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Pulses, kinks and fronts in the Gray-Scott model
$\mathrm{L}.\mathrm{A}$ . PELETIER

Mathematical Institute, Leiden University, Leiden, The Netherlands

1. Introduction

The Gray-Scott model represents what is called cubic autocatalysis [GS1-3], and is
given by the chemical reaction equations

Here $k_{1},$ $k_{2}$ and $k_{f}$ are positive rate constants. In this lexture we discuss the situation
in which the reactant $A$ is fed continuously into an unstirred reactor. The rate $\theta$ at
which $A$ is supplied is assumed to be positive if the concentration $a$ of $A$ drops below a
preassigned value $a_{0}$ , and negative if it exceeds $a_{0}$ . Specifically, it is assumed that

$\theta=k_{f}(a_{0}-a)$ .

The kinetics of this system leads to a pair of ordinary differential equations for the
concentrations $a(t)$ and $b(t)$ of, respectively, $A$ and $B$ :

$\{$

$a’=-k_{1}ab^{2}+k_{f}(a_{0}-a)$ , (l.la)

$b’=+k_{1}ab^{2}-k_{2}b$ . (l.lb)

For all values of the rate constants $k_{1},$ $k_{2}$ and $k_{f}$ the point

$(a, b)=(a_{0},0)$ is a stable node,

and if
$\lambda^{\mathrm{d}}=^{\mathrm{e}\mathrm{f}}\frac{k_{1}k_{f}}{k_{2}}a_{0}^{2}>4$ , (1.2)

there are two additional critical points, $P_{1}=(a_{1}, b_{1})$ and $P_{2}=(a_{2}, b_{2})$ , numbered so
that $0<a_{2}<a_{1}<a_{0}$ . The point $P_{1}$ is a saddle and the point $P_{2}$ is a spiral, which may
be stable or unstable. For $\lambda=4$ these two points coincide.

In the absence of stirring, the different concentrations depend not only on time $t$ ,

but, due to diffusion, also on the location in the reactor. Assuming a one-dimensional
geometry, with spatial coordinate $x$ , the Gray-Scott model then leads to the following
system of reaction-diffusion equations for the concentration profiles $a(x, t)$ and $b(x, t)$

of, respectively, $A$ and $B$ :
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Here $D_{A}$ and $D_{B}$ are the diffusion coefficients of the chemicals $A$ and $B$ .

Proposed in 1983 by Gray and Scott [GS1], the Gray-Scott model has been stud-

ied a great deal, as a simple polynomial mass-action model which has rich dynamics.

For background information we refer to the papers of Horsthemke, Pearson, R\"ohricht,

Swinney and Vastano [P,RH,VPI, $\mathrm{V}\mathrm{P}2$], in which bifurcation phenomena and Turing

patterns are discussed, and to Reynolds, Pearson &Ponce-Dawson [RPP], in which

self-replicating patterns are analyzed. The Gray-Scott model is related to another au-
tocatalytic reaction, the Brusselator [$\mathrm{N}\mathrm{P}$ , p. 93]. We also mention here the more recent

studies by Nishiura&Ueyama [NU1,2] on self-replicating patterns and Mimura&Na-

gayama [MN] on the phenomenon of non-annihilation.
More analytic studies have been carried out by Merkin&Sadiq [MS], and Muratov

[M]. In papers by Doelman, Kaper &Zegeling [DKZ], Doelman, Gardner &Kaper

[DGK] and Doelman, Eckhaus&Kaper [DEK], singular perturbation methods were used

to study the existence and stability of pulses under the assumption that $D_{B}/D_{A}\ll 1$

and $k_{f}/D_{A}\ll k_{2}/D_{B}$ . .

We also mention the related work of Billingham&Needham [BN1-3] and Foquant

&Gallay [FG]. They discuss the existence and stability of travelling waves in the closed

system of chemical reactions

$A+nBarrow k(n+1)B$ with rate $kab^{n}$ for $n=1,2$ , (1.4)

in the absence of feeding of the chemical $A$ and degeneration of the catalyst $B$ .
In this lecture we discuss stationary Pulses and Kinks and their stability. Specifi-

cally we shall obtain explicit expressions for such solutions if

$\frac{k_{f}}{D_{A}}=\frac{k_{2}}{D_{B}}$ , (1.5)

Regarding stability we find that if the diffusion coefficients are equal:

$D_{A}=D_{B}$ , (1.6)

the pulses constructed above are unstable and the kinks are stable.

