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Department of Applied Physics 1 and Departmment of Mathematics § ,
School of Science and Engineering, Waseda University,

3-4-1 Okubo Tokyo, JAPAN 169-8555

1 Introduction

In this paper, we are concerned with Cauchy problem of the porous medium
equations:

{ up = div (u'Vu), (z,1) € R x [0,00), (1)

w(z,0) = ug(z), xR,

¢ : even natural number,

up(x) € ) H™(RY).
m=0

This type of equations have been studied by so many people and many inter-
esting results have been obtained so far. Among them, concerning the regularity
of solutiions, the Holder continuity of u has been well known. However, as for the
estimate for the derivative of u itself, little is known. It is also well known that
(P) does not admit any time global classical solutions for the case where ¢ > 1 and
uo > 0, (see Kalashnikov [8]). On the other hand, in our recent works [13], [14],
and [15], we constructed a time local solution which is smooth with respect to time
and space variables. Our aim here is to investigate the nonexistence of time global
classical soutions and the existence of time local smooth solutions of (P). Our main
results are given in the next section, and the sketch of their proofs are given in §3.



2 Main Results

As for the nonexistence of time global classical solutions, we work for the one
dimensional problem:

b { Uy = (|u|"’u)17 (z,t) € R' x [0,00),
1
u(z,0) = up(z), = € R,

(2)

Under the assumptions that ¢ > 1,0 < uy € C*(R")NL>(R"), Kalashnikov [8]
showed that the solution u of (P); does not satisfy u, € C(R' x [0,00)). If one
looks at the Barenblatt solution, one can easily see that the condition that £ > 1
is best psossible for the nonnegative initial data. From the view point of physics,
the nonnegativity of the initial dta is very natural requirement. However, from the
mathematical point of view, it is interesting to observe that if we are concerned with
sign changing solutions, this condition £ > 1 is not neccessary for the nonexistence
of global classical solutions as follows.

Theorem 1 Let vo = [ uo(€)d€ and assume
(N.1) v is symmetric with respect to z = xo.
(N.2) v € L*(R").

Then for each solution u of (P);, there exists a positive time Ty such that u(z,Ty) ¢
CYRY).
As for the existence of time local smooth solutions, our basic assumptions imposed

on the parameter £ and the initial data uo are the following (A.1) and (A.2).

(A.1) /is an even natural number.

(A.2) ugp(a) € ﬁ H™RM).

m=0
Then our main result on the existence is stated as follows.
Theorem 2 Let (A.1) and (A.2) be satisfied, then there exists a positive number

Ty depending on |lully2.comiy such that Cauchy problem (P) has a unique solution
u e C=([0,Ty) x RY) satisfying

sup ”u('vt)HLm(RN) < ”uOHLOO(RN)' , (3)
0<t<To
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3 Proofs

3.1 Sketch of proof of Theorem 1
Let u be a global solution of (P); and put v(z,t) = / u(&,1)d€, then we get

v.(2,t) = u(z,t). Hence it holds that (v,); = (|vs|*vs)ss- Integrating this over
(—o0, ), we find that v satisfies

Ut = (|vx|lvx)x7 (z,t) € R x [0, 00),

v(z,0) = vo(z) = /r up(€)dé, z € R,

(4)

Multiplying (4) by v and integrating over (0,t), we get
1 . t 1 . ’ .
SIo®lEe + [ loa(lfzsds < 5ol (5)
where we put p = { + 2. Furthermore, multiplication of (4) gives

Ol + 5 Sl =0

whence follows that ||v,(?)]
deduce

A T (6

7» 1s monotone decreasing. Then, in view of (5), we

On the other hand, integrating the identity (}7|v($)|q) = [v]" %0 - v, over (—o0, ),
we get ‘

1 z ‘ - i 3p—2
Sola)l = [ ol ounde < ol ol with g = 2
Consequently, by virtue of (5) and (6), we obtain
- 1/q
lo(®)llz= < (glo®lE o) ™ =0 as ¢ — oo, (7)

Here, by using the symmetricity of the initial data and the uniquness of solution of
(E), we can conclude that v(z,t) is also symmetric with respect to z = 2. Hence
it is easy to see that v,(zo,t) = 0 for all ¢ > 0. Suppose now that v(-,t) € C*(R")
for all t € [0, 00), then we have

d 0 .
E’U(xo,t) = _8.;0(1*,75)[95:aco = (]«umlp Z‘Ux(l',t))x [—
= (p— 1)!”1‘(3707 t)!p—z'UJ:J:(:UO» f) = 0.
Hence it follows that v(wo,t) = vy(xg) for all t € [0, 00), which contradicts the fact

(7). Thus it is proved that there exxists a positive time Ty such that v(x, Ty) ¢
CYHRY), i.e., u(z,Tp) ¢ CHIRY).
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3.2 Sketch of proof of Theorem 2
We here give a brief sketch for prove Thorem 2.

