathrm{d}\mathrm{i}\mathrm{s}\mathrm{t}(s, v)\leq\alpha t\}$,
for a constant α we determine later in that paper.

References

[1] Y. Afek, B. Awerbuch, S. A. Plotkin, and
M. Saks. Local management of a global re-
source in a communication network. In 28th
Annual Symposium on Foundations of $C_{om}-$

puter Science, White Plains, New York, Oct.
1987.

$.[.2]$ Y. Afek and A. Bremler. Self-stabilizing
unidirectional network $\mathrm{a}\mathrm{l}\mathrm{g}\mathrm{o}\mathrm{r}\mathrm{i}\dot{\mathrm{t}}\mathrm{h}\mathrm{m}\mathrm{s}$ by power-

::
$\mathrm{s}\mathrm{u}\mathrm{p}\mathrm{p}_{l}1\mathrm{y}$. In Proc. of the 8th ann. ACM-SIAM
Symposium on Discrete Algorithms, pages
111-120, 1997.

[.3.] fY. Afek and E. Gafni. Distributed algo-
rithms for unidirection networks. SIAM J.
Comput., 23(6), Dec. 1994.

[4] Y. Afek and S. Dolev. Local stabilizer.
In Proceedings of the 5th Israeli Symposium
on Theory of Computing and Systems, June
1997.

[5] S. Aggarwal and S. Kutten. Time-Optimal
Self-Stabilizing Spanning $\mathrm{R}\mathrm{e}\mathrm{e}$ Algorithms.
In Proc. of the Thirteen Conference on
the Foundations of Software Technology and
Theoretical Computer Science (FSTTCS),
Bombay, India, December 15-17, 1993.

[6] Y. Afek, S. Kutten, and M. Yung. Memory-
efficient self-stabilization on general net-
works. In Proc. 4th Workshop on Distributed
Algorithms, pages 15-28, Italy, Sept. 1990.
Springer-Verlag (LNCS 486). To appear in
Theoretical Comp. Sci.

[7] H. Attiya and J. Welch. Distributed Algo-
rithms. $\mathrm{M}\mathrm{c}\mathrm{G}\mathrm{r}\mathrm{a}\mathrm{W}$ -Hill Publishing Company,

$\mathrm{U}\mathrm{K}$, 1998.

[8] B. Awerbuch, S. Kutten, Y. Mansour,
B. Patt-Shamir, and G. Varghese. Time opti-
mal self-stabilizing synchronization. In Pro-
ceedings of the 25th Annual ACM Sympo-
sium on Theory of Computing, San Diego,
California, pages 652-661, May 1993. Also
appeared as IBM Research Report RC-
19149(83418).

[9] B. Awerbuch, B. Patt-
Shamir, and G. Varghese. Self-stabilization
by local checking and correction. In $\mathit{3}\mathit{2}nd$

Annual Symposium on Foundations of Com-
puter Science, San Juan, Puerto Rico, pages
268-277, Oct. 1991.

[10] B. Awerbuch, B. Patt-Shamir, G. Vargh-
ese, and S. Dolev. Self-stabilization by lo-
cal checking and global reset. In Proc.
8th International Workshop on Distributed
Algorithms, pages 326-339. Springer-Verlag
(LNCS 857), 1994.

[11] J. Beauquier, C. Genolini, and S. Kutten.
Optimal reactive k-stabilization: the case of
mutual exclusion. In Proc. 18th Ann. ACM

Symp. on Principles of Distributed Comput-
ing, pages 209-218, May 1999.

[12] E. W. Dijkstra. Self-stabilizing systems in
spite of distributed control. Comm. ACM,
$17(11):643-644$, November 1974.

[13] I. Chlamtac and S. Pinter. Distributed node
organization algorithm for channel access in
a multihop dynamic radio network. IEEE
Trans. Computers, $\mathrm{C}- 36(6):728-737$, June
1987.

[14] S. Dolev. Self-Stabilization. MIT Press,
2000.

128

[15] S. Dolev and T. Herman. Superstabiliz-
ing protocols for dynamic distributed sys-
tems. In Proc. of the Second Workshop
on Self-Stabilizing Systems, pages 3.1-3.15,
May 1995.