In this lecture we present results obtained in collaborations with $\mathrm{J}.\mathrm{K}$ . Hale (Georgia

Tech) and $\mathrm{W}.\mathrm{C}$ . Troy (Pittsburgh) [HP1,2] and with Th. Gallay (Paris Sud) [GP].

2. Dynamics

The reaction diffusion equations (1.3) can be simplified by introducing the dimen-

sionless variables

$u= \frac{a}{a_{0}}$
$v= \frac{b}{a_{0}}$

$\tilde{x}=\sqrt{\frac{k_{1}a_{0}^{2}}{D_{A}}}x$ , $t=k_{1}a_{0}^{2}t\sim$ , (2.1)
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and the dimensionless constants

$A= \frac{k_{f}}{k_{1}a_{0}^{2}}$ $B= \frac{k_{2}}{k_{1}a_{0}^{2}}$ and $d= \frac{D_{B}}{D_{A}}$ . (2.2)

When we drop then drop the tildes again, we obtain the system of equations,

$\{$

$u_{t}=u_{xx}-uv^{2}+A(1-u)$ (2.3a)
$x\in \mathrm{R}$ , $t>0$ .

$v_{t}=dv_{xx}+uv^{2}-Bv$ (2.3b)

We assume that initially the concentration profiles $a(x, 0)$ and $b(x, 0)$ are given, and we
set

$u(x, 0)=u_{0}(x)$ and $v(x, 0)=v_{0}(x)$ for $x\in \mathrm{R}$ , (2.3c)

where, in view of the definition of $u$ and $v$ , the initial data $u_{0}$ and $v_{0}$ are assumed to be
nonnegative functions.

We make the following observations: Let $(u, v)$ be a solution of the system (2.3) in
the strip $S_{T}=\{(x, t) : x\in \mathrm{R}, 0\leq t<T\}$ . Then

(1) $u(x, t)\geq 0$ for $(x, t)\in S_{T}$ .

This follows immediately because $u=0$ is a sub-solution of equation (2.3a).

(2) $v(x, t)\geq 0$ for $(x, t)\in S_{T}$ ,

because $v=0$ is a solution of equation (2.3b).

(3) $u(x, t)\leq 1$ for $(x, i)\in S_{T}$ ,

because $u=1$ is a super-solution of equation (2.3a).

There exists a constant $M>0$ which depends on the initial data $u_{0}$ and $v_{0}$ , such that

(4) $v(x, t)\leq M$ for $(x, t)\in S_{T}$ .

The proof of this upper bound is more delicate and uses ideas of Collet&Xin [CX] (see
[GP] $)$ .

3. Stationary solutions

For stationary solutions of (2.3) we can further reduce the number of parameters
by introducing new independent and dependent variables:

$\tilde{x}=Bx$ , $\tilde{u}(\tilde{x})=u(x)$ , $\tilde{v}(\tilde{x})=\frac{1}{B}v(x)$ (3.1)
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and the constants
$\lambda=\frac{A}{B^{2}}$ and $\gamma=Bd$ . (3.2)

The constant $\lambda$ in (3.2) is the same as the one defined in (1.2). These scalings yield a
system of equations which involves only two parameters: $\lambda$ and $\gamma$ :

$\{$

$u”=uv^{2}-\lambda(1-u)$ , (3.3a)

$\gamma v’’=v-uv^{2}$ . (3.3b)

If $\lambda<4$ the only constant solution is $P_{0}=(1,0)$ and if $\lambda>4$ the constant solutions are
$P_{0}$ , as well as $P_{1}$ and $P_{2}$ .