Stepl (Existence of ("*-solutions of approximate equations)

We introduce the following approximate equations for (P). _
pye uy — div ((6 + 'u")V-u,) = ' Vul?, (2,t) € RN x[0,7],
u(z,0) = up(x), z e RV,

where € is a positive parameter.

In order to assure the existence of C*®-solutions for (P)*, we have only to show
the following proposition. '

Proposition 1 For any T > 0,n € N,e € (0,1] and uq € H*™Y(RN), (P)° has a
1

unique solution us belonging to W2*(0,T; H*n=F+)(RN)) for all k = 0,1,...,n.

To prove Proposition 1, we reduce (P)° to the following evolution equations in
H’n. = HZ”(IRN) :

| oudeAu Fuf Au = Y Va2, e [0,T),
(P)* ,
u(0) = ug.

Here A = 4, is an operator in H, defined by 4, = —A and D(A,) = H 2"”'Z(IRN),
and the inner product of H, is given by (u,v)y, = (u, V) 2wy + (A, Agv)Lz(Rw).
In what follows we always assume uy € D(AY?) = H**+(RY) and denote A, and
Ap simply by A. ‘
In solving (P)°, we regard the terms u’Au and ¢u~'|Vu|? as perturbations for

gAu. We first solve the following equation with the perturbation u*Au.

Py Uy + g Au + u@Au = f7 te [07 T]a

' u(0) = up,

where f is a given function in L%(0,T; H,).
To solve (P);, we introduce another auxiliary equation:

e | ue cAu+ M'Au=h+ f. +€]0,T], X €[0,1],

/ (P £

u(0) = up.
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If (P); has a unique solution u", we define the operator *#,, by the following
correspondence:

AFe &+ b= ul = —no(uh)’ Aul, no € R.

By making use of the fact that u*Au can be decomposed into the sum of the mono-
tone part and the small perturbation part, we can show the following lemma.

Lemma 2 There exist a ( sufficiently small ) positive number ny and a positive
number R independent of X such that *F,, becomes a contraction mapping from K}

into itself, where KX = {'U € L*(0,T; Hy); vl 2010, < Ry
It is clear that *(P)j with A = 0 has a unique solution, so “F, is well defined.
Hence °F,, has a fixed point by the contraction mapping principle, which implies
that *(P); with A = 5y admits a unique solution, so ™F, is well defined. Hence
AF, with A = 21y admits a unique solution. Thus repeating this procedure finite
times, we can construct a unique solution of (P)g.

To solve the original approximate equation (P)°, we introduce another mapping

S defined by the following correspondence:
S ¢ heul s L) VP,

where u” is a unique solution of (P); with A = 1 and f =0,

By using much the same arguments as for *F, , we can show that there exist a
positive number R and a sufficiently small Ty > 0 such that S becomes a contraction
from KX into itself. Since S does not involve any small parameter such as 5o for
AF.o, we need the smallness of Ty. However, by the standard energy estimates for
(P)®, we can establish a priori bound for ||A*?u(#)||,, which assures that the local
solution on [0, 7] can be continued up to [0,7]. Thus the first step is completed.

Step2 (A priori estimates)
The basic tool here is the “ L>-energy method* introduced in [13], [14] and [15].
(i) Estimate for ||u(-, )|z«

Multiplication of (P) by |u|"~%u gives

L d
Jull - e
+oe(r - 1)/!u|r_2|Vu|2 dz + (r — 1)/ |2Vt de = o,
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whence follows
at " '

Then we get,

sup flu(-t)llprwyy < Jlug

@y forallr e [2,00]. (8)
0<t<T

(ii) Estimate for [[Vu(-, )|~ and ||D?u(-,t)||= (2 <r < o0)

Here and in what follows, we use the notations:

0
D,’ = 8;(:2-7 U; = Di‘U,,‘ U j = DiDjU,
D'uD*w = " D*uDw, |D*u| = (D*uD‘u)*/?,
jaf=t |

and also use the summation convention.