[16] S. Dolev, A. Israeli, and S. Moran. Self-
stabilization of dynamic systems assuming
only $\mathrm{r}\mathrm{e}\mathrm{a}\mathrm{d}/\mathrm{w}\mathrm{r}\mathrm{i}\mathrm{t}\mathrm{e}$ atomicity. In Proc. 9th
Ann. ACM Symp. on Principles of $D\dot{i}S-$

tributed Computing, Quebec City, Canada,
Aug. 1990.

[17] S. Dolev, M. Gouda, and M. Schneider.
Memory requirements for silent stabiliza-
tion. In Proceedings of the 15th An-
nual ACM Symposium on Principles of $D_{\dot{i}}s-$

tributed Computing, pages 27-34, 1996.

[18] S. Ghosh, A. Gupta, T. Herman, and S. V.
Pemamraju. Fault-containing self-stabilizing
algorithms. In Proc. 15th Ann. ACM

Symp. on Principles of Distributed Comput-
ing, May 1996.

[19] G. Itkis and L. Levin. Fast and lean self-
stabilizing asynchronous protocols. In 35th
Annual Symposium on Foundations of Com-
puter Science, Santa Fe, New Mexico, pages
226-239, Nov. 1994.

[20] S. Katz and K. Perry. Self-stabilizing exten-
sions for message-passing systems. In Proc.
10th Ann. ACM Symp. on Principles of Dis-
tributed Computing, Quebec City, Canada,
Aug. 1990.

[21] Asynchronous Time-Adaptive Self Stabiliza-
tion. S. Kutten and B. Patt-Shamir. A Brief
Announcement in the Proc. 17th Ann. ACM

Symp. on Principles of Distributed Comput-
ing, Puerto Vallerta, Mexico, June 1998.

[22] S. Kutten and B. Patt-Shamir. Time-
adaptive self-stabilization. In Proc. 16th
Ann. ACM Symp. on Principles of Dis-
tributed Computing, pages 149-158, Aug.
1997.

[23] S. Kutten and D. Peleg. Fault-local dis-
tributed mending. In Proc. 14th Ann. ACM

Symp. on Principles of Distributed Comput-
ing, Aug. 1995.

[24] S. Kutten and D. Peleg. Tight fault locality
(extended abstract). In 36th Annual Sympo-
sium on Foundations of Computer Science,
pages 704-713, 1995.

[25] S. Kutten and B. Patt-Shamir. Adaptive
Stabilization of Reactive Distributed Proto-
cols. Extended Abstract. http:
$\mathrm{i}\mathrm{e}\mathrm{w}3.\mathrm{t}\mathrm{e}\mathrm{C}\mathrm{h}\mathrm{n}\mathrm{i}\mathrm{o}\mathrm{n}.\mathrm{a}\mathrm{c}.\mathrm{i}1:8080/\mathrm{k}\mathrm{u}\mathrm{t}\mathrm{t}\mathrm{e}\mathrm{n}/\mathrm{k}\mathrm{p}00_{\mathrm{P}^{\mathrm{S}}}.$.

[26] N. Lynch. Distributed Algorithms. Morgan
Kaufmann, San Mateo, $\mathrm{C}\mathrm{A}$, 1995.

[27] N. Linial, D. Peleg, Y. Rabinovich, and
M. Saks. Sphere packing and local majori-
ties in graphs. In Proceedings of the 2nd
Israel Symposium on Theory of Computing
and Systems, pages 141-149, June 1993.

[28] Z. Manna and A. Pnueli. Models for reactiv-
ity. Acta Informatica, 3:609-678, 1993.

[29] A. Mayer, M. Naor, and L. Stockmeyer.
Local computation on static and dynamic
graphs. In Proc. of the 3rd Israel Symp. on

Theory and Computing Sys., 1995.

[30] M. Naor and L. Stockmeyer. What can be
computed locally? In Proceedings of the
25th Annual ACM Symposium on Theory
of Computing, San Diego, California, pages
184-193, 1993.

[31] G. Parlati and M. Yung. Non-exploratory
self-stabilization
for constant-space symmetry-breaking. In
J. van Leeuwen, editor, Proceedings of the
2nd Annual European Symposium on Algo-
rithms, pages 26-28, Sept. 1994. LNCS 855,
Springer Verlag.

[32] G. Peterson. An $O(n\log n)$ unidirectional
distributed algorithm for the circular ex-
trema problem. ACM Transactions on Pro-
gramming Languages and Systems, 4:758-
762, October 1982.

[33] Gerard Tel. Distributed Algorithms. Cam-
bridge University Press, 1994.

129