In [HPTI] it was shown that it is possible to obtain explicit pulse and kink type

solutions of Problem (2.3) if

$\lambda\gamma=1$ and $\lambda>4$ (or $0< \gamma<\frac{1}{4}$ ). (3.4)

This range of $\lambda$ values coincides with the range of values for which the null-clines along

which $u”$ and $v”$ vanish intersect. That is, if we write

$\mathrm{K}=\{(u, v) : u’’=0\}$ and $\mathrm{L}=\{(u, v) : v’’=0\}$ , (3.5)

then $K\cap L\neq\emptyset$ if and only if $\lambda>4$ (see Fig. 1).

(a) $\lambda<4(\lambda=1)$ (b) $\lambda>4(\lambda=8)$

Fig. 1. Null-clines

In [DKZ], [DGK] and [DEK] the existence of solutions is investigated under the assump-

tion that $d$ is small and that $\lambda\gamma<<1$ . Thus, Figure la describes the relative position

of the null-clines in these papers. In this paper, the null-clines intersect and Figure lb

applies.
We establish the existence of the following pulses:
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Theorem 3.1. Let $\lambda$ and $\gamma$ sa$tis\theta(3.4)$ , and $0< \gamma<\frac{2}{9}$ , then the pair of functions
$u(x)$ and $v(x)$ given by

$u(x)=1- \frac{3\gamma}{1+Q\cosh(x/\sqrt{\gamma})}$ , $v(x)= \frac{3}{1+Q\cosh(x/\sqrt{\gamma})}$ , (3.6)

in which $Q=\sqrt{1-\frac{9\gamma}{2}}$ , is a homoclinic $sol$ution ofProblem (3.3).

Theorem 3.2. Let $\lambda$ and $\gamma$ satisff (3.4), and $\frac{2}{9}<\gamma<\frac{1}{4}$ , then the pair of functions
$u(x)$ and $v(x)$ given by

$u(x)= \frac{1-\omega}{2}+\frac{a\gamma}{1+b\cosh(cx)}$ , $v(x)= \frac{1+\omega}{2\gamma}-\frac{a}{1+b\cosh(cx)}$ , (3.7a)

in which

$a= \frac{3}{\gamma}\frac{\omega(1+\omega)}{1+3\omega}$ , $b= \frac{\sqrt{1-3\omega}}{1+3\omega}$ , $c= \frac{\sqrt{\omega(1+\omega)}}{\gamma\sqrt{2}}$ , (3.7b)

$is$ a $hom$oclin$icsol\mathrm{u}$ tion ofProblem (3.3).

In Figures $2\mathrm{a}$ and $2\mathrm{b}$ we give graphs of $u$ and $v$ corresponding to Parts (a) and (b) of
Theorem 3.1 for the specific values $\gamma=0.15$ and $\gamma=0.23$ . The corresponding $(v, v’)$

phase planes are given in Figures $4\mathrm{a}$ and $4\mathrm{c}$ .

(a) $\gamma=.15$ (b) $\gamma=.23$

Fig. 2. Homoclinic orbits

For $\gamma=\frac{2}{9}$ we have a kink:

Theorem 3.3. Let $\lambda$ and $\gamma$ sa$tis6^{r}(3.4)$ , and let $\gamma=\frac{2}{9}$ . Then the pair of functions
$u(x)$ and $v(x)$ given by

$u(x)= \frac{1}{3}\{$ $2- \tanh(\frac{3x}{2\sqrt{2}})\}$ , $v(x)= \frac{3}{2}\{$ $1+ \tanh(\frac{3x}{2\sqrt{2}})\}$ , (3.8)
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$is$ a heteroclinic $sol\mathrm{u}$tion of Problem (3.3).

In Figure 3 we give graphs of $u$ and $v$ for $\gamma=\frac{2}{9}$ . The corresponding $(v, v’)$ phase plane

is given in Figure $4\mathrm{b}$ .