The direct energy method does not work for this case. However, we can apply
the argument of Oleinik and Kruzhkov [11] based on the change of variables and
the maximum principle to get a priori bound of ||Vul||z=. For example, Theorem
11.16 of Lieberman [10] assures that these exists a constant 01 o depending only on
luol|Le, [[Vuo|| Lo, ||toij|| Lo, ¢ and e such that for ¢,5 € {1,--- N}

sup || Vu(t)||= 4+ sup [luj(t)||lpe < Croo
0<t<T 0<t<T

On the other hand, multiplication of (P)® by —Aw and the integration by parts yield

Zdtuvunﬂ +/ ') (Aw)? dz < z//uf-wvuﬁmu; dz

< jz/u£|Auy2dx~|—£2/ue“2|Vu|4d:z:
1 | A
< Z/M—]ml%zx+1221\41{00|Vu|§2,
where M . = sup. (”VU( Moo + |Ju(t )“Loo)
0<t<T;

Hence, by Gronwall s inequality, we obtain the a priori bound for |Vu|z.. There-

-2
r < HVUHDHVUHLOO , we deduce the boundness of

fore, noting the inequality ||Vul
[|Vu|lpr for all » in [2, 00].
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Next multiplication of V(P)¢ by —VAu and the integration by parts yield
d . .
Sllaulz + /(e +uf)| VAU de
< /'uf-11vu||Au||VAu| da + 0(0 — 1) / WV uP|VAY| da

+ / 200 " u;Vu,VAu dx
< h+ 5L+ Iz

L < Z/UEIVA“V daf+€2/ w2Vl | Aul?
1 . : .
< Z/UEIVA’U,IZ de + My || Aullza
I < 2 [1VaupP o+ £2(0= 1) [ w2 Vul® de
< 2 [1Vauf de + M| Vullzs
1 . ‘ S .
I; < Z/quAu]z d:z7+4€2/ue"zlu,;|2|Vu,-i2 dz
17 . 5 e
< g / |V Auf? do + 42 ML || D?ul 2
Therefore
L + 1, + I

1 . .
3 /( + u")|VAu|* dv + (’21\41 . (HALLHV + 4”D2U”L'>) + MY TVl

Hence, by virtue of the elliptic estimate:

|1D%v|lr < Cr(JJAv|lr + |lv]lzr)  forr > 1, , (9)
we obtain

d . .

—IIAUHZLQ < GrljAul|z + Cy, (10)

where C; is a constant depending on M o, HVuHLz and . Then, by Gronwall’s
r=2

2
inequality and the relaton ||u;;||z- < ”U“HLoHuUHLw , we deduce the boundness of
| D?ul|- for all r in [2,00].

(iii) Estimate for | D3u(-,t)]| e



(a) Estimate for [[VAu(-, )|z 2<r § 00)

Multiplying A(P)° by ~V(}VA'u|"“2VAu> and repeating the same type of argu-
ments as above, we can deduce the following estimate:

Livaunly < C(IVAuDI +1), (1)

where (3 is a constant depending on Mz = sup H (t)]lw2 .oy Therefore, by
‘ 0<1‘<T1 .

Gronwall’s inequality, we can derive a priori bound for ||VAul||1- on [0,T1]. We can
repeat much the same argument as above for higher derivatives of u(?).

(b) Estimate for ||A%u(-,1)|lrr 2571 < o0)

Next we derive the L"-estimate for A%u.
Multiplication of A*(P)* by |AZul T2 A%y gives

|A*u ()|

—‘HAZ ()l
/ A2 (e + u') Au) | A%u "2 A% da
+ / A2 (0! =1 |Vul?)| A2l "2 A% da
< I +J | - (12)
Here we get
I < “/7—1 e+ u!)| A%V AR
+ M| A%ul|7, + Ma(L+ [V Aul) HVAUHL’HAZUH
J = 2 /.u"—lu;Azu,j"Azul’ ALy do

40 / (0= 12|V A + st D*uD?Au + 6D;(u' " yu;Aug;)
x| AZul""* A% da
+ / (21/—10:)’(1, - D*u+ 2'11,"—1(/_311,;)2) |AZu| 2 A% da

+ / | i, iy wip e O] A da
4 [t Ve[ A% A de
< ”—_—l /'u’»jA'Zur*ﬂvNu;Z de
+Mz(nA2uny T (I Aulpe + D[V AU A5,

157
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Here M, denotes a constant depending only on M, ...¢. N and r, and we used the
elliptic estimate in L". Then, recalling the boundness of ||[VAu]||, and the following

embedding inequality
IVAu||L~ < CIVAU||Le + ||A%u]|Le) for ¢ > N,
we deduce
d 2 : . : .
ZlIA%u]z- < M, (| A%ullp- +1)  for all» > N. (13)

i for all » > N, whence follows the

Thus we establish the boundness of ||A%u]
boundness of |VAu||p= and || D?ul|p.

(iv) Estimates for ||[D*"u(-,t)||L= and ||[D*"*lu(-,#)|

For the higher derivatives of u, we can repeat the same argument. By using the
following inequality:
1Dl

HD2“+1U”L°"

CoIIVA | e + [|ulle)

<
< CuUllA™ ullze + [lullzo),

we can establish the a priori bound for these norms if u, € W#**(R') or uy €
Wit (RY) respectively.
Finally we prove the convergence.