Fig. 3. The heteroclinic orbit for $\gamma=\frac{2}{9}$

The proof of Theorems 3.1, 3.2 and 3.3 is based on the following simple observation:

when we add equations (3.3a) and (3.3b) we eliminate the nonlinear term and we obtain

the linear equation

$u”+\gamma v’’=\lambda(u-1)+v=\lambda(u+\gamma v-1)+v(1-\lambda\gamma)$ . (3.9)

When we now set $p=u+\gamma v-1$ , then (3.9) becomes

$p^{j\prime}-\lambda p=v(1-\lambda\gamma)$ . (3.10)

Observe that for homoclinic orbits to $P_{0}=(1,0)$ we have

$(u(x), v(x))arrow(1,0)$ as $xarrow\pm\infty$ . (3.11)

This implies that
$p(x)arrow 0$ as $xarrow\pm\infty$ . (3.12)

If $\lambda\gamma=1$ , it then follows from (3.10) that $p(x)=0$ for all $x\in \mathrm{R}$ , and hence, that

$u(x)=1-\gamma v(x)$ for $x\in \mathrm{R}$ . (3.13)

When we now use (3.13) to eliminate $u$ from equation (3.3b), we obtain the autonomous

second order equation
$v”=f(v, \gamma)^{\mathrm{d}}=^{\mathrm{e}\mathrm{f}}\frac{1}{\gamma}v(1-v+\gamma v^{2})$ . (3.14)

This equation can be analysed by means of phase plane methods. In Figure 4 we show

the phase plane for different values of $\gamma$ .
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(a) $0< \gamma<\frac{2}{9}$ (b) $\gamma=\frac{2}{9}$ (c) $\frac{2}{9}<\gamma<\frac{1}{4}$

Fig. 4. The phase plane

The proofs of Theorems 3.1-3 can now be given by elemetary computations.

In addition to the homoclinic and heteroclinic orbits we obtain a family of periodic
solutions:

For every $\gamma\in(0,\frac{1}{4})$ Problem (3.3) has $a$ one-parameter family of periodic orbits when
$\lambda\gamma=1$ .

These periodic orbits accumulate on one of the homoclinic orbits, or the heteroclinic
orbits, when their periods tend to infinity [VF].

4. General properties of pulses

Let $(u, v)$ be a pulse type solution of (3.3) such that

$(u(x), v(x))arrow(1,0)$ as $xarrow\pm\infty$ . (4.1)

Then we can make the following observations.

(a) We begin with an upper bound for $u$ :

$u(x)<1$ for $x\in \mathrm{R}$. (4.2)

Proof. We write equation (3.3a) as

$u”-v^{2}u=-\lambda(1-u)$ on R. (4.2)

Suppose that $\max_{\mathrm{R}}u>1$ . Then $u$ attains its maximum at a point $x_{0}\in$ R. Plainly,
at $x_{0}$ the left hand side of (4.2) is negative, and the right hand side is positive; a
contradiction. Therefore $u\leq 1$ on $\mathrm{R}$ , so that

$u”-v^{2}u\geq 0$ on R. (4.3)
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Thus, by the strong maximum principle, $u<1$ on R.

(b) Property (a) enables us to prove that

$v(x)>0$ for $x\in \mathrm{R}$ . (4.4)

Proof. We write equation (3.3b) as

$\gamma v’’-v=-uv^{2}\leq 0$ on $\mathrm{R}$ , (4.5)

and we see that (4.4) holds by the strong maximum principle.

(c) We have
$\lambda\gamma\leq 1(\geq 1)$ $\Rightarrow$ $u+\gamma v<1(>1)$ . (4.6)

This is an immediate consequence of Property (b), equation (3.7) and the strong max-
imum principle.

(d) In the region $\lambda\gamma<1$ there can only exist homoclinic orbits to $(u, v)=(1,0)if \gamma<\frac{1}{4}$ .

Proof. Plainly, the maximum of $v$ is attained at an interior point; let us denote it by

$x_{0}$ . Then $v”(x_{0})\leq 0$ . This means that

$v> \frac{1}{u}$ at $x_{0}$ . (4.7a)

Because, by Property (c),
$v< \frac{1}{\gamma}(1-u)$ at $x_{0}$ , (4.7b)

The conditions (4.7a) and (4.7b) can only be reconciled if $\gamma<\frac{1}{4}$ .

5. Continuation

The branch of exact solutions $\Sigma=\{(\lambda, \gamma) : 0<\gamma<\frac{1}{4}\}$ can be taken as a starting

point of a continuation to values of $(\lambda, \gamma)$ in the neighbourhood of $\Sigma$ . This has been

done in [HPTI], both for the homoclinic and the heteroclinic orbits.

Below we give an outline of the argument for the heteroclinic orbits. It uses the

Implicit Function theorem and is an application Lin’s method [L]. We start from the

explicit kink at

$(\lambda, \gamma)=(\lambda_{0}, \gamma_{0})$ where $\lambda_{0}=\frac{9}{2}$ $\gamma_{0}=\frac{2}{9}$ . (5.1)

We denote this kink by

$v(x)=v_{0}(x)$ , $u(x)=1-\gamma v_{0}(x)$ , (5.2)
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where $v_{0}$ is given in Theorem 3.3.
We first reformulate the problem. We introduce a small parameter $\epsilon$ and small

perturbations of $\lambda_{0},$
$\gamma_{0},$ $p=0$ and $v_{0}$ :

$\lambda\gamma=1+\epsilon$ , $p=\epsilon r$ , $v=v_{0}+w$ . (5.3)

When we substitute these expressions into the equations for $p$ and $v$ we obtain for $r$

and $w$ the system

Here
$q_{0}=f_{v}(0, v_{0}, \gamma_{0})=\frac{1}{\gamma_{0}}(1-2v_{0}+3\gamma_{0}v_{0}^{2})arrow\frac{1}{\gamma_{0}}$ as $xarrow\pm\infty$ . (5.5)

We shall prove the following theorem:

Theorem 5.1. (a) There esists a smooth arc

$C=\{(\lambda(\epsilon), \gamma(\epsilon)) : |\epsilon|<\epsilon_{0}\}$ , $(\epsilon_{0}>0)$

ofheteroclin$ic$ orbits $(u(\epsilon), v(\epsilon))$ ofProblem (3.3) such that

$(\lambda(\epsilon),\gamma(\epsilon))arrow(\lambda_{0,\gamma_{0}})$ and $(u(\epsilon), v(\epsilon))arrow(u_{0}, v_{0})$ as $\epsilonarrow 0$ ,

(b) The arc $C$ intersects the curve $\{\lambda\gamma=1\}$ under an angle given by

$\frac{d\lambda}{d\gamma}|_{C}(\lambda_{0}, \gamma_{0})=\frac{10-\pi^{2}}{\pi^{2}-7}$ . $\frac{\lambda_{0}}{\gamma_{0}}=0.920165\ldots$ . (5.6)

Here the convergence is in the space of $bo$un$ded$ continouous functions on R.

We proceed in a series of steps.

$\mathrm{S}\mathrm{t}\mathrm{e}_{-}\mathrm{p}1$ . We choose and element $w$ in the set $C_{B}(\mathrm{R})$ of continuous functions on $\mathrm{R}$ which
are uniformly bounded. With this function $w$ we can solve equation (5.4a) uniquely; we
denote its solution by

$r=H(\gamma, \epsilon)(v_{0}+w)$ , so that $r_{0}=H(\gamma_{0},0)(v_{0})$ . (5.7)

We put this solution into the second equation (5.4b). This yields an equation of the
form

$-y”+q_{0}(x)y=g(x)$ on $\mathrm{R}$ , (5.8)
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in which $q_{0}(x)$ has been defined in (5.5). Before we can solve this equation, we need to

inspect the eigenvalue problem

$-..y”+q_{0}(x)y=\kappa y$ on R. (5.9)

$\mathrm{S}\mathrm{t}\mathrm{e}_{\mathrm{D}}2$ . Equation (5.9) has a zero eigenvalue with corresponding eigenfunction $v_{0}’(x)$ , so
that if $y$ is a solution of equation (5.8), then so is $y+tv_{0}’$ for any $t\in \mathrm{R}$ . We therefore

split the space $C_{B}(\mathrm{R})$ :
$C_{B}(\mathrm{R})=\mathrm{Y}_{0}\oplus \mathrm{Y}_{1}$ , (5.10a)

where
$Y_{0}=\{tv_{0}’ : t\in \mathrm{R}\}$ and $\mathrm{Y}_{1}=\{y\in..C_{B} : (y, v_{0}’)=0\}$ . (5.10b)

It is well known that if $g\in \mathrm{Y}_{1}$ , then there exists a unique solution $y\in \mathrm{Y}_{1}$ of the equation

(5.8).