Convergence:

Theorem 3 Let ug € H¥*Y(RY) with k € N (k > 2), then there exists a positive
number Ty depending only on €, ||ug||we2 such that (P) has a unique solution u
belonging to  Cf = {v € C([0, To); H*(RN)); v € L®(0, To; H*+1(RY)),
v, € L¥0,To; H*¥(RM)), v*Av € L*(0,To; H*(R™))}  such that
sup |ju( )|l pe@yy < [luoll e gy (14)
0<t< T,
Moreover Ty can be chosen as a monotone decreasing function of ||ug||w2.~ such that
Ty tends to 0 as ||ugl|lwz tends to oo.

Proof of Theorem 3 : Let u, be the global solution of (P) belonging to C4. Then,
we know that {u, }.5o is bounded in L>(0, To; H**+1(R")) and there exists a positive
number T, depending only on ¢, ||ug||w2.~ such that the following inequalities hold.

S Zi!D’U=IIL' +{[D%lre < Ly, (15)

Srex g



"To . To
. / 1AM, |2, di + / / G ARy () dr dt < Lo, (16)
J0 0o .

To ‘
/o | (we)ell7pon dt < Logya (17)

Here L4 and Lyy; are independent of € and T can be chosen as a monotone decreas-
ing function of ||ug||w=2 such that Ty tends to 0 as |[ug||w=.~ tends to co. Now we are
going to show below that {u.}.5o forms a Cauchy sequence in C([0, Ty}; H*(RM)).
For any &; > 0,2, > 0, we denote u; = U,y = U, and w = Uy — Us. Then w
satisfies

Wy — 51/_\'11,1 + EzA‘U,Q =

1 }
i Adw) (18)

= ulAw + dyAugw + CuiT V (ug + )V + (| Vuy|*dy_1w, (19)
where d, = ui_l + uﬁﬂuz 4+ 4 ulug_‘z + u.g_l.
Multiplication of (18) by w gives
1d

St < (aalldulze + ol Aufl) follze +

1
41
< (en o) Lallwlle + Llwllze1 D]l (20)
We differentiate (19) once and multiply it by —VAw. Then it is easy to see that
there exists a constant C; depending only on £ such that : SR

/ dopwAw dz

1d
2.dt

Hence, by (20), (21) and Gronwall’s inequality, we obtain

1Awll}: < (e1+e2)LallAwllre + CeLiflAw]za (21)

lollwe < ol + Aulze < 2o +e2)La CFVH Ve 0,11

Thus {uc}eso forms a Cauchy sequence in C(l0,T); H 2(]RN )). ‘

Here we note that u/Au and Cu!~'(Du)? are also bounded in L*(0,To; H*(R"))
since u, is bounded in L>(0, TO;H’“"H(]RN)) and satisfies (16). Therefore, in view
of (15)-(17), we find that there exists a sequence &, — 0 such that {u,} = {ue, }
satisfies

Up — U strongly in  C([0, Ty); H*(RY)),
Uy — U strongly in  L>([0, To); Lo (RY)),
Up — U weakly in  L2(0,Ty; H*+Y(RY)),
and weakly star in L>(0, To; H*+1(RV)),
(up)y — uy weakly in  L*0,To; H*(RY)),
ut Au, — ¢ weakly in L0, To; H*(RY)),
(ut=1(Du,)* — x weakly in L0, To; H*(RY)),
enAu, — 0 strongly in L*(0, Ty; H*(RN)).

159
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On the other hand, since the convergence of u, to u in C([0, Ty]; H*(R")) and in
L>(0, Ty; L2 (RYN)) implies

up A — ' A weakly in L0, To; L(RY)),
b~ (Duy )? = Lu*"}(Du)? weakly in  L%(0,Ty; L*(RY)),

whence follow ¢ = u’Au and y = (u’~'(D?u). Then u turns out to be the desired
solution in Theorem 2. o

Now we are ready to prove our main theorem.

Proof of Theorem 2 : Since up € NX_o H™(RY), Theorem 2 says that solu-
tion u belongs to C§, for all k. Therefore u, € L2(0,To; H™(RY)) for all m € N.
Noting that u; = A(u'u;), we know uy € L*(0, Ty; H™(RN)) for all m € IN, which
implies u; € C([0,To}; H™(RY)) for all m € N. Repeating this procedure. we easily
find that Dju € C([0, To); H™(RY)) for all j,m € N. Then the standard argument
assures that v € C*>([0,T,] x R™). ]
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