Step 3. We define the projection operators

$P:C_{B}arrow \mathrm{Y}_{0}$ and $1-P:..C_{B}arrow Y_{1}$ , (5.11)

and solve the equation

$-y”+q_{0}(x)y=(I-P)h(\epsilon H(\gamma, \epsilon)(v_{0}+w),$ $w,$ $\gamma)$ on R. (5.12)

We denote the unique solution in $\mathrm{Y}_{1}$ by

$y^{\mathrm{d}}=^{\mathrm{e}\mathrm{f}}\mathcal{T}(w, \gamma, \epsilon)\in \mathrm{Y}_{1}$ . (5.13)

Step 4. We prove that for
$|\gamma-\gamma_{0}|+|\epsilon|<\mathcal{U}$ ,

where $\nu$ is a small number, the operator $\mathcal{T}$ in equation (5.13) has a fixed point $w^{*}(\gamma, \epsilon)$ .
This solution will be a solution of the originat problem if

$Ph(\epsilon H(\gamma, \epsilon)(v_{0}+w^{*}),$ $w^{*},$ $\gamma)=0$ , (5.14)

or, in view of the definition of the projection $P$ ,

$\mathcal{G}(\gamma, \epsilon)^{\mathrm{d}}=^{\mathrm{e}\mathrm{f}}\int_{\mathrm{R}}h(\epsilon H(\gamma, \epsilon)(v_{0}+w^{*}),$ $w^{*},\gamma)v_{0}’dx=0$ . (5.15)

Because $\mathcal{G}$ is differentiable near $(\gamma_{0},0)$ we have

$\mathcal{G}_{\gamma}(\gamma_{0},0)\gamma’(\epsilon)+\mathcal{G}_{\epsilon}(\gamma_{0},0)=0$ . (5.16)
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Since
$\mathcal{G}_{\gamma}(\gamma_{0},0)=-\frac{3^{4}}{4\gamma_{0}}$ and $\mathcal{G}_{\epsilon}(\gamma_{0},0)=\frac{1}{\gamma_{0}}\int_{\mathrm{R}}v_{0}^{2}v_{0}’r_{0}dx$,

we conclude that
$\gamma’(0)=\frac{4}{3^{4}}\int_{\mathrm{R}}v_{0}^{2}v_{0}’r_{0}dx=\frac{\pi^{2}-7}{3}\gamma_{0}$.

This yields the desired expression:

$\frac{d\lambda}{d\gamma}|_{C}(\lambda_{0}, \gamma_{0})=\frac{10-\pi^{2}}{\pi^{2}-7}$ . $\frac{\lambda_{0}}{\gamma_{0}}=0.920165\ldots$ . (5.17)

In Figure $5\mathrm{a}$ we show the computed graph of $C$ , extended away from the point $(\lambda_{0}, \gamma_{0})$ ;
a blowup of the branch is shown in $\mathrm{F}^{1}\mathrm{i}\mathrm{g}\mathrm{u}\mathrm{r}\mathrm{e}5\mathrm{b}$. The computations were made with
AUTO97 [Do].

(a) The global branch (b) Blowup near $(\lambda_{0}, \gamma_{0})$

Fig. 5. The branch $C$ of heteroclinic orbits

We conclude with a few remarks about the stability of the pulses and kinks which we
constructed. When the two diffusion coefficients $D_{A}$ and $D_{B}$ are equal, it is still possible
to decouple the two equations, and so analyse the spectrum around the solutions on the
branch $\{\lambda\gamma=1 : \lambda>4\}$ , using well known results about the second order equation
(3.14). It turns out that the spectrum of the kink lies entirely in the negative half plane,
implying local stability [He], and that the spectrum of the pulses has eigenvalues with
both positive and negative real part, implying instability [HPT2].
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